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Abstract

We give faster algorithms and improved sample complexities for estimating the top eigen-
vector of a matrix Σ – i.e. computing a unit vector x such that x>Σx ≥ (1− ε)λ1(Σ):

• Offline Eigenvector Estimation: Given an explicit A ∈ Rn×d with Σ = A>A, we show

how to compute an ε approximate top eigenvector in time Õ
([

nnz(A) + d sr(A)
gap2

]
· log 1/ε

)
and Õ

([
nnz(A)3/4(d sr(A))1/4√

gap

]
· log 1/ε

)
. Here nnz(A) is the number of nonzeros in A,

sr(A)
def
=
‖A‖2F
‖A‖22

is the stable rank, gap is the relative eigengap, and Õ(·) hides log factors

in d and gap. By separating the gap dependence from the nnz(A) term, our first runtime
improves upon the classical power and Lanczos methods. It also improves prior work
using fast subspace embeddings [AC09, CW13] and stochastic optimization [Sha15c], giving
significantly better dependencies on sr(A) and ε. Our second running time improves these

further when nnz(A) ≤ d sr(A)
gap2 .

• Online Eigenvector Estimation: Given a distribution D with covariance matrix Σ and
a vector x0 which is an O(gap) approximate top eigenvector for Σ, we show how to refine

to an ε approximation using O
(

v(D)
gap·ε

)
samples from D. Here v(D) is a natural notion of

variance. Combining our algorithm with previous work to initialize x0, we obtain improved
sample complexity and runtime results under a variety of assumptions on D.

We achieve our results using a general framework that we believe is of independent interest.
We give a robust analysis of the classic method of shift-and-invert preconditioning to reduce
eigenvector computation to approximately solving a sequence of linear systems. We then apply
fast stochastic variance reduced gradient (SVRG) based system solvers to achieve our claims.
We believe our results suggest the general effectiveness of shift-and-invert based approaches and
imply that further computational gains may be reaped in practice.

∗This paper combines work first appearing in [GH15] and [JKM+15]



1 Introduction

Given A ∈ Rn×d, computing the top eigenvector of A>A is a fundamental problem in numerical
linear algebra, applicable to principal component analysis [Jol02], spectral clustering and learning
[NJW02, VW04], pagerank computation, and many other graph computations [PBMW99, Kor03,
Spi07]. For instance, a degree-k principal component analysis is nothing more than performing k
leading eigenvector computations. Given the ever-growing size of modern datasets, it is thus a key
challenge to come up with more efficient algorithms for this basic computational primitive.

In this work we provide improved algorithms for computing the top eigenvector, both in the
offline case, when A is given explicitly and in the online or statistical case where we access samples
from a distribution D over Rd and wish to estimate the top eigenvector of the covariance matrix
Ea∼D

[
aa>

]
. In the offline case, our algorithms are the fastest to date in a wide and meaningful

regime of parameters. Notably, while the running time of most popular methods for eigenvector
computations is a product of the size of the dataset (i.e. number of non-zeros in A) and certain
spectral characteristics of A, which both can be quite large in practice, we present running times
that actually split the dependency between these two quantities, and as a result may yield significant
speedups. In the online case, our results yield improved sample complexity bounds and allow for
very efficient streaming implementations with memory and processing-time requirements that are
proportional to the size of a single sample.

On a high-level, our algorithms are based on a robust analysis of the classic idea of shift-
and-invert preconditioning [Saa92], which allows us to efficiently reduce eigenvector computation
to approximately solving a short sequence of well-conditioned linear systems in λI − A>A for
some shift parameter λ ≈ λ1(A). We then apply state-of-the-art stochastic gradient methods to
approximately solve these linear systems.

1.1 Our Approach

The well known power method for computing the top eigenvector of A>A starts with an initial
vector x and repeatedly multiplies by A>A, eventually causing x to converge to the top eigenvector.
For a random start vector, the power method converges in O(log(d/ε)/gap) iterations, where gap =
(λ1− λ2)/λ1, λi denotes the ith largest eigenvalue of A>A, and we assume a high-accuracy regime
where ε < gap. The dependence on this gap ensures that the largest eigenvalue is significantly
amplified in comparison to the remaining values.

If the eigenvalue gap is small, one approach is replace A>A with a preconditioned matrix – i.e.
a matrix with the same top eigenvector but a much larger gap. Specifically, let B = λI − A>A
for some shift parameter λ. If λ > λ1, we can see that the smallest eigenvector of B (the largest
eigenvector of B−1) is equal to the largest eigenvector of A>A. Additionally, if λ is close to λ1,
there will be a constant gap between the largest and second largest values of B−1. For example, if
λ = (1 + gap)λ1, then we will have λ1

(
B−1

)
= 1

λ−λ1 = 1
gap·λ1 and λ2

(
B−1

)
= 1

λ−λ2 = 1
2·gap·λ1 .

This constant factor gap ensures that the power method applied to B−1 converges to the top
eigenvector of A>A in just O(log(d/ε)) iterations. Of course, there is a catch – each iteration of
this shifted-and-inverted power method must solve a linear system in B, whose condition number
is proportional 1

gap . For small gap, solving this system via iterative methods is more expensive.
Fortunately, linear system solvers are incredibly well studied and there are many efficient itera-

tive algorithms we can adapt to apply B−1 approximately. In particular, we show how to accelerate
the iterations of the shifted-and-inverted power method using variants of Stochastic Variance Re-
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duced Gradient (SVRG) [JZ13]. Due to the condition number of B, we will not entirely avoid a
1

gap dependence, however, we can separate this dependence from the input size nnz(A).
Typically, stochastic gradient methods are used to optimize convex functions that are given

as the sum of many convex components. To solve a linear system (M>M)x = b we minimize the
convex function f(x) = 1

2x
>(M>M)x−b>x with components ψi(x) = 1

2x
> (mim

>
i

)
x− 1

nb
>x where

mi is the ith row of M. Such an approach can be used to solve systems in A>A, however solving
systems in B = λI −A>A requires more care. We require an analysis of SVRG that guarantees
convergence even when some of our components are non-convex. We give a simple analysis for this
setting, generalizing recent work in the area [SS15, CR15].

Given fast approximate solvers for B, the second main piece of our algorithmic framework
is a new error bound for the shifted-and-inverted power method, showing that it is robust to
approximate linear system solvers, such as SVRG. We give a general analysis, showing exactly what
accuracy each system must be solved to, allowing for faster implementations using linear solvers with

weaker guarantees. Our proofs center around the potential function: G(x)
def
=
∥∥∥Pv⊥1

x
∥∥∥

B
/ ‖Pv1x‖B,

where Pv1 and Pv⊥1
are the projections onto the top eigenvector and its complement respectively.

This function resembles tangent based potential functions used in previous work [HP14] except
that we use the B norm rather than the `2 norm. For the exact power method, this is irrelevant –
progress is identical in both norms (see Lemma 38 of the Appendix). However, ‖·‖B is a natural
norm for measuring the progress of linear system solvers for B, so our potential function makes it
possible to extend analysis to the case when B−1x is computed up to error ξ with bounded ‖ξ‖B.

1.2 Our Results

Our algorithmic framework described above offers several advantageous. We obtain improved run-
ning times for computing the top eigenvector in the offline model. In Theorem 16 we give an al-

gorithm running in time O
([

nnz(A) + d sr A
gap2

]
·
[
log 1

ε + log2 d
gap

])
, where sr(A) = ‖A‖2F / ‖A‖

2
2 ≤

rank(A) is the stable rank and nnz(A) is the number of non-zero entries. Up to log factors, our
runtime is in many settings proportional to the input size nnz(A), and so is very efficient for large

matrices. In the case when nnz(A) ≤ d sr(A)
gap2 we apply the results of [FGKS15b, LMH15] to provide

an accelerated runtime of O
([

nnz(A)3/4(d sr(A))1/4√
gap

]
·
[
log d

gap log 1
ε + log3 d

gap

])
, shown in Theorem

17. Finally, in the case when ε > gap, our results easily extend to give gap-free bounds (Theorems
35 and 36), identical to those shown above but with gap replaced by ε. Note that our offline results
hold for any A and require no initial knowledge of the top eigenvector. In Section 6 we discuss how
to estimate the parameters λ1, gap, with modest additional runtime cost.

Our algorithms return an approximate top eigenvector x with x>A>Ax ≥ (1 − ε)λ1. By
choosing error ε ·gap, we can ensure that x is actually close to v1 – i.e. that |x>v1| ≥ 1−ε. Further,

we obtain the same asymptotic runtime since O
(

log 1
ε·gap + log2 d

gap

)
= O

(
log 1

ε + log2 d
gap

)
. We

compare our runtimes with previous work in Table 1.
In the online case, in Theorem 25, we show how to improve an O(gap) approximation to the

top eigenvector to an ε approximation with constant probability using O
(

v(D)
gap·ε

)
samples where

v(D) is a natural variance measure. Our algorithm is based on the streaming SVRG algorithm of
[FGKS15a]. It requires just O(d) amortized time per sample, uses just O(d) space, and is easily
parallelized. We can apply our result in a variety of regimes, using existing algorithms to obtain
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the initial O(gap) approximation and our algorithm to improve. As shown in Table 2, this gives
improved runtimes and sample complexities over existing work. Notably, we give better asymptotic
sample complexity than known matrix concentration results for general distributions, and give the
first streaming algorithm that is asymptotically optimal in the popular Gaussian spike model.

Overall, our robust shifted-and-inverted power method analysis gives new understanding of this
classical technique. It gives a means of obtaining provably accurate results when each iteration
is implemented using fast linear system solvers with weak accuracy guarantees. In practice, this
reduction between approximate linear system solving and eigenvector computation shows that
optimized regression libraries can be leveraged for faster eigenvector computation in many cases.
Furthermore, in theory we believe that the reduction suggests computational limits inherent in
eigenvector computation as seen by the often easier-to-analyze problem of linear system solving.
Indeed, in Section 7, we provide evidence that in certain regimes our statistical results are optimal.

1.3 Previous Work

Offline Eigenvector Computation

Due to its universal applicability, eigenvector computation in the offline case is extremely well
studied. Classical methods, such as the QR algorithm, take roughly O(nd2) time to compute a
full eigendecomposition. This can be accelerated to O(ndω−1), where ω < 2.373 is the matrix mul-
tiplication constant [Wil12, LG14], however this is still prohibitively expensive for large matrices.
Hence, faster iterative methods are often employed, especially when only the top eigenvector (or a
few of the top eigenvectors) is desired.

As discussed, the popular power method requires O
(

log(d/ε)
gap

)
iterations to converge to an ε

approximate top eigenvector. Using Chebyshev iteration, or more commonly, the Lanczos method,

this bound can be improved to O
(

log(d/ε)√
gap

)
[Saa92], giving total runtime of O

(
nnz(A) · log(d/ε)√

gap

)
.

When ε > gap, the gap terms in these runtimes can be replaced by ε. While we focus on the
high-precision regime when ε < gap, we also give gap-free bounds in Section 8.

Unfortunately, if nnz(A) is very large and gap is small, the above runtimes can still be quite
expensive, and there is a natural desire to separate the 1√

gap dependence from the nnz(A) term.

One approach is to use random subspace embedding matrices [AC09, CW13] or fast row sampling
algorithms [CLM+15], which can be applied in O(nnz(A)) time and yield a matrix Ã which is a
good spectral approximation to the original. The number of rows in Ã depends only on the stable
rank of A and the error of the embedding – hence it can be significantly smaller than n. Applying
such a subspace embedding and then computing the top eigenvector of Ã>Ã requires runtime
O (nnz(A) + poly(sr(A), ε, gap)), achieving the goal of reducing runtime dependence on the input
size nnz(A). Unfortunately, the dependence on ε is significantly suboptimal – such an approach
cannot be used to obtain a linearly convergent algorithm. Further, the technique does not extend
to the online setting, unless we are willing to store a full subspace embedding of our sampled rows.

Another approach, which we follow more closely, is to apply stochastic optimization techniques,
which iteratively update an estimate to the top eigenvector, considering a random row of A with
each update step. Such algorithms naturally extend to the online setting and have led to improved
dependence on the input size for a variety of problems [Bot10]. Using variance-reduced stochastic

gradient techniques, [Sha15c] achieves runtime O
((

nnz(A) + dr2n2

gap2λ21

)
· log(1/ε) log log(1/ε)

)
for

approximately computing the top eigenvector of a matrix with constant probability. Here r is an
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upper bound on the squared row norms of A. In the best case, when row norms are uniform, this

runtime can be simplified to O
((

nnz(A) + d sr(A)2

gap2

)
· log(1/ε) log log(1/ε)

)
.

The result in [Sha15c] makes an important contribution in separating input size and gap de-
pendencies using stochastic optimization techniques. Unfortunately, the algorithm requires an
approximation to the eigenvalue gap and a starting vector that has a constant dot product with
the top eigenvector. In [Sha15b] the analysis is extended to a random initialization, however loses
polynomial factors in d. Furthermore, the dependencies on the stable rank and ε are suboptimal –
we improve them to sr(A) and log(1/ε) respectively, obtaining true linear convergence.

Algorithm Runtime

Power Method O
(

nnz(A) log(d/ε)
gap

)
Lanczos Method O

(
nnz(A) log(d/ε)√

gap

)
Fast Subspace Embeddings [CW13]

Plus Lanczos
O
(

nnz(A) + d sr(A)
max{gap2.5ε,ε2.5}

)
SVRG [Sha15c] (assuming bounded

row norms, warm-start)
O
((

nnz(A) + d sr(A)2

gap2

)
· log(1/ε) log log(1/ε)

)
Theorem 16 O

([
nnz(A) + d sr(A)

gap2

]
·
[
log 1

ε + log2 d
gap

])
Theorem 17 O

([
nnz(A)3/4(d sr(A))1/4√

gap

]
·
[
log d

gap log 1
ε + log3 d

gap

])
Table 1: Comparision to previous work on Offline Eigenvector Estimation. We give runtimes for
computing a unit vector x such that x>A>Ax ≥ (1− ε)λ1 in the regime ε = O(gap).

Online Eigenvector Computation

While in the offline case the primary concern is computation time, in the online, or statistical
setting, research also focuses on minimizing the number of samples that are drawn from D in order
to achieve a given accuracy. Especially sought after are results that achieve asymptotically optimal
accuracy as the sample size grows large.

