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Abstract
Understanding the singular value spectrum of a matrix A ∈ Rn×n is a fundamental task in
countless numerical computation and data analysis applications. In matrix multiplication time,
it is possible to perform a full SVD of A and directly compute the singular values σ1, . . . , σn.
However, little is known about algorithms that break this runtime barrier.

Using tools from stochastic trace estimation, polynomial approximation, and fast linear sys-
tem solvers, we show how to efficiently isolate different ranges of A’s spectrum and approximate
the number of singular values in these ranges. We thus effectively compute an approximate
histogram of the spectrum, which can stand in for the true singular values in many applications.

We use our histogram primitive to give the first algorithms for approximating a wide class
of symmetric matrix norms and spectral sums faster than the best known runtime for matrix
multiplication. For example, we show how to obtain a (1 + ε) approximation to the Schatten
1-norm (i.e. the nuclear or trace norm) in just Õ((nnz(A)n1/3 +n2)ε−3) time for A with uniform
row sparsity or Õ(n2.18ε−3) time for dense matrices. The runtime scales smoothly for general
Schatten-p norms, notably becoming Õ(p nnz(A)ε−3) for any real p ≥ 2.

At the same time, we show that the complexity of spectrum approximation is inherently tied
to fast matrix multiplication in the small ε regime. We use fine-grained complexity to give condi-
tional lower bounds for spectrum approximation, showing that achieving milder ε dependencies
in our algorithms would imply triangle detection algorithms for general graphs running in faster
than state of the art matrix multiplication time. This further implies, through a reduction of
[72], that highly accurate spectrum approximation algorithms running in subcubic time can be
used to give subcubic time matrix multiplication. As an application of our bounds, we show that
precisely computing all effective resistances in a graph in less than matrix multiplication time is
likely difficult, barring a major algorithmic breakthrough.
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8:2 Spectrum Approximation Beyond Fast Matrix Multiplication

1 Introduction

Given A ∈ Rn×d, a central primitive in numerical computation and data analysis is to
compute A’s spectrum: the singular values σ1(A) ≥ . . . ≥ σd(A) ≥ 0. These values can
reveal matrix structure and low effective dimensionality, which can be exploited in a wide
range of spectral data analysis methods [33, 67]. The singular values are also used as tuning
parameters in many numerical algorithms performed on A [22], and in general, to determine
some of the most well-studied matrix functions [29]. For example, for any f : R+ → R+, we
can define the spectral sum:

Sf (A) def=
d∑
i=1

f(σi(A)).

Spectral sums often serve as snapshots of A’s spectrum and are important in many applica-
tions. They encompass, for example, the log-determinant, the trace inverse, the Schatten-p
norms, including the nuclear norm, and general Orlicz norms (see Section 1.2 for details).

While the problem of computing a few of the largest or smallest singular values of A has
been exhaustively studied [56, 60], much less is known about algorithms that approximate
the full spectrum, and in particular, allow for the computation of summary statistics such as
spectral sums. In nω time, it is possible to perform a full SVD and compute the singular
values exactly.1 Here, and throughout, ω ≈ 2.3729 denotes the current best exponent of
fast matrix multiplication [70]. However, even if one simply desires, for example, a constant
factor approximation to the nuclear norm ‖A‖1, no o(nω) time algorithm is known. We
study the question of spectrum approximation, asking whether obtaining an accurate picture
of A’s spectrum is truly as hard as matrix multiplication, or if it is possible to break this
barrier. We focus on spectral sums as a motivating application.

1.1 Our Contributions

1.1.1 Upper Bounds

On the upper bound side, we show that significant information about A’s spectrum can be
determined in o(nω) time, for the current value of ω. We show how to compute a histogram
of the spectrum, which gives approximate counts of the number of squared singular values in
the ranges [(1− α)tσ2

1(A), (1− α)t−1σ2
1(A)] for some width parameter α and for t ranging

from 0 to some maximum T . Specifically our algorithm satisfies the following:

I Theorem 1 (Histogram Approximation – Informal). Given A ∈ Rn×d, let bt be the number
of squared singular values of A on the range [(1− α)tσ2

1(A), (1− α)t−1σ2
1(A)]. Then given

error parameter ε > 0, with probability 99/100, Algorithm 1 outputs for all t ∈ {0, ..., T}, b̃t
satisfying:

(1− ε)bt ≤ b̃t ≤ (1 + ε)bt + ε(bt−1 + bt+1).

For input parameter k ∈ {1, ..., d}, let κ̄ def=
kσ2
k(A)+

∑d

i=k+1
σ2
i (A)

d·(1−α)T and κ̂ def= σ2
k+1(A)

(1−α)T . Let ds(A)

1 Note that an exact SVD is incomputable even with exact arithmetic [65]. Nevertheless, direct methods
for the SVD obtain superlinear convergence rates and hence are often considered to be ‘exact’.
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be the maximum number of nonzeros in a row of A. The algorithm’s runtime is bounded by:

Õ

(
nnz(A)k + dkω−1 +

√
nnz(A)[d · ds(A) + dk]κ̄

poly(ε, α)

)
or Õ

(
nnz(A)k + dkω−1 + (nnz(A) + dk)d

√
κ̂e

poly(ε, α)

)

for sparse A or Õ
(
ndγ−1+n1/2d3/2√κ̄)

poly(ε,α)

)
for dense A, where dγ is the time it takes to multiply

a d× d matrix by a d× k matrix using fast matrix multiplication.

This primitive is useful on its own – the summary of A’s spectrum which can be used in
many downstream applications. Setting the parameter k appropriately to balance costs (see
overview in Section 1.3), we use it to give the first o(nω) algorithms for computing (1± ε)
relative error approximations to a broad class of spectral sums for functions f , which are a)
smooth and b) quickly growing, so that very small singular values cannot make a significant
contribution to Sf (A). This class includes for example the Schatten p-norms for all p > 0,
the SVD entropy, the Ky Fan norms, and many general Orlicz norms.

For a summary of our p-norm results see Table 1. Focusing for simplicity on square
matrices, with uniformly sparse rows, and assuming ε, p are constants, our algorithms
approximate ‖A‖pp in Õ(nnz(A)) time for any real p ≥ 2.2 For p ≤ 2, we achieve

Õ
(

nnz(A)n
1/p−1/2
1/p+1/2 + n

4/p−1
2/p+1

√
nnz(A)

)
runtime. In the important case of p = 1, this be-

comes Õ
(

nnz(A)n1/3 + n
√

nnz(A)
)
. Note that n

√
nnz(A) ≤ n2, and for sparse enough A,

this bound is subquadratic. For dense A, we use fast matrix multiplication, achieving time
Õ
(
n

2.3729−.0994p
1+.0435p

)
for all p < 2. For p = 1, this gives Õ(n2.18). Even without fast matrix

multiplication, the runtime is Õ(n2.33), and so o(nω) for ω ≈ 2.3729.

1.1.2 Lower Bounds
On the lower bound side, we show that obtaining o(nω) time spectrum approximation
algorithms with very high accuracy may be difficult. Our runtimes all depend polynomially
on the error ε, and we show that improving this, e.g., to log(1/ε), or even to a better
polynomial, would give faster algorithms for the well studied Triangle Detection problem.

