Reusable PVS Proof Strategies for Proving Abstraction
Properties of 1/O Automata *

Sayan Mitra Myla Archer
MIT Comp. Sci. and AI Laboratory Naval Research Laboratory
32 Vassar Street Code 5546
Cambridge, MA 02139 Washington, DC 20375
mitras@csail.mit.edu archer@itd.nrl.navy.mil
Abstract

Recent modifications to PVS support a new technique for defining abstraction
properties relating automata in a clean and uniform way. This definition technique
employs specification templates that can support development of generic high level
PVS strategies that set up the standard subgoals of these abstraction proofs and
then execute the standard initial proof steps for these subgoals. In this paper,
we describe an abstraction specification technique and associated abstraction proof
strategies we are developing for I/O automata. The new strategies can be used
together with existing strategies in the TAME (Timed Automata Modeling En-
vironment) interface to PVS; thus, our new templates and strategies provide an
extension to TAME for proofs of abstraction. We illustrate how the extended set
of TAME templates and strategies can be used to prove example I/O automata
abstraction properties taken from the literature.

1 Introduction

One approach to supporting strategies in tactic-based provers such as PVS is to adhere
to specification templates that provide a uniform organization for specifications and
properties upon which strategies can rely. This approach has been used in the TAME
(Timed Automata Modeling Environment) interface to PVS [1, 2].

Until now, TAME proof support has been aimed at properties of a single automaton—
mainly state and transition invariants for (both timed and untimed) I/O automata,
though TAME does include minimal strategy support for proofs of properties of execu-
tion sequences of I/O automata. All of TAME’s proof support is aimed at supplying
“natural” proof steps that users can employ in checking high level hand proofs of prop-
erties of automata that are specified following the TAME automaton template.

One long standing goal for TAME has been to extend its proof support to include
proofs of abstraction properties, such as refinement and simulation relations, involving
two automata. This goal includes the ability to reuse established specifications and
invariants of two automata in defining and proving an abstraction relation between
them. A second goal is that the new proof support for abstraction properties should
be generic in the same way as TAME support for invariant proofs: that is, there should

*Funding for this research has been provided by ONR

be a fixed set of TAME proof steps, supported by PVS strategies, that can be applied
to proofs of abstraction properties without being tailored to a specific pair of automata.

The theory interpretation feature [10] in the latest version of PVS (PVS Version 3),
combined with some recent enhancements to PVS, makes it possible to accomplish these
goals. In previous work [8], we outlined our plan for taking advantage of these new PVS
features in specifying abstraction properties and developing uniform PVS strategies for
proofs of these properties. In this paper, we describe how specification and proofs of
abstraction relations between two I/O automata can now in fact be accomplished in
TAME, and illustrate these new capabilities on examples.

This paper is organized as follows. Section 2 reviews TAME’s support for invariant
proofs and utility of abstraction in verification of I/O automata. Section 3 discusses
the past problem with designing TAME support for abstraction proofs, and shows how
with PVS 3.2, methods similar to those used in TAME support for invariant proofs can
now be used to provide TAME support for abstraction proofs. Section 4 discusses some
verification examples from the literature along with the formalization of the relevant
abstraction properties in TAME. Section 5 presents a new TAME strategy for proving
weak refinement, and shows its usage with examples. Finally, Section 6 discusses some
related work, and Section 7 presents our conclusions and plans for future work.

2 Background

I/O Automata model. The formal model underlying TAME is the MMT timed
automaton [7], which subsumes the class of untimed I/O automata. In this paper, we
refer to MMT timed automata simply as (timed) I/O automata. The main components
of an I/O automaton are its set of states, determined by the values of a set of state
variables; its set of (usually parameterized) actions that trigger transitions; and its set
of start states. The actions are partitioned into visible and invisible actions. The visible
actions, in turn, partition into input and output actions. For systems involving timing,
a special time passage action records passage of time.