While the result we give in Theorem 25 works for any distribution parameterized by a variance
bound, in this section, in order to more easily compare to previous work, we normalize λ1 = 1
and assume we have the row norm bound ‖a‖22 ≤ O(d) which then gives us the variance bound∥∥Ea∼D [(aa>)2

]∥∥
2

= O(d). Additionally, we compare runtimes for computing some x such that

|x>v1| ≥ 1− ε, as this is the most popular guarantee studied in the literature. Theorem 25 is easily
extended to this setting as obtaining x with xTAA>x ≥ (1− ε · gap)λ1 ensures |x>v1| ≥ 1− ε. Our

algorithm requires O
(

d
gap2ε

)
samples to find such a vector under the assumptions given above.

The simplest algorithm in this setting is to take n samples from D and compute the leading
eigenvector of the empirical estimate Ê[aa>] = 1

n

∑n
i=1 aia

>
i . By a matrix Bernstein bound, such as

inequality of Theorem 6.6.1 of [Tro15], O
(
d log d
gap2ε

)
samples is enough to insure

∥∥∥Ê[aa>]− E[aa>]
∥∥∥

2
≤

√
ε · gap. By Lemma 37 in the Appendix, this gives that, if x is set to the top eigenvector of Ê[aa>]

it will satisfy |x>v1| ≥ 1− ε. x can be approximated with any offline eigenvector algorithm.
A large body of work focuses on improving this simple algorithm, under a variety of assumptions

on D. A common focus is on obtaining streaming algorithms, in which the storage space is just
O(d) - proportional to the size of a single sample. In Table 2 we give a sampling of results in this
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area. All listed results rely on distributional assumptions at least as strong as those given above.
Note that, in each setting, we can use the cited algorithm to first compute an O(gap) ap-

proximate eigenvector, and then refine this approximation to an ε approximation using O
(

d
gap2ε

)
samples by applying our streaming SVRG based algorithm. This allows us to obtain improved
runtimes and sample complexities. To save space, we do not include our improved runtime bounds
in Table 2, however they are easy to derive by adding the runtime required by the given algorithm

to achieve O(gap) accuracy, to O
(

d2

gap2ε

)
– the runtime required by our streaming algorithm.

The bounds given for the simple matrix Bernstein based algorithm described above, Kra-
sulina/Oja’s Algorithm [BDF13], and SGD [Sha15a] require no additional assumptions, aside from
those given at the beginning of this section. The streaming results cited for [MCJ13] and [HP14]
assume a is generated from a Gaussian spike model, where ai =

√
λ1γiv1+Zi and γi ∼ N (0, 1), Zi ∼

N (0, Id). We note that under this model, the matrix Bernstein results improve by a log d factor and
so match our results in achieving asymptotically optimal convergence rate. The results of [MCJ13]
and [HP14] sacrifice this optimality in order to operate under the streaming model. Our work gives
the best of both works – a streaming algorithm giving asymptotically optimal results.

The streaming Alecton algorithm [SRO15] assumes E
∥∥aa>Waa>

∥∥ ≤ O(1)tr(W) for any sym-
metric W that commutes with Eaa>. This is strictly stronger than our assumption that∥∥Ea∼D [(aa>)2

]∥∥
2

= O(d).

Algorithm
Sample

Size
Runtime Streaming?

Our Sample
Complexity

Matrix Bernstein plus
Lanczos (explicitly forming

sampled matrix)
O
(
d log d
gap2ε

)
O
(
d3 log d
gap2ε

)
× O

(
d log d
gap3 + d

gap2ε

)
Matrix Bernstein plus

Lanczos (iteratively applying
sampled matrix)

O
(
d log d
gap2ε

)
O
(
d2 log d·log(d/ε)

gap2.5ε

)
× O

(
d log d
gap3 + d

gap2ε

)
Memory-efficient PCA

[MCJ13, HP14]
O
(
d log(d/ε)
gap3ε

)
O
(
d2 log(d/ε)
gap3ε

) √
O
(
d log(d/gap)

gap4 + d
gap2ε

)
Alecton [SRO15] O(d log(d/ε)gap2ε ) O(d

2 log(d/ε)
gap2ε )

√
O(d log(d/gap)gap3 + d

gap2ε )

Krasulina / Oja’s
Algorithm [BDF13]

O( dc1

gap2εc2 ) O( dc1+1

gap2εc2 )
√

O( dc1

gap2+c2
+ d

gap2ε )

SGD [Sha15a] O(d
3 log(d/ε)

ε2 ) O(d
4 log(d/ε)

ε2 )
√

O
(
d3 log(d/gap)

gap2 + d
gap2ε

)
Table 2: Summary of existing work on Online Eigenvector Estimation and improvements given by
our results. Runtimes are for computing a unit vector x such that |x>v1| ≥ 1− ε. For each of these
results we can obtain improved running times and sample complexities by running the algorithm
to first compute an O(gap) approximate eigenvector, and then running our algorithm to obtain an

ε approximation using an additional O
(

d
gap2ε

)
samples, O(d) space, and O(d) work per sample.

1.4 Paper Organization

Section 2 Review problem definitions and parameters for our runtime and sample bounds.

Section 3 Describe the shifted-and-inverted power method and show how it can be implemented
using approximate system solvers.
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Section 4 Show how to apply SVRG to solve systems in our shifted matrix, giving our main
runtime results for offline eigenvector computation.

Section 5 Show how to use an online variant of SVRG to run the shifted-and-inverted power
method, giving our main sampling complexity and runtime results in the statistical setting.

Section 6 Show how to efficiently estimate the shift parameters required by our algorithms.

Section 7 Give a lower bound in the statistical setting, showing that our results are asymptotically
optimal for a wide parameter range.

Section 8 Give gap-free runtime bounds, which apply when ε > gap.

2 Preliminaries

We bold all matrix variables. We use [n]
def
= {1, ..., n}. For a symmetric positive semidefinite (PSD)

matrix M we let ‖x‖M
def
=
√
x>Mx and λ1(M), ..., λd(M) denote its eigenvalues in decreasing order.

We use M � N to denote the condition that x>Mx ≤ x>Nx for all x.

2.1 The Offline Problem

We are given a matrix A ∈ Rn×d with rows a(1), ..., a(n) and wish to compute an approximation to
the top eigenvector of Σ

def
= A>A. Specifically, for error parameter ε we want a unit vector x such

that x>Σx ≥ (1− ε)λ1(Σ).

2.2 The Statistical Problem

We have access to an oracle returning independent samples from a distribution D on Rd and wish
to compute the top eigenvector of Σ

def
= Ea∼D

[
aa>

]
. Again, for error parameter ε we want to return

a unit vector x such that x>Σx ≥ (1− ε)λ1(Σ).

2.3 Problem Parameters

We parameterize the running times and sample complexities of our algorithms in terms of several
natural properties of A, D, and Σ. Let λ1, ..., λd denote the eigenvalues of Σ in decreasing order and
v1, ..., vd denote their corresponding eigenvectors. We define the eigenvalue gap by gap

def
= λ1−λ2

λ1
.

We use the following additional parameters for the offline and statistical problems respectively:

• Offline Problem: Let sr(A)
def
=
∑

i
λi
λ1

=
‖A‖2F
‖A‖22

denote the stable rank of A. Note that we

always have sr(A) ≤ rank(A). Let nnz(A) denote the number of non-zero entries in A.

• Online Problem: Let v(D)
def
=

∥∥∥Ea∼D[(aa>)
2
]∥∥∥

2

‖Ea∼D(aa>)‖2
2

=

∥∥∥Ea∼D[(aa>)
2
]∥∥∥

2

λ21
denote a natural upper

bound on the variance of D in various settings. Note that v(D) ≥ 1.
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3 Algorithmic Framework

Here we develop our robust shift-and-invert framework. In Section 3.1 we provide a basic overview
of the framework and in Section 3.2 we introduce the potential function we use to measure progress
of our algorithms. In Section 3.3 we show how to analyze the framework given access to an exact
linear system solver and in Section 3.4 we strengthen this analysis to work with an inexact linear
system solver. Finally, in Section 3.5 we discuss initializing the framework.

3.1 Shifted-and-Inverted Power Method Basics

We let Bλ
def
= λI−Σ denote the shifted matrix that we will use in our implementation of the shifted-

and-inverted power method. As discussed, in order for B−1
λ to have a large eigenvalue gap, λ should

be set to (1 + c · gap)λ1 for some constant c ≥ 0. Throughout this section we assume that we have
a crude estimate of λ1 and gap and fix λ to be a value satisfying

(
1 + gap

150

)
λ1 ≤ λ ≤

(
1 + gap

100

)
λ1.

(See Section 6 for how we can compute such a λ). For the remainder of this section we work with
such a fixed value of λ and therefore for convenience denote Bλ as B.

Note that λi
(
B−1

)
= 1

λi(B) = 1
λ−λi and so

λ1(B−1)
λ2(B−1)

= λ−λ2
λ−λ1 ≥

gap
gap/100 = 100. This large gap

will ensure that, assuming the ability to apply B−1, the power method will converge very quickly.
In the remainder of this section we develop our error analysis for the shifted-and-inverted power
method which demonstrates that approximate application of B−1 in each iteration in fact suffices.

3.2 Potential Function

Our analysis of the power method focuses on the objective of maximizing the Rayleigh quotient,
x>Σx for a unit vector x. Note that as the following lemma shows, this has a direct correspondence
to the error in maximizing |v>1 x|:

Lemma 1 (Bounding Eigenvector Error by Rayleigh Quotient). For a unit vector x let ε = λ1 −
x>Σx. If ε ≤ λ1 · gap then ∣∣∣v>1 x∣∣∣ ≥√1− ε

λ1 · gap
.

Proof. Among all unit vectors x such that ε = λ1 − x>Σx, a minimizer of
∣∣v>1 x∣∣ has the form

x = (
√

1− δ2)v1 + δv2 for some δ. We have

ε = λ1 − x>Σx = λ1 − λ1(1− δ2)− λ2δ
2 = (λ1 − λ2)δ2.

Therefore by direct computation,∣∣∣v>1 x∣∣∣ =
√

1− δ2 =

√
1− ε

λ1 − λ2
=

√
1− ε

λ1 · gap
.

In order to track the progress of our algorithm we use a more complex potential function than
just the Rayleigh quotient error, λ1 − x>Σx. Our potential function G is defined for x 6= 0 by

G(x)
def
=

∥∥∥Pv⊥1
x
∥∥∥

B

‖Pv1x‖B

7



where Pv1 and Pv⊥1
are the projections onto v1 and the subspace orthogonal to v1 respectively.

Equivalently, we have that:

G(x) =

√
‖x‖2B −

(
v>1 B1/2x

)2∣∣v>1 B1/2x
∣∣ =

√∑
i≥2

α2
i

λi(B−1)√
α2
1

λ1(B−1)

. (1)

where αi = v>i x.
When the Rayleigh quotient error ε = λ1 − x>Σx of x is small, we can show a strong relation

between ε and G(x). We prove this in two parts. We first give a technical lemma, Lemma 2, that we
will use several times for bounding the numerator of G. We then prove the connection in Lemma 3.

Lemma 2. For a unit vector x and ε = λ1 − x>Σx if ε ≤ λ1 · gap then

ε ≤ x>Bx− (v>1 Bx)(v>1 x) ≤ ε
(

1 +
λ− λ1

λ1 · gap

)
.

Proof. Since B = λI−Σ and since v1 is an eigenvector of Σ with eigenvalue λ1 we have

x>Bx− (v>1 Bx)(v>1 x) = λ ‖x‖22 − x
>Σx− (λv>1 x− v>1 Σx)(v>1 x)

= λ− λ1 + ε− (λv>1 x− λ1v
>
1 x)(v>1 x)

= (λ− λ1)
(

1− (v>1 x)2
)

+ ε.

Now by Lemma 1 we know that |v>1 x| ≥
√

1− ε
λ1·gap , giving us the upper bound. Furthermore,

since trivially
∣∣v>1 x∣∣ ≤ 1 and λ− λ1 > 0, we have the lower bound.

Lemma 3 (Potential Function to Rayleigh Quotient Error Conversion). For a unit vector x and
ε = λ1 − x>Σx if ε ≤ 1

2λ1 · gap, we have:

ε

λ− λ1
≤ G(x)2 ≤

(
1 +

λ− λ1

λ1 · gap

)(
1 +

2ε

λ1 · gap

)
ε

λ− λ1
.

Proof. Since v1 is an eigenvector of B, we can write G(x)2 =
x>Bx−(v>1 Bx)(v>1 x)

(v>1 Bx)(v>1 x)
. Lemmas 1 and 2

then give us:

ε

λ− λ1
≤ G(x)2 ≤

(
1 +

λ− λ1

λ1 · gap

)
ε

(λ− λ1)
(

1− ε
λ1·gap

) .
Since ε ≤ 1

2λ1 · gap, we have 1
1− ε

λ1·gap
≤ 1 + 2ε

λ1·gap . This proves the lemma.

3.3 Power Iteration

Here we show that the shifted-and-inverted power iteration in fact makes progress with respect to
our objective function given an exact linear system solver for B. Formally, we show that applying
B−1 to a vector x decreases the potential function G(x) geometrically.
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Theorem 4. Let x be a unit vector with 〈x, v1〉 6= 0 and let x̃ = B−1x, i.e. the power method
update of B−1 on x. Then, under our assumption on λ, we have:

G(x̃) ≤
λ2

(
B−1

)
λ1 (B−1)

G(x) ≤ 1

100
G(x).

Note that x̃ may no longer be a unit vector. However, G(x̃, v1) = G(cx̃, v1) for any scaling
parameter c, so the theorem also holds for x̃ scaled to have unit norm.

Proof. Writing x in the eigenbasis, we have x =
∑

i αivi and x̃ =
∑

i αiλi
(
B−1

)
vi. Since 〈x, v1〉 6=

0, α1 6= 0 and by the equivalent formulation of G(x) given in (1):

G(x̃) =

√∑
i≥2 α

2
iλi(B

−1)√
α2

1λ1(B−1)
≤
λ2

(
B−1

)
λ1 (B−1)

·

√∑
i≥2

α2
i

λi(B−1)√
α2
1

λ1(B−1)

=
λ2

(
B−1

)
λ1 (B−1)

·G(x) .

