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Abstract

Theoretically elegant and ubiquitous in practice, the Lanczos method can approximate
f(A)x for any symmetric matrix A ∈ R

n×n, vector x ∈ R
n, and function f . In exact arithmetic,

the method’s error after k iterations is bounded by the error of the best degree-k polynomial
uniformly approximating the scalar function f(x) on the range [λmin(A), λmax(A)]. However,
despite decades of work, it has been unclear if this powerful guarantee holds in finite precision.

We resolve this problem, proving that when maxx∈[λmin,λmax] |f(x)| ≤ C, Lanczos essentially
matches the exact arithmetic guarantee if computations use roughly log(nC‖A‖) bits of preci-
sion. Our proof extends work of Druskin and Knizhnerman [DK91], leveraging the stability of
the classic Chebyshev recurrence to bound the stability of any polynomial approximating f(x).

We also study the special case of f(A) = A−1 for positive definite A, where stronger guaran-
tees hold for Lanczos. In exact arithmetic the algorithm performs as well as the best polynomial
approximating 1/x at each of A’s eigenvalues, rather than on the full range [λmin(A), λmax(A)].
In seminal work, Greenbaum gives a natural approach to extending this bound to finite preci-
sion: she proves that finite precision Lanczos and the related conjugate gradient method match
any polynomial approximating 1/x in a tiny range around each eigenvalue [Gre89].

ForA−1, Greenbaum’s bound appears stronger than our result. However, we exhibit matrices
with condition number κ where exact arithmetic Lanczos converges in polylog(κ) iterations, but
Greenbaum’s bound predicts at best Ω(κ1/5) iterations in finite precision. It thus cannot offer
more than a polynomial improvement over the O(κ1/2) bound achievable via our result for
general f(A). Our analysis bounds the power of stable approximating polynomials and raises
the question of if they fully characterize the behavior of finite precision Lanczos in solving linear
systems. If they do, convergence in less than poly(κ) iterations cannot be expected, even for
matrices with clustered, skewed, or otherwise favorable eigenvalue distributions.

http://arxiv.org/abs/1708.07788v1


1 Introduction

The Lanczos method for iteratively tridiagonalizing a Hermitian matrix is one of the most impor-
tant algorithms in numerical computation. Introduced for computing eigenvectors and eigenvalues
[Lan50], it remains the standard algorithm for doing so over half a century later [Saa11]. It also
underlies state-of-the-art iterative solvers for linear systems [HS52, Saa03].

More generally, the Lanczos method can be used to iteratively approximate any function of a
matrix’s eigenvalues. Specifically, given f : R 7→ R, symmetric A ∈ R

n×n with eigendecomposition
VΛVT , and vector x ∈ R

n, it approximates f(A)x, where:

f(A)
def
= Vf(Λ)VT .

f(Λ) is the result of applying f to each diagonal entry of Λ, i.e., to the eigenvalues of A. In the
special case of linear systems, f(x) = 1/x and f(A) = A−1. Other important matrix functions
include the matrix log, the matrix exponential, the matrix sign function, and the matrix square root
[Hig08]. These functions are broadly applicable in scientific computing, and are increasingly used
in theoretical computer science [AK07, OSV12, SV14] and machine learning [HMS15, FMMS16,
US16, AZL17, TPGV16]. In theses areas, there is interest in obtaining worst-case, end-to-end
runtime bounds for approximating f(A)x up to a given precision.

The main idea behind the Lanczos method is to iteratively compute an orthonormal basis Q for
the rank-k Krylov subspace Kk = [x,Ax,A2x, . . . ,Ak−1x]. The method then approximates f(A)x
with a vector in Kk – i.e. with p(A)x for some polynomial p with degree < k.

Specifically, along with Q, the algorithm computes T = QTAQ and approximates f(A)x with
y = ‖x‖ ·Qf(T)e1.

1 Importantly, y can be computed efficiently: iteratively constructing Q and
T requires just k− 1 matrix-vector multiplications with A. Furthermore, due to a special iterative
construction, T is tridiagonal. It is thus possible to accurately compute its eigendecomposition,
and hence apply arbitrary functions f(T), including T−1, in Õ(k2) time.

Note that y ∈ Kk and so can be written as p(A)x for some polynomial p. While this is not
necessarily the polynomial minimizing ‖p(A)x − f(A)x‖, y still satisfies:

‖f(A)x− y‖ ≤ 2‖x‖ · min
polynomial p

with degree < k

(
max

x∈[λmin(A),λmax(A)]
|f(x)− p(x)|

)
. (1)

where λmax(A) and λmin(A) are the largest and smallest eigenvalues of A respectively. That is, up
to a factor of 2, the error of Lanczos in approximating f(A)x is bounded by the uniform error of the
best polynomial approximation to f with degree < k. Thus, to bound the performance of Lanczos
after k iterations, it suffices to prove the existence of any degree-k polynomial approximating the
scalar function f , even if the explicit polynomial is not known.

2 Our contributions

Unfortunately, as has been understood since its introduction, the performance of the Lanczos
algorithm in exact arithmetic does not predict its behavior when implemented in finite precision.

1Here e1 is the first standard basis vector. There are a number of variations on the Lanczos method, especially
for the case of solving linear systems, however we consider just this simple, general version.
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Specifically, it is well known that the basis Q loses orthogonality. This leads to slower convergence
when computing eigenvectors and values, and a wide range of reorthogonalization techniques have
been developed to remedy the issue (see e.g. [PS79, Sim84] or [Par98, MS06] for surveys).

However, in the case of matrix function approximation, these remedies appear unnecessary.
Vanilla Lanczos continues to perform well in practice, despite loss of orthogonality. In fact, it even
converges when Q has numerical rank ≪ k and thus cannot span Kk. Understanding when and
why the Lanczos algorithm runs efficiently in the face of numerical breakdown has been the subject
of intensive research for decades – we refer the reader to [MS06] for a survey. Nevertheless, despite
experimental and theoretical evidence, no iteration bounds comparable to the exact arithmetic
guarantees were known for general matrix function approximation in finite precision.

2.1 General function approximation in finite precision

Our main positive result closes this gap for general functions by showing that a bound nearly
matching (1) holds even when Lanczos is implemented in finite precision. In Section 6 we show:

Theorem 1 (Function Approximation via Lanczos in Finite Arithmetic). Given real symmetric
A ∈ R

n×n, x ∈ R
n, η ≤ ‖A‖, ǫ ≤ 1, and any function f with |f(x)| < C for x ∈ [λmin(A) −

η, λmax(A) + η], let B = log
(
nk‖A‖

ǫη

)
. The Lanczos algorithm run on a floating point computer

with Ω(B) bits of precision for k iterations returns y satisfying:

‖f(A)x− y‖ ≤ (7k · δk + ǫC)‖x‖ (2)

where

δk
def
= min

polynomial p
with degree < k

(
max

x∈[λmin(A)−η,λmax(A)+η]
|p(x)− f(x)|

)
.

If basic arithmetic operations on floating point numbers with Ω(B) bits of precision have runtime
cost O(1), the algorithm’s runtime is O(mv(A)k + k2B + kB2), where mv(A) is the time required
to multiply the matrix A with a vector.

The bound of (2) matches (1) up to an O(k) factor along with a small ǫC additive error term,
which decreases exponentially in the bits of precision available. For typical functions, the degree of
the best uniform approximating polynomial depends logarithmically on the desired accuracy. So the
O(k) factor equates to just a logarithmic increase in the degree of the approximating polynomial,
and hence the number of iterations required for a given accuracy. The theorem requires a uniform
approximation bound on the slightly extended range [λmin(A)−η, λmax(A)+η], however in typical
cases this has essentially no effect on the bounds obtainable.

In Section 8 we give several example applications of Theorem 1 that illustrate these principles.
We show how to stably approximate the matrix sign function, the matrix exponential, and the top
singular value of a matrix. Our runtimes all either improve upon or match state-of-the-art runtimes,
while holding rigorously under finite precision computation. They demonstrate the broad usefulness
of the Lanczos method and our approximation guarantees for matrix functions.
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Techniques and comparison to prior work

We begin with the groundbreaking work of Paige [Pai71, Pai76, Pai80], which gives a number of
results on the behavior of the Lanczos tridiagonalization process in finite arithmetic. Using Paige’s
bounds, we demonstrate that if f(x) is a degree < k Chebyshev polynomial of the first kind, Lanczos
can apply it very accurately. This proof, which is the technical core of our error bound, leverages the
well-understood stability of the recursive formula for computing Chebyshev polynomials [Cle55],
even though this formula is not explicitly used when applying Chebyshev polynomials via Lanczos.

To extend this result to general functions, we first show that Lanczos will effectively apply the
‘low degree polynomial part’ of f(A), incurring error depending on the residual δk (see Lemma
11). So we just need to show that this polynomial component can be applied stably. To do so,
we appeal to our proof for the special case of Chebyshev polynomials via the following argument,
which appears formally in the proof of Lemma 9: If |f(x)| ≤ C on [λmin(A), λmax(A)], then the
optimal degree k polynomial approximating f(x) on this range is bounded by 2C in absolute value
since it must have uniform error < C, the error given by setting p(x) = 0. Since its magnitude is
bounded, this polynomial has coefficients bounded by O(C) when written in the Chebyshev basis.
Accordingly, by linearity, Lanczos only incurs error O(C) times greater than what is obtained when
applying Chebyshev polynomials. This yields the additive error bound ǫC in Theorem 1, proving
that, for any bounded function, Lanczos can apply the optimal approximating polynomial accurately.

Ultimately, our proof can be seen as a more careful application of the techniques of Druskin and
Knizhnerman [DK91, DK95]. They also use the stability of Chebyshev polynomials to understand
stability for more general functions, but give an error bound which depends on a coarse upper
bound for δk. Additionally, their work ignores stability issues that can arise when computing the
final output y = ‖x‖·Qf(T)e1. We provide a complete analysis by showing that y can be computed
stably whenever f(x) is well approximated by a low degree polynomial, and hence give the first
end-to-end runtime bound for Lanczos in finite arithmetic.

Our work is also similar to that of Orecchia, Sachdeva, and Vishnoi, who give accuracy bounds
for a slower variant of Lanczos with re-orthogonalization that requires ∼ O(mv(A)k + k3) time, in
contrast to the ∼ O(mv(A)k + k2) time required for our Theorem 1 [OSV12]. Furthermore, their
results require a bound on the coefficients of the polynomial p(x). Many optimal approximating
polynomials, like the Chebyshev polynomials, have coefficients which are exponential in their degree.
Accordingly, [OSV12] requires that the number of bits used to match such polynomials with Lanczos
grows polynomially (rather than logarithmically) with the approximating degree. In fact, as shown
in [FMMS16], any degree k polynomial with coefficients bounded by C can be well approximated by
a polynomial with degree O(

√
k log(kC)). So [OSV12] only gives good bounds for polynomials that

are inherently suboptimal. Additionally, like Druskin and Knizhnerman, [OSV12] only addresses
roundoff errors that arise during matrix vector multiplication with A, assuming stability for other
components of their algorithm.

2.2 Linear systems in finite precision

Theorem 1 shows that for general functions, the Lanczos method performs nearly as accurately in
finite precision as in exact arithmetic: after k iterations, it still nearly matches the accuracy of the
best degree < k uniform polynomial approximation to f(x) over A’s eigenvalue range.

However, in the important special case of solving positive definite linear systems, i.e., when A

has all positive eigenvalues and f(A) = A−1, it is well known that (1) can be strengthened in exact
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arithmetic. Lanczos performs as well as the best polynomial approximating f(x) = 1/x at each of
A’s eigenvalues rather than over the full range [λmin(A), λmax(A)]. Specifically,2

‖A−1x− yk‖ ≤
√

κ(A) · ‖x‖ · min
polynomial p

with degree < k

max
x∈{λ1(A),λ2(A),...,λn(A)}

|p(x)− 1/x| (3)

where κ(A) = ‖A‖‖A−1‖ is A’s condition number. (3) is proven in Appendix B. It can be much
stronger than (1), and correspondingly Theorem 1. Specifically, the best bound obtainable from
(1) is that after Õ(

√
κ(A)) iterations, y ≈ ‖A−1x‖. In contrast, (3) shows that even when κ(A)

is very large, n iterations are enough to compute A−1x exactly: p(x) can be set to the polynomial
which exactly interpolates 1/x at each of A’s eigenvalues. (3) also gives improved bounds for
matrices with clustered, skewed, or otherwise favorable eigenvalue distributions [AL86, DH07]. For
example, assuming exact arithmetic, it can be used to analyze preconditioners for graph Laplacians,
which induce heavily skewed eigenvalue distributions [SW09, DPSX17]. It can also be applied to
algorithms for solving asymmetric Laplacian systems corresponding to directed graphs [CKP+16].

Understanding whether (3) carries over to finite precision is an important open question, which
has actually received more attention than the general matrix function problem. In seminal work,
Greenbaum [Gre89] gives a natural finite precision extension of (3): performance can be bounded
by the error in approximating 1/x in a tiny range around each eigenvalue. Here “tiny” means
essentially on the order of machine precision – the approximation need only be over ranges of width
η as long as the bits of precision used is & log(1/η).

Greenbaum’s bound applies to the conjugate gradient (CG) method, a somewhat optimized
way of applying Lanczos to linear systems. A precise version of Theorem 3 in [Gre89] can be
summarized as follows (see Appendix B for a detailed discussion):

Theorem 2 (Conjugate Gradient in Finite Arithmetic [Gre89]). Given positive definite A ∈
R
n×n and x ∈ R

n, after k iterations, the conjugate gradient algorithm run on a computer with

Ω
(
log nk‖A‖

min(η,λmin(A))

)
bits of precision returns y satisfying:

‖A−1x− y‖ ≤ 2κ(A) · δ̄k‖x‖

where

δ̄k
def
= min

polynomial p
with degree < k

(
max

x∈
⋃n

i=1
[λi(A)−η,λi(A)+η]

|p(x)− 1/x|
)
.

The CG algorithm run for k iterations requires O(mv(A)k + nk) time, where mv(A) is the time
required to multiply A by a vector.

Theorem 2 does not apply to general matrix functions but, at least for the special case of
f(A) = A−1, it is stronger than our Theorem 1. It is natural to ask by how much.

Lower bound

Surprisingly, we show that Greenbaum’s bound is much weaker than the exact arithmetic guarantee
(3), and in fact is not significantly more powerful than Theorem 1. Specifically, in Section 7 we

2Note that slightly stronger bounds where p depends on x are available. We work with (3) for simplicity since it
only depends on A’s eigenvalues.
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prove that for any κ and interval width η, there is a natural class of matrices with condition number
κ and just O(log κ·log 1/η) eigenvalues for which any ‘stable approximating polynomial’ of the form
required by Theorem 2 achieving δ̄k ≤ 1/6 must have degree Ω(κc) for a fixed constant c ≥ 1/5.

Theorem 3 (Stable Approximating Polynomial Lower Bound). There exists a fixed constant 1/5 ≤
c ≤ 1/2 such that for any κ ≥ 2, 0 < η ≤ 1

20κ2 , and n ≥ ⌊log2 κ⌋ · ⌈ln 1/η⌉, there is a positive
definite A ∈ R

n×n with condition number ≤ κ, such that for any k < ⌊κc/377⌋:

δ̄k
def
= min

polynomial p
with degree < k

(
max

x∈
⋃n

i=1
[λi(A)−η,λi(A)+η]

|p(x)− 1/x|
)
≥ 1/6.

Theorem 3 immediately gives a strong lower bound against Greenbaum’s result, even if we only
require constant factor error. Setting log(1/η) = n/ log(κ) we have:

Corollary 4. There exists a fixed c ≥ 1/5 such that for any κ ≥ 2, there is a positive definite
A ∈ R

n×n with condition number ≤ κ such that Theorem 2 predicts that CG must run for Ω(κc)

iterations to guarantee ‖A−1x− y‖ ≤ κ·‖x‖
3 if o(n/ log κ) bits of precision are used.

As a consequence, if we set κ = nd for arbitrarily large constant d, Theorem 2 only guarantees
a Ω(ncd) iteration bound, even when the precision used is nearly exponential in n. Since O(κ1/2) =
O(nd/2) is already achievable via Theorem 1 with O(log n) bits of precision, Greenbaum’s bound
is not a significant improvement, except in very high precision regimes. While our constant c is
< 1/2, we believe the proof can be tightened to show that ∼ κ1/2 degree is necessary.

Corollary 4 can also be interpreted as showing the existence of matrices with O(log2 κ) eigenval-
ues for which Theorem 2 requires Ω(κc) iterations for convergence if O(log κ) bits of precision are
used. This is nearly exponentially worse than the exact arithmetic case, where (3) gives convergence
to perfect accuracy in O(log2 κ) iterations.

Theorem 3 seems damning for establishing iteration bounds on the Lanczos and CG meth-
ods in finite precision that go significantly beyond uniform approximation of 1/x. Informally, all
known bounds improving on O(

√
κ) iterations, including those for clustered or skewed eigenvalue

distributions, require a polynomial that stably approximates 1/x on some small subset of poorly
conditioned eigenvalues. We rule out the existence of such polynomials.

However, Theorem 3 is not a general lower bound on the performance of finite precision Lanczos
methods for solving linear systems. It is possible that these methods do something “smarter” than
applying a fixed stable polynomial. Thus, we see our result as pointing to two possibilities:

Optimistic: Bounds comparable (3) can be proven for finite precision Lanczos or conjugate
gradient, but are out of the reach of current techniques. Proving such bounds may require
looking beyond a “polynomial” view of these methods.

Pessimistic: For finite precision Lanczos methods to converge in k iterations, there must
essentially exist a stable degree k polynomial approximating 1/x in small ranges around
A’s eigenvalues. If this is the case, our lower bound could be extended to an unconditional
lower bound on the number of iterations required for solving A−1x with such methods.

3 Notation and linear algebra preliminaries

Notation We use bold uppercase letters for matrices and lowercase letters for vectors (i.e.
matrices with multiple rows, 1 column). A lowercase letter with a subscript is used to denote a
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particular column vector in the corresponding matrix. E.g. q5 denotes the 5
th column in the matrix

Q. Non-bold letters denote scalar quantities. A superscript T denotes the transpose of a matrix
or vector. ei denotes the ith standard basis vector, i.e. a vector with a 1 at position i and 0’s
elsewhere. Its length will be clear from context. We use Ik×k to denote the k × k identity matrix,
removing the subscript when it is clear from context. When discussing runtimes, we occasionally
use Õ(x) as shorthand for O(x logc x), where c is a fixed positive constant.