An ezecution of an I/O automaton A is an alternating sequence of states and actions
of A in which the first state is an initial state of A and each action in the sequence
transforms its predecessor state into its successor state. The trace, or externally visible
behavior of A, corresponding to a given execution « is the sequence of visible actions in
a. For timed I/O automata, there are analogous notions of timed executions and timed
traces. Further details can be found in [5, 6].

TAME support for invariant proofs. State (or transition) invariants of an I/O au-
tomaton are properties that hold for all of its reachable states (or reachable transitions).
To support proofs of invariants of an I/O automaton, TAME provides a template for
specifying a (timed or untimed) I/O automaton, a set of standard PVS theories, and a
set of strategies that embody the natural high-level steps typically needed in hand proofs
of invariants. The standard PVS theories include generic theories such as machine that
establishes the principle of induction over reachable states, and special-purpose theo-
ries that can be generated from the DATATYPE declarations in an instantiation of the
TAME automaton template. A sample of typical TAME steps for invariant proofs is
shown in Figure 1.

Proof Step TAME Strategy Use
Get base and induction cases AUTO_INDUCT Start an induction proof
and do standard initial steps
Appeal to precondition of an APPLY_SPECIFIC_PRECOND | Demonstrate need to use
action precondition
Apply the inductive hypothesis APPLY_IND_HYP Supplement AUTO_INDUCT's
to non-default argument(s) use of default arguments
Apply an auxiliary invariant APPLY_INV_LEMMA Needed in proving
lemma “non-inductive” invariants
Break down into cases based SUPPOSE Add proof comments and
on apredicate labelsto PVS' CASE
Apply “obvious’ reasoning, e.g., TRY_SIMP Finish proof branch once
propositional, equational, datatype facts have been introduced
Use afact from the mathematical APPLY_LEMMA Perform special
theory for a state variable type mathematical reasoning
Instantiate embedded quantifier INST_IN Instantiate but don’t split first
Skolemize embedded quantifier SKOLEM_IN Skolemize but don’t split first

Figure 1: A sample of TAME steps for I/O automata invariant proofs

Abstraction properties and trace inclusion for I/O automata. Quite often it
is not natural to formulate and prove a desired property P of an automaton A as an
invariant property, but is instead natural to think of P as being represented by the
behavior of another, more abstract automaton B. In this case, one can show that A
satisfies P by showing that every trace of A is a possible trace of B. Since abstraction
relations imply trace inclusion, by the careful choice of a specification automaton B for
P, the verification that P holds for A can be reduced to proving an abstraction relation
between A and B.

Possible abstraction relations between two automata include homomorphism, refine-
ment, weak refinement, forward simulation, backward simulation, and so on. Forward-
and-backward simulation relations are both sound and complete with respect to trace
inclusion of I/O automata [6], and therefore they constitute a powerful set of tools for
automata-based verification.

3 Formalizing abstraction properties for I/O automata

In this section, we describe the hurdles we encountered earlier in developing TAME
support for abstraction proofs and how we take advantage of theory interpretations and
other new PVS features in adding abstraction proof support to TAME.

Previous barriers to TAME support for abstraction proofs. Abstraction prop-
erties involve a pair of automata, and hence to express them generally, one needs a way
to represent abstract automaton objects in PVS.

The most convenient way to represent abstract automaton objects would be to make
them instances of a type automaton. But, there are barriers to doing this in PVS. An
I/O automaton in TAME is determined by instantiations of two types (actions and
states), a set of start states, and a transition relation. Abstractly, these elements can
be thought of as fields in a record, and an abstract automaton object can be thought of
as an instance of the corresponding record type. However, record fields in PVS are not
permitted to have type “type”. An alternative way to express a type of automata is to

automaton: THEORY

BEGIN
actions : TYPE+;
visible (a:actions) : bool;
states : TYPE+;
start (s:states) : bool;
enabled (a:actions, s:states) : bool;
trans (a:actions, s:states) : states;
reachable (s:states) : bool;
converts (sl, s2: states) : bool;
END automaton

Figure 2: The new TAME supporting theory automaton

use parametric polymorphism, as in [9]. However, unlike Isabelle/HOL, which was used
in [9], PVS does not support parametric polymorphism.