Recalling that
λ1(B−1)
λ2(B−1)

= λ−λ2
λ−λ1 ≥

gap
gap/100 = 100 yields the result.

The challenge in using the above theorem, and any traditional analysis of the shifted-and-
inverted power method, is that we don’t actually have access to B−1. In the next section we show
that the shifted-and-inverted power method is robust – we still make progress on our objective
function even if we only approximate B−1x using a fast linear system solver.

3.4 Approximate Power Iteration

We are now ready to prove our main result. We show that each iteration of the shifted-and-inverted
power method makes constant factor expected progress on our potential function assuming we:

1. Start with a sufficiently good x and an approximation of λ1

2. Can apply B−1 approximately using a system solver such that the function error (i.e. distance
to B−1x in the B norm) is sufficiently small in expectation.

3. Can estimate Rayleigh quotients over Σ well enough to only accept updates that do not hurt
progress on the objective function too much.

This third assumption is necessary since the second assumption is quite weak. An expected
progress bound on the linear system solver allows, for example, the solver to occasionally return a
solution that is entirely orthogonal to v1, causing us to make unbounded backwards progress on our
potential function. The third assumption allows us to reject possibly harmful updates and ensure
that we still make progress in expectation. In the offline setting, we can access A and are able to
compute Rayleigh quotients exactly in time nnz(A) time. However, we only assume the ability to
estimate quotients since in the online setting we only have access to Σ through samples from D.

Our general theorem for the approximate power iteration, Theorem 5, assumes that we can
solve linear systems to some absolute accuracy in expectation. This is not completely standard.
Typically, system solver analysis assumes an initial approximation to B−1x and then shows a
relative progress bound – that the quality of the initial approximation is improved geometrically in
each iteration of the algorithm. In Corollary 6 we show how to find a coarse initial approximation

9



to B−1x, in fact just approximating B−1 with 1
x>Bx

x. Using this approximation, we show that
Theorem 5 actually implies that traditional system solver relative progress bounds suffice.

Note that in both claims we measure error of the linear system solver using ‖·‖B. This is a
natural norm in which geometric convergence is shown for many linear system solvers and directly
corresponds to the function error of minimizing f(w) = 1

2w
>Bw − w>x to compute B−1x.

Theorem 5 (Approximate Shifted-and-Inverted Power Iteration – Warm Start). Let x =
∑

i αivi
be a unit vector such that G(x) ≤ 1√

10
. Suppose we know some shift parameter λ with

(
1 + gap

150

)
λ1 <

λ ≤
(
1 + gap

100

)
λ1 and an estimate λ̂1 of λ1 such that 10

11 (λ− λ1) ≤ λ− λ̂1 ≤ λ− λ1. Furthermore,
suppose we have a subroutine solve(·) such that on any input x

E
[∥∥solve (x)−B−1x

∥∥
B

]
≤ c1

1000

√
λ1(B−1),

for some c1 < 1, and a subroutine q̂uot (·) that on any input x 6= 0∣∣∣q̂uot (x)− quot(x)
∣∣∣ ≤ 1

30
(λ− λ1) for all nonzero x ∈ Rd.

where quot(x)
def
= x>Σx

x>x
.

Then the following update procedure:

Set x̂ = solve (x) ,

Set x̃ =

 x̂ if

{
q̂uot (x̂) ≥ λ̂1 −

(
λ− λ̂1

)
/6 and

‖x̂‖2 ≥
2
3

1

λ−λ̂1
x otherwise,

satisfies the following:

• G(x̃) ≤ 1√
10

and

• E [G(x̃)] ≤ 3
25G(x) + c1

500 .

That is, not only do we decrease our potential function by a constant factor in expectation, but
we are guaranteed that the potential function will never increase beyond 1/

√
10.

Proof. The first claim follows directly from our choice of x̃ from x and x̂. If x̃ = x, it holds trivially
by our assumption that G(x) ≤ 1√

10
. Otherwise, x̃ = x̂ and we know that

λ1 − quot (x̂) ≤ λ̂1 − quot (x̂) ≤ λ̂1 − q̂uot (x̂) +
∣∣∣q̂uot (x̂)− quot (x̂)

∣∣∣
≤ λ− λ̂1

6
+
λ− λ1

30
≤ λ− λ1

5
≤ λ1 · gap

500
.

The claim then follows from Lemma 3 as

G(x̂)2 ≤
(

1 +
λ− λ1

λ1 · gap

)(
1 +

2 (λ1 − quot (x̂))

λ1 · gap

)
λ1 − quot (x̂)

λ− λ1

≤ 101

100
· 251

250
·

(
λ1·gap

500

)
(
λ1·gap

150

) ≤ 1√
10

.
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All that remains is to show the second claim, that E [G(x̃)] ≤ 3
25G(x) + 4c1

1000 . Let F denote the
event that we accept our iteration and set x = x̂ = solve (x). That is:

F def
=

{
q̂uot (x̂) ≥ λ̂1 −

λ− λ̂1

6

}
∪
{
‖x̂‖2 ≥

2

3

1

λ− λ̂1

}
.

Using our bounds on λ̂1 and q̂uot (·), we know that q̂uot (x) ≤ quot(x) + (λ− λ1)/30 and λ− λ̂1 ≤
λ− λ1. Therefore, since −1/6− 1/30 ≥ −1/2 we have

F ⊆ {quot (x̂) ≥ λ1 − (λ− λ1) /2} ∪
{
‖x̂‖2 ≥

2

3

1

λ− λ1

}
,

We will complete the proof in two steps. First we let ξ
def
= x̂ −B−1x and show that assuming

F is true then G(x̂) and ‖ξ‖B are linearly related, i.e. expected error bounds on ‖ξ‖B correspond
to expected error bounds on G(x̂). Second, we bound the probability that F does not occur and
bound error incurred in this case. Combining these yields the result.

To show the linear relationship in the case where F is true, first note Lemma 1 shows that in

this case
∣∣∣v>1 x̂

‖x̂‖2

∣∣∣ ≥√1− λ1−quot(x̂)
λ1·gap ≥ 3

4 . Consequently,

‖Pv1 x̂‖B =
∣∣∣v>1 x̂∣∣∣√λ− λ1 =

∣∣∣∣v>1 x̂

‖x̂‖2

∣∣∣∣ · ‖x̂‖√λ− λ1 ≥
3

4
· 2

3

1√
λ− λ1

=

√
λ1(B−1)

2
.

However, ∥∥∥Pv⊥1
x̂
∥∥∥

B
≤
∥∥∥Pv⊥1

B−1x
∥∥∥

B
+
∥∥∥Pv⊥1

ξ
∥∥∥

B
≤
∥∥∥Pv⊥1

B−1x
∥∥∥

B
+ ‖ξ‖B

and by Theorem 4 and the definition of G we have∥∥∥Pv⊥1
B−1x

∥∥∥
B

=
∥∥Pv1B

−1x
∥∥

B
·G(B−1x) ≤

(
|〈x, v1〉|

√
λ1(B−1)

)
· G(x)

100
.

Taking expectations, using that |〈x, v1〉| ≤ 1, and combining these three inequalities yields

E [G(x̂)|F ] = E


∥∥∥Pv⊥1

B−1x
∥∥∥

B

‖Pv1B
−1x‖B

∣∣∣∣∣∣F
 ≤ G(x)

50
+ 2

E [‖ξ‖B|F ]√
λ1(B−1)

(2)

So, conditioning on making an update and changing x (i.e. F occurring), we see that our potential
function changes exactly as in the exact case (Theorem 4) with additional additive error due to our
inexact linear system solve.

Next we upper bound P [F ] and use it to compute E [‖ξ‖B|F ]. We will show that

G def
=

{
‖ξ‖B ≤

1

100
·
√
λ1 (B−1)

}
⊆ F

which then implies by Markov inequality that

P [F ] ≥ P
[
‖ξ‖B ≤

1

100
·
√
λ1 (B−1)

]
≥ 1−

E [‖ξ‖B]
1

100 ·
√
λ1 (B−1)

≥ 9

10
, (3)

11



where we used the fact that E[‖ξ‖B] ≤ c1
1000

√
λ1(B−1) for some c1 < 1.

Let us now show that G ⊆ F . Suppose G is occurs. We can bound ‖x̂‖2 as follows:

‖x̂‖2 ≥
∥∥B−1x

∥∥
2
− ‖ξ‖2 ≥

∥∥B−1x
∥∥−√λ1 (B−1) ‖ξ‖B

≥ |α1|λ1

(
B−1

)
− 1

100
· λ1

(
B−1

)
=

1

λ− λ1

(
|α1| −

1

100

)
≥ 3

4

1

λ− λ1
, (4)

where we use Lemmas 2 and 3 to conclude that |α1| ≥
√

1− 1
10 . We now turn to showing the

Rayleigh quotient condition required by F . In order to do this, we first bound x̂>Bx̂−
(
v>1 Bx̂

) (
v>1 x̂

)
and then use Lemma 2. We have:√

x̂>Bx̂−
(
v>1 Bx̂

) (
v>1 x̂

)
=
∥∥∥Pv⊥1

x̂
∥∥∥

B
≤
∥∥∥Pv⊥1

B−1x
∥∥∥

B
+
∥∥∥Pv⊥1

ξ
∥∥∥

B

≤
√∑

i≥2

α2
iλi (B−1) +

1

100
·
√
λ1 (B−1)

≤
√
λ2 (B−1) +

1

100
·
√
λ1 (B−1) ≤ 1

9

√
λ− λ1,

where we used the fact that λ2

(
B−1

)
≤ 1

100λ1

(
B−1

)
since λ ≤ λ1 + gap

100 in the last step. Now,
using Lemma 2 and the bound on ‖x̂‖2, we conclude that

λ̂1 − q̂uot (x̂) ≤ λ1 − quot (x̂) +
∣∣∣quot (x̂)− q̂uot (x̂)

∣∣∣+ λ̂1 − λ1

≤
x̂>Bx̂−

(
v>1 Bx̂

) (
v>1 x̂

)
‖x̂‖22

+
λ− λ1

30
+
λ− λ1

11

≤ 1

81 (λ− λ1)
· 16

9
(λ− λ1)2 +

λ− λ1

8

≤ (λ− λ1) /6 ≤
(
λ− λ̂1

)
/4. (5)

Combining (4) and (5) shows that G ⊆ F there by proving (3).
Using this and the fact that ‖·‖B ≥ 0 we can upper bound E [‖ξ‖B|F ] as follows:

E [‖ξ‖B|F ] ≤ 1

P [F ]
· E [‖ξ‖B] ≤ c1

900
·
√
λ1(B−1)

Plugging this into (2), we obtain:

E [G(x̂)|F ] ≤ 1

50
G(x) +

2E [‖ξ‖B|F ]√
λ1(B−1)

≤ 1

50
·G(x) +

2c1

900
.

We can now finally bound E [G(x̃)] as follows:

E [G(x̃)] = P [F ] · E [G(x̂)|F ] + (1− P [F ])G(x)

≤ 9

10

(
1

50
·G(x) +

2c1

900

)
+

1

10
G(x) =

3

25
G(x) +

2c1

1000
.

This proves the theorem.
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Corollary 6 (Relative Error Linear System Solvers). For any unit vector x, we have:∥∥∥∥ 1

x>Bx
x−B−1x

∥∥∥∥
B

≤ α1

√
λ1(B−1) ·G(x) = λ1

(
B−1

)√√√√∑
i≥2

α2
i

λi (B−1)
, (6)

where x =
∑

i αivi is the decomposition of x along vi. Therefore, instantiating Theorem 5 with
c1 = α1G(x) gives E[G(x̃)] ≤ 4

25G(x) as long as:

E
[∥∥solve (x)−B−1x

∥∥
B

]
≤ 1

1000

∥∥∥∥ 1

λ− x>Σx
x−B−1x

∥∥∥∥
B

.

Proof. Since B is PSD we see that if we let f(w) = 1
2w
>Bw − w>x, then the minimizer is B−1x.

Furthermore note that 1
x>Bx

= arg minβ f(βx) and therefore∥∥∥∥ 1

x>Bx
x−B−1x

∥∥∥∥2

B

= x>B−1x− 1

x>Bx
= 2

[
f
( x

x>Bx

)
− f(B−1x)

]
=2

[
min
β
f(βx)− f(B−1x)

]
≤ 2

[
f(λ1

(
B−1

)
x)− f(B−1x)

]
=λ1

(
B−1

)2
x>Bx− 2λ1

(
B−1

)
x>x+ x>B−1x

=
d∑
i=1

∣∣∣v>i B
1
2x
∣∣∣2 (λ1

(
B−1

)
− λi

(
B−1

)
)2 ≤ λ1

(
B−1

)2∑
i≥2

∣∣∣v>i B
1
2x
∣∣∣2

=λ1

(
B−1

)2∑
i≥2

α2
i

λi (B−1)
,

which proves (6). Consequently

c1

1000

√
λ1(B−1) =

1

1000
α1G(x)

√
λ1(B−1) ≥ 1

1000

∥∥∥∥ 1

x>Bx
x−B−1x

∥∥∥∥
B

which with Theorem 5 then completes the proof.

3.5 Initialization

Theorem 5 and Corollary 6 show that, given a good enough approximation to v1, we can rapidly
refine this approximation by applying the shifted-and-inverted power method. In this section, we
cover initialization. That is, how to obtain a good enough approximation to apply these results.

We first give a simple bound on the quality of a randomly chosen start vector x0.

Lemma 7 (Random Initialization Quality). Suppose x ∼ N (0, I), and we initialize x0 as x
‖x‖2

,

then with probability greater than 1−O
(

1
d10

)
, we have:

G(x0) ≤
√
κ(B−1)d10.5 ≤ 15

1
√

gap
· d10.5

where κ(B−1) = λ1(B−1)/λd(B
−1).
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Proof.