Matrix Functions The main subject of this work is matrix functions and their approximation by
matrix polynomials. We define matrix functions in the standard way, via the eigendecomposition:

Definition 1 (Matrix Function). For any function f : R→ R, for any real symmetric matrix M,
which can be diagonalized as M = VΛVT , we define the matrix function f(M) as:

f(M)
def
= Vf(Λ)VT ,

where f(Λ) is a diagonal matrix obtained by applying f independently to each eigenvalue on the
diagonal of Λ (including any 0 eigenvalues).

Other For a vector x, ‖x‖ denotes the Euclidean norm. For a matrix M, ‖M‖ denotes the
spectral norm and κ(M) = ‖M‖‖M−1‖ the condition number. We denote the eigenvalues of a

symmetric matrix M ∈ R
n×n by λ1(M) ≥ λ2(M) ≥ . . . ≥ λn(M), often writing λmax(M)

def
= λ1(M)

and λmin(M)
def
= λn(M). nnz(M) denotes the number of non-zero entries in M.

4 The Lanczos method in exact arithmetic

We begin by presenting the classic Lanczos method and demonstrate how it can be used to approxi-
mate f(A)x for any function f and vector x when computations are performed in exact arithmetic.
While the results in this section are well known, we include an analysis that will mirror and inform
our eventual finite precision analysis.

We study the standard implementation of Lanczos described in Algorithm 1. In exact arith-
metic, the algorithm computes an orthonormal matrix Q with q1 = x/‖x‖ as its first column such
that for all j ≤ k, [q1,q2, . . . ,qj ] spans the rank-j Krylov subspace:

Kj = [x,Ax,A2x, . . . ,Aj−1x]. (4)

The algorithm also computes symmetric tridiagonal T ∈ R
k×k such that T = QTAQ.3

While the Krylov subspace interpretation of the Lanczos method is useful in understanding the
function approximation guarantees that we will eventually prove, there is a more succinct way of
characterizing the algorithm’s output that doesn’t use the notion of Krylov subspaces. It has been
quite useful in analyzing the algorithm since the work of Paige [Pai71], and will be especially useful
when we study the algorithm’s behavior in finite arithmetic.

3 For conciseness, we ignore the case when the algorithm terminates early because βi+1 = 0. In this case, either A
has rank i or x only has a non-zero projection onto i eigenvectors of A. Accordingly, for any j ≥ 1 Kj is spanned by
Ki so there is no need to compute additional vectors beyond qi: any polynomial p(A)x can be formed by recombining
vectors in [q1,q2, . . . ,qi]. It is tedious but not hard to check that our proofs go through in this case.
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Algorithm 1 Lanczos Method for Computing Matrix Functions

input: symmetric A ∈ R
n×n, # of iterations k, vector x ∈ R

n, function f : R→ R

output: vector y ∈ R
n which approximates f(A)x

1: q0 = 0, q1 = x/‖x‖, β1 = 0
2: for i ∈ 1, . . . , k do

3: qi+1 ← Aqi − βiqi−1

4: αi ← 〈qi+1,qi〉
5: qi+1 ← qi+1 − αiqi

6: βi+1 ← ‖qi+1‖
7: if βi+1 == 0 then

8: break loop
9: end if

10: qi+1 ← qi+1/βi+1

11: end for

12: T←




α1 β2 0

β2 α2
. . .

. . .
. . . βk

0 βk αk



, Q←

[
q1 . . . qk

]
,

13: return y = ‖x‖ ·Qf(T)e1

Claim 5 – Exact Arithmetic (Lanczos Output Guarantee). Run for k ≤ n iterations using exact
arithmetic operations, the Lanczos algorithm (Algorithm 1) computes Q ∈ R

n×k, an additional
column vector qk+1 ∈ R

n, a scalar βk+1, and a symmetric tridiagonal matrix T ∈ R
k×k such that:

AQ = QT+ βk+1qk+1e
T
k , (5)

and

[Q,qk+1]
T [Q,qk+1] = I. (6)

Together (5) and (6) also imply that:

λmin(T) ≥ λmin(A) and λmax(T) ≤ λmax(A). (7)

When run for k ≥ n iterations, the algorithm terminates at the nth iteration with βn+1 = 0.

We include a brief proof in Appendix E for completeness. The formulation of Claim 5 is valuable
because it allows use to analyze how Lanczos applies polynomials via the following identity:

AqQ−QTq =

q∑

i=1

Aq−i (AQ−QT)Ti−1. (8)

In particular, (5) gives an explicit expression for (AQ−QT). Ultimately, our finite precision
analysis is based on a similar expression for this central quantity.

7



4.1 Function approximation in exact arithmetic

We first show that Claim 5 can be used to prove (1): Lanczos approximates matrix functions
essentially as well as the best degree k polynomial approximates the corresponding scalar function
on the range of A’s eigenvalues. We begin with a statement that applies for any function f(x):

Theorem 6 – Exact Arithmetic (Approximate Application of Matrix Functions). Suppose Q ∈
R
n×k, T ∈ R

k×k, βk+1, and qk+1 are computed by the Lanczos algorithm (Algorithm 1), run with
exact arithmetic on inputs A and x. Let

δk = min
polynomial p
w/ degree < k

(
max

x∈[λmin(A),λmax(A)]
|f(x)− p(x)|

)
.

Then the output y = ‖x‖ ·Qf(T)e1 satisfies:

‖f(A)x− y‖ ≤ 2δk‖x‖. (9)

Theorem 6 is proven from the following lemma, which says that the Lanczos algorithm run for
k iterations can exactly apply any matrix polynomial with degree < k.

Lemma 7 – Exact Arithmetic (Exact Application of Polynomials). If A, Q, T, βk+1, and
qk+1 satisfy (5) of Claim 5 (e.g. because they are computed with the Lanczos method), then for any
polynomial p with degree < k:

p(A)q1 = Qp(T)e1.

Recall that in Algorithm 1, we set q1 = x/‖x‖, so the above trivially gives p(A)x = ‖x‖Qp(T)e1.

Proof. We show that for any integer 1 ≤ q < k:

Aqq1 = QTqe1. (10)

The lemma then follows by linearity as any polynomial p with degree < k can be written as the
sum of these monomial terms. To prove (10), we appeal to the telescoping sum in (8). Specifically,
since q1 = Qe1, (10) is equivalent to:

(AqQ−QTq) e1 = 0. (11)

For q ≥ 1, (8) let’s us write:

(AqQ−QTq) e1 =

(
q∑

i=1

Aq−i (AQ−QT)Ti−1

)
e1.

Substituting in (5):

(AqQ−QTq) e1 = βk+1

q∑

i=1

Aq−iqk+1e
T
kT

i−1e1. (12)

Since T is tridiagonal, Ti−1e1 is zero everywhere besides its first i entries. So, as long as q < k,
eTkT

i−1e1 = 0 for all i ≤ q. Accordingly, (12) evaluates to 0, proving (11) and Lemma 7.
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With Lemma 7 in place, Theorem 6 intuitively follows because Lanczos always applies the “low
degree polynomial part” of f(A). The proof is a simple application of triangle inequality.

Proof of Theorem 6.

‖f(A)x− y‖ = ‖f(A)q1 −Qf(T)e1‖ · ‖x‖ (13)

For any polynomial p, we can write:

‖f(A)q1 −Qf(T)e1‖ ≤ ‖p(A)q1 −Qp(T)e1‖+ ‖ [f(A)− p(A)]q1 −Q [f(T)− p(T)] e1‖
≤ 0 + ‖ [f(A)− p(A)]q1‖+ ‖Q [f(T)− p(T)] e1‖
≤ ‖f(A)− p(A)‖+ ‖Q‖‖f(T)− p(T)‖. (14)

In the second step we use triangle inequality, in the third we use Lemma 7 and triangle inequality,
and in the fourth we use submultiplicativity of the spectral norm and the fact that ‖q1‖ = ‖e1‖ = 1.

f(A)− p(A) is symmetric and has an eigenvalue equal to f(λ)− p(λ) for each eigenvalue λ of
A. Accordingly:

‖f(A)− p(A)‖ ≤ max
x∈[λmin(A),λmax(A)]

|f(x)− p(x)|.

Additionally, by (7) of Claim 5, for any eigenvalue λ(T) of T, λmin(A) ≤ λ(T) ≤ λmax(A) so:

‖f(T)− p(T)‖ ≤ max
x∈[λmin(A),λmax(A)]

|f(x)− p(x)|.

Plugging both bounds into (14), along with the fact that ‖Q‖ = 1 and that these statements hold
for any polynomial with degree < k gives ‖f(A)x− y‖ ≤ 2δk‖x‖ after rescaling via (13).

As discussed in the introduction, Theorem 6 can be tightened in certain special cases, including
when A is positive definite and f(A) = A−1. We defer consideration of this point to Section 7.

5 Finite precision preliminaries

Our goal is to understand how Theorem 6 and related bounds translate from exact arithmetic to
finite precision. In particular, our results apply to machines that employ floating-point arithmetic.
We use ǫmach to denote the relative precision of the floating-point system. An algorithm is generally
considered “stable” if it runs accurately when 1/ ǫmach is bounded by some polynomial in the input
parameters, i.e., when the number of bits required is logarithmic in these parameters.

We say a machine has precision ǫmach if it can perform computations to relative error ǫmach,
which necessarily requires that it can represent numbers to relative precision ǫmach – i.e., it has
≥ log2(1/ ǫmach) bits in its floating point significand. To be precise, we require:

Requirement 1 (Accuracy of floating-point arithmetic). Let ◦ denote any of the four basic arith-
metic operations (+, −, ×, ÷) and let fl(x◦y) denote the result of computing x◦y. Then a machine
with precision ǫmach must be able to compute:

fl(x ◦ y) = (1 + δ)(x ◦ y) where |δ| ≤ ǫmach

and

fl(
√
x) = (1 + δ)

√
x where |δ| ≤ ǫmach .
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Requirement 1 is satisfied by any computer implementing the IEEE 754 standard for floating-
point arithmetic [IEE08] with ≥ log2(1/ ǫmach) bits of precision, as long as operations do not
overflow or underflow4. Underflow or overflow occur when (1 + δ)(x ◦ y) cannot be represented in
finite precision for any δ with |δ| ≤ ǫmach, either because x◦y is so large that it exceeds the maximum
expressible number on the computer or because it is so small that expressing the number to relative
precision would require a negative exponent that is larger in magnitude than that supported by the
computer. As is typical in stability analysis, we will ignore the possibility of overflow and underflow
because doing so significantly simplifies the presentation of our results [Hig02].

However, because the version of Lanczos studied normalizes vectors at each iteration, it is not
hard to check that our proofs, and the results of Paige, and Gu and Eisenstat that we rely on, go
through with overflow and underflow accounted for. To be more precise, overflow does not occur as
long as all numbers in the input (and their squares) are at least a poly(k, n,C) factor smaller than
the maximum expressible number (recall that in Theorem 1, C is an upper bound on |f(x)| over
our eigenvalue range). That is, overflow is avoided if we assume the exponent in our floating-point
system has Ω(log log(kn ·max(C, 1))) bits overall and Ω(1) bits more than what is needed to express
the input. This ensures, for example, that the computation of ‖x‖ does not overflow and that the
multiplication Aw does not overflow for any unit norm w.

To account of underflow, Requirement 1 can be modified by including additive error γmach

for × and ÷ operations, where γmach denotes the smallest expressible positive number on our
floating-point machine. The additive error carries through all calculations, but will be swamped by
multiplicative error as long as we assume that ‖A‖, ‖x‖, ǫmach, and our function upper bound C
are larger than γmach by a poly(k, n, 1/ ǫmach) factor. This ensures, e.g., that x can be normalized
stably and, as we will discuss, allows for accurate multiplication of the input matrix A any vector.

In addition to Requirement 1, we also require the following of matrix-vector multiplications
involving our input matrix A:

Requirement 2 (Accuracy of matrix multiplication). Let fl(Aw) denote the result of computing
Aw on our floating-point computer. Then a computer with precision ǫmach must be able to compute,
for any w ∈ R

n,

‖fl(Aw)−Aw‖ ≤ 2n3/2‖A‖‖w‖ ǫmach .

If Aw is computed explicitly, as long as n ǫmach ≤ 1
2 (which holds for all of our results), any

computer satisfying Requirement 1 also satisfies Requirement 2 [Wil65, Hig02]. We list Requirement
2 separately to allow our analysis to apply in situations where Aw is computed approximately for
reasons other than rounding error. For example, in many applications where A cannot be accessed
explicitly, Aw is approximated with an iterative method [FMMS16, OSV12]. As long as this
computation is performed to the precision specified in Requirement 2, then our analysis holds.

As mentioned, when Aw is computed explicitly, underflow could occur during intermediate
steps on a finite precision computer. This will add an error term of 2n3/2 γmach to ‖fl(Aw) −
Aw‖. However, under our assumption that ǫmach ‖A‖ ≫ γmach, this term is subsumed by the
2n3/2‖A‖‖w‖ ǫmach term whenever ‖w‖ is not tiny (in Algorithm 1, ‖w‖ is always very close to 1).

Finally, we mention that, in our proofs, we typically show that operations incur error ǫmach ·F
for some value F that depends on problem parameters. Ultimately, to obtain error 0 < ǫ ≤ 1 we

4Underflow is only a concern for × and ÷ operations. On any computer implementing gradual underflow and a
guard bit, Requirement 1 always holds for + and −, even when underflow occurs.

√
x cannot underflow or overflow.
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then require that ǫmach ≤ ǫ/F . Accordingly, during the course of a proof we will often assume that
ǫ · F ≤ 1. Additionally, all runtime bounds are for the unit-cost RAM model: we assume that
computing fl(x ◦ y) and fl(

√
x) require O(1) time. For simplicity, we also assume that the scalar

function f we are interested in applying to A can be computed to relative error ǫmach in O(1) time.

6 Lanczos in finite precision

The most notable issue with the Lanczos algorithm in finite precision is that Q’s column vectors
lose the mutual orthogonality property of (6). In practice, this loss of orthogonality is quite severe:
Q will often have numerical rank ≪ k. Naturally, Q’s column vectors will thus also fail to span
the Krylov subspace Kk = [q1,Aq1, . . . ,A

k−1q1], and so we do not expect to be able to accurately
apply all degree < k polynomials. Surprisingly, this does not turn out to be much of a problem!

6.1 Starting point: Paige’s results

In particular, a seminal result of Paige shows that while (6) falls apart under finite precision
calculations, (5) of Claim 5 still holds, up to small error. In particular, in [Pai76] he proves that:

Theorem 8 (Lanczos Output in Finite Precision, [Pai76]). Run for k iterations on a computer
satisfying Requirements 1 and 2 with relative precision ǫmach, the Lanczos algorithm (Algorithm
1) computes Q ∈ R

n×k, an additional column vector qk+1 ∈ R
n, a scalar βk, and a symmetric

tridiagonal matrix T ∈ R
k×k such that:

AQ = QT+ βk+1qk+1e
T
k +E, (15)

and

‖E‖ ≤ k(2n3/2 + 7)‖A‖ǫmach, (16)

|‖qi‖ − 1| ≤ (n+ 4) ǫmach for all i. (17)

In [Pai80] (see equation 3.28), it is shown that together, the above bounds also imply:

λmin(A)− ǫ1 ≤ λ(T) ≤ λmax(A) + ǫ1 (18)

where ǫ1 = k5/2‖A‖
(
68 + 17n3/2

)
ǫmach.

Paige was interested in using Theorem 8 to understand how T and Q can be used to compute
approximate eigenvectors and values for A. His bounds are quite strong: for example, (18) shows
that (7) still holds up to tiny additive error, even though establishing that result for exact arithmetic
relied heavily on the orthogonality of Q’s columns.

6.2 Finite precision lanczos for applying polynomials

Theorem 8 allows us to give a finite precision analog of Lemma 7 for polynomials with magnitude
|p(x)| bounded on a small extension of the eigenvalue range [λmin(A), λmax(A)].

11



Lemma 9 (Lanczos Applies Bounded Polynomials). Suppose Q ∈ R
n×k and T ∈ R

k×k are com-
puted by the Lanczos algorithm on a computer satisfying Requirements 1 and 2 with relative precision
ǫmach, and thus these matrices satisfy the bounds of Theorem 8. For any η ≥ 85n3/2k5/2‖A‖ ǫmach,
if p is a polynomial with degree < k and |p(x)| ≤ C for all x ∈ [λmin(A)− η, λmax(A) + η] then:

‖Qp(T)e1 − p(A)q1‖ ≤
2Ck3‖E‖

η
(19)

where E is the error matrix defined in Theorem 8.

Finite precision Lanczos applies Chebyshev polynomials

It is not immediately clear how to modify the proof of Lemma 7 to handle the error E in (15).
Intuitively, any bounded polynomial cannot have too large a derivative by the Markov brothers’
inequality [Mar90], and so we expect E to have a limited effect. However, we are not aware of a
way to make this reasoning formal for matrix polynomials and asymmetric error E.

As illustrated in [OSV12], there is a natural way to prove (19) for the monomialsA,A2, . . . ,Ak−1.
The bound can then be extended to all polynomials via triangle inequality, but error is amplified
by the coefficients of each monomial component in p(A). Unfortunately, there are polynomials
that are uniformly bounded by C (and thus have bounded derivative) even though their monomial
components can have coefficients much larger than C. The ultimate effect is that the approach
taken in [OSV12] would incur an exponential dependence on k on the right hand side of (19).

To obtain our stronger polynomial dependence, we proceed with a different two-part analysis.
We first show that (19) holds for any Chebyshev polynomial with degree < k that is appropriately
stretched and shifted to the range [λmin(A)− η, λmax(A) + η]. Chebyshev polynomials have mag-
nitude much smaller than that of their monomial components, but because they can be formed
via a well-behaved recurrence, we can show that they are stable to the perturbation E. We can
then obtain the general result of Lemma 9 because any bounded polynomial can be written as a
weighted sum of such Chebyshev polynomials, with bounded weights.