Specifically, for a broad class of spectral sums, including all Schatten p-norms with p 6= 2,
SVD entropy, log det(A), tr(A−1), and tr(exp(A)), we show that any (1± ε) approximation
algorithm running in O(nγε−c) time yields an algorithm for triangle detection running in
O(nγ+O(c)) time. For γ < ω and sufficiently small c, such an algorithm would improve
the state of the art in triangle detection, which currently requires Θ(nω) time on dense
graphs. Furthermore, through a reduction of [72], any subcubic time triangle detection
algorithm yields a subcubic time algorithm for Boolean Matrix Multiplication (BMM). Thus,
any spectral sum algorithm achieving subcubic runtime and 1

εc accuracy for small enough
constant c, must (implicitly) implement fast matrix multiplication. This is in stark contrast
to the fact that, for c = 3, for many spectral sums, including all Schatten-p with p ≥ 1/2, we
are able to obtain subcubic, and in fact o(nω) for ω = 2.3729, runtimes without using fast
matrix multiplication (see Table 1 for precise ε dependencies).

Our lower bounds hold even for well-conditioned matrices and structured matrices like
symmetric diagonally dominant (SDD) systems, both of which admit nearly linear time
algorithms for system solving [63]. This illustrates a dichotomy between linear algebraic

2 For any A ∈ Rn×d, nnz(A) denotes the number of nonzero entries in A.
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8:4 Spectrum Approximation Beyond Fast Matrix Multiplication

Table 1 Summary of our results for approximating the Schatten-p norms. We define f(p, ε) =
min{1, p3} · εmax{3,1+1/p}, which appears as a factor in many of the bounds. The uniform sparsity
assumption is that the maximum row sparsity ds(A) ≤ ξ

n
nnz(A) for some constant ξ. In our

theorems, we give general runtimes, parameterized by ξ. When we do not have the uniform sparsity
assumption, we are still able to give a (1 + ε) approximation in Õ(ε−3 nnz(A)

√
n + n2) time for

example for ‖A‖1. We can also give 1/γ approximation for any constant γ < 1 by paying an nγ/2
factor in our runtime. Note that for dense matrices, for all p we obtain o(nω) runtime, or o(n3)
runtime if we do not use fast matrix multiplication. Theorems numbers reference the full paper [53].

p Sparsity Appx. Runtime Theorem
p > 2 uniform (1 + ε) Õ

(
nnz(A) · p/ε3

)
Thm 32

p ≤ 2 uniform (1 + ε) Õ

(
1

f(p,ε)

[
nnz(A)n

1/p−1/2
1/p+1/2 + n

4/p−1
2/p+1

√
nnz(A)

])
Thm 33

p ≤ 2 dense (1 + ε) Õ

(
1

f(p,ε)n
2.3729−.0994p

1+.0435p

)
, Õ
(

1
f(p,ε)n

3+p/2
1+p/2

)
w/o FMM Thm 31

p > 0 general (1 + ε) Õ
(

1
f(p,ε)

[
nnz(A)n

1
1+p + n

1+ 2
1+p

])
Thms 32, 33

p > 2 general 1/γ Õ(p nnz(A) · nγ) Thm 34

p < 2 general 1/γ Õ
(

1
p3

[
nnz(A)n

1/p−1/2
1/p+1/2 +γ/2 +

√
nnz(A) · n

4/p−1
2/p−1

])
Thm 34

primitives like applying A−1 to a vector and spectral summarization tasks like precisely
computing tr(A−1). Our analysis has ramifications regarding natural open problems in
graph theory and numerical computation. For example, for graph Laplacians, we show that
accurately computing all effective resistances yields an accurate algorithm for computing
tr(A−1) of certain matrices, which is enough to give triangle detection.

1.2 Related Work on Spectral Sums
The applications of approximate spectral sum computation are broad. When A is positive
semidefinite (PSD) and f(x) = log(x), Sf (A) is the log-determinant, which is important in
machine learning and inference applications [57, 13, 19]. For f(x) = 1/x, Sf (A) is the trace
of the inverse, used in uncertainty quantification [7] and quantum chromodynamics [64].

When f(x) = xp, Sf (A) = ‖A‖pp where ‖A‖p is the Schatten p-norm of A. Computation
of the Schatten 1-norm, also known as the nuclear or trace norm, is required in a wide variety
of applications. It is often used in place of the matrix rank in matrix completion algorithms
and other convex relaxations of rank-constrained optimization problems [10, 15, 31, 54]. It
appears as the ‘graph energy’ in theoretical chemistry [25, 26], the ‘singular value bound’ in
differential privacy [28, 42], and in rank aggregation and collaborative ranking [48].

Similar to the nuclear norm, general Schatten p-norms are used in convex relaxations for
rank-constrained optimization [55]. They also appear in image processing applications [76],
classification [49], restoration [75], and feature extraction [17].

When f(x) = −x log x (after A is normalized by ‖A‖1), Sf (A) is the SVD entropy [2],
used in feature selection [69, 5], financial data analysis [11, 24], and genomic applications [2].

Despite their importance, prior to our work, few algorithms for fast computation of
spectral sums existed. Only a few special cases of the Schatten p-norms were known to be
computable in o(nω) time. The Frobenius norm (p = 2) is trivially computed in O(nnz(A))
time. The spectral norm (p = ∞) which can be estimated via the Lanczos method in
Õ(nnz(A)ε− 1

2 ) time [38]. Finally, the Schatten-p norms for even integers p > 2, or general
integers with PSD A. These norms can be approximated in O(nnz(A)ε−2) time via trace
estimation [74, 9], since when p is even or A is PSD, Ap is PSD and so its trace equals ‖A‖pp.
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There are a number of works which consider estimating matrix norms in sublinear space
and with a small number of passes over A [44, 3, 45, 9, 46]. However, in these works, the
main focus is on space complexity, and no non-trivial runtime bounds are given. We seem
to be the first to tackle the arguably more fundamental problem of obtaining the best time
complexity for simple norms like the Schatten-p norms.

Another interesting line of works tries to estimate the Schatten-p norms of an underlying
covariance matrix from a small number of samples from the distribution [37], or from entrywise
sampling under various incoherence assumptions [34]. This model is different from ours, as
we do not assume an underlying distribution or any incoherence properties. Moreover, even
with such assumptions, these algorithms also only give non-trivial sample complexity when
either A is PSD and p is an integer, or A is a general matrix but p is an even integer, which
as mentioned above are easy to handle from the perspective of time complexity alone.

A number of works have focused on computing spectral sums when A has bounded
condition number, and relative error results exist for the log-determinant, tr(exp(A)),
tr(A−1), and the Schatten p-norms [8, 27, 66]. We are the first to give relative error results
in o(ω) time for general matrices, without the condition number dependence. Our histogram
approach resembles spectral filtering and spectral density estimation techniques that have
been considered in the numerical computation literature [77, 16, 47, 67, 68]. However, this
literature typically requires assuming gaps between the singular values and existing work is
not enough to give relative error spectral sum approximation for general matrices

1.3 Algorithmic Approach

We now give a high level overview of the techniques used in our algorithms.