G(x0) =G(x) =

∥∥∥Pv⊥1
x
∥∥∥

B

‖Pv1x‖B
=

√
‖x‖2B −

(
v>1 B1/2x

)2∣∣v>1 B1/2x
∣∣ =

√∑
i≥2

(v>i x)2

λi(B−1)√
(v>1 x)2

λ1(B−1)

,

≤
√
κ(B−1) ·

√∑
i≥2(v>i x)2∣∣v>1 x∣∣

Since {v>i x}i are independent standard normal Gaussian variables. By standard concentration

arguments, with probability greater than 1− e−Ω(d), we have
√∑

i≥2(v>i x)2 = O(
√
d). Meanwhile,

v>1 x is just a one-dimensional standard Gaussian. It is easy to show P
(∣∣v>1 x∣∣ ≤ 1

d10

)
= O

(
1
d10

)
,

which finishes the proof.

We now show that we can rapidly decrease our initial error to obtain the required G(x) ≤ 1√
10

bound for Theorem 5.

Theorem 8 (Approximate Shifted-and-Inverted Power Method – Burn-In). Suppose we initialize
x0 as in Lemma 7 and suppose we have access to a subroutine solve (·) such that

E
[∥∥solve (x)−B−1x

∥∥
B

]
≤ 1

3000κ(B−1)d21
·
∥∥∥∥ 1

λ− x>Σx
x−B−1x

∥∥∥∥
B

where κ(B−1) = λ1(B−1)/λd(B
−1). Then the following procedure,

xt = solve (xt−1) / ‖solve (xt−1)‖2
after T = O

(
log d+ log κ(B−1))

)
iterations satisfies:

G(xT ) ≤ 1√
10
,

with probability greater than 1−O( 1
d10

).

Proof. As before, we first bound the numerator and denominator of G(x̂) more carefully as follows:

Numerator:
∥∥∥Pv⊥1

x̂
∥∥∥

B
≤
∥∥∥Pv⊥1

B−1x
∥∥∥

B
+
∥∥∥Pv⊥1

ξ
∥∥∥

B
≤
∥∥∥Pv⊥1

B−1x
∥∥∥

B
+ ‖ξ‖B

=
√∑

i≥2

(
vTi B

−1/2x
)2

+ ‖ξ‖B =
√∑

i≥2 α
2
iλi (B−1) + ‖ξ‖B ,

Denominator: ‖Pv1 x̂‖B ≥
∥∥Pv1B

−1x
∥∥

B
− ‖Pv1ξ‖B ≥

∥∥Pv1B
−1x

∥∥
B
− ‖ξ‖B

=
∣∣vTi B−1/2x

∣∣− ‖ξ‖B = α1

√
λ1 (B−1)− ‖ξ‖B

We now use the above estimates to bound G(x̂).

G(x̂) ≤

√∑
i≥2 α

2
iλi (B−1) + ‖ξ‖B

α1

√
λ1 (B−1)− ‖ξ‖B

≤
λ2

(
B−1

)√∑
i≥2

α2
i

λi(B−1)
+ ‖ξ‖B

λ1 (B−1)
√

α2
1

λ1(B−1)
− ‖ξ‖B

= G(x)
λ2

(
B−1

)
+ ‖ξ‖B /

√∑
i≥2

α2
i

λi(B−1)

λ1 (B−1)− ‖ξ‖B /
√

α2
1

λ1(B−1)
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By Lemma 7, we know with at least probability 1−O( 1
d10

), we have G(x0) ≤
√
κ(B−1)d10.5.

Conditioned on high probability result of G(x0), we now use induction to prove G(xt) ≤ G(x0).
It trivially holds for t = 0. Suppose we now have G(x) ≤ G(x0), then by the condition in Theorem
8 and Markov inequality, we know with probability greater than 1− 1

100
√
κ(B−1)d10.5

we have:

‖ξ‖B ≤
1

30
√
κ(B−1)d10.5

·
∥∥∥∥ 1

λ− x>Σx
x−B−1x

∥∥∥∥
B

≤ 1

30
·
∥∥∥∥ 1

λ− x>Σx
x−B−1x

∥∥∥∥
B

min

{
1,

1

G(x0)

}
≤ 1

30
·
∥∥∥∥ 1

λ− x>Σx
x−B−1x

∥∥∥∥
B

min

{
1,

1

G(x)

}

≤
λ1

(
B−1

)
− λ2

(
B−1

)
4

min


√√√√∑

i≥2

α2
i

λi (B−1)
,

√
α2

1

λ1 (B−1)


The last inequality uses Corollary 6 with the fact that λ2

(
B−1

)
≤ 1

100λ1

(
B−1

)
. Therefore, we

have: We will have:

G(x̂) ≤
λ1

(
B−1

)
+ 3λ2

(
B−1

)
3λ1 (B−1) + λ2 (B−1)

×G(x) ≤ 1

2
G(x)

This finishes the proof of induction.
Finally, by union bound, we know with probability greater than 1 − O( 1

d10
) in T = O(log d +

log κ(B−1)) steps, we have:

G(xT ) ≤ 1

2T
G(x0) ≤ 1√

10

4 Offline Eigenvector Computation

In this section we show how to instantiate the framework of Section 3 in order to compute an
approximate top eigenvector in the offline setting. As discussed, in the offline setting we can
trivially compute the Rayleigh quotient of a vector in nnz(A) time as we have explicit access to
A>A. Consequently the bulk of our work in this section is to show how we can solve linear systems
in B efficiently in expectation, allowing us to apply Corollary 6 of Theorem 5.

In Section 4.1 we first show how Stochastic Variance Reduced Gradient (SVRG) [JZ13] can
be adapted to solve linear systems of the form Bx = b. If we wanted, for example, to solve a
linear system in a positive definite matrix like A>A, we would optimize the objective function
f(x) = 1

2x
>A>Ax − b>x. This function can be written as the sum of n convex components,

ψi(x) = 1
2x
> (aia>i )x− 1

nb
>x. In each iteration of traditional gradient descent, one computes the

full gradient of f(xi) and takes a step in that direction. In stochastic gradient methods, at each
iteration, a single component is sampled, and the step direction is based only on the gradient of
the sampled component. Hence, we avoid a full gradient computation at each iteration, leading to
runtime gains.

Unfortunately, while we have access to the rows of A and so can solve systems in A>A, it is less
clear how to solve systems in B = λI−A>A. To do this, we will split our function into components
of the form ψi(x) = 1

2x
> (wiI− aia>i )x− 1

nb
>x for some set of weights wi with

∑
i∈[n]wi = λ.

15



Importantly, (wiI − aia
>
i ) may not be positive semidefinite. That is, we are minimizing a

sum of functions which is convex, but consists of non-convex components. While recent results
for minimizing such functions could be applied directly [SS15, CR15] here we show how to obtain
stronger results by using a more general form of SVRG and analyzing the specific properties of our
function (i.e. the variance).

Our analysis shows that we can make constant factor progress in solving linear systems in B in

time O
(

nnz(A) + d sr(A)
gap2

)
. If d sr(A)

gap2 ≤ nnz(A) this gives a runtime proportional to the input size –

the best we could hope for. If not, we show in Section 4.2 that it is possible to accelerate our system

solver, achieving runtime Õ
(

nnz(A)3/4(d sr(A))1/4√
gap

)
. This result uses the work of [FGKS15b, LMH15]

on accelerated approximate proximal point algorithms.
With our solvers in place, in Section 4.3 we pull our results together, showing how to use these

solvers in the framework of Section 3 to give faster running times for offline eigenvector computation.

4.1 SVRG Based Solver

Here we provide a sampling based algorithm for solving linear systems in B. In particular we
provide an algorithm for solving the more general problem where we are given a strongly convex
function that is a sum of possibly non-convex functions that obey smoothness properties. We
provide a general result on bounding the progress of an algorithm that solves such a problem by
non-uniform sampling in Theorem 9 and then in the remainder of this section we show how to
bound the requisite quantities for solving linear systems in B.

Theorem 9 (SVRG for Sums of Non-Convex Functions). Consider a set of functions, {ψ1, ψ2, ...ψn},
each mapping Rd → R. Let f(x) =

∑
i ψi(x) and let xopt def

= arg minx∈Rd f(x). Suppose we have a
probability distribution p on [n], and that starting from some initial point x0 ∈ Rd in each iteration
k we pick ik ∈ [n] independently with probability pik and let

xk+1 := xk −
η

pi
(5ψi(xk)−5ψi(x0)) + η5 f(x0)

for some η. If f is µ-strongly convex and if for all x ∈ Rd we have∑
i∈[n]

1

pi

∥∥5ψi(x)−5ψi(xopt)
∥∥2

2
≤ 2S

[
f(x)− f(xopt)

]
, (7)

where S is a variance parameter, then for all m ≥ 1 we have

E

 1

m

∑
k∈[m]

f(xk)− f(xopt)

 ≤ 1

1− 2ηS̄

[
1

µηm
+ 2ηS

]
·
[
f(x0)− f(xopt)

]
Consequently, if we pick η to be a sufficiently small multiple of 1/S̄ then when m = O(S/µ) we can
decrease the error by a constant multiplicative factor in expectation.

Proof. We first note that Eik [xk+1 − xk] = η5 f(xk). This is, in each iteration, in expectation, we
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make a step in the direction of the gradient. Using this fact we have:

Eik
∥∥xk+1 − xopt

∥∥2

2
= Eik

∥∥(xk+1 − xk) + (xk − xopt)
∥∥2

2

=
∥∥xk − xopt

∥∥2

2
− 2Eik(xk+1 − xk)>(xk − xopt) + Eik ‖xk+1 − xk‖22

=
∥∥xk − xopt

∥∥2

2
− 2η5 f(xk)

> (xk − xopt
)

+
∑
i∈[n]

η2pi

∥∥∥∥ 1

pi
(5ψi(xk)−5ψi(x0)) +5f(x0)

∥∥∥∥2

2

We now apply the fact that ‖x+ y‖22 ≤ 2 ‖x‖22 + 2 ‖y‖22 to give:∑
i∈[n]

pi

∥∥∥∥ 1

pi
(5ψi(xk)−5ψi(x0)) +5f(x0)

∥∥∥∥2

2

≤
∑
i∈[n]

2pi

∥∥∥∥ 1

pi

(
5ψi(xk)−5ψi(xopt)

)∥∥∥∥2

2

+
∑
i∈[n]

2pi

∥∥∥∥ 1

pi

(
5ψi(x0)−5ψi(xopt)

)
−5f(x0)

∥∥∥∥2

2

.

Then, using that 5f(xopt) = 0 by optimality, that E ‖x− Ex‖22 ≤ E ‖x‖22, and (7) we have:∑
i∈[n]

pi

∥∥∥∥ 1

pi
(5ψi(xk)−5ψi(x0)) +5f(x0)

∥∥∥∥2

2

≤
∑
i∈[n]

2

pi

∥∥5ψi(xk)−5ψi(xopt)
∥∥2

2
+
∑
i∈[n]

2pi

∥∥∥∥ 1

pi

(
5ψi(x0)−5ψi(xopt))− (5f(x0)−5f(xopt)

)∥∥∥∥2

2

≤
∑
i∈[n]

2

pi

∥∥5ψi(xk)−5ψi(xopt)
∥∥2

2
+
∑
i∈[n]

2pi

∥∥∥∥ 1

pi
5 ψi(x0)−5ψi(xopt))

∥∥∥∥2

2

≤ 4S
[
f(xk)− f(xopt) + f(x0)− f(xopt)

]
Since f(xopt)− f(xk) ≥ 5f(xk)

>(xopt − xk) by the convexity of f , these inequalities imply

Eik
∥∥xk+1 − xopt

∥∥2

2
≤
∥∥xk − xopt

∥∥2

2
− 2η

[
f(xk)− f(xopt)

]
+ 4η2S

[
f(xk)− f(xopt) + f(x0)− f(xopt)

]
=
∥∥xk − xopt

∥∥2

2
− 2η(1− 2ηS)

(
f(xk)− f(xopt)

)
+ 4η2S̄

(
f(x0)− f(xopt)

)
Rearranging, we have:

2η(1− 2ηS)
(
f(xk)− f(xopt)

)
≤
∥∥xk − xopt

∥∥2

2
− Eik

∥∥xk+1 − xopt
∥∥2

2
+ 4η2S̄

(
f(x0)− f(xopt)

)
.

And summing over all iterations and taking expectations we have:

E

2η(1− 2ηS̄)
∑
k∈[m]

f(xk)− f(xopt)

 ≤ ∥∥x0 − xopt
∥∥2

2
+ 4mη2S̄

[
f(x0)− f(xopt)

]
.

Finally, we use that by strong convexity,
∥∥x0 − xopt

∥∥2

2
≤ 2

µ

(
f(x0)− f(xopt)

)
to obtain:

E

2η(1− 2ηS̄)
∑
k∈[m]

f(xk)− f(xopt)

 ≤ 2

µ

[
f(x0)− f(xopt)

]
+ 4mη2S̄

[
f(x0)− f(xopt)

]
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and thus

E

 1

m

∑
k∈[m]

f(xk)− f(xopt)

 ≤ 1

1− 2ηS̄

[
1

µηm
+ 2ηS̄

]
·
[
f(x0)− f(xopt)

]

Theorem 9 immediately yields a solver for Bx = b. Finding the minimum norm solution to
this system is equivalent to minimizing f(x) = 1

2x
>Bx− b>x. If we take the common approach of

applying a smoothness bound for each ψi along with a strong convexity bound on f(x) we obtain:

Lemma 10 (Simple Variance Bound for SVRG). Let

ψi(x)
def
=

1

2
x>

(
λ ‖ai‖22
‖A‖2F

I− aia>i

)
x− 1

n
b>x

so we have
∑

i∈[n] ψi(x) = f(x) = 1
2x
>Bx− b>x. Setting pi =

‖ai‖22
‖A‖2F

for all i, we have

∑
i∈[n]

1

pi

∥∥5ψi(x)−5ψi(xopt)
∥∥2

2
= O

(
‖A‖4F
λ− λ1

[
f(x)− f(xopt)

])

Proof. We first compute, for all i ∈ [n]

5ψi(x) =

(
λ ‖ai‖22
‖A‖2F

I− aia>i

)
x− 1

n
b. (8)

We have that each ψi is
λ‖ai‖22
‖A‖2F

+ ‖ai‖2 smooth with respect to ‖·‖2. Specifically,

∥∥5ψi(x)−5ψi(xopt)
∥∥

2
=

∥∥∥∥∥
(
λ ‖ai‖22
‖A‖2F

I− aia>i

)
(x− xopt)

∥∥∥∥∥
2

≤

(
λ ‖ai‖22
‖A‖2F

+ ‖ai‖2
)∥∥x− xopt

∥∥
2
.