Let T0, T1, . . . , Tk−1 be the first k Chebyshev polynomials of the first kind, defined recursively:

T0(x) = 1,

T1(x) = x,

Ti(x) = 2xTi−1(x)− Ti−2(x). (20)

The roots of the Chebyshev polynomials lie in [−1, 1] and this is precisely the range where they
remain “well behaved”: for |x| > 1, Ti(x) begins to grow quite quickly. Define

rmax
def
= λmax +η and rmin

def
= λmin−η

and

δ =
2

rmax− rmin
and T i(x) = Ti (δ(x − rmin)− 1) . (21)

T i(x) is the ith Chebyshev polynomial stretched and shifted so that T i(rmin) = Ti(−1) and
T i(rmax) = Ti(1). We prove the following:

12



Lemma 10 (Lanczos Applies Chebyshev Polynomials Stably). Suppose Q ∈ R
n×k and T ∈ R

k×k

are computed by the Lanczos algorithm on a computer satisfying Requirements 1 and 2 with rel-
ative precision ǫmach and thus these matrices satisfy the bounds of Theorem 8. For any η ≥
85n3/2k5/2‖A‖ ǫmach, for all i < k,

‖QT i(T)e1 − T i(A)q1‖ ≤
2i2 · ‖E‖

η
(22)

where E is the error matrix in Theorem 8 and T i is the ith shifted Chebyshev polynomial of (21).

Proof. Define Ā
def
= δ(A− rmin I)− I and T̄

def
= δ(T − rmin I)− I. so (22) is equivalent to:

‖QTi(T̄)e1 − Ti(Ā)q1‖ ≤
2i2 · ‖E‖

η
. (23)

So now we just focus on showing (23). We use the following notation:

ti
def
= Ti(Ā)q1, t̃i

def
= Ti(T̄)e1,

di
def
= ti −Qt̃i, ξi

def
= δEt̃i−1.

Proving (23) is equivalent to showing ‖di‖ ≤ 2i2‖E‖
η . From the Chebyshev recurrence (20) for all

i ≥ 2:

di =
(
2 Ā ti−1 − ti−2

)
−Q

(
2 T̄ t̃i−1 − t̃i−2

)

= 2(Ā ti−1 −QT̄ t̃i−1)− di−2.

Applying the perturbed Lanczos relation (15), we can write QT̄ = ĀQ − δβk+1qk+1e
T
k − δE.

Plugging this in above we then have:

di = 2 Ā(ti−1 −Qt̃i−1)− di−2 + 2δβk+1qk+1e
T
k t̃i−1 + 2δEt̃t−1

= (2 Ā di−1 − di−2) + 2δβk+1qk+1e
T
k t̃i−1 + 2ξi.

Finally, we use as in Lemma 7, that eTk t̃i−1 = eTk Ti−1(T̄)e1 = 0 since T̄ (like T) is tridiagonal.
Thus, Tq−1e1 is zero outside its first q entries and so for i < k, Ti−1(T̄)e1 is zero outside of its first
k − 1 entries. This gives the error recurrence:

di = (2 Ā di−1 − di−2) + 2ξi. (24)

As in standard stability arguments for the scalar Chebyshev recurrence, we can analyze (24)
using Chebyshev polynomials of the second kind [Cle55]. The ith Chebyshev polynomial of the
second kind is denoted Ui(x) and defined by the recurrence

U0(x) = 1,

U1(x) = 2x,

Ui(x) = 2xTi−1(x)− Ti−2(x). (25)
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We claim that for any i ≥ 0, defining Uk(x) = 0 for any k < 0 for convinience:

di = Ui−1(Ā)ξ1 + 2

i∑

j=2

Ui−j(Ā)ξj . (26)

This follows by induction starting with the base cases:

d0 = 0, and d1 = ξ1.

Using (24) and assuming by induction that (26) holds for all j < i,

di = 2ξi +
(
2 Ā di−1 − di−2

)

= 2ξi + [2ĀUi−2(Ā)ξ1 − Ui−3(Ā)ξ1] + 4 Ā
i−1∑

j=2

Ui−1−j(Ā)ξj − 2
i−2∑

j=2

Ui−2−j(Ā)ξj

= 2ξi + Ui−1(Ā)ξ1 +


2

i−2∑

j=2

2 ĀUi−1−j(Ā)ξj − Ui−2−j(Ā)ξj


+ 4 ĀU0(Ā)ξi−1

= Ui−1(Ā)ξ1 + 2

i∑

j=2

Ui−j(Ā)ξj,

establishing (26). It follows from triangle inequality and submultiplicativity that

‖di‖ ≤ 2
i∑

j=1

‖Ui−j(Ā)‖‖ξj‖.

Since Ā is symmetric (it is just a shifted and scaled A), Uk(Ā) is equivalent to the matrix obtained
by applying Uk(x) to each of Ā’s eigenvalues, which lie in the range [−1, 1]. It is well known that,
for values in this range Uk(x) ≤ k + 1 [GST07]. Accordingly, ‖Ui−j(Ā)‖ ≤ i− j + 1, so

‖di‖ ≤ 2
i∑

j=1

(i− j + 1)‖ξj‖ ≤ 2
i∑

j=1

i‖ξj‖. (27)

We finally bound ‖ξj‖ = δEt̃j−1. Recall that t̃j−1
def
= Tj−1(T̄)e1 so:

‖ξj‖ = ‖δETj−1(T̄)e1‖

≤ δ ‖E‖
∣∣Tj−1(T̄)

∥∥ =
2

rmax− rmin
· ‖E‖ ‖Tj−1 (δ (T− rmin I)− I)‖ , (28)

where we used that ‖e1‖ = 1, and δ = 2
rmax − rmin

. By (18) of Theorem 8 and our require-

ment that η ≥ 85n3/2k5/2‖A‖ ǫmach, T has all eigenvalues in [λmin−η, λmax +η]. Thus T̄ =
δ (T− rmin I) − I has all eigenvalues in [−1, 1]. We have Tj−1(x) ≤ 1 for x ∈ [−1, 1], giving
‖Tj−1 (δ (T− rmin I)− I)‖ ≤ 1.

Plugging this back into (28), ‖ξj‖ ≤ 2‖E‖
rmax − rmin

and plugging into (27), ‖di‖ ≤ 4i2‖E‖
rmax − rmin

. This
gives the lemma after noting that rmax− rmin ≥ 2η.
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From Chebyshev polynomials to general polynomials

As discussed, with Lemma 10 in place, we can prove Lemma 9 by writing any bounded polynomial
in the Chebyshev basis.

Proof of Lemma 9. Recall that we define rmin = λmin−η, rmax = λmax +η, and δ = 2
rmax − rmin

. Let

p(x) = p

(
x+ 1

δ
+ rmin

)
.

For any x ∈ [−1, 1], p(x) = p(y) for some y ∈ [rmin, rmax]. This immediately gives |p(x)| ≤ C on
[−1, 1] by the assumption that |p(x)| ≤ C on [λmin−η, λmax +η] = [rmin, rmax].

Any polynomial with degree < k can be written as a weighted sum of the first k Chebyshev
polynomials (see e.g. [GST07]). Specifically we have:

p(x) = c0T0(x) + c1T1(x) + . . . + ck−1Tk−1(x),

where the ith coefficient is given by:

ci =
2

π

∫ 1

−1

p̄(x)Ti(x)√
1− x2

.

|Ti(x)| ≤ 1 on [−1, 1] and
∫ 1
−1

1√
1−x2

= π, and since |p(x)| ≤ C for x ∈ [−1, 1] we have for all i:

|ci| ≤ 2C. (29)

By definition, p(x) = p (δ(x− rmin)− 1). Letting Ā = δ(A−rmin I)−I and T̄ = δ(T−rmin I)−I
as in the proof of Lemma 10, we have

‖Qp(T)e1 − p(A)q1‖ =
∥∥Qp

(
T̄
)
e1 − p

(
Ā
)
q1

∥∥

so need to upper bound the right hand side to prove the lemma. Applying triangle inequality:

∥∥Qp
(
T̄
)
e1 − p(Ā)q1

∥∥ ≤
k−1∑

i=0

ci
∥∥QTi

(
T̄
)
e1 − Ti(Ā)q1

∥∥ ,

where for each i, |ci| ≤ 2C by (29). Combining with Lemma 10, we thus have:

∥∥Qp(T̄)e1 − p(Ā)q1

∥∥ ≤ 4C · ‖E‖
η

k−1∑

i=0

i2 ≤ 2Ck3‖E‖
η

which gives the lemma.

6.3 Completing the analysis

With Lemma 9, we have nearly proven our main result, Theorem 1. We first show, using a proof
mirroring our analysis in the exact arithmetic case, that Lemma 9 implies that Qf(T)e1 well
approximates f(A)q1. Thus the output y = ‖x‖Qf(T)e1 well approximates f(A)x. With this
bound, all that remains in proving Theorem 1 is to show that we can compute y accurately using
known techniques (although with a tedious error analysis).
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Lemma 11 (Stable function approximation via Lanczos). Suppose Q ∈ R
n×k and T ∈ R

k×k are
computed by the Lanczos algorithm on a computer satisfying Requirements 1 and 2 with relative
precision ǫmach and thus these matrices satisfy the bounds of Theorem 8. For degree k and any η
with 85n3/2k5/2‖A‖ǫmach ≤ η ≤ ‖A‖ define:

δk = min
polynomial p

with degree < k

(
max

x∈[λmin(A)−η,λmax(A)+η]
|f(x)− p(x)|

)
(30)

and C = maxx∈[λmin(A)−η,λmax(A)+η] |f(x)|. Then we have:

‖f(A)q1 −Qf(T)e1‖ ≤ (k + 2)δk + ǫmach ·
41Ck4n3/2‖A‖

η
. (31)

Proof. Applying Lemma 9, letting p be the optimal degree < k polynomial achieving δk, by (30)
and our bound on f(x) on this range:

‖Qp(T)e1 − p(A)q1‖ ≤
2k3(C + δk)‖E‖

η
.

By triangle inequality, spectral norm submultiplicativity, and the fact that ‖q1‖ ≈ 1 (certainly
‖q1‖ ≤ 2 even if x is normalized in finite-precision) we have:

‖Qf(T)e1 − f(A)q1‖ ≤ ‖Qp(T)e1 − p(A)q1‖+ ‖Qf(T)e1 −Qp(T)e1‖+ ‖f(A)q1 − p(A)q1‖
≤ 2k3(C + δk)‖E‖/η + ‖Q‖‖f(T)e1 − p(T)e1‖+ ‖f(A)q1 − p(A)q1‖
≤ 2k3(C + δk)‖E‖/η + (‖Q‖+ 2)δk (32)

where the last inequality follows from the definition of δk in (30) and the fact that all eigenvalues
of T lie in [λmin(A) − η, λmax(A) + η] by (18) of Theorem 8 since η > 85n3/2k5/2‖A‖ ǫmach. By
Theorem 8 we also have ‖qi‖ ≤ 1+(n+4) ǫmach for all i. This gives ‖Q‖ ≤ ‖Q‖F ≤ k+k(n+4) ǫmach.
Further, ‖E‖ ≤ k(2n3/2+7)‖A‖ ǫmach. Plugging back into (32), loosely bounding δk < C (since we
could always set p(x) = 0), and using that η ≤ ‖A‖, gives (31) and thus completes the lemma.

After scaling by a ‖x‖ factor, Lemma 11 shows that the output y = ‖x‖Qf(T)e1 of Lanczos
approximates f(A)x to within a (k+2)δk‖x‖ factor (plus a lower order term depending on ǫmach),
where δk is the best approximation given by a degree < k polynomial on the eigenvalue range. Of
course, in finite precision, we cannot exactly compute y. However, it is known that it is possible
to stably compute an eigendecomposition of a symmetric tridiagonal T in Õ(n2) time. This allows
us to explicitly approximate f(T) and thus y. The upshot is our main theorem:

Theorem 1 (Function Approximation via Lanczos in Finite Arithmetic). Given real symmetric
A ∈ R

n×n, x ∈ R
n, η ≤ ‖A‖, ǫ ≤ 1, and any function f with |f(x)| < C for x ∈ [λmin(A) −

η, λmax(A) + η], let B = log
(
nk‖A‖

ǫη

)
. Suppose Algorithm 1 is run for k iterations on a computer

satisfying Requirements 1 and 2 with relative precision ǫmach = 2−Ω(B) (e.g. on computer using
Ω(B) bits of precision). If in Step 13, y is computed using the eigendecomposition algorithm of
[GE95], it satisfies:

‖f(A)x− y‖ ≤ (7k · δk + ǫC)‖x‖ (33)
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where

δk
def
= min

polynomial p
with degree < k

(
max

x∈[λmin(A)−η,λmax(A)+η]
|p(x)− f(x)|

)
.

The algorithm’s runtime is O(mv(A)k+k2B+kB2), where mv(A) is the time required to multiply A

by a vector to the precision required by Requirement 2 (e.g. O(nnz(A) time if A is given explicitly).

We note that the dependence on η in our bound is typically mild. For example, it A is positive
semi-definite, if it is possible to find a good polynomial approximation on [λmin(A), λmax(A)], it
is possible to find an approximation with similar degree on, e.g., [12 λmin(A), 2λmax(A)], in which
case η = Θ(λmin(A)|). For some functions, we can get away with an even larger η (and thus fewer
required bits). For example, in Section 8 our applications to the matrix step function and matrix
exponential both set η = λmax(A).

Proof. We can apply Lemma 11 to show that:

‖f(A)q1 −Qf(T)e1‖ ≤ (k + 2)δk + ǫmach ·
41Ck4n3/2‖A‖

η
. (34)

The lemma requires ǫmach ≤ η
85n3/2k5/2‖A‖ , which holds since we require ǫ ≤ 1 and set ǫmach = 2−Ω(B)

with B = log
(
nk‖A‖

ǫη

)
. This also ensures that the second term of (34) becomes very small, and so

we can bound:

‖f(A)q1 −Qf(T)e1‖ ≤ (k + 2)δk + ǫC/4. (35)

We now show that a similar bound still holds when we compute Qf(T)e1 approximately. Via
an error analysis of the symmetric tridiagonal eigendecomposition algorithm of Gu and Eisenstat
[GE95], contained in Lemma 23 of Appendix A, for any ǫ1 ≤ 1/2 with

ck3 log k · ǫmach ≤ ǫ1 ≤
η

4‖T‖ (36)

for large enough c, in O(k2 log k
ǫ1

+ k log2 k
ǫ1
) time we can compute z satisfying:

‖f(T)e1 − z‖ ≤ 2δk + ǫ1 ·
(
8k3C‖T‖

η
+ 16C

)
. (37)

By our restriction that ǫ ≤ 1 and η ≤ ‖A‖, since B = log
(
nk‖A‖

ǫη

)
, we have ǫmach = 2−Ω(B) ≤ 1

(nk)c

for some large constant c. This gives ‖T‖ ≤ ‖A‖+ ǫmach k
5/2‖A‖(68 + 17n3/2) ≤ 2‖A‖ by (18) of

Theorem 8. Thus, if we set ǫ1 =
(

ǫη
3nk‖A‖

)c
for large enough c, by (37) we will have:

‖f(T)e1 − z‖ ≤ 2δk +
ǫC

4(k + 1)
. (38)

Furthermore ‖Q‖ ≤ ‖Q‖F ≤ k+ k(n+4) ǫmach ≤ k+1 by Paige’s bounds (Theorem 8) and the
fact that ǫmach ≤

(
1
nk

)c
for some large c. Using (38), this gives:

‖Qf(T)e1 −Qz‖ ≤ (2k + 2)δk + ǫC/4. (39)
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As discussed in Section 5, if Qz is computed on a computer satisfying Requirement 1 then the
output ȳ satisfies:

‖Qz− ȳ‖ ≤ 2max(n, k)3/2 ǫmach ‖Q‖‖z‖.
By (38), ‖z‖ ≤ ‖f(T)‖ + 2δk + ǫC

4(k+1) = O(C + δk) = O(C) since δk ≤ C. Accordingly, by our

choice of ǫmach we can bound ‖Qz− ȳ‖ ≤ ǫC/4. Combining with (35) and (39) we have:

‖f(A)q1 − ȳ‖ ≤ (3k + 4)δk + 3ǫC/4. (40)

This gives the final error bound of (33) after rescaling by a ‖x‖ factor. ‖ȳ‖ ≤ ‖f(A)q1‖ + (3k +
4)δk + 3ǫC/4 = O(kC) and so, by our setting of ǫmach, we can compute y = ‖x‖ · ȳ up to additive

error ǫC·‖x‖
8 . Similarly, we have ‖f(A)q1‖x‖−f(A)x‖ = ǫC·‖x‖

8 even when q1 = x/‖x‖ is computed
approximately. Overall this lets us claim using (40):

‖f(A)x− y‖ ≤ [(3k + 4)δk + ǫC] · ‖x‖

which gives our final error bound. The runtime follows from noting that each iteration of Lanczos
requires mv(A) + O(n) = O(mv(A)) time. The stable eigendecomposition of T up to error ǫ1
requires O(k2 log k

ǫ1
+ k log2 k

ǫ1
) = O(k2B + kB2) time by our setting of ǫ1. With this eigendecom-

position in hand, computing Qf(T)e1 takes an additional O(nk) = O(mv(A)k) time.

7 Lower bound

In the previous section, we proved that finite precision Lanczos essentially matches the best known
exact arithmetic iteration bounds for general matrix functions. These bounds depend on the degree
needed to uniformly approximate of f(x) over [λmin(A), λmax(A)]. We now turn to the special case
of positive definite linear systems, where tighter bounds can be shown.

Specifically, equation (3), proven in Theorem 24, shows that the error of Lanczos after k it-
erations matches the error of the best polynomial approximating 1/x at each of A’s eigenvalues,
rather than on the full range [λmin(A), λmax(A)]. Greenbaum proved a natural extension of this
bound to the finite precision CG method, showing that its performance matches the best polyno-
mial approximating 1/x on tiny ranges around each of A’s eigenvalues [Gre89]. Recall that “tiny”
means essentially on the order of machine precision – the approximation need only be over ranges
of width η as long as the bits of precision used is & log(1/η). We state a simplified version of this
result as Theorem 2 and provide a full discussion in Appendix B.

At first glance, Theorem 2 appears to be a very strong result – intuitively, approximating 1/x
on small intervals around each eigenvalue seems much easier than uniform approximation.