1.3.1 Spectral Sums via Trace Estimation

A common approach to spectral sum approximation is to reduce to a trace estimation
problem involving the PSD matrix ATA, using the fact that the trace of this matrix equals
the sum of its singular values. In fact, this has largely been the only known technique,
other than the full SVD, for obtaining aggregate information about A’s singular values
[30, 64, 59, 18, 8, 27]. The idea is, letting g(x) = f(x1/2), we have Sf (A) = Sg(ATA).
Writing the SVD ATA = UΛUT , and defining the matrix function g(ATA) def= Ug(Λ)UT

where [g(Λ)]i,i = g([Λ]i,i), we have Sg(ATA) = tr(g(ATA)) since, if g(·) is nonnegative,
g(ATA) is PSD and its trace equals the sum of its singular values.

It is well known that this trace can be approximated up to (1± ε) accuracy by averaging
Õ(ε−2) samples of the form xT g(ATA)x where x is a random Gaussian or sign vector [30, 4].
While g(ATA) cannot be explicitly computed without a full SVD, a common approach
is to approximate g with a low-degree polynomial φ [8, 27]. If φ has degree q, one can
apply φ(ATA) to any vector x in O(nnz(A) · q) time, and so estimate its trace in just
O(nnz(A) · qε2 ) time. Unfortunately, for many of the functions most important in applications,
e.g., f(x) = xp for odd p, f(x) = x log x, f(x) = x−1, g(x) has a discontinuity at x = 0 and
cannot be approximated well by a low-degree polynomial near zero. While the approximation
only needs to be good in the range [σ2

n(A), σ2
1(A)], the required degree q will still typically

depend on
√
κ where κ def= σ2

1(A)
σ2
n(A) is the condition number, which can be unbounded in general.

ITCS 2018



8:6 Spectrum Approximation Beyond Fast Matrix Multiplication

1.3.2 Singular Value Deflation for Improved Conditioning
Our first observation is that, for many functions, it is not necessary to approximate g(x) on
the full spectral range. For example, for g(x) = xp/2 (i.e., when Sg(ATA) = ‖A‖pp), setting
λ = ( εn ‖A‖

p
p)1/p:∑

{i|σi(A)≤λ}

σi(A)p ≤ n · ε
n
‖A‖pp ≤ ε ‖A‖

p
p .

Hence we can safely ‘ignore’ any σi(A) ≤ λ and still obtain a relative error approximation
to Sg(ATA) = ‖A‖pp. The larger p is, the larger we can set λ (corresponding to (1 − α)T
in Theorem 1) to be, since, after powering, the singular values below this threshold do not
contribute significantly to ‖A‖pp. For ‖A‖

p
p, our ‘effective condition number’ for approximating

g(x) becomes κ̂ = σ2
1(A)
λ2 = (nε )2/p · σ

2
1(A)
‖A‖2

p

. Unfortunately, in the worst case, we may

have σ1(A) ≈ ‖A‖p and hence
√
κ̂ = (nε )1/p. Hiding ε dependences, this gives runtime

Õ(nnz(A) · n) when p = 1.
To improve the effective condition number, we can apply singular vector deflation. Our

above bound on κ̂ is only tight when σ1(A) is very large and so dominates ‖A‖p. We
can remedy this by flattening A’s spectrum by deflating off the top k singular vectors
(corresponding to k in Theorem 1), and including their values in the spectral sum directly.

Specifically, let Pk be the projection onto the top k singular vectors of A and consider
the deflated matrix Ā def= A(I−Pk), which has σ1(Ā) = σk+1(A). Importantly, σpk+1(A) ≤
1
k ‖A‖

p
p, and so this singular value cannot dominate the p-norm. For example, considering

p = 1 and ignoring ε dependencies, our effective condition number after deflation is

κ̂ =
n2 · σ2

k+1(A)
‖A‖21

≤ n2

k2 (1)

The runtime required to approximate Pk via an iterative method (ignoring possible gains from
fast matrix multiplication) is roughly O(nnz(A)k + nk2). We then require Õ(nnz(A)

√
κ̂+

nk
√
κ̂) time to approximate the polynomial trace of ĀT Ā. The nk

√
κ̂ term comes from

projecting off the top singular directions with each application of ĀT Ā. Setting k =
√
n to

balance the costs, we obtain runtime Õ(nnz(A)
√
n+ n2).

For p 6= 1 a similar argument gives runtime Õ(nnz(A)n
1
p+1 + n2+ 1

p+1 ). This is already
a significant improvement over a full SVD. As p grows larger, the runtime approaches
Õ(nnz(A)) reflecting the fact that for larger p we can ignore a larger and larger portion of
the small singular values in A and correspondingly deflate off fewer and fewer top values.

Unfortunately, we get stuck here. Considering the important Schatten-1 norm, for a
matrix with

√
n singular values each equal to

√
n and Θ(n) singular values each equal to 1, the

tail of small singular values contributes a constant fraction of ‖A‖1 = Θ(n). However, there
is no good polynomial approximation to g(x) = x1/2 on the range [1, n] with degree o(

√
n)

(recall that we pick this function since Sg(ATA) = ‖A‖1). So to accurately approximate
g(ATA), we either must deflate off all

√
n top singular values, requiring Θ(nnz(A)

√
n) time,

or apply a Θ(
√
n) degree polynomial approximation, requiring the same amount of time.

1.3.3 Further Improvements with Stochastic Gradient Descent
To push beyond this barrier, we look to stochastic gradient methods for linear systems.
When using polynomial approximation, our bounds depend on the condition number of
the interval over which we must approximate g(ATA), after ignoring the smallest singular
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values and deflating off the largest. This is analogous to the condition number dependence of
iterative linear system solvers like conjugate gradient or accelerated gradient descent, which
approximate f(ATA) for f = 1/x using a polynomial of ATA.

However, recent advances in convex optimization offer an alternative. Stochastic gradient
methods [32, 61] sample one row, ai, of A at a time, updating the current iterate by
adding a multiple of ai. They trade a larger number of iterations for updates that take
O(nnz(ai)) time, rather than O(nnz(A)) time to multiply A by a vector. These methods
give much finer dependencies on the singular value spectrum. Specifically, it is possible to
approximately apply (ATA)−1 to a vector with the number of iterations dependent on the
average condition number: κ̄ =

1
n

∑n

i=1
σ2
i (A)

σ2
n(A) . κ̄ is always at most the standard condition

number, κ = σ2
1(A)
σ2
n(A) . It can be significantly smaller when A has a quickly decaying spectrum,

and hence 1
n

∑n
i=1 σ

2
i (A)� σ2

1(A). Further, the case of a quickly decaying spectrum with a
few large and many small singular values is exactly the hard case for our earlier approach. If
we can understand how to translate improvements on linear system solvers to spectral sum
approximation, we can handle this hard case.

1.3.4 From Linear System Solvers to Histogram Approximation

The key idea to translating the improved average condition number bounds for linear systems
to our problem of approximating Sf (A) is to note that linear system solvers can be used to
apply threshold functions to ATA.

Specifically, given any vector y, we can first compute ATAy. We can then apply a
fast system solver to approximate (ATA + λI)−1ATAy. The matrix function rλ(ATA) def=
(ATA+λI)−1ATA has a number of important properties. All its singular values are between
0 and 1. Further, any singular value in ATA with value ≥ λ is mapped to a singular value
in rλ(ATA) which is ≥ 1/2. Correspondingly, any singular value < λ is mapped to < 1/2.