Additionally, f(x) is λd(B) = λ−λ1 strongly convex so we have
∥∥x− xopt

∥∥2

2
≤ 2

λ−λ1

[
f(x)− f(xopt)

]
and putting all this together we have

∑
i∈[n]

1

pi

∥∥5ψi(x)−5ψi(xopt)
∥∥2

2
≤
∑
i∈[n]

‖A‖2F
‖ai‖22

· ‖ai‖42

(
λ

‖A‖2F
+ 1

)2

· 2

λ− λ1

[
f(x)− f(xopt)

]
= O

(
‖A‖4F
λ− λ1

[
f(x)− f(xopt)

])

where the last step uses that λ ≤ 2λ1 ≤ 2 ‖A‖2F so λ
‖A‖2F

≤ 2.
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Assuming that λ = (1 + c · gap)λ1 for some constant c, the above bound means that we can

make constant progress on our linear system by setting m = O(S/µ) = O
(
‖A‖4F

(λ−λ1)2

)
= O

(
sr(A)2

gap2

)
.

This dependence on stable rank matches the dependence given in [Sha15c] (see discussion in Section

1.3), however we can show that it is suboptimal. We show to improve the bound to O
(

sr(A)
gap2

)
by

using a better variance analysis. Instead of bounding each
∥∥5ψi(x)−5ψi(xopt)

∥∥2

2
term using the

smoothness of ψi, we more carefully bound the sum of these terms.

Lemma 11. (Improved Variance Bound for SVRG) For i ∈ [n] let

ψi(x)
def
=

1

2
x>

(
λ ‖ai‖22
‖A‖2F

I− aia>i

)
x− 1

n
b>x

so we have
∑

i∈[n] ψi(x) = f(x) = 1
2x
>Bx− b>x. Setting pi =

‖ai‖22
‖A‖2F

for all i, we have for all x

∑
i∈[n]

1

pi

∥∥5ψi(x)−5ψi(xopt)
∥∥2

2
≤

4λ1 ‖A‖2F
λ− λ1

·
[
f(x)− f(xopt)

]
.

Proof. Using the gradient computation in (8) we have

∑
i∈[n]

1

pi

∥∥5ψi(x)−5ψi(xopt)
∥∥2

2
=
∑
i∈[n]

‖A‖2F
‖ai‖22

∥∥∥∥∥
(
λ ‖ai‖22
‖A‖2F

I− aia>i

)
(x− xopt)

∥∥∥∥∥
2

2

=
∑
i∈[n]

λ2 ‖ai‖22
‖A‖2F

∥∥x− xopt
∥∥2

2
− 2

∑
i∈[n]

λ
∥∥x− xopt

∥∥2

aia>i

+
∑
i∈[n]

‖A‖2F
‖ai‖2

∥∥x− xopt
∥∥2

‖ai‖22aia>i

= λ2
∥∥x− xopt

∥∥2

2
− 2λ

∥∥x− xopt
∥∥2

Σ
+ ‖A‖2F

∥∥x− xopt
∥∥2

Σ
.

≤ λ
∥∥x− xopt

∥∥2

B
+ ‖A‖2F

∥∥x− xopt
∥∥2

Σ
. (9)

Now since

Σ � λ1I �
λ1

λ− λ1
B

we have ∑
i∈[n]

1

pi

∥∥5ψi(x)−5ψi(xopt)
∥∥2

2
≤

(
λ(λ− λ1) + ‖A‖2F · λ1

λ− λ1

)∥∥x− xopt
∥∥2

B

≤

(
2 ‖A‖2F λ1

λ− λ1

)∥∥x− xopt
∥∥2

B

where in the last inequality we just coarsely bound λ(λ−λ1) ≤ λ1 ‖A‖2F . Now since B is full rank,
Bxopt = b, we can compute:∥∥x− xopt

∥∥2

B
= x>Bx− 2b>x+ b>xopt = 2[f(x)− f(xopt)]. (10)

The result follows.
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Plugging the bound in Lemma 11 into Theorem 9 we have:

Theorem 12. (Offline SVRG-Based Solver) Let S =
2λ1‖Σ‖2F
λ−λ1 , µ = λ−λ1. The iterative procedure

described in Theorem 9 with f(x) = 1
2x
>Bx − b>x, ψi(x) = 1

2x
>
(
λ‖ai‖22
‖Σ‖2F

I− aia>i
)
x − b>x, pi =

‖ai‖22
‖Σ‖2F

, η = 1/(8S) and m chosen uniformly at random from [64S/µ] returns a vector xm such that

E
∥∥xm − xopt

∥∥2

B
≤ 1

2

∥∥x0 − xopt
∥∥2

B
.

Further, assuming
(
1 + gap

150

)
λ1 < λ ≤

(
1 + gap

100

)
λ1, this procedure runs in time O

(
nnz(A) + d·sr(A)

gap2

)
.

Proof. Lemma 11 tells us that∑
i∈[n]

1

pi

∥∥5ψi(x)−5ψi(xopt)
∥∥2

2
≤ 2S

[
f(x)− f(xopt)

]
.

Further f(x) = 1
2x
>Bx − b>x is λd(B)-strongly convex and λd(B) = λ − λ1 = µ. Plugging this

into Theorem 9 and using (10) which shows
∥∥x− xopt

∥∥2

B
= 2[f(x)− f(xopt)] we have, for m chosen

uniformly from [64S/µ]:

E

 1

64S/µ

∑
k∈[64S/µ]

f(xk)− f(xopt)

 ≤ 4/3 · [1/8 + 1/8] ·
[
f(x0)− f(xopt)

]
E
[
f(xm)− f(xopt)

]
≤ 1

2

[
f(x0)− f(xopt)

]
E
∥∥xm − xopt

∥∥2

B
≤ 1

2

∥∥x0 − xopt
∥∥2

B
.

The procedure requires O (nnz(A)) time to initially compute 5f(x0), along with each pi and
the step size η which depend on ‖A‖2F and the row norms of A. Each iteration then just requires
O(d) time to compute 5ψi(·) and perform the necessary vector operations. Since there are at most

[64S/µ] = O
(
λ1‖A‖2F
(λ−λ1)2

)
iterations, our total runtime is

O

(
nnz(A) + d ·

λ1 ‖A‖2F
(λ− λ1)2

)
= O

(
nnz(A) +

d · sr(A)

gap2

)
.

Note that if our matrix is uniformly sparse - i.e. all rows have sparsity at most ds, then the runtime

is actually at most O
(

nnz(A) + ds·sr(A)
gap2

)
.

4.2 Accelerated Solver

Theorem 12 gives a linear solver for B that makes progress in expectation and which we can plug
into Theorems 5 and 8. However, we first show that the runtime in Theorem 12 can be accelerated
in some cases. We apply a result of [FGKS15b], which shows that, given a solver for a regularized
version of a convex function f(x), we can produce a fast solver for f(x) itself. Specifically:
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Lemma 13 (Theorem 1.1 of [FGKS15b]). Let f(x) be a µ-strongly convex function and let xopt def
=

arg minx∈Rd f(x). For any γ > 0 and any x0 ∈ Rd, let fγ,x0(x)
def
= f(x) + γ

2 ‖x− x0‖22. Let xopt
γ,x0

def
=

arg minx∈Rd fγ,x0(x).
Suppose that, for all x0 ∈ Rd, c > 0, γ > 0, we can compute a point xc such that

Efγ,x0(xc)− fγ,x0(xopt
γ,x0) ≤ 1

c

[
fγ,x0 − fγ,x0(xopt

γ,x0)
]

in time Tc. Then given any x0, c > 0, γ > 2µ, we can compute x1 such that

Ef(x1)− f(xopt) ≤ 1

c

[
f(x0)− f(xopt)

]
in time O

(
T

4
(

2γ+µ
µ

)3/2√dγ/µe log c

)
.

We first give a new variance bound on solving systems in B when a regularizer is used. The
proof of this bound is very close to the proof given for the unregularized problem in Lemma 11.

Lemma 14. For i ∈ [n] let

ψi(x)
def
=

1

2
x>

(
λ ‖ai‖22
‖A‖2F

I− aia>i

)
x− 1

n
b>x+

γ ‖ai‖22
2 ‖A‖2F

‖x− x0‖22

so we have
∑

i∈[n] ψi(x) = fγ,x0(x) = 1
2x
>Bx− b>x+ γ

2 ‖x− x0‖22. Setting pi =
‖ai‖22
‖A‖2F

for all i, we

have for all x∑
i∈[n]

1

pi

∥∥5ψi(x)−5ψi(xopt
γ,x0)

∥∥2

2
≤

(
γ2 + 12λ1 ‖A‖2F
λ− λ1 + γ

)[
fγ,x0(x)− fγ,x0(xopt

γ,x0)
]

Proof. We have for all i ∈ [n]

5ψi(x) =

(
λ ‖ai‖22
‖A‖2F

I− aia>i

)
x− 1

n
b+

γ ‖ai‖22
2 ‖A‖2F

(x− 2x0) (11)

Plugging this in we have:∑
i∈[n]

1

pi

∥∥5ψi(x)−5ψi(xopt
γ,x0)

∥∥2

2
=
∑
i∈[n]

‖A‖2F
‖ai‖22

∥∥∥∥∥
(
λ ‖ai‖22
‖A‖2F

I− aia>i

)
(x− xopt

γ,x0) +
γ ‖ai‖22
2 ‖A‖2F

(x− xopt
γ,x0)

∥∥∥∥∥
2

2

For simplicity we now just use the fact that ‖x+ y‖22 ≤ 2 ‖x‖22 + 2 ‖y‖22 and apply our bound from
equation (9) to obtain:∑

i∈[n]

1

pi

∥∥5ψi(x)−5ψi(xopt
γ,x0)

∥∥2

2
≤ 2λ2

∥∥x− xopt
γ,x0

∥∥2

2
− 4λ

∥∥x− xopt
γ,x0

∥∥2

Σ
+ 2 ‖Σ‖2F

∥∥x− xopt
γ,x0

∥∥2

Σ

+ 2
∑
i∈[n]

‖ai‖22
‖A‖2F

γ2

4

∥∥x− xopt
γ,x0

∥∥2

2

≤
(

2λ2 + γ2/2 + 2λ1 ‖A‖2F − 4λ1λ
)∥∥x− xopt

γ,x0

∥∥2

2

≤
(
γ2/2 + 6λ1 ‖A‖2F

)∥∥x− xopt
γ,x0

∥∥2

2
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Now, fγ,x0(·) is λ− λ1 + γ strongly convex, so∥∥x− xopt
γ,x0

∥∥2

2
≤ 2

λ− λ1 + γ

[
fγ,x0(x)− fγ,x0(xopt

γ,x0)
]
.

So overall we have:

∑
i∈[n]

1

pi

∥∥5ψi(x)−5ψi(xopt
γ,x0)

∥∥2

2
≤

(
γ2 + 12λ1 ‖A‖2F
λ− λ1 + γ

)[
fγ,x0(x)− fγ,x0(xopt

γ,x0)
]

We can now use this variance bound to obtain an accelerated solver for B. We assume nnz(A) ≤
d sr(A)
gap2 , as otherwise, the unaccelerated solver in Theorem 12 runs in O(nnz(A)) time and cannot

be accelerated further.

Theorem 15 (Accelerated SVRG-Based Solver). Assuming
(
1 + gap

150

)
λ1 < λ ≤

(
1 + gap

100

)
λ1 and

nnz(A) ≤ d sr(A)
gap2 , applying the iterative procedure described in Theorem 9 along with the acceleration

given by Lemma 13 gives a solver that returns x with

E
∥∥x− xopt

∥∥2

B
≤ 1

2

∥∥x0 − xopt
∥∥2

B
.

in time O
(

nnz(A)3/4(d sr(A))1/4√
gap · log

(
d

gap

))
.

Proof. Following Theorem 12, the variance bound of Lemma 14 means that we can make con-

stant progress in minimizing fγ,x0(x) in O (nnz(A) + dm) time where m = O
(
γ2+12λ1‖Σ‖2F

(λ−λ1+γ)2

)
. So,

for γ ≥ 2(λ − λ1) we can make 4
(

2γ+(λ−λ1)
λ−λ1

)3/2
progress, as required by Lemma 13 in time

O
(

(nnz(A) + dm) · log
(

γ
λ−λ1

))
time. Hence by Lemma 13 we can make constant factor expected

progress in minimizing f(x) in time:

O

((
nnz(A) + d

γ2 + 12λ1 ‖A‖2F
(λ− λ1 + γ)2

)
log

(
γ

λ− λ1

)√
γ

λ− λ1

)

By our assumption, we have nnz(A) ≤ d sr(A)
gap2 =

dλ1‖A‖2F
(λ−λ1)2

. So, if we let γ = Θ

(√
dλ1‖A‖2F
nnz(A)

)
then

using a sufficiently large constant, we have γ ≥ 2(λ− λ1). We have γ
λ−λ1 = Θ

(√
dλ1‖A‖2F

nnz(A)λ21gap2

)
=

Θ
(√

d sr(A)
nnz(A)gap2

)
and can make constant expected progress in minimizing f(x) in time:

O

(
nnz(A)3/4(d sr(A))1/4

√
gap

· log

(
d

gap

))
.

22



4.3 Shifted-and-Inverted Power Method

Finally, we are able to combine the solvers from Sections 4.1 and 4.2 with the framework of Section
3 to obtain faster algorithms for top eigenvector computation.

Theorem 16 (Shifted-and-Inverted Power Method With SVRG). Let B = λI−A>A for
(
1 + gap

150

)
λ1 ≤

λ ≤
(
1 + gap

100

)
λ1 and let x0 ∼ N (0, I) be a random initial vector. Running the inverted power

method on B initialized with x0, using the SVRG solver from Theorem 12 to approximately apply
B−1 at each step, returns x such that with probability 1−O

(
1
d10

)
, x>Σx ≥ (1− ε)λ1 in total time

O

((
nnz(A) +

d sr(A)

gap2

)
·
(

log2

(
d

gap

)
+ log

(
1

ε

)))
.