7.1 Main theorem

Surprisingly, we show that this is not the case: Greenbaum’s result can be much weaker than the
exact arithmetic bounds of Theorem 24. We prove that for any κ and interval width η, there
are matrices with condition number κ and just O(log κ · log 1/η) eigenvalues for which any ‘stable

approximating polynomial’ of the form required by Theorem 2 achieving error δ̄k
def
= ≤ 1/6 must

have degree Ω(κc) for a fixed constant c ≥ 1/5.
This result immediately implies a number of iteration lower bounds on Greenbaum’s result, even

when we just ask for constant factor approximation to A−1x. See Corollary 4 and surrounding
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discussion for a full exposition. As a simple example, setting η = 1/poly(κ), our result shows
the existence of matrices with log2(κ) eigenvalues for which Theorem 2 requires Ω(κc) iterations
for convergence if O(log κ) bits of precision are used. This is nearly exponentially worse than the
O(log2 κ) iterations required for exact computation of A−1x in exact arithmetic by (3).

Theorem 3. There exists a fixed constant 1/5 ≤ c ≤ 1/2 such that for any κ ≥ 2, 0 < η < 1
20κ2 ,

and n ≥ ⌊log2 κ⌋ · ⌈ln 1/η⌉, there is a positive definite A ∈ R
n×n with condition number ≤ κ, such

that for any k < ⌊κc/377⌋

δ̄k
def
= min

polynomial p
with degree < k

(
max

x∈
⋃n

i=1
[λi(A)−η,λi(A)+η]

|p(x)− 1/x|
)
≥ 1/6.

We prove Theorem 3 by arguing that there is no polynomial p(x) with degree ≤ κc/377 which
has p(0) = 1 and |p(x)| < 1/3 for every x ∈ ⋃n

i=1[λi(A)− η, λi(A) + η]. Specifically, we show:

Lemma 12. There exists a fixed constant 1/5 ≤ c ≤ 1/2 and such that for any κ ≥ 2, 0 < η ≤ 1
20κ2

and n ≥ ⌊log2 κ⌋ · ⌈ln 1/η⌉, there are λ1, ..., λn ∈ [1/κ, 1], such that for any polynomial p with degree
k ≤ κc/377 and p(0) = 1:

max
x∈

⋃n
i=1

[λi−η,λi+η]
|p(x)| ≥ 1/3.

Lemma 12 can be viewed as an extension of the classic Markov brother’s inequality [Mar90],
which implies that any polynomial with p(0) = 1 and |p(x)| ≤ 1/3 for all x ∈ [1/κ, 1] must have
degree Ω(

√
κ). Lemma 12 shows that even if we just restrict |p(x)| ≤ 1/3 on a few small subintervals

of [1/κ, 1], Ω(κc) degree is still required. We do not carefully optimize the constant c, although we
believe it should be possible to improve to nearly 1/2 (see discussion in Appendix D). This would
match the upper bound achieved by the Chebyshev polynomials of the first kind, appropriately
shifted and scaled. Given Lemma 12 it is easy to show Theorem 3:

Proof of Theorem 3. Let A ∈ R
n×n be any matrix with eigenvalues equal to λ1, ..., λn – e.g. a

diagonal matrix with these values as its entries. Assume by way of contradiction that there is a
polynomial p(x) with degree k < ⌊κc/377⌋ which satisfies:

max
x∈

⋃n
i=1

[λi(A)−η,λi(A)+η]
|p(x)− 1/x| < 1/6.

Then if we set p̄(x) = 1− xp(x), p̄(0) = 1 and for any x ∈ ⋃n
i=1[λi − η, λi + η],

|p̄(x)| ≤ |xp(x)− 1| ≤ |x| · |p(x)− 1/x| < |x|
6
≤ 1

3

since |x| ≤ 2 when η ≤ 1. Since p̄(x) has degree k+1 ≤ κc/377, it thus contradicts Lemma 12.

7.2 Hard instance construction

We begin by describing the “hard” eigenvalue distribution that is used to prove Lemma 12 for any
given condition number κ ≥ 2 and range radius η. Define ⌊log2(κ)⌋ intervals:

Ii
def
=

[
1

2i
,

1

2i−1

]
for i = 1, . . . , ⌊log2(κ)⌋.
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In each interval Ii we place z evenly spaced eigenvalues, where:

z = ⌈ln 1/η⌉.

That is, the eigenvalues in interval Ii are set to:

λi,j =
1

2i
+

j

z2i
for j = 1, . . . , z. (41)

Thus, our construction uses ⌊log2 κ⌋ ·⌈ln 1/η⌉ eigenvalues total. The smallest is > 1
κ and the largest

is ≤ 1, as required in the statement of Lemma 12. For convenience, we also define:

Ri,j
def
= [λi,j − η, λi,j + η] Ri

def
=
⋃

j

Ri,j and R def
=
⋃

i

Ri.

By the assumption of Lemma 12 that η ≤ 1
20k2

, we have ηz = η⌈ln 1
η⌉ ≤

√
η + η ≤ 1

4κ . So none of

the Ri,j overlap and in fact are distance at least 1
2zκ apart (since the eigenvalues themselves have

spacing at least 1
zκ by (41)). An illustration is included in Figure 1.

//

0 1
k

1
8

1
4

1
2

1

R3,1 R3,4

︷ ︸︸ ︷R3

· · · R2,1 R2,2 R2,3 R2,4

︷ ︸︸ ︷R2

R1,1 R1,2 R1,3 R1,4

︷ ︸︸ ︷R1

Figure 1: A sample “hard” distribution of eigenvalues with z = 4. The width of each range Ri,j is
over-exaggerated for illustration – in reality each interval has width 2η, where η ≤ 1

4zκ .

7.3 Outline of the argument

Let p be any polynomial with degree k that satisfies p(0) = 1. To prove Lemma 12 we need to show
that we cannot have |p(x)| ≤ 1/3 for all x ∈ R unless k is relatively high (i.e. ≥ κc). Let r1, . . . , rk
denote p’s k roots. So |p(x)| =∏k

i=1 |1− x
ri
|. Then define

g(x)
def
= ln |p(x)| =

k∑

i=1

ln

∣∣∣∣1−
x

ri

∣∣∣∣ . (42)

To prove that |p(x)| ≥ 1/3 for some x ∈ R, it suffices to show that,

max
x∈R

g(x) ≥ −1. (43)

We establish (43) via a potential function argument. For any positive weight function w(x),

max
x∈R

g(x) ≥
∫
R w(x)g(x)dx∫

Rw(x)dx
.

20



I.e., any weighted average lower bounds the maximum of a function. From (42), we have:

1

k
max
x∈R

g(x) ≥ 1

k
·
∫
Rw(x)g(x)dx∫

R w(x)dx
≥ min

r

∫
Rw(x) ln |1− x/r|dx∫

Rw(x)dx
. (44)

We focus on bounding this last quantity. More specifically, we set w(x) to be:

w(x)
def
= 2ic for x ∈ Ri.

The weight function increases from a minimum of ∼ 2c to a maximum of ∼ κc as x ∈ R decreases
from 1 towards 1/κ. With this weight function, we will be able prove that (44) is lower bounded
by −O( 1

κc ). It will then follow that (43) holds for any polynomial with degree k = O(κc).

7.4 Initial Observations

Before giving the core argument, we make an initial observation that simplifies our analysis:

Claim 13. If Lemma 12 holds for the hard instance described in Section 7.2 and all real rooted
polynomials with roots on the range [1/κ, 1 + η], then it holds for all polynomials.

Proof. We first show that we can consider just real rooted polynomials, before arguing that we can
also assume their roots are within the range [1/κ, 1 + η].

Real rooted: If there is any polynomial equal to 1 at x = 0 with magnitude ≤ 1/3 for x ∈ R,
then there must be a real polynomial (i.e. with real coefficients) of the same degree that only has
smaller magnitude on R. So we focus on p(x) with real coefficients. Letting the roots of p(x) be
r1, . . . , rk and using that p(0) = 1, we can write:

p(x) =

k∏

i=1

(1− x/ri). (45)

By the complex conjugate root theorem, any polynomial with real coefficients and a complex root
must also have its conjugate as a root. Thus, if p(x) has root 1

a+bi for some a, b, the above product
contains a term of the form:

(1− x(a− bi))(1 − x(a+ bi)) = 1− 2ax+ a2x2 + b2x2.

If we just set b = 0 (i.e. take the real part of the root), 1 − 2ax + a2x2 + b2x2 decreases for all
x > 0. In fact, since (1− 2ax+ a2x2) = (1 − ax)2 > 0, the absolute value |1− 2ax+ a2x2 + b2x2|
decreases if we set b = 0. Accordingly, by removing the complex part of p’s complex root, we obtain
a polynomial of the same degree that remains 1 at 0, but has smaller magnitude everywhere else.

Roots in eigenvalue range: First note that we can assume p doesn’t have any negative roots:
removing a term in (45) of the form (1− x/ri) for ri < 0 produces a polynomial with lower degree
that is 1 at 0 but smaller in magnitude for all x > 0. It is not hard to see that by construction
R ⊆ [1/κ, 1 + η] and thus x > 0 for all x ∈ R. Thus removing a negative root can only lead to
smaller maximum magnitude over R.

Now, suppose p has some root 0 < r < 1/κ. For all x ≥ 1/κ,
∣∣∣∣1−

x

1/κ

∣∣∣∣ <
∣∣∣1− x

r

∣∣∣ .
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Accordingly, by replacing p’s root at r with one at (1/κ) we obtain a polynomial of the same degree
that is smaller in magnitude for all x ≥ 1/κ and thus for all x ∈ R ⊆ [1/κ, 1 + η].

Similarly, suppose p has some root r > 1 + η. For all x ≤ 1 + η,
∣∣∣∣1−

x

1 + η

∣∣∣∣ <
∣∣∣1− x

r

∣∣∣ .

So by replacing p’s root at r with a root at (1 + η), we obtain a polynomial that has smaller
magnitude everywhere in R.

7.5 Main argument

With Claim 13, we are now ready to prove Lemma 12, which implies Theorem 3.

Proof of Lemma 12. Since we can restrict our attention to real rooted polynomials with each root
ri ∈ [ 1κ , 1 + η], to prove (43) via (44) we just need to establish that:

min
r∈[ 1

κ
,1+η]

∫
Rw(x) ln |1− x/r|dx∫

Rw(x)dx
≥ −377

κc
. (46)

Consider the denominator of the left hand side:

∫

R
w(x)dx =

⌊log2(κ)⌋∑

i=1

∫

Ri

2icdx =

⌊log2(κ)⌋∑

i=1

2ηz2ic ≥ ηzκc.

With this bound in place, to prove (46) we need to show:

min
r∈[ 1

κ
,1+η]

∫

R
w(x) ln |1− x/r|dx ≥ −377ηz.

Recalling our definition of R, this is equivalent to showing that:

For all r ∈
[
1

κ
, 1 + η

]
,

⌊log2(κ)⌋∑

i=1

∫

Ri

w(x) ln |1− x/r|dx ≥ −377ηz. (47)

To prove (47) we divide the sum into three parts. Letting λℓ,h be the eigenvalue closest to r:

⌊log2(κ)⌋∑

i=1

∫

Ri

w(x) ln |1− x/r|dx =

ℓ−2∑

i=1

∫

Ri

w(x) ln |1− x/r|dx (48)

+

ℓ+1∑

i=ℓ−1

∫

Ri

w(x) ln |1− x/r|dx (49)

+

⌊log2(κ)⌋∑

i=ℓ+2

∫

Ri

w(x) ln |1− x/r|dx. (50)
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Note that when ℓ lies towards the limits of {1, . . . , ⌊log2(κ)⌋}, the sums in (50) and (48) may contain
no terms and (49) may contain less than 3 terms.

To gain a better understanding of each of these terms, consider Figure 2, which plots ln |1−x/r|
for an example value of r. (48) is a weighted integral over regions Ri that lie well above r.
Specifically, for all x ∈ ⋃ℓ−2

i=1 Ri, x ≥ 2r and thus ln |1− x/r| is strictly positive. Accordingly, (48)
is a positive term and will help in our effort to lower bound (47).

On the other hand, (49) and (50) involve values of x which are close to r or lie below the root.
For these values, ln |1− x/r| is negative and thus (49) and (50) will hurt our effort to lower bound
(47). We need to show that the negative contribution cannot be too large.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-4

-3

-2

-1

0

1

2

3

Figure 2: Plot of ln |1 − x/r| for r = 1/10. Proving that (47) cannot be too small for any root r
requires lower bounding a weighted integral of this function over R ⊂ [1/κ, 1 + η].

Center region

We first evaluate (49), which is the range containing eigenvalues close to r. In particular, we start
by just considering Rℓ,h, the interval around the eigenvalue nearest to r.

∫

Rℓ,h

w(x) ln |1− x/r|dx = 2ℓc
∫ λℓ,h+η

λℓ,h−η
ln |1− x/r| ≥ 2ℓc

∫ λℓ,h+η

λℓ,h−η
ln |1− x/λℓ,h|.

The inequality follows because ln |1− x/r| strictly increases as x moves away from r. Accordingly,
the integral takes on its maximum value when r is centered in the interval [λℓ,h − η, λℓ,h + η].

2ℓc
∫ λℓ,h+η

λℓ,h−η
ln |1− x/λℓ,h| = 2ℓc+1

∫ η

0
ln

x

λℓ,h
= 2ℓc+1η (ln η − lnλℓ,h − 1) .

Since ln(η) ≤ −1 by the assumption that η ≤ 1
20κ2 and since − lnλℓ,h ≥ 0 since λℓ,h ≤ 1, we obtain:

∫

Rℓ,h

w(x) ln |1− x/r|dx ≥ 4 · 2ℓcη ln η ≥ −4 · 2ℓcηz. (51)
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Now we consider the integral over Rℓ,i for all i 6= h and also over the entirety of Rℓ+1 and Rℓ−1.
For all x ∈ [Rℓ+1 ∪ (Rℓ \ Rℓ,h) ∪Rℓ−1], w(x) ≤ 2(ℓ+1)c ≤ 21/5 · 2lc since c ≥ 1/5. So we have:
∫

Rℓ+1∪(Rℓ\Rℓ,h)∪Rℓ−1

w(x) ln |1− x/r|dx ≥
∫

Rℓ+1∪(Rℓ\Rℓ,h)∪Rℓ−1

w(x)min(ln |1− x/r|, 0)dx

≥21/5 · 2lc
∫

Rℓ+1∪(Rℓ\Rℓ,h)∪Rℓ−1

min(ln |1− x/r|, 0)dx. (52)

where the last inequality holds by our bound on w(x) and since min(ln |1− x/r|, 0) is nonpositive.
The nearest eigenvalue to λℓ,h is 1

2ℓz
away from it. Thus, the second closest eigenvalue to r

besides λℓ,h is at least 1
2ℓ+1z

away from r. By our assumption that η ≤ 1
20κ2 , as discussed we have

η ≤ 1
4κz ≤ 1

2ℓ+2z
. Thus, the closest interval to r besides Rℓ,h is at least 1

2ℓ+1z
− 1

2ℓ+2z
≥ r

8z away.
Thus, using that ln |1−x/r| is strictly increasing as x moves away from r, that there are 3z− 1

eigenvalues in Rℓ+1 ∪ (Rℓ \ Rℓ,h) ∪Rℓ−1, and (52) we can lower bound the integral by:
∫

Rℓ+1∪(Rℓ\Rℓ,h)∪Rℓ−1

w(x) ln |1− x/r|dx

≥ 21/5 · 2lc · 2η
∑

i∈{−⌊1.5z⌋,...,⌊1.5z⌋}\0
min

(
ln

∣∣∣∣∣1−
r(1 + i

8z )

r

∣∣∣∣∣ , 0
)

≥ 4 · 21/5η · 2lc
⌊1.5z⌋∑

i=1

min(ln(i/8z), 0)

≥ 4 · 21/5η · 2lc
∫ 1.5z

x=0
ln(x/8z)dx

≥ −18.5 · 2lcηz.
This bound combines with (51) to obtain a final lower bound on (49) of:

ℓ+1∑

i=ℓ−1

∫

Ri

w(x) ln |1− x/r|dx ≥ −22.5 · 2lcηz. (53)

Lower region

Next consider (50), which involves values that are at least a factor of 2 smaller than r. We have:

For j ≥ 2 and x ∈ Rℓ+j, ln
∣∣∣1− x

r

∣∣∣ ≥ ln

(
1− 1

2j−1

)
≥ − 1.39

2j−1
.

For the last bound we use that 1
2j−1 ≤ 1

2 . It follows that:

⌊log2(κ)⌋∑

i=ℓ+2

∫

Ri

w(x) ln |1− x/r|dx ≥
⌊log2(κ)⌋∑

i=ℓ+2

−2.78ηz · 2ic

2i−ℓ−1
= −5.56 · 2ℓcηz

⌊log2(κ)⌋−ℓ∑

j=2

1

2j(1−c)
. (54)

Since we restrict c ≥ 1/5, the sum above (which is positive) is at most:

⌊log2(κ)⌋−ℓ∑

j=2

1

2j(1−c)
≤ 1

28/5
· 1

1− 1
24/5

≤ .8
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So we conclude using (54) that:

⌊log2(κ)⌋∑

i=ℓ+2

∫

Ri

w(x) ln |1− x/r|dx > −4.5 · 2ℓcηz. (55)

Upper region

From (53) and (55), we see that (49) and (50) sum to −O(2ℓcηz). Recall that we wanted the
entirety of (48) + (49) + (50) to sum to something greater than −O(ηz). For large values of ℓ (i.e.,
when r is small), the 2ℓc term is problematic. It could be on the order −κc. If this is the case, we
need to rely on a positive value of (48) to cancel out the negative contribution of (49) and (50).
Fortunately, from the intuition provided by Figure 2, we expect (48) to increase as r decreases.

We start by noting that:

For j ≥ 2 and x ∈ Rℓ−j, ln |1− x

r
| ≥ ln

(
2j−1 − 1

)
≥ j − 2

2
.

It follows that

ℓ−2∑

i=1

∫

Ri

w(x) ln |1− x/r|dx ≥
ℓ−2∑

i=1

2η · 2ic · ℓ− i− 2

2
= 2ℓcηz

ℓ−2∑

i=1

ℓ− i− 2

2c(ℓ−i)
. (56)

By our requirement that c ≥ 1/5, as long as ℓ ≥ 20 we can explicitly compute:

ℓ−2∑

i=1

ℓ− i− 2

2c(ℓ−i)
=

1

23c
+

2

24c
+ . . .+

ℓ− 3

2c(ℓ−1)
≥ 27.4 (57)

which finally gives, using (56):

ℓ−2∑

i=1

∫

Ri

w(x) ln |1− x/r|dx ≥ 27.4 · 2ℓcηz. (58)

We note for the interested reader that (56) is the reason that we cannot set c too large (e.g.
c ≥ 1/2). If c is too large, the sum in (57) will be small, and will not be enough to cancel out the
negative contributions from the center and lower regions.