Thus, we can apply a low degree polynomial approximation to a step function at 1/2
to rλ(ATA) to obtain sλ(ATA), which approximates a step function at λ [20]. For some
steepness parameter γ which affects the degree of the polynomial approximation, for x ≥
(1 + γ)λ we have sλ(x) ≈ 1 and for x < (1 − γ)λ, sλ(x) ≈ 0. On the intermediate range
x ∈ [(1− γ)λ, (1 + γ)λ], sλ(x) falls somewhere between 0 and 1.

Composing approximate threshold functions lets us ‘split’ our spectrum into a number of
small spectral windows. For example, sa(ATA) · (I− sb(ATA)) is ≈ 1 on the range [a, b]
and ≈ 0 outside this range, with some ambiguity near a and b.

Splitting our spectrum into windows of the form [(1−α)t−1, (1−α)t] for a width parameter
α, and applying trace estimation on each window lets us produce an approximate spectral
histogram. Of course, this histogram is not exact and in particular, the ‘blurring’ of our
windows at their boundaries can introduce significant error. However, by applying a random
shifting technique and setting the steepness parameter γ small enough (i.e., 1/ poly(α, ε)),
we can ensure that most of the spectral weight falls outside these boundary regions with
good probability, giving Theorem 1.

1.3.5 From Histogram Approximation to Spectral Sums

If α is small enough, and f(·) and correspondingly g(·) (where g(x) = f(x1/2)) are smooth
enough, we can approximate Sf (A) = Sg(ATA) by simply summing over each window in
the histogram, approximating g(x) by its value at one end of the window.

ITCS 2018



8:8 Spectrum Approximation Beyond Fast Matrix Multiplication

This technique can be applied for any spectral sum. The number of windows required
(controlled by α) and the histogram accuracy ε scale with the smoothness of f(·) and the
desired accuracy in computing the sum, giving runtime dependencies on these parameters.

However, the most important factor determining the final runtime is the smallest value
λ (corresponding to (1 − α)T in Theorem 1) which we must include in our histogram in
order to approximate Sf (A). The cost of computing the last window of the histogram
is proportional to the cost of applying sλ(ATA), and hence of approximately computing
(ATA+λI)−1ATAy. Using stochastic gradient descent this depends on the average condition
number of (ATA + λI).

Again considering the Schatten 1-norm for illustration, we can ignore any singular values
with σi(A) ≤ ε

n ‖A‖1. Hiding ε dependence, this means that in our histogram, we must
include any singular values of ATA with value σi(ATA) = σ2

i (A) ≥ 1
n2 ‖A‖21. This gives us

effective average condition number after deflating off the top k singular values:

κ̄ =
n2∑n

i=k+1 σ
2
i (A)

n ‖A‖21
≤
n2σk+1(A) ·

∑n
i=k+1 σi(A)

n ‖A‖21
≤ n

k
(2)

where the last inequality follows since σk+1(A) ≤ 1
k ‖A‖1 and

∑n
i=k+1 σi(A) ≤ ‖A‖1.

Comparing to (1), this bound is better by an n/k factor.
Ignoring details and using a simplification of the runtimes in Theorem 1, we obtain

an algorithm running in Õ(nnz(A)k + nk2) time to deflate k singular vectors, along with
Õ
(

nnz(A)
√
κ̄+

√
nnz(A)nkκ̄

)
time to approximate the spectral sum over the deflated

matrix. Choosing k to balance these costs, gives our final runtimes. For the nuclear
norm, using the bound on κ̄ from (2), we set k = n1/3 which gives κ̄ = n2/3 and runtime
Õ(nnz(A)n1/3 + n3/2√ds) where ds ≤ n is the maximum row sparsity. For dense A this is
Õ(n2.33), which is faster than state of the art matrix multiplication time. It can be further
accelerated using fast matrix multiplication. See details in Section 7 of the full paper [53].

Returning to our original hard example for intuition, we have A with
√
n singular values

at
√
n and Θ(n) singular values at 1. Even without deflation, we have (again ignoring ε

dependencies) κ̄ =
∑n

i=1
σ2
i (A)

nλ = n‖A‖2
F

‖A‖2
1
. Since ‖A‖2F = Θ(n3/2) and ‖A‖21 = Θ(n2), this

gives κ̄ = Θ(
√
n). Thus, we can actually approximate ‖A‖1 in just Õ(nnz(A)n1/4) time.

With average condition number dependence, our performance is limited by a new hard
case. Consider A with n1/3 singular values at n2/3 and Θ(n) at 1. A’s average condition
number is n‖A‖2

F

‖A‖2
1

= Θ
(
n5/3

n

)
= Θ(n2/3) giving

√
κ̄ = Θ(n1/3). Further, unless we deflate off

nearly all n1/3 top singular vectors, we do not improve this bound significantly.

1.4 Lower Bound Approach
We now shift focus to our lower bounds, which explore the fundamental limits of spectrum
approximation using fine-grained complexity. Fine-grained complexity has had much success
for graph problems, string problems, and problems in other areas (see, e.g., [71] for a survey),
and is closely tied to understanding the complexity of matrix multiplication. However, to
the best of our knowledge it has not been applied broadly to problems in linear algebra.

Existing hardness results for linear algebraic problems tend to apply to restricted com-
putational models such as arithmetic circuits [6], bilinear circuits or circuits with bounded
coefficients and number of divisions [51, 58], algorithms for dense linear systems that can
only add multiples of rows to each other [35, 36], and algorithms with restrictions on the
dimension of certain manifolds defined in terms of the input [73, 14]. In contrast, we obtain
conditional lower bounds for arbitrary polynomial time algorithms by showing that faster
algorithms for them imply faster algorithms for canonical hard problems.
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1.4.1 From Schatten 3-norm to Triangle Detection
We start with the fact that the number of triangles in any unweighted graph G is equal to
tr(A3)/6, where A is the adjacency matrix. Any algorithm for approximating tr(A3) to high
enough accuracy therefore gives an algorithm for detecting if a graph has a triangle.

A is not PSD, so tr(A3) is actually not a function of A’s singular values – it depends on
the signs of A’s eigenvalues. However, the graph Laplacian given by L = D−A where D is
the diagonal degree matrix, is PSD and we have:

‖L‖33 = tr(L3) = tr(D3)− 3 tr(D2A) + 3 tr(DA2)− tr(A3).

tr(D2A) = 0 since A has an all 0 diagonal. Further, it is not hard to see that tr(DA2) =
tr(D2). So this term and tr(D3) are easy to compute exactly. Thus, if we approximate ‖L‖33
up to additive error 6, we can determine if tr(A3) = 0 or tr(A3) ≥ 6 and so detect if G
contains a triangle. ‖L‖33 ≤ 8n4 for any unweighted graph on n nodes, and hence computing
this norm up to (1± ε) relative error for ε = 3/(6n4) suffices to detect a triangle. If we have
an O(nγε−c) time (1 ± ε) approximation algorithm for the Schatten 3-norm, we can thus
perform triangle detection in O(nγ+4c) time.

Our strongest algorithmic result for the Schatten 3-norm requires just Õ(n2/ε3) time for
dense matrices. Improving the ε dependence to o(1/ε(ω−2)/4) = O(1/ε.09) for the current
value of ω, would yield an algorithm for triangle detection running in o(nω) time for general
graphs, breaking a longstanding runtime barrier for this problem. Even a 1/ε1/3 dependence
would give a sub-cubic time triangle detection algorithm, and hence could be used to give a
subcubic time matrix multiplication algorithm via the reduction of [72].