Note that by instantiating the above theorem with ε′ = ε · gap, and applying Lemma 1 we
can find a unit vector x such that |v>1 x| ≥ 1 − ε in the same asymptotic running time (an extra
log(1/gap) term is absorbed into the log2(d/gap) term).

Proof. By Theorem 8, if we start with x0 ∼ N (0, I) we can run O
(

log
(

d
gap

))
iterations of the

inverted power method, to obtain x1 with G(x1) ≤ 1√
10

with probability 1 − O
(

1
d10

)
. Each iter-

ation requires applying an linear solver that decreases initial error in expectation by a factor of
1

poly(d,1/gap) . Such a solver is given by applying the solver in Theorem 12 O
(

log
(

d
gap

))
times,

decreasing error by a constant factor in expectation each time. So overall in order to find x1 with

G(x1) ≤ 1√
10

, we require time O
((

nnz(A) + d sr(A)
gap2

)
· log2

(
d

gap

))
.

After this initial ‘burn-in’ period we can apply Corollary 6 of Theorem 5, which shows that
running a single iteration of the inverted power method will decrease G(x) by a constant factor
in expectation. In such an iteration, we only need to use a solver that decreases initial error by a
constant factor in expectation. So we can perform each inverted power iteration in this stage in

time O
(

nnz(A) + d sr(A)
gap2

)
.

With O
(
log
(
d
ε

))
iterations, we can obtain x with E

[
G(x)2

]
= O

(
ε
d10

)
So by Markov’s inequal-

ity, we have G(x)2 = O(ε), giving us xTΣx ≥ (1−O(ε))λ1 by Lemma 3. Union bounding over both
stages gives us failure probability O

(
1
d10

)
, and adding the runtimes from the two stages gives us

the final result. Note that the second stage requires O
(
log
(
d
ε

))
= O(log d+ log(1/ε)) iterations to

achieve the high probability bound. However, the O(log d) term is smaller than the O
(

log2
(

d
gap

))
term, so is absorbed into the asymptotic notation.

We can apply an identical analysis using the accelerated solver from Theorem 15, obtaining the
following runtime which beats Theorem 16 whenever nnz(A) ≤ d sr(A)

gap2 :

Theorem 17 (Shifted-and-Inverted Power Method Using Accelerated SVRG). Let B = λI−A>A
for

(
1 + gap

150

)
λ1 ≤ λ ≤

(
1 + gap

100

)
λ1 and let x0 ∼ N (0, I) be a random initial vector. Assume that

nnz(A) ≤ d sr(A)
gap2 . Running the inverted power method on B initialized with x0, using the accelerated

SVRG solver from Theorem 15 to approximately apply B−1 at each step, returns x such that with
probability 1−O

(
1
d10

)
, |v>1 x| ≥ 1− ε in total time

O

((
nnz(A)3/4(d sr(A))1/4

√
gap

)
·
(

log3

(
d

gap

)
+ log

(
d

gap

)
log

(
1

ε

)))
.
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5 Online Eigenvector Computation

Here we show how to apply the shifted-and-inverted power method framework of Section 3 to the
online setting. This setting is more difficult than the offline case. As there is no canonical matrix
A, and we only have access to the distribution D through samples, in order to apply Theorem 5 we
must show how to both estimate the Rayleigh quotient (Section 5.1) as well as solve the requisite
linear systems in expectation (Section 5.2).

After laying this ground work, our main result is given in Section 5.3. Ultimately, the results
in this section allow us to achieve more efficient algorithms for computing the top eigenvector in
the statistical setting as well as improve upon the previous best known sample complexity for top
eigenvector computation. As we show in Section 7 the bounds we provide in this section are in fact
tight for general distributions.

5.1 Estimating the Rayleigh Quotient

Here we show how to estimate the Rayleigh quotient of a vector with respect to Σ. Our analysis
is standard – we first approximate the Rayleigh quotient by its empirical value on a batch of
k samples and prove using Chebyshev’s inequality that the error on this sample is small with
constant probability. We then repeat this procedure O(log(1/p)) times and output the median. By
a Chernoff bound this yields a good estimate with probability 1− p. The formal statement of this
result and its proof comprise the remainder of this subsection.

Theorem 18 (Online Rayleigh Quotient Estimation). Given ε ∈ (0, 1], p ∈ [0, 1], and unit vector

x set k = d4 v(D)ε−2e and m = O(log(1/p)). For all i ∈ [k] and j ∈ [m] let a
(j)
i be drawn

independently from D and set Ri,j = x>a
(j)
i (a

(j)
i )>x and Rj = 1

k

∑
i∈[k]Ri,j. If we let z be median

value of the Rj then with probability 1− p we have
∣∣z − x>Σx

∣∣ ≤ ελ1.

Proof.

Vara∼D(x>aa>x) = Ea∼D(x>aa>x)2 − (Ea∼Dx>aa>x)2

≤ Ea∼D ‖a‖22 x
>aa>x− (x>Σx)2

≤
∥∥∥Ea∼D ‖a‖22 aa>∥∥∥

2
= v(D)λ2

1

Consequently, Var(Ri,j) ≤ v(D)λ2
1, and since each of the a

(j)
i were drawn independently this implies

that we have that Var(Rj) ≤ v(D)λ2
1/k. Therefore, by Chebyshev’s inequality

P

[
|Rj − E[Rj ]| ≥ 2

√
v(D)λ2

1

k

]
≤ 1

4
.

Since E[Rj ] = x>Σx and since we defined k appropriately this implies that

P
[∣∣∣Rj − x>Σx

∣∣∣ ≥ ελ1

]
≤ 1

4
. (12)

The median z satisfies |z − x>Σx| ≤ ε as more than half of the Rj satisfy |Rj − x>Σx| ≤ ε. This
happens with probability 1− p by Chernoff bound, our choice of m and (12).
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5.2 Solving the Linear system

Here we show how to solve linear systems in B = λI −Σ in the streaming setting. We follow the
general strategy of the offline algorithms in Section 4, replacing traditional SVRG with the stream-
ing SVRG algorithm of [FGKS15a]. Similarly to the offline case we minimize f(x) = 1

2x
>Bx− b>x

and define for all a ∈ supp(D),

ψa(x)
def
=

1

2
x>(λI− aa>)x− b>x. (13)

insuring that f(x) = Ea∼Dψa(x)..
The performance of streaming SVRG [FGKS15a] is governed by three regularity parameters.

As in the offline case, we use the fact that f(·) is µ-strongly convexity for µ = λ−λ1 and we require
a smoothness parameter, denoted S, that satisfies:

∀x ∈ Rd : Ea∼D
∥∥5ψa(x)−5ψa(xopt)

∥∥2

2
≤ 2S

[
f(x)− f(xopt)

]
. (14)

Furthermore, we require an upper bound the variance, denoted σ2, that satisfies:

Ea∼D
1

2

∥∥5ψa(xopt)
∥∥2

(52f(xopt))−1 ≤ σ2 . (15)

With the following two lemmas we bound these parameters.

Lemma 19 (Streaming Smoothness). The smoothness parameter S
def
= λ+

v(D)λ21
λ−λ1 satisfies (14).

Proof. Our proof is similar to the one for Lemma 10.

Ea∼D
∥∥5ψa(x)−5ψa(xopt)

∥∥2

2
= Ea∼D

∥∥∥(λI− aa>)(x− xopt)
∥∥∥2

2

= λ2
∥∥x− xopt

∥∥2

2
− 2λEa∼D

∥∥x− xopt
∥∥2

aa>
+ Ea∼D

∥∥∥aa>(x− xopt)
∥∥∥2

2

≤ λ2
∥∥x− xopt

∥∥2

2
− 2λ

∥∥x− xopt
∥∥2

Σ
+
∥∥∥Ea∼D ‖a‖22 aa>∥∥∥

2
·
∥∥x− xopt

∥∥2

2

≤ λ
∥∥x− xopt

∥∥2

B
+ v(D)λ2

1

∥∥x− xopt
∥∥2

2
.

Since f is λ − λ1-strongly convex,
∥∥x− xopt

∥∥2

2
≤ 2

λ−λ1 [f(x) − f(xopt)]. Furthermore, since direct

calculation reveals, 2[f(x)− f(xopt)] =
∥∥x− xopt

∥∥2

B
, the result follows.

Lemma 20 (Streaming Variance). The variance parameter σ2 def
=

v(D)λ21
λ−λ1

∥∥xopt
∥∥2

2
satisfies (15).

Proof. We have

Ea∼D
1

2

∥∥5ψa(xopt)
∥∥2

(52f(xopt))−1 = Ea∼D
1

2

∥∥∥(λI− aa>
)
xopt − b

∥∥∥2

B−1

= Ea∼D
1

2

∥∥∥(λI− aa>
)
xopt −Bxopt

∥∥∥2

B−1

= Ea∼D
1

2

∥∥∥(Σ− aa>
)
xopt

∥∥∥2

B−1
.

25



Applying E ‖a− Ea‖22 = E ‖a‖22 − ‖Ea‖
2
2 gives:

Ea∼D
∥∥∥(Σ− aa>

)
xopt

∥∥∥2

B−1
= Ea∼D

∥∥xopt
∥∥2

aa>B−1aa>
−
∥∥xopt

∥∥2

ΣB−1Σ
≤ Ea∼D

∥∥xopt
∥∥2

aa>B−1aa>
.

Furthermore, since B−1 � 1
λ−λ1 I we have

Ea∼Daa>B−1aa> � 1

λ− λ1
Ea∼D(aa>)2 �

(∥∥Ea∼D(aa>)2
∥∥

2

λ− λ1

)
I =

(
v(D)λ2

1

λ− λ1

)
I .

Combining these three equations yields the result.

With the regularity parameters bounded we can apply the streaming SVRG algorithm of
[FGKS15a] to solve systems in B. We encapsulate the core iterative step of Algorithm 1 of
[FGKS15a] as follows:

Definition 21 (Streaming SVRG Step). Given x0 ∈ Rd and η, k,m > 0 we define a streaming
SVRG step, x = ssvrg iter(x0, η, k,m) as follows. First we take k samples a1, ..., ak from D and
set g = 1

k

∑
i∈[k] ψai where ψai is as defined in (13). Then for m̃ chosen uniformly at random from

{1, ...,m} we draw m̃ additional samples ã1, ..., ãm̃ from D. For t = 0, ..., m̃− 1 we let

xt+1 := xt −
η

L
(5ψãt(xt)−5ψãt(x0) +5g(x0))

and return xm̃ as the output.

The accuracy of the above iterative step is proven in Theorem 4.1 of [FGKS15a], which we
include, using our notation below:

Theorem 22 (Theorem 4.1 of [FGKS15a] 1). Let f(x) = Ea∼Dψa(x) and let µ, S, σ2 be the strong
convexity, smoothness, and variance bounds for f(x). Then for any distribution over x0 we have
that x := ssvrg iter(x0, η, k,m) has E[f(x)− f(xopt)] upper bounded by

1

1− 4η

( S

µmη
+ 4η

)[
Ef(x0)− f(xopt)

]
+

1 + 2η

k

√S

µ
· [Ef(x0)− f(xopt)] + σ

2 .
Using Theorem 22 we can immediately obtain the following guarantee for solve system in B:

Corollary 23 (Streaming SVRG Solver - With Initial Point). Let µ = λ − λ1, S = λ +
v(D)λ21
λ−λ1 ,

and σ2 =
v(D)λ21
λ−λ1

∥∥xopt
∥∥2

2
. Let c2, c3 ∈ (0, 1) be any constants and set η = c2

8 , m =
[
S
µc22

]
, and

k = max
{[

S
µc2

]
,
[

v(D)λ21
(λ−λ1)2c3

]}
. If to solve Bx = b for unit vector b with initial point x0, we use the

iterative procedure described in Definition 21 to compute x = ssvrg iter(x0, η, k,m) then:

E
∥∥x− xopt

∥∥2

B
≤ 22c2 ·

∥∥x0 − xopt
∥∥2

B
+ 10c3λ1(B−1).

Further, the procedure requires O
(

v(D)
gap2

[
1
c22

+ 1
c3

])
samples from D.

1Note that Theorem 4.1 in [FGKS15a] has an additional parameter of α, which bounds the Hessian of f(xopt) in
comparison to the Hessian everywhere else. In our setting this parameter is 1 as 52f(y) = 52f(z) for all y and z.
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Proof. Using the inequality (x+ y)2 ≤ 2x2 + 2y2 we have that√S

µ
· E[f(x0)− f(xopt)] + σ

2

≤ 2S

µ
· E[f(x0)− f(xopt)] + 2σ2

Additionally, since b is a unit vector, we know that
∥∥xopt

∥∥2

2
=
∥∥B−1b

∥∥2

2
≤ 1

(λ−λ1)2
. Using equation

(10), i.e. that
∥∥x− xopt

∥∥2

B
= 2[f(x)− f(xopt)] for all x, we have by Theorem 22:

E
∥∥x− xopt

∥∥2

B
≤ 1

1− c2/2

[(
8c2 +

c2

2
+

4 + c2

2
· c2

)
·
∥∥x0 − xopt

∥∥2

B
+

4 + c2

4k
· v(D)λ2

1

(λ− λ1)3

]
≤ 22c2 ·

∥∥x0 − xopt
∥∥2

B
+

10c3

λ− λ1
= 22c2 ·

∥∥x0 − xopt
∥∥2

B
+ 10c3λ1(B−1).

Since 1/(λ− λ1) = λ1(B−1) we see that E
∥∥x− xopt

∥∥2

B
is as desired. All that remains is to bound

the number of samples we used.
Now the number of samples used to compute x is clearly at most m+ k Now

m =
S

µc2
2

= O

(
λ

c2
2(λ− λ1)

+
v(D)λ2

1

c2
2(λ− λ1)2

)
= O

(
1

c2
2gap

+
v(D)

c2
2gap2

)
.

. However since gap < 1 and v(D) ≥ 1 this simplifies to m = O
(

v
c22gap2

)
. Next to bound k

we can ignore the
[
S
µc2

]
term since this was already included in our bound of m and just bound

v(D)λ21
c3(λ−λ1)2

= O
(

v(D)
gap2c3

)
yielding our desired sample complexity.