Because no general automaton type can be defined in PVS, I/O automaton objects
have been defined in TAME as theories obtained by instantiating the TAME automaton
template. Invariants for I/O automata are based on the definitions in these theories.

One can define an abstraction property between two automata defined by instanti-
ating the TAME template theory by creating a new template that imports the template
instantiations (together with their associated invariants), and then tailoring the details
of a definition of the abstraction property to match the details of the template instanti-
ations. However, this approach is very awkward for the user, who must tailor fine points
of complex definitions to specific cases and be particularly careful about PVS naming
conventions. It is also awkward for the strategy-writer, whose strategies would need to
make multiple probes in a standard definition structure to find specific names. Further,
this scheme relies on following a property template to permit a strategy to be reused in
different instantiations of the property.

A new design for defining and proving abstraction in TAME. With the theory
instantiation feature of PVS, together with other new PVS features, we have been able
to design support for defining abstraction relations between two I/O automata that is
both straightforward for a TAME user and clean from the point of view of the strategy
developer. This support relies on (1) a new TAME supporting theory automaton, (2)
a library of property theories, and (3) new TAME templates for stating abstraction
properties as theorems.

Figure 2 shows the theory automaton, which can be instantiated by an automaton
declaration by concretely defining the components actions, visible, states, etc. A
new PVS feature allows the use of syntax matching to automatically extract the concrete
definitions, thus simplifying the instantiation of automaton from a TAME automaton
specification. Because states and actions are both declared as TYPE+, i.e., nonempty
types, instantiating automaton results in two T'CCs (type correctness conditions) re-
quiring these types to be nonempty.

Examples of property theories for weak refinement and forward simulation are shown
in Figures 3 and 4. We are building a library of property theories which include other
commonly used abstraction relations such as refinement, backward simulation, etc.

weak_refinement[A, C : THEORY automaton,
actmap: [C.actions -> A.actioms],
r: [C.states -> A.states]] : THEORY

BEGIN

weak_refinement_base: bool =
FORALL(s_C:C.states): (C.start(s_C) => A.start(x(s_C)));

weak_refinement_step : bool =
FORALL(s_C:C.states, a_C:C.actions):
C.reachable(s_C) AND C.enabled(a_C,s_C) =>

(C.visible(a_C) =>
(A.enabled(actmap(a_C),r(s_C)) AND
r(C.trans(a_C,s_C))= A.trans(actmap(a_C),r(s_C)))) AND

(NOT C.visible(a_C) =>
((r(s_C) = r(C.trans(a_C,s_C)))
OR (r(C.trans(a_C,s_C))= A.trans(actmap(a_C),r(s_C)))))

weak_refinement: bool = weak_refinement_base & weak_refinement_step;

END weak_refinement

Figure 3: The new TAME property theory weak refinement

forward_simulation[C, A : THEORY timed_automaton,
amap: [C.actions-> A.actions],
r: [C.states, A.states -> bool]] : THEORY

BEGIN

f_simulation_base:bool = FORALL (s_C: C.states):
(C.start(s_C) => EXISTS(s_A: A.states): A.start(s_A) AND r(s_C,s_A));

f_simulation_step:bool =
FORALL (s_C,s1_C: C.statesl, s_A: A.states, a_C: A.states):
A.reachable(s_C) AND reachable(s_A) AND r(s_C,s_A) AND
A.enabled(a_C,s_C) AND s1_C = A.trans(a_C,s_C) =>
(A.visible(a_C) AND (NOT A.nu?(a_C)) =>
EXISTS (s1_A,s2_A,s3_A: A.states):
converts(s_A,s1_A) AND converts(s2_A,s3_A) AND r(si1_C,s3_A) AND
A.enabled (amap(a_C),s1_A) AND A.trans(amap(a_C),s1_A) = s2_A)
AND (A.nu?(a_C) => EXISTS (s3_A: A.states):
A.t_converts(s_A,s3_A,A.timeof(a_C)) AND r(s1_C,s3_A))
AND (NOT A.visible(a_C) => EXISTS (s3_A: A.states):
converts(s_A,s3_A) AND r(s1_C,s3_A));

forward_simulation: bool = f_simulation_base & f_simulation_step;