7.6 Putting it all together

We can bound (47) using our bounds on the upper region (48) (given in (58)), the center region
(49) (given in (53)) and the lower region (50) (given in (55)). As long as ℓ ≥ 20 we have:

∫

R
w(x) ln |1− x/r|dx ≥ (−22.5 − 4.5 + 27.4) · 2ℓcηz ≥ 0 ≥ −ηz.

It remains to handle the case of ℓ < 20. In this case, the concerning 2ℓc term is not a problem.
Specifically, when ℓ < 20 we have 2ℓc ≤ 219/5. Even ignoring the positive contribution of (48), we
can thus lower bound (47) using our center and lower region bounds by:

∫

R
w(x) log |1− x/r|dx ≥ (−22.5 − 4.5) · 219/5 · ηz ≥ −377ηz
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and it follows that (46) is lower bounded by

min
r∈[ 1

κ
,1+η]

∫
Rw(x) log |1− x/r|dx∫

Rw(x)dx
≥ −377

κc
.

Then, by the argument outlined in Section 7.3, for any k ≤ κc

377 , there is no real rooted, degree
k polynomial p with roots in [ 1κ , 1 + η] such that:

p(0) = 1 and log |p(x)| ≤ −1 for all x ∈ R.

Finally, applying Claim 13 proves Lemma 12, as desired.

8 Applications

In this section, we give example applications of Theorem 1 to matrix step function, matrix exponen-
tial, and top singular value approximation. We also show how Lanczos can be used to accelerate
the computation of any function which is well approximated by a high degree polynomial with
bounded coefficients. For each application, we show that Lanczos either improves upon or matches
state-of-the-art runtimes, even when computations are performed with limited precision.

8.1 Matrix step function approximation

In many applications it is necessary to compute the matrix step function sλ(A) where

sλ(x)
def
=

{
0 for x < λ

1 for x ≥ λ.

Computing sλ(A)x is equivalent to projecting x onto the span of all eigenvectors of A with eigen-
value ≥ λ. This projection is useful in data analysis algorithms that preprocess data points by
projecting onto the top principal components of the data set – here A would be the data covari-
ance matrix, whose eigenvectors correspond to principal components of the data. For example, as
shown in [FMMS16] and [AZL17], an algorithm for approximating sλ(A)x can be used to efficiently
solve the principal component regression problem, a widely used form of regularized regression. A
projection algorithm can also be used to accelerate spectral clustering methods [TPGV16].

The matrix step function sλ(A) is also useful because tr(sλ(A)) is equal to the number of
eigenvalues of A which are ≥ λ. This trace can be estimated up to (1 ± ǫ) relative error with
probability 1 − δ by computing xT sλ(A)x for O(log(1/δ)/ǫ2) random sign vectors [Hut90]. By
composing step functions at different thresholds and using this trace estimation technique, it is
possible to estimate the number of eigenvalues of A in any interval [a, b], which is a useful primitive
in estimating numerical rank [US16], tuning eigensolvers and other algorithms [DNPS16], and
estimating the value of matrix norms [MNS+17].

Soft step function application via Lanczos

Due to its discontinuity at λ, sλ(x) cannot be uniformly approximated on the range of A’s eigen-
values by any polynomial. Thus, we cannot apply Theorem 1 directly. However, it typically suffices
to apply a softened step function that is allowed to deviate from the true step function in a small
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range around λ. For simplicity, we focus on applying such a function with λ = 0. Specifically, we
wish to apply h(A) where:

h(x) ∈





[0, ǫ] for x < −γ
[0, 1] for x ∈ [−γ, γ]
[1− ǫ, 1] for x ≥ γ.

(59)

For a positive semidefinite A, by applying h to B = A(A + λI)−1 − 1
2I, we can recover a soft

step function at λ, which, for example, provably suffices to solve principal component regression
[FMMS16, AZL17] and to perform the norm estimation algorithms of [MNS+17]. We just need to
apply B to the precision specified in Requirement 2, which can be done, for example, using a fast
iterative linear system solver.

In [FMMS16], Corollary 5.4, it is proven that for q = O(γ−2 log(1/ǫ)) the polynomial:

pq(x) =

q∑

i=0


x(1− x2)i

i∏

j=1

2j − 1

2j


 (60)

is a valid softened sign function satisfying (59). Additionally, it is shown in Lemma 5.5 that there is
a lower degree polynomial p∗(x) with degree O(γ−1 log(1/ǫγ)) which uniformly approximates pq(x)
to error ǫ on the range [−1, 1]. Combining these two results we can apply Theorem 1 to obtain:

Theorem 14 (Approximation of soft matrix sign function). Given B ∈ R
n×n with ‖B‖ ≤ 1/2,

x ∈ R
n, and ǫ < 1, let B = log

(
n
ǫγ

)
and q = O(γ−2 log(1/ǫ)). Suppose Algorithm 1 is run with

f(x) = pq(x), which is a function satisfying (59). After k = O(γ−1 log(1/ǫγ)) iterations on a
computer satisfying Requirement 1 and Requirement 2 for applying B to precision ǫmach = 2−Ω(B)

(e.g. a computer with Ω(B) bits of precision), the algorithm outputs y with ‖pq(B)x− y‖ ≤ ǫ‖x‖.
The total runtime is O(mv(B)k + k2B + kB2).

Note that the assumption ‖B‖ ≤ 1
2 allows us to set η = Θ(‖B‖) and still have [λmin(B) −

η, λmax(B) + η] ⊆ [−1, 1], so we can apply the uniform approximation bound of [FMMS16]. If we
apply Theorem 14 to B = A(A + λI)−1 − 1

2I for PSD A to compute the step function at λ, the
assumption ‖B‖ ≤ 1/2 holds.

Comparision with prior work

[AZL17] shows how to directly apply a polynomial with degree O(γ−1 log(1/ǫγ)) which approxi-
mates a softened sign function. Furthermore, this application can be made stable using the stable
recurrence for Chebyshev polynomial computation, and thus matches Theorem 14. Both [FMMS16]
and [AZL17] acknowledge Lanczos as a standard method for applying matrix sign functions, but
avoid the method due to the lack of a complete theory for its approximation quality. Theorem
14 demonstrates that end-to-end runtime bounds can in fact be achieved for the Lanczos method,
matching the state-of-the-art given in [AZL17].

8.2 Matrix exponential approximation

We next consider the matrix exponential, which is applied widely in numerical computation, the-
oretical computer science, and machine learning. For example, computing exp(−A)x for a PSD
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A is an important step in the matrix multiplicative weights method for semidefinite programming
[AHK05, Kal07] and in the balanced separator algorithm of [OSV12]. When A is a graph adja-
cency matrix, tr(exp(A)) is known as the Estrada index. As in the case of the sign function, its
value can be estimated to (1± ǫ) multiplicative error with probability 1− δ if exp(A) is applied to
O(log(1/δ)ǫ−2) random vectors [HMAS17].

Approximating the matrix exponential, including via the Lanczos method [Saa92, DGK98], has
been widely studied – see [ML03] for a review. Here we use our results to give general end-to-end
runtime bounds for this problem in finite precision, which as far as we know are state-of-the-art.

Approximation of exp(A) for general A

We can apply Theorem 1 directly to the matrix exponential. exp(x) can be uniformly approximated
up to error ǫ for x ∈ [a, b] with a truncated Taylor series expansion at (b + a)/2 with degree
k = O((b − a) + log(eb+a/ǫ)) (see e.g. Lemma 7.5 of [OSV12] with δ set to δ = ǫ · e−(b+a)/2).
Applying Theorem 1 with η = ‖A‖ we have:

Theorem 15 (General matrix exponential approximation). Given symmetric A ∈ R
n×n, x ∈ R

n,

and ǫ ≤ 1, let B = log
(
max(n,‖A‖)

ǫ

)
. If Algorithm 1 is run with f(x) = exp(x) for k = O(‖A‖ +

log(1/ǫ)) iterations on a computer satisfying Requirements 1 and 2 for precision ǫmach = 2−Ω(B)

(e.g. a computer using Ω(B) bits of precision), it outputs y satisfying ‖ exp(A)x − y‖ ≤ ǫC‖x‖
where C = e2‖A‖. The total runtime is O(mv(A)k + k2B + kB2).

Approximation of exp(−A) for positive semidefinite A

In applications such as to the matrix multiplicative weights update method and the balanced
separator algorithm of [OSV12], we are interesting in computing exp(−A) for positive semidefinite
A. In this case a better bound is achievable. Using Theorem 7.1 of [OSV12], the linear dependence
on ‖A‖ in the iterations required for Theorem 15 can be improved to Õ(

√
‖A‖). Additionally,

since −A has only non-positive eigenvalues, we can set C = O(1).
However, the runtime of Lanczos still has a Õ(k2) term. We can significantly reduce k and thus

improve this cost via the rational approximation technique used in [OSV12]. Specifically, exp(A)
can be approximated via a k = O(log(1/ǫ)) degree polynomial in (I+ 1

kA)−1. Further, our stability
results immediately imply that it suffices to compute an approximation to this inverse, using e.g.
the conjugate gradient method. Specifically we have:

Theorem 16 (Improved matrix exponential approximation). Given PSD A ∈ R
n×n, x ∈ R

n,

and ǫ < 1, let k = O(log(1/ǫ)), B = log
(
nmax(‖A‖,1)

ǫ

)
, and ǫ1 = 2−Ω(B). Let A(A,w, k, ǫ1) be

an algorithm returning z with ‖
(
I+ 1

kA
)−1

w − z‖ ≤ ǫ1‖w‖ for any w. There is an algorithm
running on a computer with Ω(B) bits of precision that makes k calls to A(A,w, k, ǫ1) and uses
O(nk + kB2) additional time to return y satisfying: ‖ exp(−A)x− y‖ ≤ ǫ‖x‖.

Theorem 16 can be compared to Theorem 6.1 of [OSV12]. It has an improved dependence
on k since the modified Lanczos algorithm used in [OSV12] employs reorthogonalization at each
iteration and thus incurs a cost of O(nk2). Additionally, [OSV12] focuses on handling error due to
the approximate application of (I+ 1

kA)−1, but assumes exact arithmetic for all other operations.
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Proof. We apply Theorem 1 with matrix B = (I + 1
kA)−1 and f(x) = e−k/x+k. We can write

B = g(A) where g(x) = 1
1+x/k and thus have f(B) = exp(−A) since f(g(x)) = e−x.

Additionally, B’s eigenvalues all fall between k
‖A‖ and 1. Set η = min( k

2‖A‖ ,
ǫ

ck3 ) ≤ ‖B‖ for

sufficiently large constant c. Then for all x ∈ [λmin(B)− η, λmax(B) + η], we can loosely bound:

|f(x)| ≤ e−k/(1+η)+k ≤ e−k/(1+1/k)+k ≤ e. (61)

By Corollary 6.9 of [OSV12], there is a degree k polynomial p∗(x) satisfying p∗(0) = 0 and:

sup
x∈(0,1]

|f(x)− p∗(x)| = O(k · 2−k). (62)

We need to bound the error of approximation on the slightly extended range [λmin(B) −
η, λmax(B) + η] ⊂ (0, 1 + η]. We do this simply by arguing that f(x) and p∗(x) cannot diverge
substantially over the range [1, 1 + η]. In this range we can bound f(x):

1 < e−k/x+k ≤ e
−k

1+ǫ/ck3
+k ≤ e

−ck4+ck4+kǫ
ck3+ǫ ≤ eǫ/(ck

2) ≤ 1 +O
( ǫ

k2

)
. (63)

Additionally, by the Markov brother’s inequality, any degree k polynomial p(x) with |p(x)| ≤ 1
for x ∈ [−1, 1] has derivative p′(x) ≤ k2 on the same range. By (62), if we set k = c log(1/ǫ) for
large enough constant c, we have supx∈(0,1] |f(x)− p∗(x)| = O

(
ǫ
k

)
. Since f(x) ≤ 1 on this range,

we thus loosely have |p∗(x)| ≤ 2 for x ∈ [0, 1]. We can then claim that p∗ changes by at most O
(
ǫ
k

)

on [1, 1+ η], which has width O
(

ǫ
k3

)
. Otherwise, p∗ would have derivative ≥ ck2 for some constant

c at some point in this range, contradicting Markov’s inequality after appropriately shifting and
scaling p∗ to have magnitude bounded by 1 on [−1, 1]. Overall, combined with (63) we have:

δk ≤ max
x∈[λmin(B)−η,λmax(B)+η]

|f(x)− p(x)| = O
( ǫ
k

)
.

Theorem 1 applies with C = e from (61), k = O(log(1/ǫ)) and η = min( k
2‖A‖ ,

ǫ
ck3

) as long as we

use Ω
(
log
(
nk‖B‖

ǫη

))
= Ω

(
log
(
nmax(‖A‖,1)

ǫ

))
bits of precision (to satisfy Requirement 1) and can

compute Bw up to error ǫ1‖w‖ for any w (to satisfy Requirement 2). Accordingly,

‖f(B)x− y‖ = ‖ exp(−A)x− y‖ ≤ ǫ‖x‖.

For the balanced separator algorithm of [OSV12], the linear system solver A(A,w, k, ǫ1) can be
implemented used a fast, near linear time Laplacian system solver. For general matrices, it can be
implemented via the conjugate gradient method. Applying Theorem 2 to B = (I + 1

kA), setting

η = λmin(B)/2 ≥ 1/2 and k = O
(
log(κ(B)/ǫ1) ·

√
κ(B)

)
ensures that CG computes y satisfying

‖
(
I+ 1

kA
)−1

w− z‖ ≤ ǫ1‖w‖ if Ω (log(nκ(B)/ǫ1)) bits of precision are used. Additionally, we can
multiply a vector by B in time mv(B) = mv(A) + n. Plugging in κ(B) ≤ 1 + ‖A‖/k gives:

Corollary 17. Given PSD A ∈ R
n×n, x ∈ R

n, and ǫ < 1, there exists an algorithm running on a

computer with B = Ω
(
log
(
nmax(‖A‖,1)

ǫ

))
bits of precision which returns y satisfying ‖ exp(−A)x−

y‖ ≤ ǫ‖x‖ in O
([

(mv(A) + n) log
(
nmax(‖A‖,1)

ǫ

)√
‖A‖

log(1/ǫ) + 1 + log2
(
nmax(‖A‖,1)

ǫ

)]
· log 1

ǫ

)
time.
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8.3 Top singular value approximation

Beyond applications to matrix functions, the Lanczos method and related Krylov subspace methods
are the most common iterative algorithms for computing approximate eigenvectors and eigenvalues
of symmetric matrices. Once Q and T are obtained by Algorithm 1 (or a variant) the Rayleigh-Ritz
method can be used to find approximate eigenpairs for A. Specifically, T’s eigenvalues are taken as
approximate eigenvalues and Qvi is taken as an approximate eigenvector for each eigenvector vi of
T. For a non-symmetric matrix B, the Lanczos method can be used to find approximate singular
vectors and values since these correspond to eigenpairs of BTB and BBT .

Substantial literature studies the accuracy of these approximations, both under exact arithmetic
and finite precision. While addressing the stability of the Rayleigh-Ritz method is beyond the
scope of this work, it turns out that, unmodified, our Theorem 1 can prove the stability of a related
algorithm for the common problem of approximating just the top singular value of a matrix. In
particular, for error parameter ∆, our goal is to find some vector u such that:

‖Bu‖
‖u‖ ≥ (1−∆)max

x

‖Bx‖
‖x‖ . (64)

Here maxx
‖Bx‖
‖x‖ = ‖B‖ = σmax(B) is B’s top singular value. In addition to being a fundamental

problem in its own right, via deflation techniques, an algorithm for approximating the top singular
vector of a matrix can also be used for the important problem of finding a nearly optimal low-rank
matrix approximation to B [AZL16].

Suppose we have B ∈ R
m×n that we can multiply on the right by a vector in mv(B) time. In

exact arithmetic a vector u satisfying (64) can be found in time (see e.g. [SV14]):

O

(
mv(B)

√
1/∆ log

n

∆
+
(√

1/∆ log
n

∆

)2)
.

Note that, unlike other commonly stated bounds for singular vector approximation with the Lanczos
method, this runtime does not have a dependence on the gaps between B’s singular values – i.e. it
does not require a sufficiently large gap to obtain high accuracy. Since the second term is typically
dominated by the first, it is an improvement over the Õ(nnz(B)/∆) gap-independent runtime
required, for example, by the standard power method.

We can use Theorem 1 to prove, to the best of our knowledge, the first rigorous gap-independent
bound for Lanczos that holds in finite precision. It essentially matches the algorithm’s exact
arithmetic runtime for singular vector approximation.

Theorem 18 (Approximating the top singular vector and value). Suppose we are given B ∈ R
m×n

and error parameter ∆ ≤ 1/2. Let q = 4
∆ log n

∆ , B = log n
∆ , and let z ∈ {−1, 1}n be chosen

randomly by selecting each entry to be 1 with probability 1/2 and −1 otherwise. If Algorithm 1
is run with f(x) = xq on BTB and input vector z for O(

√
1/∆ log n

∆) iterations on a computer

satisfying Requirement 1 and Requirement 2 with precision ǫmach = 2−Ω(B) (e.g. a computer with
Ω(B) bits of precision), then with probability ≥ 1/2, y = QTqe1 satisfies

‖By‖
‖y‖ ≥ (1−∆)max

x

‖Bx‖
‖x‖ = (1−∆)‖B‖.

y takes O(mv(B)
√

1/∆ log n
∆ +

(√
1/∆ log n

∆

)2
B +

(√
1/∆ log n

∆

)
B2) time to compute. Note

that if this randomized procedure is repeated O(log(1/δ)) times and the y maximizing ‖By‖/‖y‖ is
selected, then it will satisfy the guarantee with probability (1− δ).
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Before applying our results on function approximation under finite precision, to prove the the-
orem we first need to argue that, if computed exactly, ŷ =

(
BTB

)q
z provides a good approximate

top eigenvector. Doing so amounts to a standard analysis of the power method with a random
starting vector, which we include below:

Lemma 19 (Power method). For any B ∈ R
m×n, z ∈ {−1, 1}n a random sign vector as described

in Theorem 18, ∆ ≤ 1/2, and q = 4
∆ log n

∆ , with probability ≥ 1/2, ŷ =
(
BTB

)q
z satisfies

‖ŷ‖ ≥ ‖BTB‖q
n and:

‖Bŷ‖
‖ŷ‖ ≥ (1−∆/2)max

x

‖Bx‖
‖x‖ .