Whereas in the offline case, we could ensure that our initial error
∥∥x0 − xopt

∥∥2

B
is small by

simply scaling by the Rayleigh quotient (Corollary 6) in the online case estimating the Rayleigh
quotient to sufficient accuracy would require too many samples. Instead, here simply show how
to simply apply Corollary 23 iteratively to solve the desired linear systems to absolute accuracy
without an initial point. Ultimately, due to the different error dependences in the online case this
guarantee suffices and the lack of an initial point is not a bottleneck.

Corollary 24 (Streaming SVRG Solver). There is a streaming algorithm that iteratively applies
the solver of Corollary 23 to solve Bx = b for unit vector b and returns a vector x that satisfies

E
∥∥x− xopt

∥∥2

B
≤ 10cλ1(B−1) using O

(
v(D)

gap2·c

)
samples from D.

Proof. Let x0 = 0. Then
∥∥x0 − xopt

∥∥2

B
=
∥∥B−1b

∥∥2

B
≤ λ1(B−1) since b is a unit vector. If we apply

Corollary 23 with c2 = 1
44 and c3 = 1

20 , then we will obtain x1 with E
∥∥x1 − xopt

∥∥2

B
≤ 1

2λ1(B−1).

If we then double c3 and apply the solver again we obtain x2 with E
∥∥x1 − xopt

∥∥2

B
≤ 1

4λ1(B−1).

Iterating in this way, after log(1/c) iterations we will have the desired guarantee: E
∥∥x− xopt

∥∥2

B
≤

10cλ1(B−1). Our total sample cost in each iteration is, by Corollary 23, O
(

v(D)
gap2

[
1

442
+ 1

c3

])
. Since

we double c3 each time, the cost corresponding to the 1
c3

terms is dominated by the last iteration
when we have c3 = O(c). So our overall sample cost is just:

O

(
v(D)

gap2

[
1

c
+ log(1/c)

])
= O

(
v(D)

gap2 · c

)
.
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5.3 Online Shifted-and-Inverted Power Method

We now apply the results in Section 5.1 and Section 5.2 to the shifted-and-inverted power method
framework of Section 3 to give our main result in the online setting, an algorithm that quickly
refines a coarse approximation to v1 into a finer approximation.

Theorem 25 (Online Shifted-and-Inverted Power Method – Warm Start). Let B = λI − A>A
for

(
1 + gap

150

)
λ1 ≤ λ ≤

(
1 + gap

100

)
λ1 and let x0 be some vector with G(x0) ≤ 1√

10
. Running the

shifted-and-inverted power method on B initialized with x0, using the streaming SVRG solver of
Corollary 24 to approximately apply B−1 at each step, returns x such that x>Σx ≥ (1− ε)λ1 with

constant probability for any target ε < gap. The algorithm uses O( v(D)
gap·ε) samples and amortized

O(d) time per sample.

We note that by instantiating Theorem 25, with ε′ = ε · gap, and applying Lemma 1 we can

find x such that |v>1 x| ≥ 1− ε with constant probability in time O
(

v(D)
gap2·ε

)
.

Proof. By Lemma 3 it suffices to have G2(x) = O( ε
gap) or equivalently G(x) = O(

√
ε/gap). In

order to succed with constant probability it suffices to have E [G(x)] = O(
√
ε/gap) with constant

probability. Since we start with G(x0) ≤ 1√
10

, we can achieve this using log(gap/ε) iterations of

the approximate shifted-and-inverted power method of Theorem 5. In each iteration i we choose

the error parameter for Theorem 5 to be c1(i) = 1√
10
·
(

1
5

)i
. Consequently,

E [G(xi)] ≤
3

25
G(xi−1) +

4

1000

1√
10
·
(

1

5

)i
and by induction E [G(xi)] ≤ 1

5i
1√
10

. We halt when (1
5)i = O(

√
ε/gap) and hence c1(i) =

O(
√
ε/gap).

In order to apply Theorem 5 we need a subroutine q̂uot (x) that lets us approximate quot(x) to
within an additive error 1

30(λ − λ1) = O(gap · λ1). Theorem 18 gives us such a routine, requiring

O
(

v(D) log log(gap/ε)
gap2

)
= O( v(D)

gap·ε) samples to succeed with probability 1 − O
(

1
log(gap/ε)

)
(since ε <

gap). Union bounding, the estimation succeeds in all rounds with constant probability.

By Corollary 24 with c = Θ(c1(i)2) the cost for solving each linear system solve is O
(

v(D)
gap2c1(i)2

)
.

Since c1(i) multiplies by a constant factor with each iteration the cost over all O(log(gap/dε)
iterations is just a truncated geometric series and is proportional to cost in the last iteration, when

c = Θ
(

ε
gap

)
. So the total cost for solving the linear systems is O

(
v(D)
gap·ε

)
. Adding this to the

number of samples for the Rayleigh quotient estimation yields the result.

6 Parameter Estimation for Offline Eigenvector Computation

In Section 4, in order to invoke Theorems 5 and 8 we assumed knowledge of some λ with (1 + c1 ·
gap)λ1 ≤ λ ≤ (1 + c2 · gap)λ1 for some small constant c1 and c2. Here we show how to estimate
this parameter using Algorithm 1, incurring a modest additional runtime cost.

In this section, for simplicity we initially assume that we have oracle access to compute B−1
λ x

for any given x, and any λ > λ1. We will then show how to achieve the same results when we
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Algorithm 1 Estimating the eigenvalue and the eigengap

Input: A ∈ Rn×d, α
1: w = [w1, w2]← N (0, 1)d×2

2: t← O (α log d)

3:

[
λ̃

(0)
1 , λ̃

(0)
2

]
← eigEstimate

((
ATA

)t
w
)

4: λ
(0) ← (1 + 1

2)λ̃
(0)
1

5: i← 0
6: while λ

(i) − λ̃(i)
1 < 1

10

(
λ

(i) − λ̃(i)
2

)
do

7: i← i+ 1
8: w = [w1, w2]← N (0, 1)d×2

9:

[
λ̂

(i)
1 , λ̂

(i)
2

]
← eigEstimate

((
λ

(i−1)
I−ATA

)−t
w

)
10:

[
λ̃

(i)
1 , λ̃

(i)
2

]
←
[
λ

(i−1) − 1

λ̂
(i)
1

, λ
(i−1) − 1

λ̂
(i)
2

]
11: λ

(i) ← 1
2

(
λ̃

(i)
1 + λ

(i−1)
)

12: end while
Output: λ

can only compute B−1
λ x approximately. We use a result of [MM15] that gives gap free bounds for

computing eigenvalues using the power method. The following is a specialization of Theorem 1
from [MM15]:

Theorem 26. For any ε > 0, any matrix M ∈ Rd×d with eigenvalues λ1, ..., λd, and k ≤ d, let
W ∈ Rd×k be a matrix with entries drawn independently from N (0, 1). Let eigEstimate(Y) be
a function returning for each i, λ̃i = ṽ>i Mṽi where ṽi is the ith largest left singular vector of Y.
Then setting [λ̃1, ..., λ̃k] = eigEstimate

(
MtW

)
, for some fixed constant c and t = cα log d for any

α > 1, with probability 1− 1
d10

, we have for all i:

|λ̃i − λi| ≤
1

α
λk+1

Throughout the proof, we assume α is picked to be some large constant - e.g. α > 100. Theorem
26 implies:

Lemma 27. Conditioning on the event that Theorem 26 holds for all iterates i, then the iterates
of Algorithm 1 satisfy:

0 ≤ λ1 − λ̃(0)
1 ≤ 1

α
λ1 and

1

2

(
1− 3

α

)
λ1 ≤ λ

(0) − λ1 ≤
1

2
λ1, and,

0 ≤ λ1 − λ̃(i)
1 ≤

1

α− 1

(
λ

(i−1) − λ1

)
and

1

2

(
1− 1

α− 1

)(
λ

(i−1) − λ1

)
≤ λ(i) − λ1 ≤

1

2

(
λ

(i−1) − λ1

)
.

Proof. The proof can be decomposed into two parts:
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Part I (Lines 3-4): Theorem 26 tells us that λ̃
(0)
1 ≥

(
1− 1

α

)
λ1. This means that we have

0 ≤ λ1 − λ̃(0)
1 ≤ 1

α
λ1 and

1

2

(
1− 3

α

)
λ1 ≤ λ

(0) − λ1 ≤
1

2
λ1.

Part II (Lines 5-6): Consider now iteration i. We now apply Theorem 26 to the matrix(
λ

(i−1)
I−ATA

)−1
. The top eigenvalue of this matrix is

(
λ

(i−1) − λ1

)−1
. This means that we

have
(
1− 1

α

) (
λ

(i−1) − λ1

)−1
≤ λ̂(i)

1 ≤
(
λ

(i−1) − λ1

)−1
, and hence we have,

0 ≤ λ1 − λ̃(i)
1 ≤

1

α− 1

(
λ

(i−1) − λ1

)
and

1

2

(
1− 1

α− 1

)(
λ

(i−1) − λ1

)
≤ λ(i) − λ1 ≤

1

2

(
λ

(i−1) − λ1

)
.

This proves the lemma.

Lemma 28. Recall we denote λ2
def
= λ2

(
ATA

)
and gap

def
= λ1−λ2

λ1
. Then conditioning on the

event that Theorem 26 holds for all iterates i, the iterates of Algorithm 1 satisfy
∣∣∣λ2 − λ̃(i)

2

∣∣∣ ≤
1

α−1

(
λ

(i−1) − λ2

)
, and λ

(i) − λ̃(i)
2 ≥

gapλ1
4 .

Proof. Since
(
λ

(i−1) − λ2

)−1
is the second eigenvalue of the matrix

(
λ

(i−1)
I−ATA

)−1
, Theorem

26 tells us that (
1− 1

α

)(
λ

(i−1) − λ2

)−1
≤ λ̂(i)

2 ≤
(

1 +
1

α

)(
λ

(i−1) − λ2

)−1
.

This immediately yields the first claim. For the second claim, we notice that

λ
(i) − λ̃(i)

2 = λ
(i) − λ2 + λ2 − λ̃(i)

2

(ζ1)

≥ λ
(i) − λ2 −

1

α− 1

(
λ

(i−1) − λ2

)
= λ

(i) − λ1 −
1

α− 1

(
λ

(i−1) − λ1

)
+

(
1− 1

α− 1

)
(λ1 − λ2)

(ζ2)

≥ 1

2

(
1− 3

α− 1

)(
λ

(i−1) − λ1

)
+

(
1− 1

α− 1

)
(λ1 − λ2) ≥ gapλ1

4
,

where (ζ1) follows from the first claim of this lemma, and (ζ2) follows from Lemma 27.

We now state and prove the main result in this section:

Theorem 29. Suppose α > 100, and after T iterations, Algorithm 1 exits. Then with probability

1−
⌈
log 10

gap

⌉
+1

d10
, we have T ≤

⌈
log 10

gap

⌉
+ 1, and:(

1 +
gap

120

)
λ1 ≤ λ

(T ) ≤
(

1 +
gap

8

)
λ1
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Proof. By union bound, we know with probability 1 −
⌈
log 10

gap

⌉
+1

d10
, Theorem 26 will hold for all

iterates where i ≤
⌈
log 10

gap

⌉
+ 1.

Let i =
⌈
log 10

gap

⌉
, suppose the algorithm has not exited yet after i iterations, then since λ

(i)−λ1

decays geometrically, we have λ
(i)−λ1 ≤ gapλ1

10 . Therefore, Lemmas 27 and 28 imply that λ
(i+1)−

λ̃
(i+1)
1 ≤

(
1
2 + 1

α−1

)(
λ

(i) − λ1

)
≤ gapλ1

15 , and

λ
(i+1) − λ̃(i+1)

2 ≥ λ(i+1) − λ2 −
∣∣∣∣λ2 − λ̃

(i+1)
2

∣∣∣∣ ≥ λ1 − λ2 −
1

α− 1

(
λ

(i) − λ2

)
= gapλ1 −

1

α− 1

(
λ

(i) − λ1 + λ1 − λ2

)
≥ 3

4
gapλ1

This means that the exit condition on Line 6 must be triggered in i+ 1 iteration, proving the first
part of the lemma.

For upper bound, by Lemmas 27, 28 and exit condition we know:

λ
(T ) − λ1 ≤ λ

(T ) − λ̃(T )
1 ≤ 1

10
(λ

(T ) − λ̃(T )
2 ) ≤ 1

10

(
λ

(T ) − λ2 +
∣∣∣λ2 − λ̃(T )

2

∣∣∣)
≤ 1

10

(
λ

(T ) − λ2 +
1

α− 1
(λ

(T−1) − λ2)

)
=

1

10

(
α

α− 1
gapλ1 + (λ

(T ) − λ1) +
1

α− 1

(
λ

(T−1) − λ1

))
≤ 1

10

(
α

α− 1
gapλ1 +

α

α− 2

(
λ

(T ) − λ1

))
Since α > 100, this directly implies λ

(T ) − λ1 ≤ gap
8 λ1.

For lower bound, since as long as the Algorithm 1 does not exists, by Lemmas 28, we have

λ
(T−1) − λ̃(T−1)

1 ≥ 1
10

(
λ

(T−1) − λ̃(T−1)
2

)
≥ gapλ1

40 , and thus:

λ
(T−1) − λ1 = λ

(T−1) − λ̃(T−1)
1 − (λ1 − λ̃(T−1)

1 ) ≥ gapλ1

40
− 1

α− 1

(
λ

(T−1) − λ1

)
≥ gapλ1

40
− 2

α− 2

(
λ

(T ) − λ1

)
≥ gapλ1

50

By Lemma 27, we know λ
(T ) − λ1 ≥ 1

2(1− 1
α−1(λ

(T−1) − λ1)) > gap
120λ1

Note that, although we proved the upper bound and lower bound in Theorem 29 with specific
constants coefficient 1

8 and 1
120 , this analysis can easily be extended to any smaller constants by

modifying the constant in the exit condition, and choosing α larger. Also in the failure probability

1−

⌈
log 10

gap

⌉
+ 1

d10
,

the term d10 can be replaced by any poly(d) by adjusting the constant in setting t ← O(α log d)
in Algorithm 1. Assuming log 1

gap < poly(d), thus gives that Theorem 29 returns a correct result
with high probability.
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Finally, we can also bound the runtime of algorithm 1, when we use SVRG based approximate
linear system solvers for Bλ.