END forward_simulation

Figure 4: The new TAME property theory forward_simulation

A particular instance of the TAME template for stating the abstraction properties as
theorems is shown in Figure 5. This theory instantiates two copies—one for each of the
abstract and the concrete automata—of the automaton theory, defines the action and
state mappings between the two automata, and imports the relevant property theory
with all the above as parameters.

4 Examples

In this section, we illustrate with three examples how to use the theories and template
introduced in the previous section to state an abstraction property between a pair of
I/O automata as a theorem (to be proved).

tip_abstraction: THEORY
BEGIN
IMPORTING automaton

IMPORTING tip_invariants
IMPORTING tip_spec_invariants

MC : THEORY = automaton :-> tip_decls

MA : THEORY automaton :-> tip_spec_decls
amap(a_C: MC.actions): MA.actions =
CASES a_C OF

nu(t): nu(t),
add_child(e): noop,
children_known(c): noop,
ack(a): noop,
resolve_contention(r): mnoop,
root(v): root(v),
noop:noop

ENDCASES

ref(s_C: MC.states): MA.states =
(# basic := (# dome := EXISTS (v:Vertices): root(v,s_C) #),
now := now(s_C),
first := (LAMBDA(a:MA.actions): zero),
last := (LAMBDA(a:MA.actions): infinity) #)

IMPORTING weak_refinement[MA, MC, amap, ref]
tip_refinement_thm: THEOREM refinement
END tip_abstraction

Figure 5: Instantiating the weak refinement template for TIP

Leader Election Protocol. Our first exercise in using the extended templates and
strategies of TAME was to formalize a weak-refinement proof for a simple spanning-tree
based leader election protocol. Figure 5 shows our template instantiated with the au-
tomata TIP (representing the leader election protocol) and SPEC from [3]. The TAME
specifications of these two automata are the theories tip_decls and tip_spec_decls. A
set of invariants proved for TIP (both by the authors of [3] and in TAME [2]) establishes
that at any given point in the execution of the algorithm, at most one leader has been
chosen. The automaton SPEC has only one visible action (excluding the time passage
action nu): namely, root. A weak refinement from TIP to SPEC is used to establish
that all traces of TIP are included in the set of traces of SPEC, thus ensuring that the
choice of a leader—the root action—occurs at most once in any execution of TIP.

The tip_abstraction theory in Figure 5 imports the library theory weak refine-
ment (Figure 3) with four parameters. The parameters MA and MC are instantiations of
the automaton theory corresponding to the TIP and the SPEC automata; amap is a
map from the actions of TIP to the actions of SPEC, and ref is the refinement func-
tion from the states of TIP to the states of SPEC. As a result of this importing the
weak_refinement relation between TIP and SPEC(C is defined, and hence the correspond-
ing refinement theorem tip_refinement_thm can be stated.

Failure Prone Memory Component. Our second case study concerns the specifi-
cation and implementation of the memory component of a remote procedure call (RPC)

;;; Base case

{1} FORALL (s_C: tip_decls.states):
(tip_decls.start(s_C) => tip_spec_decls.start(ref(s_C)))

Figure 6: Initial base case sequent for tip_abstraction.

module taken from [11]. A failure prone memory component MEM and a reliable mem-
ory component REL_MEM are modeled as I/O automata, and the requirement is to
show that every trace of REL_MEM is a trace of MEM. The MEM and REL_MEM
automata are almost identical, except that the failure action in MFEM is absent in
REL_MEM. Owing to this similarity, the refinement function ref is a bijection and
the action map amap is an injection. As noted in [11], once again, a weak refinement
from REL_MEM to MEM, suffices to establish trace inclusion, and we state this weak
refinement property in the same way as in the previous example.