1.4.2 Generalizing to Other Spectral Sums
We can generalize the above approach to the Schatten 4-norm by adding λ self-loops
to each node of G, which corresponds to replacing A with λI + A. We then consider
tr((λI + A)4) = ‖λI + A‖44. This is the sum over all vertices of the number of paths that
start at vi and return to vi in four steps. All of these paths are either (1) legitimate four
cycles, (2) triangles combined with self loops, or (3) combinations of self-loops and two-step
paths from a vertex vi to one of its neighbors and back. The number of type (3) paths is
exactly computable using the node degrees and number of self loops. Additionally, if the
number of self loops λ is large enough, the number of type (2) paths will dominate the
number of type (1) paths, even if there is just a single triangle in the graph. Hence, an
accurate approximation to ‖λI + A‖44 will give us the number of type (2) paths, from which
we can easily compute the number of triangles.

This argument extends to a very broad class of spectral sums by considering a power
series expansion of f(x) and showing that for large enough λ, tr (f(λI + A)) is dominated by
tr(A3) along with some exactly computable terms. Thus, an accurate approximation to this
spectral sum allows us to determine the number of triangles in G. This approach works for
any f(x) that can be represented as a power series, with reasonably well-behaved coefficients
on some interval of R+, giving bounds for all ‖A‖p with p 6= 2, the SVD entropy, log det(A),
tr(A−1), and tr(exp(A)).

We further show that approximating tr(A−1) for the A used in our lower bound can
be reduced to computing all effective resistances of a certain graph Laplacian up to (1± ε)
error. Thus, we rule out highly accurate (with 1/εc dependence for small c) approximation
algorithms for all effective resistances, despite the existence of linear time system solvers
(with log(1/ε) error dependence) for Laplacians [63]. Effective resistances and leverage scores
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are quantities that have recently been crucial to achieving algorithmic improvements to
fundamental problems like graph sparsification [62] and regression [43, 12]. While crude
multiplicative approximations to the quantities suffice for these problems, more recently
computing these quantities has been used to achieve breakthroughs in solving maximum flow
and linear programming [40], cutting plane methods [41], and sampling random spanning
trees [50]. In each of these settings having more accurate estimates would be a natural route
to either simplify or possibly improve existing results; we show that this is unlikely to be
successful if the precision requirements are two high.

1.5 Paper Outline

Section 2: Preliminaries. We review notations that will be used throughout.
Section 3: Spectral Windows. We show how to approximately restrict the spectrum of a

matrix to a small window. This is our main primitive for accessing the spectrum.
Section 4: Spectral Histogram. We show how our spectral window algorithms can be used

to compute an approximate spectral histogram. We give applications to approximating
general spectral sums, including the Schatten-p norms, Orlicz norms, and Ky Fan norms.
The last three sections are including in our full paper [53].

Section 5: Lower Bounds. We prove lower bounds showing that highly accurate spectral
sum algorithms can be used to give algorithms for triangle detection and matrix multi-
plication.

Section 6: Improved Algorithms via Polynomial Approximation. We demonstrate how to
tighten ε dependencies in our runtimes using a polynomial approximation approach.

Section 7: Optimized Runtime Bounds. We instantiate the techniques of Section 6 give
our best runtimes for the Schatten p-norms and SVD entropy.

2 Preliminaries

Here we outline notation and conventions used throughout the paper.

Matrix Properties: For A ∈ Rn×d we assume w.l.o.g. that d ≤ n. We let σ1(A) ≥ . . . ≥
σd(A) ≥ 0 denote the matrix’s singular values, nnz(A) denote the number of non-zero entries,
and ds(A) ∈ [nnz(A)/n, d] denote the maximum number of non-zero entries in a row.

Fast Matrix Multiplication: Let ω ≈ 2.3729 denote the current best exponent of fast matrix
multiplication [70, 21]. Additionally, let ω(γ) denote the exponent such that it takes O

(
dω(γ))

time to multiply a d× d matrix by a d× dγ matrix for any γ ≤ 1. ω(γ) = 2 for γ < α where
α > 0.31389 and ω(γ) = 2 + (ω − 2)γ−α1−α for γ ≥ α [39, 21]. For γ = 1, ω(γ) = ω.

Asymptotic Notation: We use Õ(·) notation to hide poly-logarithmic factors in the input
parameters, including dimension, failure probability, and error ε. We use ‘with high prob-
ability’ or ‘w.h.p.’ to refer to events happening with probability at least 1− 1/dc for some
constant c, where d is our smaller input dimension.

Other: We denote [d] def= {0, . . . , d}. For any y ∈ Rd and PSD N ∈ Rd×d, we denote
‖y‖N

def=
√

yTNy.
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3 Approximate Spectral Windows via Ridge Regression

In this section, we give state-of-the-art results for approximating spectral windows over A.
As discussed, our algorithms will split A’s spectrum into small slices using these window
functions, performing trace estimation to estimate the number of singular values on each
window and producing an approximate spectral histogram.

In Section 3.1 we show how to efficiently apply smooth approximations to threshold
functions of the spectrum given access to an algorithm for solving regularized regression
problems with the matrix. In Section 3.2 we then provide the fastest known algorithms
for the regression problems in the given parameter regimes using both stochastic gradient
methods and traditional solvers. Departing from our high level description in Section 1.3,
we incorporate singular vector deflation directly into our system solvers to reduce condition
number. This simplifies our final algorithms but has the same effect as the techniques
discussed in Section 1.3. In Section 3.3 we give runtimes for applying smooth approximations
to window functions of the spectrum, which is the main export of this section.

3.1 Step Function Approximation
To compute a window over A’s spectrum, we will combine two threshold functions at the
boundaries of the window. We begin by discussing how to compute these threshold functions.

Let sλ : [0, 1]→ [0, 1] be the threshold function at λ. sλ(x) = 1 for x ∈ [λ, 1] and 0 for
x ∈ [0, λ). For some gap γ we define a soft step function by:

I Definition 2 (Soft Step Function). sγλ : [0, 1]→ [0, 1] is a γ-soft step at λ > 0 if:

sγλ(x) =
{

0 for x ∈ [0, (1− γ)λ]
1 for x ∈ [λ, 1]

and sγλ(x) ∈ [0, 1] for x ∈ [(1− γ)λ, λ]. (3)

We use the strategy from [20], which, for A with ‖A‖2 ≤ 1 shows how to efficiently
multiply a γ-soft step sγλ(ATA) by any y ∈ Rd using ridge regression. The trick is to first
approximately compute ATA(ATA + λI)−1y = rλ(ATA)y where rλ(x) def= x

x+λ . Then,
note that s1/2(rλ(x)) = sλ(x). Additionally, the symmetric step function s1/2 can be well
approximated with a low degree polynomial. Specifically, there exists a polynomial of degree
O(γ−1 log(1/(γε))) that is within additive ε of a true γ-soft step at 1/2 and can be applied
stably such that any error in computing rλ(ATA) remains bounded. The upshot, following
from Theorem 7.4 of [1] is:

I Lemma 3 (Step Function via Ridge Regression). Let A(A,y, λ, ε) be an algorithm that on
input A ∈ Rn×d, y ∈ Rd, λ, ε > 0 returns x ∈ Rd such that

∥∥x− (ATA + λI)−1y
∥∥

2 ≤ ε ‖y‖2
with high probability. Then there is an algorithm B(A,y, λ, γ, ε) which on input A ∈ Rn×d
with ‖A‖2 ≤ 1, y ∈ Rd, λ ∈ (0, 1), and γ, ε > 0, returns x ∈ Rd with∥∥x− sγλ(ATA)y

∥∥
2 ≤ ε ‖y‖2

where sγλ is a γ-soft step at λ (i.e. satisfies Defn. 2). B(A,y, λ, γ, ε) requires O(γ−1 log(1/εγ))
calls to A(A,y, λ, ε′) along with O(nnz(A)) additional runtime, where ε′ = poly(1/(γε)).