Proof. Let BTB = VΛVT be an eigendecomposition of the PSD matrix BTB. V is orthonormal
with columns v1, . . . ,vn and Λ is a positive diagonal matrix with entries λ1 ≥ λ2 ≥ . . . ≥ λn.

‖ŷ‖2 = zTVΛqVT z =
n∑

i=1

λq
i

(
zTvi

)2
and ‖Bŷ‖2 = zTVΛq+1VT z =

n∑

i=1

λq+1
i

(
zTvi

)2
.

Let λr be the smallest eigenvalue with λr ≥ (1−∆/2)λ1. Then note that ‖Bŷ‖2 =∑n
i=1 λ

q+1
i

(
zTvi

)2 ≥∑r
i=1 λ

q+1
i

(
zTvi

)2 ≥ (1−∆/2)λ1
∑r

i=1 λ
q
i

(
zTvi

)2
. It follows that:

‖Bŷ‖2
‖ŷ‖2 ≥ (1−∆/2)λ1

∑r
i=1 λ

q
i

(
zTvi

)2
∑r

i=1 λ
q
i (z

Tvi)
2 +

∑n
i=r+1 λ

q
i (z

Tvi)
2 . (65)

We want to show that
∑n

i=r+1 λ
q
i

(
zTvi

)2
is small in comparison to

∑r
i=1 λ

q
i

(
zTvi

)2
so that the

entire fraction in (65) is not much smaller than 1. In fact, we will show that the first quantity is

small in comparison to λq
1

(
zTvi

)2
, which is sufficient.

Since q = 4
∆ log n

∆ and λi
λ1

< (1 −∆/2) for i ≥ r + 1, using the fact that (1 − x)1/x ≤ 1/e for
x ∈ [0, 1], it is not hard to check that:

(
λi

λ1

)q

≤ ∆2

n2
. (66)

Additionally, since z is chosen randomly, with good probability, we don’t expect that
∑n

i=r+1

(
zTvi

)2

will be much larger than
(
zTv1

)2
. Since ‖v1‖ is a unit vector, it must have some entry i with ab-

solute value ≥ 1√
n
. For any randomly drawn sign vector z, let z̄ be the same vector, but with the

sign of this ith entry flipped. Since v1’s i
th entry has magnitude ≥ 1√

n
, it holds that:

|zTv1 − z̄Tv1| ≥
2√
n
.

Accordingly, for any z, either |zTv1| or |z̄Tv1| is ≥ 1√
n
. We conclude that for a randomly drawn z,

with probability ≥ 1/2,

(
zTv1

)2 ≥ 1

n
.
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This immediately gives by our formula for ‖ŷ‖ our first claim that ‖ŷ‖ ≥ λq
1/n. Furthermore,

n∑

i=r+1

(
zTvi

)2 ≤
n∑

i=1

(
zTvi

)2
= ‖Vz‖2 = ‖z‖2 = n

so we can conclude that

(
zTv1

)2 ≥ 1

n2

n∑

i=r+1

(
zTvi

)2
. (67)

Combining (66) and (67) and noting that ∆2

n2 ≤ ∆
2n2 for ∆ ≤ 1

2 , we have that:

n∑

i=r+1

λq
i

(
zTvi

)2 ≤ n2 · ∆

2n2
λq
1

(
zTv1

)2 ≤ ∆

2

r∑

i=1

λq
i

(
zTvi

)2

Plugging into (65) , we have that

‖Bŷ‖2
‖ŷ‖2 ≥ (1−∆/2)λ1

∑r
i=1 λ

q
i

(
zTvi

)2
∑r

i=1 λ
q
i (z

Tvi)
2 + ∆

2

∑r
i=1 λ

q
i (z

Tvi)
2 ≥

1−∆/2

1 + ∆/2
λ1.

Since
√

1−∆/2
1+∆/2 ≥ (1 −∆/2), we conclude that ‖Bŷ‖

‖ŷ‖ ≥ (1 −∆/2)
√
λ1 and the lemma follows since

√
λ1 = maxx

‖Bx‖
‖x‖ .

With Lemma 19 in place, we prove our main result on approximating the top singular vector.

Proof of Theorem 18. We begin with Theorem 3.3 of [SV14], which says that for any q, there is a

polynomial p with degree k =
⌈√

2q log(2/δ)
⌉
such that:

For all x ∈ [−1, 1] |xq − p(x)| ≤ δ. (68)

Denote λmax
def
= λmax(B

TB) = ‖BTB‖. If we set η = λmax

q , after scaling, (68) shows that there

exists a degree k polynomial p′(x) satisfying:

|xq − p′(x)| ≤ [(1 + 1/q)λmax]
q · δ ≤ eδλq

max

on the range [λmin−η, λmax +η].

Set q = 4
∆ log n

∆ as in Theorem 19 and k = Θ
(
min

(√
q log(2qn/∆), q

))
= O(

√
1/∆ log n

∆).

Theorem 1 applied with A = BTB, η = λmax

q , δk = O
(

∆
n3/2k

λq
max

)
, and C = λq

max shows that a

computer with B = Ω
(
log
(
nk λmax

∆η

))
= Ω

(
log n

∆

)
bits of precision can compute y satisfying:

‖(BTB)qz− y‖ ≤ ∆λq
max

4n3/2
‖z‖ ≤ ∆λq

max

4n
, (69)

since ‖z‖ =
√
n. We note that we can multiply by BTB accurately, so Requirement 2 holds as

required by Theorem 1. Specifically, it is easy to check that if Requirement 2 holds for B with
precision 2−cB for some constant c, it holds with precision O(2−cB) for BTB.
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Combining (69) with the bound of Theorem 19 that ‖ŷ‖ ≥ λq
max

n we first have:

‖ŷ − y‖ ≤ ∆

4
‖ŷ‖.

It follows that

‖By‖
‖y‖ ≥

‖Bŷ‖ − ∆
4 ‖B‖‖ŷ‖

(1 + ∆
4 )‖ŷ‖

≥
(
1− ∆

4

) ‖Bŷ‖
‖ŷ‖ −

∆

4
‖B‖

≥ (1−∆) ‖B‖,

where the last step follows from Theorem 19’s claim that ‖Bŷ‖
‖ŷ‖ ≥

(
1− ∆

2

)
‖B‖. This proves the

theorem, with runtime bounds following from Theorem 1.

Remark. As discussed in Section 5, computations in Algorithm 1 won’t overflow or lose accuracy
due to underflow as long as the exponent in our floating point system has at Ω(log log(knC)) bits.
This is typically a very mild assumption. However, in Theorem 18, C = λmax(B

TB)q so we need
O(log q+ log log ‖B‖) = Ω(log 1

∆) bits for our exponent. This may not be a reasonable assumption
for some computers – we might want ∆ ≈ ǫmach and in typical floating point systems fewer bits are
allocated for the exponent than for the significand. This issue can be avoided in a number of ways.
One simple approach is to instead apply f(x) = 1

λmax(T)q x
q, which also satisfies the guarantees

of Lemma 19. Doing so avoids overflow or problematic underflow in Algorithm 1 as long as we
have Ω(log log(kn)) exponent bits. It could lead to underflow when applying f(x) to T’s smaller
eigenvalues, but this won’t affect the outcome of the theorem – as discussed in Section 5 the tiny
additive error incurred from underflow when applying f(T) is swamped by multiplicative error
terms.

8.4 Generic polynomial acceleration

Our applications to the matrix step function and to approximating the top singular vector in
Sections 8.1 and 8.3 share a common approach: in both cases, Lanczos is used to apply a function
that is itself a polynomial, one that is simple to describe and evaluate, but has high degree. We then
claim that this polynomial can be approximated by a lower degree polynomial, and the number of
iterations required by Lanczos depends on this lower degree. In both cases, it is possible to improve
a degree q polynomial to degree roughly

√
q – a significant gain for the applications. To use the

common term from convex optimization, Lanczos provides a way of “accelerating” the computation
of some high degree matrix polynomials.

In fact, it turns out that any degree q polynomial with bounded coefficients in the monomial
basis (or related simple bases) can be accelerated in a similar way to our two examples. To see
this, we begin with the following result of [FMMS16]:

Lemma 20 (Polynomial Acceleration). Let p be an O(k) degree polynomial that can be written as

p(x) =
k∑

i=0

fi(x) (gi(x))
i
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where fi(x) and gi(x) are O(1) degree polynomials satisfying |fi(x)| ≤ ai and |gi(x)| ≤ 1 for all
x ∈ [−1, 1]. Then, there exists polynomial q(x) of degree O(

√
k log(A/ǫ)) where A =

∑k
i=0 ai such

that |p(x)− q(x)| ≤ ǫ for all x ∈ [−1, 1].

Setting gi(x) = x and fi(x) = ci for example, lets us accelerate any degree k polynomial
p(x) = c0+ c1x+ . . .+ ckx

k with bounded coefficients. Lemma 20 yields the following result, which
generalizes Theorems 14 and 18:

Theorem 21 (Application of Accelerated Polynomial). Consider A ∈ R
n×n with ‖A‖ ≤ 1, x ∈ R

n,
ǫ ≤ 1, and any degree O(k) polynomial p(x) which can be written as in Lemma 20. Let B = log

(
nk
ǫ

)
.

If Algorithm 1 is run with f(x) = p(x) for q = O(
√

k log(kA/ǫ)) iterations on a computer satisfying
Requirements 1 and 2 for precision ǫmach = 2−Ω(B) (e.g. a computer using Ω(B) bits of precision),
it outputs y satisfying ‖p(A)x− y‖ ≤ ǫA‖x‖. The total runtime is O(mv(A)q + q2B + qB2).

Proof. The proof follows from Theorem 1. Since p(x) can be written as in Lemma 20, it is not
hard to see that |p(x)| ≤ A for x ∈ [−1, 1]. If we set η = Θ

(
min(‖A‖, 1

k2 )
)
we can also claim that

|p(x)| = O(A) on [−1 − η, 1 + η] ⊇ [λmin(A) − η, λmax(A) + η] (we bound η ≤ ‖A‖ to satisfy the
requirement of Theorem 1). This is a consequence of the Markov Brother’s inequality. Let p(x)
have degree ck and choose η < 1

2c2k2
. Suppose, for the sake of contradiction that p(x) ≥ 2A for some

x ∈ [1, 1+η]. Then p(x) must have derivative > 2Ac2k2 somewhere in [1, x]. This would contradict
the Markov Brother’s inequality. An identical bound can be shown for the range [−1 − η,−1],
overall allowing us to set C = O(A) in applying Theorem 1.

By Lemma 20 there is an O(
√

k log(kA/ǫ)) polynomial q(x) with |p(x) − q(x)| = O(ǫ/k) for
all x ∈ [−1, 1] ⊇ [λmin(A), λmax(A)]. We need to extend this approximation guarantee to all
x ∈ [−1− η, 1 + η]. To do so, we first note that p(x)− q(x) is an O(k) degree polynomial – we can
assume that q has degree at most that of p or else we can just set q(x) = p(x) achieving δk = 0. Then,
again by using the Markov brother’s inequality, since η = O(1/k2) we have |p(x)− q(x)| = O(ǫ/k)
for all x ∈ [−1− η, 1 + η]. We can thus apply Theorem 1 with δk = O(ǫ/k), giving the result.

9 Conclusions and future work

In this work we study the stability of the Lanczos method for approximating general matrix func-
tions and solving positive definite linear systems. We show that the method’s performance for
general function approximation in finite arithmetic essentially matches the strongest known exact
arithmetic bounds. At the same time, we show that for linear systems, known techniques give finite
precision bounds which are much weaker than what is known in exact arithmetic.

The most obvious question we leave open is understanding if our lower bound against Green-
baum’s results for approximating A−1x in fact gives a lower bound on the number of iterations
required by the Lanczos and CG algorithms. Alternatively, it is possible that an improved analysis
could lead to stronger error bounds for finite precision Lanczos that actually match the guarantees
available in exact arithmetic. It seems likely that such an analysis would have to go beyond the view
of Lanczos as applying a single near optimal approximating polynomial, and thus could provide
significant new insight into the behavior of the algorithm.

Understanding whether finite precision Lanczos can match the performance of non-uniform
approximating polynomials is also interesting beyond the case of positive definite linear systems.
For a number of other functions, it is possible to prove stronger bounds than Theorem 6 in exact
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arithmetic. In some of these cases, including for the matrix exponential, such results can be
extended to finite precision in an analogous way to Greenbaum’s work on linear systems [GS94,
DGK98]. It would be interesting to explore the strength of these bounds for functions besides 1/x.

Finally, investigating the stability of Lanczos method for other tasks besides of the widely
studied problem of eigenvector computation would be interesting. Block variants of Lanczos, or
Lanczos with reorthogonalization, have recently been used to give state-of-the-art runtimes for low-
rank matrix approximation [RST09, MM15]. The analysis of these methods relies on the ability
of Lanczos to apply optimal approximating polynomials and understanding the stability of this
analysis is an interesting question. It has already been addressed for the closely related but slower
block power method [HP14, BDWY16].
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[GS94] Gene H. Golub and Zdeněk Strakoš. Estimates in quadratic formulas. Numerical
Algorithms, 8(2):241–268, 1994.

[GST07] A. Gil, J. Segura, and N. Temme. Numerical Methods for Special Functions. Society
for Industrial and Applied Mathematics, 2007.

[Hig02] Nicholas J. Higham. Accuracy and stability of numerical algorithms. SIAM, 2002.

36



[Hig08] Nicholas J. Higham. Functions of Matrices. Society for Industrial and Applied Math-
ematics, 2008.

[HMAS17] Insu Han, Dmitry Malioutov, Haim Avron, and Jinwoo Shin. Approximating the spec-
tral sums of large-scale matrices using stochastic Chebyshev approximations. SIAM
Journal on Scientific Computing, 2017.

[HMS15] Insu Han, Dmitry Malioutov, and Jinwoo Shin. Large-scale log-determinant computa-
tion through stochastic Chebyshev expansions. In Proceedings of the 32nd International
Conference on Machine Learning (ICML), pages 908–917, 2015.

[HP14] Moritz Hardt and Eric Price. The noisy power method: A meta algorithm with ap-
plications. In Advances in Neural Information Processing Systems 27 (NIPS), pages
2861–2869. 2014.

[HS52] Magnus R Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving
linear systems. Journal of Research of the National Bureau of Standards, 49(6), 1952.

[Hut90] Michael F. Hutchinson. A stochastic estimator of the trace of the influence matrix for
Laplacian smoothing splines. Communications in Statistics-Simulation and Computa-
tion, 19(2):433–450, 1990.

[IEE08] IEEE standard for floating-point arithmetic. IEEE Std 754-2008, pages 1–70, 2008.

[Kal07] Satyen Kale. Efficient algorithms using the multiplicative weights update method. PhD
thesis, 2007.

[Lan50] Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators. Journal of Research of the National Bureau
of Standards, 45(4), 1950.

[Mar90] A. Markov. On a question by D.I. Mendeleev. Zap. Imp. Akad. Nauk, 62, 1890.

[ML03] Cleve Moler and Charles Van Loan. Nineteen dubious ways to compute the exponential
of a matrix, twenty-five years later. SIAM Review, 45(1):3–49, 2003.

[MM15] Cameron Musco and Christopher Musco. Randomized block Krylov methods for
stronger and faster approximate singular value decomposition. In Advances in Neural
Information Processing Systems 28 (NIPS), pages 1396–1404, 2015.

[MNS+17] Cameron Musco, Praneeth Netrapalli, Aaron Sidford, Shashanka Ubaru, and David P
Woodruff. Spectrum approximation beyond fast matrix multiplication: Algorithms and
hardness. arXiv:1704.04163, 2017.
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A Stability of post-processing for Lanczos

In this section, we show that the final step in Algorithm 1, computing Qf(T)e1, can be performed
stably in Õ(k2) time since T is a k × k symmetric tridiagonal matrix. This claim relies on a
Õ(k2) time backwards stable algorithm for computing a tridiagonal eigendecomposition, which
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was developed by Gu and Eisenstat [GE95]. Given an accurate eigendecomposition of T, we can
explicitly compute an approximation to f(T) and thus to Qf(T)e1. Of course, since small error
in computing the eigendecomposition can be amplified, this technique only gives an accurate result
when f is sufficiently smooth. In particular, we will show that as long as f(x) is well approximated
by a degree k polynomial, then f(T) can be applied stably. This characterization of smoothness is
convenient because our accuracy bounds for Lanczos already depend on the degree to which f(x)
can be approximated by a polynomial.

A.1 Stable symmetric tridiagonal eigendecomposition

We first characterize the performance of Gu and Eisenstat’s divide-and-conquer eigendecomposition
algorithm for symmetric tridiagonal T. We work through the error analysis carefully here, however
we refer readers to [GE95] for a full discussion of the computations involved.

Lemma 22 (Divide-and-Conquer Algorithm of [GE95]). Given symmetric tridiagonal T ∈ R
k×k

and error parameter ǫ with ck3 log k · ǫmach ≤ ǫ ≤ 1/2 for fixed constant c, there is an algorithm
running in O(k2 log k

ǫ +k log2 k
ǫ ) time on a computer satisfying Requirements 1 and 2 with machine

precision ǫmach which outputs Ṽ ∈ R
k×k and diagonal Λ̃ ∈ R

k×k satisfying:

‖ṼΛ̃ṼT −T‖ ≤ ǫ‖T‖ and ‖ṼT Ṽ − I‖ ≤ ǫ.

Proof. The algorithm of [GE95] is recursive, partitioning T into two blocks T1 ∈ m × m and
T2 ∈ (N −m− 1)× (N −m− 1) where m = ⌊k/2⌋ such that:

T =




T1 βm+1em 0

βm+1e
T
m αm+1 βm+2e

T
1

0 βm+2e1 T2


 .

Note that αi, βj are the corresponding entries of T in the notation of Algorithm 1. LetTi = ViΛiVi

be the eigendecomposition of Ti for i = 1, 2. We can see that T = ZHZT where:

H =




αm+1 βm+1l
T
1 βm+2f

T
2

βm+1l1 Λ1 0

βm+2f2 0 Λ2cycle


 and Z =



0 V1 0

1 0 0

0 0 V2


 .