Periodic Send-Timeout Process. The final example concerns the composition of
a periodically sending process P, a timed channel C, and a timeout process T, taken
from [4]. The process P periodically sends messages, every u; time until an externally
controlled failure action occurs. C enqueues each message with a deadline for its
delivery, which is at most b time from its sending time. An enqueued message is received
by T sometime before its delivery deadline. If no message is received by T over an
interval longer than uy, then it performs a timeout action and suspects P (to be failed).
If ug > u1 + b, then T suspects P only if P has really failed. The external behavior
of the composed automaton PCT is captured by a simple abstract automaton ABS in
which a failure action is always followed by a timeout action, within us 4+ b time.
Taking failure, timeout, and time passage actions to be visible, we have proved a
forward simulation relation from PCT to ABS in PVS, thus establishing that every trace
of PCT is a trace of ABS. The forward simulation property is stated using a template
similar to that in Figure 5. The only differences are that ref is now a relation instead
of a function and the property theory imported is forward simulation from Figure 4.

5 Strategies for abstraction proofs

So far, we have used PVS to prove two weak refinement examples and one for-
ward_simulation example. For weak_refinement, we have developed an initial strategy
called PROVE_REFINEMENT. PROVE_REFINEMENT is designed to be invoked
on a theorem which, like tip refinement thm in Figure 5, asserts weak refinement.
PROVE_REFINEMENT undertakes to prove the weak-refinement theorem inductively
by exploiting its known structure. First, it splits a theorem into a base case and an induc-
tion step. Then, the induction step is further subdivided into cases for each individual
action type of the concrete automaton.

For the TIP example the base case yields the sequent in Figure 6, in which
tip_decls.start and tip_spec_decls.start are the start predicates of TIP and SPEC,
respectively. The base case is handled by skolemizing, applying PVS’s EXPAND to the
definitions of start and ref, and then performing some minor simplifications. In both
our refinement case studies, this sufficed to make the base case “trivial” (see Figure 9).

The induction step of the refinement proof is handled by the substrategy REFINE-
MENT_INDUCTION. This substrategy splits up the induction step into individual
subgoals for each of the action types in the actions datatype. Then each subgoal is
skolemized, and the definition of visible is expanded. After simplification, this gives
different sets of subgoals for visible and invisible actions. For each invisible action, a
single subgoal is generated from the condition in lines 8-9 in the weak refinement_step
definition in Figure 3. For each visible action, two new subgoals are generated from
lines 5 and 6 in weak refinement _step. For example, Figures 7 and 8 show the two
subgoals generated for the (visible) nu branch in TIP.

The (enablement) subgoal in Figure 7 is further split into subgoals for the general
(timeliness) precondition and the specific precondition of the action, respectively han-
dled by APPLY _GENERAL_PRECOND and APPLY_SPECIFIC_PRECOND, fol-
lowed by simplification. The second subgoal (congruence) is handled by expanding the
transition definition and repeatedly simplifying. This sequence of operations resolves
many simple action cases of refinement proofs. For the remaining action cases, the user
must interact with PVS, using steps such as TAME’s APPLY_INV_LEMMA, INST_IN
and SKOLEM_IN (see Figure 1), as in Figure 9 below.

Using PROVE_REFINEMENT, we have established the weak-refinement relations
in our leader election and failure-prone memory case studies. Figure 9 shows the saved
proofs, which will be better structured once PROVE_REFINEMENT is polished. In
the leader election (TIP/SPEC) example, all but the base case and the inductive goals
for the root action were resolved by the strategy automatically. The base case can be dis-
charged with TRY _SIMP. Proving the root enablement goal required using two invari-
ant properties (invariants 13 and 15 from [3]) TIP, proved earlier with TAME. The root
congruence goal required INST_IN. In the failure-prone memory (REL_MEM/MEM) ex-
ample, because of the simple relationship between REL_MEM and MEM, all but the
base case and the return action subgoals were resolved automatically by PROVE_RE-
FINEMENT, and these remaining goals were easily discharged with TRY_SIMP.