3.2 Ridge Regression
Given Lemma 3, to efficiently compute sγλ(ATA)y for sγλ(·) satisfying Definition 2, it suffices
to quickly approximate (ATA + λI)−1y (i.e. to provide the algorithm A(A,y, λ, ε) used in
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the lemma). In this section we provide two theorems which give the state-of-the-art ridge
regression running times achievable in our parameter regime, using sampling, acceleration,
and singular value deflation.

Naively, computing (ATA+λI)−1y using an iterative system solver involves a dependence
on the condition number σ2

1(A)/λ. In our theorems, this condition number is replaced by a
deflated condition number depending on σ2

k(A) for some input parameter k ∈ [d]. We achieve
this improved dependence following the techniques presented in [23]. We first approximate the
top k singular vectors of A and then construct a preconditioner based on this approximation,
which significantly flattens the spectrum of the matrix. By using this preconditioner in
conjunction with a stochastic gradient based linear system solver, we further enjoy an average
condition number dependence. The following theorem summarizes the results.

I Theorem 4 (Ridge Regression – Accelerated Preconditioned SVRG). For any A ∈ Rn×d

and λ > 0, let Mλ
def= ATA + λI. Let κ̄ def=

kσ2
k(A)+

∑d

i=k+1
σ2
i (A)

dλ where k ∈ [d] is an input
parameter. There is an algorithm that builds a preconditioner for Mλ using precomputation
time Õ(nnz(A)k + dkω−1) for sparse A or Õ(ndω(logd k)−1) time for dense A, and for any
input y ∈ Rd, returns x such that with high probability

∥∥x−M−1
λ y

∥∥
Mλ
≤ ε ‖y‖M−1

λ
in

Õ
(

nnz(A) +
√

nnz(A)[d · ds(A) + dk]κ̄
)

time for sparse A or Õ
(
nd+ n1/2d3/2√κ̄)

)
time for dense A.

We give a proof in Appendix A of the full paper [53]. Note that the ε dependence in the
runtime is log(1/ε) and so is hidden by the Õ(·) notation.

When A is dense, the runtime of Theorem 4 is essentially the best known. Due to its
average condition number dependence, the method always outperforms traditional iterative
methods, like conjugate gradient, up to log factors. However, in the sparse case, traditional
approaches can give faster runtimes if the rows of A are not uniformly sparse and ds(A) is
large. We have the following, also proved in Appendix A of the full paper using the same
deflation-based preconditioner as in Theorem 4:

I Theorem 5 (Ridge Regression – Preconditioned Iterative Method). For any A ∈ Rn×d and
λ > 0, let Mλ

def= ATA+λI and κ̂def= σ2
k+1(A)
λ where k ∈ [d] is an input parameter. There is an

algorithm that builds a preconditioner for Mλ using precomputation time Õ(nnz(A)k+dkω−1),
and for any input y ∈ Rd, returns x such that with high probability

∥∥x−M−1
λ y

∥∥
Mλ
≤

ε ‖y‖M−1
λ

in Õ
(

(nnz(A) + dk)d
√
κ̂e
)
time.

3.3 Overall Runtimes For Spectral Windows
Combined with Lemma 3, the ridge regression routines above let us efficiently compute soft
step functions of A’s spectrum. Composing step functions then gives our key computational
primitive: the ability to approximate soft window functions that restrict A’s spectrum to a
specified range. We first define our notion of soft window functions and then discuss runtimes.
The corresponding Theorem 7 is our main tool for spectrum approximation.

I Definition 6 (Soft Window Function). Given 0 < a < b, and γ ∈ [0, 1], hγ[a,b] : [0, 1]→ [0, 1]
is a γ-soft window for [a, b] if hγ[a,b](x) ∈ [0, 1] for x ∈ [(1− γ)a, a] ∪ [b, (1 + γ)b] and:

hγ[a,b](x) =
{

1 for x ∈ [a, b]
0 for x ∈ [0, (1− γ)a] ∪ [(1 + γ)b, 1]
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I Theorem 7 (Spectral Windowing). For A ∈ Rn×d with ‖A‖2 ≤ 1, y ∈ Rd, and a, b, γ, ε ∈
(0, 1], with a < b, there is an algorithm W(A,y, a, b, γ, ε) that returns x satisfying w.h.p.:∥∥∥x− hγ[a,b](ATA)y

∥∥∥
2
≤ ε ‖y‖2

where hγ[a,b] is a soft window function satisfying Def. 6. Let κ̄ def=
kσ2
k(A)+

∑d

i=k+1
σ2
i (A)

d·a and

κ̂
def= σ2

k+1(A)
a where k ∈ [d] is an input parameter. The algorithm uses precomputation time

Õ(nnz(A)k + dkω−1) for sparse A or Õ(ndω(logd k)−1) for dense A after which given any y
it returns x in time:

Õ

(
nnz(A) +

√
nnz(A)[d · ds(A) + dk]κ̄

γ

)
or Õ

(
(nnz(A) + dk)d

√
κ̂e

γ

)

for sparse A or Õ
(
nd+n1/2d3/2√κ̄)

γ

)
for dense A.

Proof. If b ≥ 1/(1 + γ) then we can simply define hγ[a,b](x) = sγa(x) for any sγa satisfying
Definition 2. Otherwise, given soft steps sγa and sγ/2(1+γ)b satisfying Definition 2, we can define
hγ[a,b](x) = sγa(x) · (1− sγ/2(1+γ)b(x)). Since γ

2 ≤
γ

1+γ we can verify that this will be a valid soft
window function for [a, b] (i.e. satisfy Definition 6). Further, we have for any y ∈ Rd:

hγ[a,b](A
TA)y = sγa(ATA)(I− sγ/2(1+γ)b(A

TA))y. (4)

We can compute sγa(ATA)y and s
γ/2
(1+γ)b(A

TA)y each up to error ε ‖y‖2 via Lemma 3.
This gives the error bound in the theorem, since we have both

∥∥sγa(ATA)
∥∥

2 ≤ 1 and∥∥∥I− sγ/2(1+γ)b(A
TA)

∥∥∥
2
≤ 1 so the computation in (4) does not amplify error. Our runtime

follows from combining Theorems 4 and 5 with λ = a, b with Lemma 3. The errors in these
theorems are measured with respect to ‖·‖Mλ

. To obtain the error in ‖·‖2 as used by Lemma
3, we simply apply the theorems with ε′ = εκ(Mλ) which incurs an additional log(κ(Mλ))
cost. Since a < b the runtime is dominated by the computation of sγa(ATA)y, which

depends on the condition number κ̄ def=
kσ2
k(A)+

∑d

i=k+1
σ2
i (A)

d·a when using SVRG (Theorem 4)
or κ̂ def= σ2

k+1(A)
a for a traditional iterative solver (Theorem 5). J

4 Approximating Spectral Sums via Spectral Windows

We now use the window functions discussed in Section 3 to compute an approximate spectral
histogram of A. We give our main histogram algorithm and approximation guarantee in
Section 4.1. In Section 4.2 we show how this guarantee translates to accurate spectral sum
approximation for any smooth and sufficiently quickly growing function f(x). In Section 4.3
we apply this general result to approximating the Schatten p-norms for all real p > 0. We
give applications to bounded Orlicz norms and the Ky Fan norms in our full paper [53].