Here lT1 is the last row of V1 and fT2 is the first row of V2. H is a symmetric arrowhead matrix
and a primary contribution of [GE95] is showing that it can be eigendecomposed stably in Õ(k2)
time. Writing the eigendecomposition H = UΛUT , the eigendecomposition of T is then given by
T = ZUΛUTZT .

We now proceed with the error analysis of this method. Assume by induction that for Ti we
compute an approximate eigendecomposition ṼiΛ̃iṼ

T
i satisfying:

ṼiΛ̃iṼ
T
i = T̃i where ‖Ti − T̃i‖ ≤ δT and ‖ṼT

i Ṽi − I‖ ≤ δI . (70)

In the base case, Ti is just a single entry and so (70) holds trivially for δT = δI = 0. We define:

T̃ =




T̃1 βm+1em 0

βm+1e
T
m αm+1 βm+2e

T
1

0 βm+2e1 T̃2



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and have ‖T − T̃‖ ≤ δT by (70) since T− T̃ is block diagonal with blocks Ti − T̃i. Define:

H̃exact =




αm+1 βm+1̃l
T
1 βm+2f̃

T
2

βm+1̃l1 Λ̃1 0

βm+2f̃2 0 Λ̃2


 and Z̃ =



0 Ṽ1 0

1 0 0

0 0 Ṽ2




where l̃1 and f̃2 are the last and first rows of Ṽ1 and Ṽ2 respectively. Let H̃ = fl(H̃exact) be the
result of computing H̃exact in finite precision. By inspection we see that:

T̃− Z̃H̃exactZ̃
T =




0 βm+1(em − Ṽ1̃l1) 0

βm+1(em − Ṽ1̃l1)
T 0 βm+2(e1 − Ṽ2f̃2)

T

0 βm+2(e1 − Ṽ2f̃2) 0


 .

By our inductive assumption that ‖ṼT
i Ṽi − I‖ ≤ δI (70), we have ‖Z̃T Z̃− I‖ ≤ δI and further:

‖T̃− Z̃H̃exactZ̃
T ‖ ≤ βm+1‖em − Ṽ1̃l1‖+ βm+2‖e1 − Ṽ2f̃2‖
≤ βm+1‖Ṽ1Ṽ

T
1 − I‖‖ek‖+ βm+2‖Ṽ2Ṽ

T
2 − I‖‖e1‖

≤ δI(βm+1 + βm+2).

Then, by the triangle inequality we can loosely bound

‖T− Z̃H̃exactZ̃
T ‖ ≤ ‖T − T̃‖+ ‖T̃− Z̃H̃exactZ̃

T ‖
≤ δT + δI(βm+1 + βm+2)

≤ δT + 2δI‖T‖. (71)

Finally, using Requirement 1, H̃’s entries are within relative error ǫmach of the entries in H̃exact so

‖H̃− H̃exact‖ ≤ ‖H̃− H̃exact‖F ≤ ǫmach ‖H̃exact‖F ≤ ǫmach

√
k‖H̃exact‖. (72)

Using (71) and submultiplicativity we can obtain a loose bound on ‖H̃exact‖ of

‖H̃exact‖ ≤ ‖Z̃−1‖2 (‖T‖+ δT + 2δI‖T‖)
≤ 8‖T‖+ 4δT (73)

as long as δI ≤ 1/2 and so ‖Z̃−1‖ ≤ 2. We finally conclude that:

‖Z̃H̃exactZ̃
T − Z̃H̃Z̃T ‖ ≤ ‖Z̃‖2‖H̃exact − H̃‖ ≤ 18

√
k ǫmach ‖T‖+ 9

√
k ǫmach δT .

Combined with (71), we have that:

‖T − Z̃H̃Z̃T ‖ ≤ (1 + 9
√
k ǫmach)δT + 2δI‖T‖+ 18

√
k ǫmach ‖T‖. (74)

We now discuss the eigendecomposition of H̃. Gu and Eisenstat show that for some error
parameter ǫ1 with ǫmach ≤ ǫ1 ≤ 1

2k , it is possible to compute λ̂i satisfying

∣∣∣λ̂i − λi(H̃)
∣∣∣ ≤ ǫ1k‖H̃‖ for all i (75)
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inO(k log2(1/ǫ1)) time. To do this they assume the existence of a root finder giving relative accuracy
solutions to the roots of the characteristic polynomial of H̃ (its eigenvalues). While significant work
has studied efficient root finders for these polynomials (see e.g. [BNS78]), we can just use of a simple
bisection method that converges to relative accuracy (1 ± ǫ1) in log(1/ǫ1) iterations, as it will not
significantly affect our final asymptotic runtime bounds. The second log(1/ǫ1) factor in the runtime
bound above comes from the use of the Fast Multipole Method [GR87] to evaluate the characteristic
polynomial efficiently at each iteration of the bisection method.

Gu and Eisenstat next show that given λ̂i satisfying (75), and letting Λ̂ = diag(λ̂1, ..., λ̂k), it is

possible to compute Û such that Ĥ
def
= ÛΛ̂ÛT approximates H̃ up to additive error O(ǫ1k

2‖H̃‖)
on each entry. This gives:

‖H̃− Ĥ‖ = c1ǫ1k
3‖H̃‖ (76)

for some constant c1. They further show that ‖ÛT Û− I‖ ≤ c2 ǫmach k
2 for constant c2.

Using the fast multipole method, they show how to compute Ṽ which approximates Z̃Û to
entrywise relative accuracy Θ(ǫ1) in O(k2 log(1/ǫ1)) time. Note that as long as δI ≤ 2 and ǫmach ≤
1

ck2 for sufficiently large c, then each entry (Z̃Û)(i,j) is upper bounded by a fixed constant since

these matrices are both near orthogonal. Thus Ṽ actually approximates Z̃Û up to O(ǫ1) entrywise
additive error and correspondingly ṼT Ṽ approximates ÛT Z̃T Z̃Û up to entrywise additive error
O(ǫ1k). Thus ‖ṼT Ṽ − ÛT Z̃T Z̃Û‖ = O(ǫ1k

2). This gives:

‖ṼT Ṽ− I‖ ≤ ‖ṼT Ṽ− ÛT Z̃T Z̃Û‖+ ‖ÛT Z̃T Z̃Û− I‖
≤ ‖ṼT Ṽ− ÛT Z̃T Z̃Û‖+ ‖ÛT Û− I‖+ ‖Û‖2‖Z̃T Z̃− I‖
≤ c3ǫ1k

2 + (1 + c2 ǫmach k
2)δI (77)

for some constants c2, c3. In the last step we use that ‖Û‖2 ≤ (1 + c2 ǫmach k
2), since as mentioned

‖ÛT Û− I‖ ≤ c2 ǫmach k
2.

ṼΛ̂ṼT approximates Z̃ÛΛ̂ÛT Z̃T to entrywise additive error O(ǫ1k‖Λ̂‖) = O(ǫ1k‖H̃‖) giving:

‖ṼΛ̂ṼT − Z̃ÛΛ̂ÛT Z̃T ‖ ≤ c4ǫ1k
2‖H̃‖ (78)

for some constant c4. Combining (76) and (78) with the recursive error bound (74):

‖T− ṼΛ̂ṼT ‖ ≤ ‖T − Z̃H̃Z̃T ‖+ ‖Z̃H̃Z̃T − ṼΛ̂ṼT ‖
≤ (1 + 9

√
k ǫmach)δT + 2‖T‖δI + 18

√
k ǫmach ‖T‖+ ‖Z̃(H̃− ÛΛ̂ÛT )Z̃T ‖+ ‖Z̃ÛΛ̂ÛT Z̃T − ṼΛ̂ṼT ‖

≤ (1 + 9
√
k ǫmach)δT + 2‖T‖δI + 18

√
k ǫmach ‖T‖+ c1ǫ1k

3‖H̃‖‖Z̃‖2 + c4ǫ1k
2‖H̃‖

≤ (1 + 9
√
k ǫmach +c5ǫ1k

3)δT + c6(δI + ǫ1k
3)‖T‖ (79)

for fixed constants c5, c6. In the last bound we use that ‖H̃‖ = O(‖T‖ + δT ), which follows from
combining (72) and (73) and assuming ǫmach ≤ 1√

k
. We also use that ‖Z̃‖ = O(1). Both of these

bounds hold assuming δT , δI ≤ 1/2.
Finally, over log k levels of recursion, as long as we set ǫ1 ≤ ǫ

ck3 log k
for sufficiently large c, in

the end, by (77) and (79) we will have ‖ṼT Ṽ− I‖ ≤ ǫ and ‖T− ṼΛ̂ṼT ‖ ≤ ǫ‖T‖.
Specifically, by (77), δI just grows by a c3ǫ1k

2 additive factor and a (1+c2 ǫmach k
2) multiplicative

factor at each level. Assuming ǫmach < 1
ck2 log k

, the multiplicative factor, even after compounding
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over log k levels, can be bounded by (1 + c2 ǫmach k
2)log k ≤ 2 if c is set large enough. Along with

the the setting of ǫ1, this ensures that δI ≤ 2c3ǫ
ck at each level. Thus δI ≤ ǫ if c is set large enough.

Similarly, δT grows according to (79), increasing by an additive factor of c6(δI + ǫ1k
3)‖T‖ and

multiplicative factor of (1+9
√
k ǫmach +c5ǫ1k

3). By our setting of ǫ1 and assuming ǫmach < 1
c
√
k log k

,

the multiplicative factor can be bounded by (1+ 9+c5
c log k )

log k ≤ 2 if we set c large enough. Additionally,

the additive factor can be upper bounded by c6

(
2c3ǫ
ck + ǫ

c log k

)
‖T‖ which is less than ǫ

log k‖T‖ by
any constant factor if c is set large enough. Thus, even when accounting for the multiplicative error
and summing over log k levels, we have δT ≤ ǫ‖T‖.

Our final runtime bound follows from adding the O(k2 log(1/ǫ1)) cost of computing Ṽ to the
O(k log2(1/ǫ1)) cost of computing Λ̂ and setting ǫ1 =

ǫ
ck3 log k

so log(1/ǫ1) = O(log(k/ǫ)).

A.2 Stable function application

With Lemma 22 in place we can complete the analysis of the Lanczos post processing step.

Lemma 23 (Stable Post-Processing). Suppose we are given a symmetric tridiagonal T ∈ R
k×k,

x ∈ R
k with ‖x‖ = 15, function f , η ≥ 0, and error parameter ǫ ≤ 1/2 with ck3 log k · ǫmach ≤ ǫ ≤

η
4‖T‖ for sufficiently large constant c. Define C = maxx∈[λmin(T)−η,λmax(T)+η] |f(x)| and let

δq = min
polynomial p
with degree < q

(
max

x∈[λmin(T)−η,λmax(T)+η]
|f(x)− p(x)|

)
.

There is an algorithm running in O(k2 log k
ǫ +k log2 k

ǫ ) time on a computer satisfying Requirements
1 and 2 with relative precision ǫmach which returns y satisfying:

‖f(T)x− y‖ ≤ 2δq + ǫ ·
(
8q3C‖T‖

η
+ 16C

)
.

Proof. Assume that we have Ṽ, Λ̃ satisfying the guarantees of Lemma 22 for error ǫ. Let T̃ =
ṼΛ̃ṼT and let y = fl(Ṽf(Λ̃)ṼTx) be the result of computing Ṽf(Λ̃)ṼTx in finite precision.

We introduce an orthonormal matrix V̄ such that ‖Ṽ − V̄‖ ≤ ǫ. To see that such a V̄ exists,
by the condition of Lemma 22 we can write ṼT Ṽ = I +∆ for some symmetric ∆ with ‖∆‖ ≤ ǫ.
Writing the eigendecomposition ∆ = ZSZT , we have ṼT Ṽ = Z(I+S)ZT . So for some orthonormal
matrix M, Ṽ = M(I + S)1/2ZT and thus:

Ṽ = MZT +MŜZT

where ‖Ŝ‖ ≤ ǫ. We can then define the orthonormal matrix V̄
def
= MZT and have

‖Ṽ − V̄‖ ≤ ǫ. (80)

Let T̄ = V̄Λ̃V̄T . Using Lemma 22, we have that:

‖T− T̄‖ ≤ ‖T − T̃‖+ ‖T̃− T̄‖
≤ ǫ‖T‖+ ‖ṼΛ̃ṼT − V̄Λ̃ṼT ‖+ ‖V̄Λ̃ṼT − V̄Λ̃V̄T ‖
≤ ǫ‖T‖+ (‖Ṽ‖+ 1)‖Ṽ − V̄‖‖Λ̃‖
≤ 4ǫ‖T‖.

5The theorem also holds with different constant factors when ‖x‖ = O(1). We prove it for the case when the norm
is exactly 1 because our broader analysis only applies it to truly unit norm vectors (i.e. to the basis vector e1).
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We now have by triangle inequality:

‖f(T)x− y‖ ≤ ‖f(T)x− f(T̄)x‖ + ‖f(T̄)x− y‖. (81)

The first norm is small since ‖T − T̄‖ ≤ 4ǫ‖T‖ ≤ η. Specifically, we can apply Lemma 26 in
Appendix C, which uses an argument similar to that in Lemma 9 to prove that for any p with
degree < q and |p(x)| ≤ C on [λmin(T)− η, λmax(T) + η]:

‖p(T)x− p(T̄)x‖ ≤ 2q3Cǫ‖T− T̄‖
η

≤ 8q3Cǫ‖T‖
η

.

Using triangle inequality and again that all eigenvalues of T̄ lie in [λmin(T) − 4ǫ‖T‖, λmax(T) +
4ǫ‖T‖] and thus in [λmin(T)− η, λmax(T) + η] by our assumption that ǫ ≤ η

4‖T‖ gives:

‖f(T)x− f(T̄)x‖ ≤ ‖f(T)x− p(T)x‖+ ‖f(T̄)x− p(T̄)x‖ + ‖p(T)x− p(T̄)x‖

≤ 2δq +
8q3Cǫ‖T‖

η
. (82)

We now bound the second term of (81): ‖f(T̄)x − y‖. First note that, but our assumption in
Section 5 that f can be computed to relative error ǫmach,

‖fl(f(Λ̃))− f(Λ̃)‖ ≤ ǫmach ‖f(Λ̃)‖ ≤ ǫmach C (83)

since Λ̃’s eigenvalues lie in [λmin(T) − η, λmax(T) + η]. Additionally, by Requirement 2, for any
square matrix B and vector w, there is some matrix EB such that:

fl(Bw) = (B+E)w and ‖E‖ ≤ 2k3/2 ǫmach ‖B‖. (84)

Accordingly, we can simply write y = fl(Ṽf(Λ̃)ṼTx) as:

y =
(
V̄ +E1

) (
f(Λ̃) +E2

) (
V̄T +E3

)
x.

We can show that ‖E1‖ and ‖E3‖ are upper bounded by ǫ+ 4k3/2 ǫmach using (80), (84), and the
loose bound ‖Ṽ‖ ≤ 2. We can show that ‖E2‖ is upper bounded by 4 ǫmach Ck3/2 using (83) and
(84). Since 4 ǫmach k

3/2 ≤ ǫ, ‖E1‖, ‖E3‖ ≤ 2ǫ and ‖E2‖ ≤ ǫC. Using that ǫ ≤ 1/2, it follows that:

‖f(T̄)x− y‖ = ‖V̄f(Λ̃)V̄Tx− y‖
≤ ‖E1‖(C + ǫC)(1 + 2ǫ) + ‖E3‖(C + ǫC)(1 + 2ǫ) + ‖E2‖(1 + 2ǫ)2

≤ 16ǫC.

Plugging this bound and (82) into (81) gives the lemma.

B Tighter results for linear systems

In this section we discuss how bounds on function approximation via Lanczos can be improved for
the special case of f(A) = A−1 when A is positive definite, both in exact arithmetic and finite
precision. In particular, we provide a short proof of the exact arithmetic bound presented in (3)
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and discuss Greenbaum’s analogous result for finite precision conjugate gradient (Theorem 2) in
full detail. Ultimately, our lower bound in Section 7 shows that, while Theorem 2 is a natural
extension of (3) to finite precision, it actually gives much weaker iteration bounds.

One topic which we do not discuss in depth is that, besides tighter approximation bounds, the
computational cost of the Lanczos method can be somewhat improved when solving linear systems.
Specifically, it is possible to compute the approximation y = ‖x‖QT−1e1 “on-the-fly”, without
explicitly storing Q or T. While this does not improve on the asymptotic runtime complexity of
Algorithm 1, it improves the space complexity from O(kn) to simply order O(n) .

Such space-optimized methods yield the popular conjugate gradient algorithm (CG) and its
relatives. In fact, Greenbaum’s analysis applies to a variant of CG (Algorithm 2). Like all vari-
ants, it computes an approximation to A−1x that, at least in exact arithmetic, is equivalent to
‖x‖QT−1e1, the approximation obtained from the Lanczos method (Algorithm 1). The finite pre-
cision behavior of Greenbaum’s conjugate gradient implementation is also very similar to the finite
precision behavior of the Lanczos method we study. In fact, her work is based on the same basic
results of Paige that we depend on in Section 6.

B.1 Linear systems in exact arithmetic

We begin by proving (3), showing that the approximation quality of Lanczos in exact arithmetic
(Theorem 6) can be improved when our goal is to approximate A−1x for positive definite A. It is
not hard to see that an identical bound holds when A is positive semidefinite (i.e. may be singular)
and f(A) = A+ is the pseudoinverse. That is, f(x) = 1/x for x > 0 and 0 for x = 0. However, we
restrict our attention to full rank matrices for simplicity, and since it is for these matrices which
Greenbaum’s finite precision bounds hold.

Theorem 24 – Exact Arithmetic (Approximate Application of A−1). Suppose Q ∈ R
n×k,

T ∈ R
k×k, βk+1, and qk+1 are computed by the Lanczos algorithm (Algorithm 1), run with exact

arithmetic on positive definite A ∈ R
n×n and x ∈ R

n for k ≤ n iterations. Let

δ̄k = min
polynomial p
w/ degree < k

(
max

x∈{λ1(A),λ2(A),...,λn(A)}
|1/x− p(x)|

)
.

Then if we approximate A−1x by yk = ‖x‖QT−1e1, we are guaranteed that:

‖A−1x− yk‖ ≤
√

κ(A)δ̄k‖x‖, (85)

where κ(A) is the condition number λmax(A)/λmin(A).