Theorem 30. With probability 1−O( 1
d10

log 1
gap), Algorithm 1 runs in time

O

([
nnz(A) +

d sr(A)

gap2

]
· log3

(
d

gap

))
.

Proof. By Theorem 29, we know only O(log 1/gap) iterations of the algorithm are needed. In

each iteration, the runtime is dominated by running eigEstimate

((
λ

(i−1)
I−ATA

)−t
w

)
, which

is dominated by computing
(
λ

(i−1)
I−ATA

)−t
w. Since t = O(log d), it’s easy to verify that:

to make Theorem 26 hold, we only need to approximate
(
λ

(i−1)
I−ATA

)−1
w up to accuracy

poly(gap/d). By Theorem 12, we know this approximation can be calculated in time

O

([
nnz(A) +

d sr(A)λ2
1

(λ
(i−1) − λ1)2

]
· log

(
d

gap

))

. Combining Theorem 29 with Lemma 27, we know λ
(i−1)−λ1 ≥ λ

(T )−λ1 ≥ gap
120 , thus approximately

solving
(
λ

(i−1)
I−ATA

)−1
w can be done in time Õ

(
nnz(A) + d sr(A)

gap2

)
. Finally, since the runtime

of Algorithm 1 is dominated by repeating this subroutine t × T = O(log d · log(1/gap)) times, we
finish the proof.

Note that we can accelerate the runtime of Algorithm 1 to Õ
(

nnz(A)3/4(d sr(A))1/4√
gap

)
, by simply

replacing the base solver for
(
λ

(i−1)
I−ATA

)−1
w with the accelerated solver in Theorem 15.

7 Lower Bounds

Here we show that our online eigenvector estimation algorithm (Theorem 25) is asymptotically
optimal - as sample size grows large it achieves optimal accuracy as a function of sample size. We
rely on the following lower bound for eigenvector estimation in the Gaussian spike model:

Lemma 31 (Lower bound for Gaussian Spike Model [BJNP13]). Suppose data is generated as

ai =
√
λιiv

? + Zi (16)

where ιi ∼ N (0, 1), and Zi ∼ N (0, Id). Let v̂ be some estimator of the top eigenvector v?. Then,
there is some universal constant c0, so that for n sufficiently large, we have:

inf
v̂

max
v?∈Sd−1

E ‖v̂ − v?‖2 ≥ c0
(1 + λ)d

λ2n
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Theorem 32. Consider the problem of estimating the top eigenvector v1 of Ea∼Daa>, where we
observe n i.i.d samples from unknown distribution D. If gap < 0.9, then there exists some uni-
versal constant c, such that for any estimator v̂ of top eigenvector, there always exists some hard
distribution D so that for n sufficiently large:

E ‖v̂ − v1‖22 ≥ c
v(D)

gap2n

Proof. Suppose the claim of theorem is not true, then there exist some estimator v̂ so that

E ‖v̂ − v1‖22 < c′
v(D)

gap2n

holds for all distribution D, and for any fixed constant c′ when n is sufficiently large.
Let distribution D be the Gaussian Spike Model specified by Eq.(16), then by calculation, it’s

not hard to verify that:

v(D) =

∥∥∥Ea∼D [(aa>)2]∥∥∥
2

‖Ea∼D(aa>)‖22
=
d+ 2 + 3λ

1 + λ

Since we know gap = λ
1+λ < 0.9, this implies λ < 9, which gives v(D) < d+29

1+λ < 30d
1+λ . Therefore,

we have that:

E ‖v̂ − v?‖22 < c′
v(D)

gap2n
< 30c′

(1 + λ)d

λ2n

holds for all v? ∈ Sd−1. Choose c′ = c0
30 in Lemma 31 we have a contradiction.

‖v̂ − v1‖22 = 2−2v̂>v1, so this bound implies that- to obtain |v̂>v1| ≥ 1−ε, we need v(D)
gap2n

= O(ε)

so n = Θ
(

v(D)
gap2ε

)
. This exactly matches the sample complexity given by Theorem 25.

8 Gap-Free Bounds

In this section we demonstrate that our techniques can easily be extended to obtain gap-free
runtime bounds, for the regime when ε ≥ gap. In many ways these bounds are actually much easier
to achieve than the gap dependent bounds since they require less careful error analysis.

Let ε be our error parameter and m be the number of eigenvalues of Σ that are ≥ (1− ε/2)λ1.
Choose λ = λ1 + ε/100. We have λ1(B−1) = 100

ελ1
. For i > m we have λi(B

−1) < 2
ελ1

. κ(B−1) ≤ 100
ε .

Let Vb have columns equal to all bottom eigenvectors with eigenvalues λi < (1− ε/2)λ1. Let Vt

have columns equal to the m remaining top eigenvectors. We define a simple modified potential:

Ḡ(x)
def
=
‖PVb

x‖B
‖Pv1x‖B

=

√∑
i>m

α2
i

λi(B−1)√
α2
1

λ1(B−1)

We have the following Lemma connecting this potential function to eigenvalue error:

Lemma 33. For unit x, if Ḡ(x) ≤ c
√
ε for sufficiently small constant c then λ1 − x>Σx ≤ ελ1.
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Proof.

Ḡ(x) ≥
‖PVb

x‖2
‖Pv1x‖2

≥
‖PVb

x‖2
‖PVtx‖2

So if Ḡ(x) ≤ c
√
ε then ‖PVtx‖

2
2 c

2ε ≥ ‖PVb
x‖22 and since ‖PVtx‖

2
2 + ‖PVb

x‖22 = 1, this gives

‖PVtx‖
2
2 ≥

1
1+c2ε

. So we have xTΣx ≥ PVtx
TΣxPVt ≥

(1−ε/2)λ1
1+c2ε

≥ 1−ε for small enough c, giving
the lemma.

We now follow the proof of Lemma 8, which is actually much simpler in the gap-free case.

Theorem 34 (Approximate Shifted-and-Inverted Power Method – Gap-Free). Suppose we ran-
domly initialize x0 as in Lemma 7 and suppose we have access to a subroutine solve (·) such that

E
[∥∥solve (x)−B−1x

∥∥
B

]
≤ ε3

3000d21

√
λd(B−1)

Then the following procedure,

xt = solve (xt−1) / ‖solve (xt−1)‖

after T = O (log d/ε) iterations satisfies:

Ḡ(xT ) ≤ c
√
ε,

with probability greater than 1−O( 1
d10

).

Proof. By Lemma 7, we know with at least probability 1 − O( 1
d10

), we have Ḡ(x0) ≤ G(x0) ≤√
κ(B−1)d10.5 = 100d10.5

ε . We want to show by induction that at iteration i we have Ḡ(xi) ≤
1
2i
· 100d10.5

ε , which will give us the lemma if we set T = log2

(
100d10.5

cε1.5

)
= O(log(d/ε)).

Let x̂ = solve (x) and ξ = x̂−B−1x. Following Lemma 8 we have:

‖PVb
(x̂)‖B ≤

∥∥PVb

(
B−1x

)∥∥
B

+ ‖PVb
(ξ)‖B ≤

∥∥PVb

(
B−1x

)∥∥
B

+ ‖ξ‖B

=

√∑
i>m

α2
iλi(B

−1) + ‖ξ‖B

≤ λm+1(B−1)

√√√√∑
i>m

α2
i

λi(B−1)
+

ε3

3000d21
√
λm+1(B−1)


≤ 2λm+1(B−1) max


√√√√∑

i>m

α2
i

λi(B−1)
,

ε3

3000d21
√
λm+1(B−1)


and

‖Pv1 (x̂)‖B ≥
∥∥Pv1

(
B−1x

)∥∥
B
− ‖Pv1 (ξ)‖B ≥

∥∥Pv1

(
B−1x

)∥∥
B
− ‖ξ‖B

=
√
α2

1λ1(B−1)− ‖ξ‖B

≥ λ1(B−1)

√√√√α2
1 − ε6

(3000d21)2

λ1(B−1)
.
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Initially, we have with high probability, by the argument in Lemma 7, α1 ≥ 1
d10

so we have

‖Pv1 (x̂)‖B ≥
λ1(B−1)

2

√
α2
1

λ1(B−1)
. This also holds by induction in each iteration.

Let α̂1 = |v>1 x̂|/ ‖x̂‖2. ‖Pv1 (x̂)‖2B =
α̂2
1‖x̂‖

2
2

λ1(B−1)
so we have

α̂2
1 ≥

λ1(B−1)2

‖x̂‖22

(
α2

1 −
ε6

(3000d21)2

)
and since ‖x̂‖22 ≤ 2

(∥∥B−1x
∥∥2

2
+ 2 ‖ξ‖22

)
≤ λ1(B−1)2 + 2 ε6

(3000d21)2
≤ λ1(B−1)2

(
2 + 2 ε6

(3000d21)2

)
we

have:

α̂2
1 ≥

1

2.1

(
α2

1 −
ε6

(3000d21)2

)
≥ 1

3
α2

1.

So over all log2

(
100d10.5

cε1.5

)
iterations, we always have α̂2

1 ≥ 1
d10
·
(

cε1.5

100d10.5

)log2 3
and so ε6

(3000d21)2
<<

1/2α2
1. Combining the above bounds:

Ḡ(x̂) ≤
2λm+1

(
B−1

)
λ1 (B−1) /2

·
max

{√∑
i>m

α2
i

λi(B−1)
, ε3

3000d21
√
λm+1(B−1)

}
√

α2
1

λ1(B−1)

≤ 4

50
max

{
Ḡ(x), O(

√
ε)
}
.

This is enough to give the Theorem.

Finally, we combine Theorem 34 with the SVRG based solvers of Theorem 12 and 15 to obtain:

Theorem 35 (Gap-Free Shifted-and-Inverted Power Method With SVRG). Let B = λI −A>A
for λ =

(
1 + ε

100

)
and let x0 ∼ N (0, I) be a random initial vector. Running the inverted power

method on B initialized with x0, using the SVRG solver from Theorem 12 to approximately apply
B−1 at each step, returns x such that with probability 1−O

(
1
d10

)
, x>Σx ≥ (1− ε)λ1 in time

O

((
nnz(A) +

d sr(A)

ε2

)
· log2

(
d

ε

))
.

Theorem 36 (Accelerated Gap-Free Shifted-and-Inverted Power Method With SVRG). Let B =
λI−A>A for λ =

(
1 + ε

100

)
and let x0 ∼ N (0, I) be a random initial vector. Running the inverted

power method on B initialized with x0, using the SVRG solver from Theorem 15 to approximately
apply B−1 at each step, returns x such that with probability 1−O

(
1
d10

)
, x>Σx ≥ (1− ε)λ1 in total

time

O

(
nnz(A)3/4(d sr(A))1/4

√
ε

· log3

(
d

ε

))
.
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A Appendix

Lemma 37 (Eigenvector Estimation via Spectral Norm Matrix Approximation). Let A>A have
top eigenvector 1, top eigenvector v1 and eigenvalue gap gap. Let B>B be some matrix with∥∥A>A−B>B

∥∥
2
≤ O(

√
ε · gap). Let x be the top eigenvector of B>B. Then:

|x>v1| ≥ 1− ε .

Proof. We can any unit vector y as y = c1v1 + c2v2 where v2 is the component of x orthogonal to
v1 and c2

1 + c2
2 = 1. We know that

v>1 B>Bv1 = v>1 A>Av1 − vT1 (A>A−B>B)v1

1−
√
εgap ≤ v>1 B>Bv1 ≤ 1 +

√
εgap

Similarly we can compute:

v>2 B>Bv2 = v>2 A>Av2 − vT2 (A>A−B>B)v2

1− gap−
√
εgap ≤ v>2 B>Bv2 ≤ 1− gap +

√
εgap.

and

|v>1 B>Bv2| = |v>1 A>Av2 − vT1 (A>A−B>B)v2|
≤
√
εgap.

We have x>BB>x = c2
1(v>1 B>Bv1) + c2

2(v>2 B>Bv2) + 2c1c2 · v>2 B>Bv1.
We want to bound c1 ≥ 1− ε so c2

1 ≥ 1−O(ε). Since x is the top eigenvector of BB> we have:

x>BB>x ≥ v>1 BB>v1

c2
2(v>2 B>Bv2) + 2c2v

>
2 B>Bv1 ≥ (1− c2

1)v>1 BB>v1

2
√

1− c2
1

√
εgap ≥ (1− c2

1)
(
v>1 BB>v1 − v>2 BB>v2

)
1√

1− c2
1

≥ (1− 2
√
ε)gap

2
√
εgap

1

1− c2
1

≥ 1− 5
√
ε

4ε

This means we need have 1− c2
1 ≤ O(ε) meaning c2

1 ≥ 1−O(ε) as desired.
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Lemma 38 (Inverted Power Method progress in `2 and B norms). Let x be a unit vector with
〈x, v1〉 6= 0 and let x̃ = B−1w, i.e. the power method update of B−1 on x. Then, we have both:∥∥∥Pv⊥1

x̃
∥∥∥

B

‖Pv1 x̃‖B
≤ λ2(B−1)

λ1(B−1)
·

∥∥∥Pv⊥1
x
∥∥∥

B

‖Pv1x‖B
(17)

and ∥∥∥Pv⊥1
x̃
∥∥∥

2

‖Pv1 x̃‖2
≤ λ2(B−1)

λ1(B−1)
·

∥∥∥Pv⊥1
x
∥∥∥

2

‖Pv1x‖2
(18)

Proof. (17) was already shown in Lemma 4. We show (18) similarly.
Writing x in the eigenbasis of B−1, we have x =

∑
i αivi and x̃ =

∑
i αiλi

(
B−1

)
vi. Since

〈x, v1〉 6= 0, α1 6= 0 and we have:∥∥∥Pv⊥1
x̃
∥∥∥

2

‖Pv1 x̃‖2
=

√∑
i≥2 α

2
iλ

2
i (B

−1)√
α2

1λ
2
1(B−1)

≤
λ2

(
B−1

)
λ1 (B−1)

·

√∑
i≥2 α

2
i√

α2
1

=
λ2

(
B−1

)
λ1 (B−1)

·

∥∥∥Pv⊥1
x
∥∥∥

2

‖Pv1x‖2
.
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