4.1 Approximate Spectral Histogram
Our main histogram approximation method is given as Algorithm 1. The algorithm is
reasonably simple. Assuming ‖A‖2 ≤ 1 (this is w.l.o.g. as we can just scale the matrix), and
given cutoff λ, below which we will not evaluate A′s spectrum, we split the range [λ, 1] into
successive windows R0, ..., RT where Rt = [a1(1− α)t, a1(1− α)t−1]. Here α determines the
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Algorithm 1 Approximate Spectral Histogram
Input: A ∈ Rn×d with ‖A‖2 ≤ 1, accuracy parameters ε1, ε2 ∈ (0, 1), width parameter
α ∈ (0, 1), and minimum singular value parameter λ ∈ (0, 1).
Output: Set of range boundaries aT+1 < aT < ... < a1 < a0 and counts {b̃0, ..., b̃T } where
b̃t approximates the number of squared singular values of A on [at+1, at].
Set γ = c1ε2α, T = dlog(1−α) λe, and S = logn

c2ε2
1
.

Set a0 = 1 and choose a1 uniformly at random in [1− α/4, 1].
Set at = a1(1− α)t−1 for 2 ≤ t ≤ T + 1.
for t = 0 : T do . Iterate over histogram buckets.

Set b̃t = 0. . Initialize bucket size estimate.
for s = 1 : S do . Estimate bucket size via trace estimation.

Choose y ∈ {−1, 1}d uniformly at random.
Set b̃t = b̃t + 1

S ·y
TW(ATA,y, at+1, at, γ, c3ε

2
1/n). . Apply soft window via Thm 7.

If b̃t ≤ 1/2 set b̃t = 0. . Round small estimates to ensure relative error.
end for

end for
return a1 and b̃t for t = 0 : T . . Output histogram representation.

width of our windows. In our final spectral approximation algorithms, we will set α = Θ(ε).
a1 is a random shift, which insures that, in expectation, the boundaries of our soft windows
do not overlap too many singular values. This argument requires that most of the range
[λ, 1] is not covered by boundary regions. Thus, we set the steepness parameter γ = Θ(ε2α)
where ε2 will control the error introduced by the boundaries. Finally, we iterate over each
window, applying trace estimation to approximate the singular value count in each window.

In our final algorithms, the number of windows and samples required for trace estimation
will be Õ(poly(1/ε)). The dominant runtime cost comes from the lowest range RT , which
incurs a dependence on the condition number of ATA + aT I with aT = Θ(λ).

I Theorem 8 (Histogram Approximation). Let a1, b̃0, ..., b̃T be output by Algorithm 1. Let
R0 = [a1, 1], Rt = [a1(1 − α)t, a1(1 − α)t−1] for t ≥ 1, and bt =

∣∣{i : σ2
i (A) ∈ Rt}

∣∣ be the
number of squared singular values of A on the range Rt. Then, for sufficiently small c1, c2, c3,
with probability 99/100, for all t ∈ {0, ..., dlog(1−α) λe}, b̃t output by Algorithm 1 satisfies:

(1− ε1)bt ≤ b̃t ≤ (1 + ε1)bt + dlog(1−α) λe · ε2(bt−1 + bt+1).

That is, b̃t approximates the number of singular values of the range Rt up to multiplicative
(1 ± ε1) error and additive error dlog(1−α) λe · ε2(bt−1 + bt+1). Note that by setting ε2 ≤

ε1
dlog(1−α) λe

, the error on each bucket is just multiplicative on its size plus the size of the two
adjacent buckets, which contain singular values in nearby ranges. For simplicity we assume A
passed to the algorithm has ‖A‖2 ≤ 1. This is w.l.o.g.: we can estimate ‖A‖2 in Õ(nnz(A))
time via the power or Lanczos methods [38, 52], and scale down the matrix appropriately.

The runtime of Algorithm 1 is dominated by the calls to W for the bucket corresponding
to the smallest singular values, with aT = Θ(λ). This runtime is given by Theorem 7. Since
balancing the deflation parameter k with the minimum squared singular value λ considered
can be complex, we wait to instantiate full runtimes until employing Algorithm 1 for specific
spectral sum computations. See full paper [53] for a proof of Theorem 8.
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4.2 Application to General Spectral Sums
While Theorem 8 is useful on its own, we now apply it to approximate a broad class of spectral
sums. We need two assumptions. First, for the histogram discretization to be relatively
accurate, we need the sum function to be smooth. Second, it is expensive to compute the
histogram over very small singular values of A (i.e. with λ very small in Algorithm 1) as
this makes the condition number in Theorem 7 large. So it is important that small singular
values cannot contribute significantly to our sum. We start with the following definition:

I Definition 9 (Multiplicative Smoothness). f : R+ → R+ is δf -multiplicatively smooth if
for some δf ≥ 1, for all x, |f ′(x)| ≤ δf f(x)

x .

For the Schatten-p norm, f(x) = xp, f ′(x) = pxp−1 and so f is p-multiplicatively smooth.
We have the following claim, proven in Appendix D of the full paper [53]:

I Claim 10. Let f be a δf -multiplicatively smooth function. For all x, y ∈ R+ and c ∈ (0, 1
3δf )

y ∈ [(1− c)x, (1 + c)x]⇒ f(y) ∈ [(1− 3δfc)f(x), (1 + 3δfc)f(x)].

We now give our general approximation theorem, showing that any spectral sum depending
on sufficiently smooth and rapidly growing f can be computed using Algorithm 1:

I Theorem 11 (Spectral Sums Via Approximate Histogram). Consider any A ∈ Rn×d
and any function f : R+ → R+ satisfying:

Multiplicative Smoothness: For some δf ≥ 1, f is δf -multiplicatively smooth (Defn.
9).
Small Tail: For any ε > 0 there exists λf (ε) such that for x ∈ [0, λf (ε)], f(x) ≤
ε
nSf (A)

Given error parameter ε ∈ (0, 1) and spectral norm estimate M ∈ [‖A‖2 , 2 ‖A‖2], for
sufficiently small constant c, if we run Algorithm 1 on 1

MA with input parameters
ε1, ε2 = cε, α = cε/δf and λ = λf (cε)2/M2 then with probability 99/100, letting a1,
b̃0, ..., b̃T be the outputs of the algorithm and g(x) = f(x1/2):

(1− ε)Sf (A) ≤
T∑
t=0

g(M2 · a1(1− α)t) · b̃t ≤ (1 + ε)Sf (A).

For parameter k ∈ [d], letting κ̄ def=
kσ2
k(A)+

∑d

i=k+1
σ2
i (A)

d·λ and κ̂ def= σ2
k+1(A)
λ , the algorithm

runs in

Õ

(
nnz(A)k + dkω−1 +

nnz(A) +
√

nnz(A)[d · ds(A) + dk]κ̄
ε5/(δ2

f log(1/λ))

)

or Õ
(

nnz(A)k + dkω−1 + (nnz(A) + dk)d
√
κ̂e

ε5/(δ2
f log(1/λ))

)
time for sparse A or Õ

(
ndω(logd k)−1 + nd+n1/2d3/2√κ̄)

ε5/(δ2
f

log(1/λ))

)
for dense A.