Proof. LetA = VΛVT beA’s eigendecomposition. LetA1/2 = VΛ1/2VT andA−1/2 = VΛ−1/2VT .
Since A is positive semidefinite, Λ has no negative entries, so both of these matrices are real. Recall
that q1 = x/‖x‖ and consider the minimization problem:

y∗ = argmin
y

‖A−1/2q1 −A1/2Qy‖.

This is a standard linear regression problem and is solved by

y∗ =
(
QTAQ

)−1
(
QTA1/2

)
A−1/2x =

(
QTAQ

)−1
QTq1.

44



From Claim 5 we have that QTAQ = T and that q1 is orthogonal to all other columns in Q. Thus,

y∗ = T−1e1.

Since p(A)q1 can be written as Qy for any polynomial p with degree < k, it follows that

‖A−1/2q1 −A1/2QT−1e1‖ ≤ min
polynomial p
w/ degree < k

‖A−1/2q1 −A1/2p(A)q1‖. (86)

As an aside, if we scale by ‖x‖ and define the A-norm ‖v‖A def
= vTAv, then this can be rewritten:

‖A−1x−
(
‖x‖QT−1e1

)
‖A ≤ min

polynomial p
w/ degree < k

‖A−1x− p(A)x‖A.

So, (86) is equivalent to the perhaps more familiar statement that, “the Lanczos approximation to
A−1x is optimal with respect to the A-norm amongst all degree < k matrix polynomials p(A)x.”
Returning to (86),

‖A−1/2q1 −A1/2QT−1e1‖ = ‖A1/2
(
A−1q1 −QT−1e1

)
‖

≥
√

λmin(A)‖A−1q1 −QT−1e1‖. (87)

Additionally,

‖A−1/2q1 −A1/2p(A)q1‖ = ‖A1/2
(
A−1q1 − p(A)q1

)
‖

≤
√

λmax(A)‖A−1q1 − p(A)q1‖. (88)

Plugging (87) and (88) into (86), we see that

‖A−1q1 −QT−1e1‖ ≤
√

κ(A) min
polynomial p
w/ degree < k

‖A−1q1 − p(A)q1‖

≤
√

κ(A) min
polynomial p
w/ degree < k

(
max

x∈{λ1(A),...,λn(A)}
|1/x− p(x)|

)
.

Theorem 24 follows from scaling both sides by ‖x‖.

B.2 Linear systems in finite precision: Greenbaum’s Analysis

As discussed in the Section 2.2, Greenbaum proves a natural extension of Theorem 24 for finite
precision computations in [Gre89]. She studies a standard implementation of the conjugate gradient
method, included here as Algorithm 2. This method only requires O(n) space, in contrast to the
O(nk) space required by the more general Lanczos method.

Although it’s not computed explicitly, just as in the Lanczos algorithm, the changing coefficients
α and β generated by Algorithm 2 can be used to form a tridiagonal matrix T. Furthermore, since
each β shows how the norm of the residual r = b −Ay decreases over time, T’s entries uniquely
determine the error of the conjugate gradient iteration at any step k.
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Algorithm 2 Conjugate Gradient Method

input: positive semidefinite A ∈ R
n×n, # of iterations k, vector x ∈ R

n

output: vector y ∈ R
n that approximates A−1x

1: y = 0, r = b, p = b

2: for i ∈ 1, . . . , k do

3: α← ‖r‖/〈r,Ap〉
4: y← y + αp
5: rnew ← r− αAp

6: β ← −‖rnew‖/‖r‖
7: if β == 0 then

8: break loop
9: end if

10: p← rnew − βp
11: r← rnew
12: end for

13: return y

At a high level, Greenbaum shows that the T produced by a finite precision CG implementation
is equivalent to the T that would be formed by a running CG on a larger matrix, Ā, who’s
eigenvalues all lie in small intervals around the eigenvalues of A. She can thus characterize the
performance of CG in finite precision on A by the performance of CG in exact arithmetic on Ā.
In particular, Theorem 3 in [Gre89] gives:

Theorem 25 (Theorem 3 in [Gre89], simplified). Let y be the output of Algorithm 2 run for k itera-

tions on positive definite A ∈ R
n×n and x ∈ R

n, with computations performed with Ω
(
log nk(‖A‖+1)

min(η,λmin(A))

)

bits of precision. Let ∆ = min(η, λmin(A)/5) There exists a matrix Ā who’s eigenvalues all lie in⋃n
i=1[λi(A)−∆, λi(A) +∆] and a vector x̄ with ‖x̄‖Ā = ‖x‖A such that, if Algorithm 2 is run for

k iterations on Ā and x̄ in exact arithmetic to produce ȳ, then:

‖A−1x− y‖A ≤ 1.2‖Ā−1x̄− ȳ‖Ā. (89)

Note that for any positive definite M, and z we define ‖z‖M def
= zTMz. Ā is positive definite

since ∆ ≤ λmin(A)/5.
Theorem 25 implies the version of Greenbaum’s results stated in Theorem 2.

Proof of Theorem 2. From our proof of Theorem 24 we have that:

‖Ā−1x̄− ȳ‖Ā ≤
√

λmax(Ā) min
polynomial p

with degree < k

(
max

x∈
⋃n

i=1[λi(A)−∆,λi(A)+∆]
|p(x)− 1/x|

)
‖x̄‖.

Additionally,

‖A−1x− y‖A ≥
√

λmin(A)‖A−1x− y‖.
Since ∆ ≤ λmin(A)/5, λmax(Ā) ≤ 1.2λmax(A). Accordingly, (89) simplifies to

‖A−1x− yA‖ ≤ 1.44
√

κ(A) min
polynomial p

with degree < k

(
max

x∈
⋃n

i=1[λi(A)−∆,λi(A)+∆]
|p(x)− 1/x|

)
‖x̄‖. (90)
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Finally,

‖x̄‖ ≤
√

1

λmin(Ā)
‖x̄‖Ā =

√
1

λmin(Ā)
‖x‖A ≤

√
λmax A

λmin(Ā)
‖x‖ ≤ 1.25

√
κ(A)‖x‖.

Plugging in (90) yields Theorem 2.

C General polynomial perturbation bounds

Here we prove that bounded polynomials are generally stable under small perturbations of the
input matrix A, even if these perturbations are asymmetric. This result is used in proving Lemma
23, which guarantees that the final step in Algorithm 1 can be performed stably in finite precision.
We start by providing the natural definition of matrix polynomials for asymmetric matrices:

Definition 2 (Matrix Polynomial). For a degree q univariate polynomial p(x) = c0+c1x+. . .+cqx
q,

for any square (not necessarily symmetric) matrix M we define the matrix polynomial p(M) as:

p(M)
def
= c0I+ c1M+ c2M

2 + . . .+ cqM
q.

When M is real symmetric the definition is equivalent to Defintion 1. If M can be diagonalized as
M = VΛVT , p(M) = Vp(Λ)VT , where p(Λ) applies p to each eigenvalue on the diagonal of Λ.

We can now prove the following result, which is similar to Lemma 9, but a bit simpler since we
have an explicit expression for the additive error on A.

Lemma 26. Given symmetric A ∈ R
n×n, E ∈ R

n×n, x with ‖x‖ = 1, and η ≥ ‖E‖ if p is a
polynomial with degree < k and |p(x)| ≤ C for all x ∈ [λmin(A)− η, λmax(A) + η] then:

‖p(A−E)x− p(A)x‖ ≤ 2k3C

η
‖E‖. (91)

This results again follows by writing p in the Chebyshev basis. Letting Ti be the i
th Chebyshev

polynomial of the first kind (see definition in (20)), define as in Lemma 9 rmax = λmax +η, rmin =
λmin−η, and:

δ =
2

rmax− rmin
and T i(x) = Ti (δ(x − rmin)− 1) . (92)

In this way, we have T (rmin) = T (−1) and T (rmax) = T (1).

Lemma 27. Given symmetric A ∈ R
n×n, E ∈ R

n×n, x with ‖x‖ = 1, and η ≥ ‖E‖, for all i < k,

‖T i(A−E)x− T i(A)x‖ ≤ 2i2

η
‖E‖. (93)

Proof. Define: Ā
def
= δ(A − rmin I)− I so (93) is equivalent to:

‖Ti(Ā−δE)x− Ti(Ā)x‖ ≤ 2i2

rmax− rmin
‖E‖. (94)
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We use the following notation, mirroring that of Lemma 10:

ti
def
= Ti(Ā)x, t̃i

def
= Ti(Ā+δE)x,

di
def
= ti − t̃i, ξi

def
= δEt̃i−1.

Obtaining (94) requires showing ‖di‖ ≤ 2i2‖E‖
rmax − rmin

. From the Chebyshev recurrence (20) for all
i ≥ 2:

di =
(
2 Ā ti−1 − ti−2

)
−
(
2
(
Ā+δE

)
t̃i−1 − t̃i−2

)

= 2ξi +
(
2 Ā di−1 − di−2

)
. (95)

Let Ui be the ith Chebyshevy polynomial of the second kind (see definition in (25)). Using the
same argument as used to show (26) in the proof of Lemma 9 we have, for any i ≥ 0,

di = Ui−1(Ā)ξ1 + 2

i∑

j=2

Ui−j(Ā)ξj . (96)

where for convenience we define Uk(x) = 0 for any k < 0. It follows that:

‖di‖ ≤ 2
i∑

j=1

‖Ui−j(Ā)‖‖ξj‖.

Since all of Ā’s eigenvalues lie in [−1, 1] and for values in this range Uk(x) ≤ k + 1 [GST07]:

‖di‖ ≤ 2
i∑

j=1

(i− j + 1)‖ξj‖ ≤ 2
i∑

j=1

i‖ξj‖. (97)

We finally bound ‖ξj‖ = δEt̃j−1 by:

‖ξj‖ ≤ δ‖E‖‖Tj−1(Ā−δE)‖. (98)

By our requirement that η ≥ ‖E‖, Ā−δE = δ (A−E− rmin I)− I is a symmetric matrix with all
eigenvalues in [−1, 1]. Therefore,

∥∥Tj−1(Ā−δE)
∥∥ ≤ max

x∈[−1,1]
|Tj−1(x)| ≤ 1. (99)

Plugging this back into (98), we have ‖ξj‖ ≤ δ‖E‖ and plugging into (97), ‖di‖ ≤ 4i2

rmax − rmin
‖E‖,

which gives the lemma after noting that rmax− rmin ≥ 2η.

Using Lemma 27, we can prove Lemma 26. The argument is omitted, as it is identical to the
proof of Lemma 9.
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D Potential function proof of Chebyshev polynomial optimality

Our lower bound in Section 7 (specifically Lemma 12) shows that there is a matrix A with condition
number κ, such that any polynomial which has p(0) = 1 and |p(x)| < 1/3 for x in a small range
around each of A’s eigenvalues must have degree Ω(κc) for some constant 1/5 ≤ c ≤ 1/2. We do not
carefully optimize the value of c, as any poly(κ) iteration bound demonstrates that Greenbaum’s
finite precision bound (Theorem 2) is significantly weaker than the exact arithmetic bound of (3)
(proven in Theorem 24).

Here we demonstrate that a continuous version of our potential function argument can prove
that any polynomial which is small on the entire interval [1/κ, 1] but has p(0) = 1 must have degree
Ω(
√
κ/ log κ). This matches the optimal bound achievable via the Chebyshev polynomials up to an

O(log κ). While there are many alternative proofs of this fact, we include the argument because
we believe that a more careful discretization could lead to a tighter version of Lemma 12.

Theorem 28. There exists a fixed constant c > 0 such that for any κ > 1, any polynomial p with
p(0) = 1 and |p(x)| ≤ 1/3 for all x ∈ [1/κ, 1] must have degree k ≥ c

√
κ/ log κ.

Proof. As in Section 7, we can again assume that all roots of p(x), r1, . . . , rk, are real and lie in
[1/κ, 1]. Moving a root that is outside this range to the nearest boundary of the range or taking
the real part of an imaginary root can only decrease the magnitude of p at x ∈ [1/κ, 1]. We write,
using that p(0) = 1:

g(x) = log(|p(x)|) =
k∑

i=1

log |1− x/ri|.

We want to lower bound maxx∈[1/κ,1] g(x). To do so, we first note that for any positive weight
function w(x):

max
x∈[1/κ,1]

g(x) ≥
∫ 1
1/κ w(x)g(x)dx∫ 1

1/κw(x)dx
. (100)

I.e. any weighted average lower bounds the maximum of a function. We also note that:

1

k

∫ 1
1/κw(x)g(x)dx∫ 1

1/κ w(x)dx
≥ min

r∈[1/κ,1]

∫ 1
1/κ w(x) log |1− x/r|dx

∫ 1
1/κ w(x)dx

, (101)

So we focus on bounding this second quantity. We set:

w(x) =
1

x1.5
.

Under this weighting, the denominator in (101) evaluates to:

∫ 1

1/κ

1

x1.5
dx =

−2√
x

∣∣∣∣
1

1/κ

= 2
(√

κ− 1
)
. (102)

We now consider the numerator, which we denote as N .

N =

∫ 1

1/κ

1

x1.5
log |1− x/r|dx =

∫ r

1/κ

1

x1.5
log(1− x/r)dx+

∫ 1

r

1

x1.5
log(x/r − 1)dx. (103)
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We will ultimately show that minr∈[1/κ,1] [N ] ≥ −c log κ for some fixed constant c. Then when we
divide by the denominator of 2 (

√
κ− 1) computed in (102), we see that any root makes very little

progress – just O( log κ√
κ
) – towards decreasing the weighted average of g(x). Ultimately, we will thus

require k = O(
√
κ/ log κ) roots for |p(x)| to be bounded for all x ∈ [1/κ, 1] (formally shown by

applying (101)). The first term of the split integral in (103) can be evaluated as:

∫ r

1/κ

1

x1.5
log(1− x/r)dx ≥

∫ r

0

1

x1.5
log(1− x/r)dx

= −2 log



(
1 +

√
x
r

)1/√r+1/
√
x

(
1−

√
x
r

)1/√r−1/
√
x



∣∣∣∣∣∣

r

0

= −2 log
(
22/

√
r
)
. (104)

The first inequality follows because r ≥ 1
κ . The second term can be evaluated as:

∫ 1

r

1

x1.5
log(x/r − 1)dx = −2 log



(
1 +

√
x
r

)1/√r+1/
√
x

(√
x
r − 1

)1/√r−1/
√
x



∣∣∣∣∣∣

1

r

= −2 log




(
1 +

√
1
r

)1/√r+1

(√
1
r − 1

)1/√r−1


+ 2 log

(
22/

√
r
)

≥ −2 log (8/r) + 2 log
(
22/

√
r
)

(105)

The inequality follows from noting that 1√
r
≥ 1 and

For all x ≥ 1,
(1 + x)x+1

(x− 1)x−1
≤ 8x2.

Plugging (104) and (105) in (103) we have:

N ≥ −2 log(8/r) = −O(log κ).

Returning to (100) and (101), we can combine this with (102) (and an assumption that κ ≥ 2) to
conclude that:

max
x∈[1/κ,1]

g(x) ≥ −ck log(κ)/
√
κ

for some fixed constant c > 0. Thus, since g(x)
def
= log(|p(x)|),

max
x∈[1/κ,1]

|p(x)| ≥ e−ck log(κ)/
√
κ

and it follows that for |p(x)| to be small (e.g. ≤ 1/3) for all x ∈ [1/κ, 1] we need k ≥ δ
√
κ/ log(κ)

for some fixed constant δ > 0.
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E Other omitted proofs

Claim 5 (Lanczos Output Guarantee). Run for k ≤ n iterations using exact arithmetic operations,
the Lanczos algorithm (Algorithm 1) computes Q ∈ R

n×k, an additional column vector qk+1 ∈ R
n,

a scalar βk+1, and a symmetric tridiagonal matrix T ∈ R
k×k such that:

AQ = QT+ βk+1qk+1e
T
k , (5)

and

[Q,qk+1]
T [Q,qk+1] = I. (6)

Together (5) and (6) also imply that:

λmin(T) ≥ λmin(A) and λmax(T) ≤ λmax(A). (7)

When run for k ≥ n iterations, the algorithm terminates at the nth iteration with βn+1 = 0.

Proof. (5) is not hard to check directly by examining Algorithm 1 (see [PS79] for a full exposition).
For (6), note that by Step 10 in Algorithm 1, each ‖qi‖ = 1. So we just need to show that
[q1, . . . ,qk] are mutually orthogonal.

Assume by induction that [q1, . . . ,qk−1] are mutually orthogonal. Now consider the value βk−1.
βk−1 = ‖qk−1‖ before qk−1 is normalized in Step 10. Thus by the computation of qk−1 in Steps 3-5
we have: βk−1 = qT

k−1 (Aqk−2 − βk−2qk−3 − αk−2qk−2). By the induction hypothesis, this reduces

to βk−1 =
(
qT
k−1A

)
qk−2.

The above relation should make Steps 3-5 of Algorithm 1 more clear. We set qk to equal
Aqk−1, and explicitly orthogonalize against qk−2 (Step 3) and then qk−1 (Step 4-5). So we have
qT
k qk−1 = 0 and qT

k qk−2 = 0. It remains to consider [q1, . . . ,qk−3]. For j ≥ 3, qT
k−jA lies in the

span of [q1, . . . ,qk−2] and then applying the inductive hypothesis we see that qT
k−jAqk−1 = 0. So

there is no need to explicitly orthogonalize Aqk−1 against these vectors when we generate qk. It
follows that qk is orthogonal to all vectors in [q1, . . . ,qk−1], which proves (6).

If k = n, the same argument shows that qn+1 is orthogonal to [q1, ...,qn], which implies that
qn+1 = 0 and so the loop terminates at step (7-8). We thus have βn+1qn+1e

T
n = 0 and AQ = QT.

Finally, (7) follows from the Courant-Fischer min-max principle. In particular, if we multiply
(5) on the left by QT and note from (6) that QTQ = I and QTqk+1 = 0, then as desired,

T = QTAQ.

Then since ‖Qy‖ = 1 for any unit norm y,

λmin(A) = min
x∈Rn:‖x‖=1

xTAx ≤ min
y∈Rk:‖y‖=1

yTQTAQy = λmin(T) and

λmax(A) = max
x∈Rn:‖x‖=1

xTAx ≥ max
y∈Rk:‖y‖=1

yTQTAQy = λmax(T).
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