That is, we accurately approximate Sf (A) by discretizing over the histogram of Algorithm
1. We can boost our probability of success to 1− δ by repeating the algorithm Θ(log(1/δ))
times and taking the median of the outputs. Theorem 11 is proven in our full paper [53].
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4.3 Application to Schatten-p Norms
Theorem 11 is very general, allowing us to approximate any function satisfying a simple
smoothness condition as long as the smaller singular values of A cannot contribute significantly
to Sf (A). As an example, we show how it gives the fastest known algorithms for Schatten-p
norm estimation. We will not go into all runtime tradeoffs now as our best runtimes will be
worked out in detail in Sections 6 and 7 of the full paper [53].

I Corollary 12 (Schatten-p norms via Histogram Approximation). For any A ∈ Rn×n with
uniformly sparse rows (i.e. ds(A) = O(nnz(A)/n)), given error parameter ε ∈ (0, 1) and
M ∈ [‖A‖2 , 2 ‖A‖2], if we run Algorithm 1 on 1

MA with ε1, ε2 = cε, α = cε/max{1, p}

and λ = 1
M2

(
cε
n ‖A‖

p
p

)2/p
for sufficiently small constant c then with probability 99/100,

(1− ε) ‖A‖pp ≤
∑T
t=0
[
M2a1(1− α)t

]p/2 · b̃t ≤ (1 + ε) ‖A‖pp . The algorithm’s runtime is:

Õ

(
nnz(A)p2

ε5+1/p

)
for p ≥ 2 and Õ

nnz(A)n
1/p−1/2
1/p+1/2 + n

5/p−1/2
2/p+1

√
ds(A)

p · ε5+1/p

 for p ≤ 2.

For dense inputs this can be sped up to Õ
(
n

2.3729−.1171p
1+.0346p

p·ε5+1/p

)
using fast matrix multiplication.

For constant ε, p > 2 the first runtime is Õ(nnz(A)), and for the nuclear norm (p = 1),
for constant ε the second runtime gives Õ(nnz(A)n1/3 + n3/2

√
ds(A)) which is at worst

Õ(nnz(A)n1/3 +n2). For dense matrices, the nuclear norm estimation time is Õ(n2.18) using
fast matrix multiplication. It is already Õ(n2.33), without using fast matrix multiplication.

Note that we can compute the spectral norm approximation used to scale A via the
Lanczos or power method in Õ(nnz(A)) time. λ depends on ‖A‖p which we are estimating.
However, as we will discuss in the proof, we can use a rough estimate for ‖A‖p which
suffices. λ could also be identified via binary search. We can start with λ = σ1(A)2/M2 and
successively decrease λ running Algorithm 1 up to the stated runtime bounds. If it does not
finish in the allotted time, we know that we have set λ too small. Thus, we can output the
result with the smallest λ such that the algorithm completes within in the stated bounds.

Proof. We invoke Theorem 11 with f(x) = xp. We have f ′(x) = p f(x)
x so δf = max{1, p}

and our setting of α = cε/max{1, p} suffices. Additionally, for any c, we can set λf (cε) =(
cε
n ‖A‖

p
p

)1/p
= c1/pε1/p

n1/p ‖A‖p and so our setting of λ suffices. Thus the accuracy bound
follows from Theorem 11. We now consider runtime. For p ≥ 2:

κ̄ =
kσ2

k(A) +
∑n
i=k+1 σ

2
i (A)

nλ
≤ n2/p−1

ε2/p
·
‖A‖2F
‖A‖2p

.

We can bound ‖A‖F ≤ n1/2−1/p ‖A‖p and so have κ̄ ≤ 1
ε2/p . For p < 2 we have:

κ̄ = n2/p−1

ε2/p
·
kσ2

k(A) +
∑n

i=k+1 σ
2
i (A)

‖A‖2p
≤ n2/p−1

ε2/p
·
σ2−p
k (A)

∑n

i=1 σ
p
i (A)

‖A‖2p
= n2/p−1

ε2/p
·
σ2−p
k (A)
‖A‖2−pp

.

Using the fact that σpk(A) ≤ 1
k ‖A‖

p
p we have the tradeoff between k and κ̄:

κ̄ ≤ 1
ε2/p

(n
k

)2/p−1
. (5)

As mentioned, λ depends on the value of ‖A‖p. We can simply lower bound ‖A‖pp by
kσpk(A), which we estimate up to multiplicative error when performing deflation. We can use
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this lower bound to set λ. Our estimated λ will only be smaller than the true value, giving a
better approximation guarantee and the above condition number bound will still hold.

Recall that for f(x) = xp, δf = max{1, p}. Correspondingly, log(1/λ) = Õ(max{1, 1/p})
and so δ2

f log(1/λ) = max{p2, 1/p}. Plugging into the first runtime of Theorem 11, using the
uniform sparsity assumption and the fact that

√
x+ y ≤

√
x+√y we have:

Õ

(
nnz(A)k + nkω−1 +

nnz(A)
√
κ̄+

√
nnz(A)nkκ̄

ε5/(max{p2, 1/p}

)
.

For p ≥ 2 we just set k = 0 and have Õ(nnz(A)p2/ε5+1/p) runtime by our bound κ̄ ≤ 1
ε2/p .

For p ≤ 2, not trying to optimize poly(1/ε) terms, we write the runtime as

Õ

(
nds(A)k + nkω−1 +

nds(A)
√
κ̄+ n

√
ds(A)kκ̄

ε5p

)
.

Balancing the first two coefficients on n, set k = n
1/p−1/2
1/p+1/2 which gives

√
κ̄ = n

1/p−1/2
1/p+1/2

by (5) and so nds(A)k = nds(A)
√
κ̄. We then have n

√
ds(A)kκ̄ = n

√
ds(A)k3/2 =

n
5/p−1/2

2/p+1
√
ds(A). Finally, the nkω−1 is dominated by the n

√
ds(A)k3/2 term so we drop it.

Finally, for dense A we apply the third runtime which gives

Õ

(
nω(logn k) + n2√κ̄

ε5p

)
= Õ

(
nω(logn k) + n3/2+1/p−(logn k)(1/p−1/2)

ε5+1/p · p

)
.

We now balance the terms, again ignoring ε dependence. Writing γ = logn k, ω(γ) = 2
for γ < α where α > 0.31389 and 2 + (ω − 2)γ−α1−α for γ ≥ α [21]. Assuming γ > α we set:
2+(ω−2)γ−α1−α = 3

2 + 1
p−

γ
p + γ

2 which gives γ ≈ 1/p−.3294
1/p+.0435 > α for all p < 2 (so our assumption

that γ ≥ α was valid.) This yields total runtime Õ
(
n

2.3729−.0994p
1+.0435p

)
. Without using fast matrix

multiplication, the first term in the runtime becomes n2k and so we balance costs by setting:
n2+γ = n3/2+1/p−γ/p+γ/2 which gives γ = 1/p−1/2

1/p+1/2 and total runtime Õ
(
n

3+p/2
1+p/2

)
. J
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