We have also proved in PVS the forward simulation relation for the periodic send-
timeout process described in the previous section, and we are currently in the process
of developing a generic TAME strategy PROVE_FWD_SIMULATION for proving for-
ward simulation. The initial steps of this strategy are similar to those in PROVE_RE-
FINEMENT: splitting the simulation theorem into base and induction cases, and then
into subcases for the individual actions. The greater complexity of the definition of for-
ward_simulation means that our ultimate PROVE_FWD_SIMULATION will be more
complex than PROVE_REFINEMENT, and that we may need to design additional
TAME proof steps to be used in completing interactive proofs of forward simulation.

6 Related work

A metatheory for I/O automata, based on which generic definitions of invariant and
abstraction properties are possible, has been developed in Isabelle by Miiller [9], who
also developed an associated verification framework. Example proofs of (e.g.) forward
simulation have been done for at least simple examples using this framework; it is not
clear to what extent uniform Isabelle tactics are employed. PVS has been used by
others to do abstraction proofs, and in fact a refinement proof for TIP and SPEC was

tip_refinement_thm.2.2
;33 Induction cases

[-1, (reachable C.prestate)]
reachable (sC_theorem)
[-2, (enabled C.action)]
enabled (nu(timeofC_action), sC_theorem)

{1, (enabled A.action)}
tip_spec_decls.enabled
(nu(timeofC_action),
(# basic :=
(# done := EXISTS (v: Vertices): root(v, sC_theorem) #),

now := now(sC_theorem),
first := (LAMBDA (a: MA.actions): zero),
last := (LAMBDA (a: MA.actions): infinity) #))

Figure 7: Initial enablement sequent for the action nu in TIP.

;33 Induction cases
[-1, (reachable C.prestate)]
reachable (sC_theorem)
[-2, (enabled C.action)]
enabled (nu(timeofC_action), sC_theorem)

{1, (congruence)}
((# basic :=
(# done:= EXISTS (v: Vertices):
root (v, trans(nu(timeofC_acton), sC_theorem)) #),
now := now(trans(nu(timeofC_action), sC_theorem)),
first := (LAMBDA (a: MA.actioms): zero),
last := (LAMBDA (a: MA.actioms): infinity) #) =
tip_spec_decls.trans (nu(timeofC_action),
(# basic :=
(# done:= EXISTS (v: Vertices):
root(v, sC_theorem) #),
now := now(sC_theorem),
first := (LAMBDA (a: MA.actiomns): zero),
last := (LAMBDA (a: MA.actioms): infinity) #)))

Figure 8: Initial congruence sequent for the action nu in 71P.

("" (prove_refinement) ("" (prove_refinement)

(("1" (try_simp)) (("1" (try_simp))
(non ("2" (try_simp))
(skolem_in "C.action enabled"" "v_1") ("3" (try_simp)))))

(apply_inv_lemma "15" "sC_1")
(inst_in "lemma_15" "rootVC_action")
(inst_in "lemma_15" "v_1" "rootVC_action")
(skolem_in "lemma_15" "e_1")
(apply_inv_lemma "13" "sC_1" "e_1"))
("3" (inst_in "C.action enabled" "rootVC_action")))

Figure 9: TAME refinement proofs for TIP/SPEC (left) and REL_MEM/MEM (right).

mechanized by Devillers et al. [3]. However, to our knowledge, no one has developed
“generic” PVS strategies to support proving abstraction properties with PVS.

7 Conclusions and future work

Currently, we have developed a reusable PVS weak refinement strategy and supporting
PVS theories, and added them to TAME. In the example weak refinement proofs we
have done so far, existing TAME strategies provide sufficient proof steps for interactively
completing the refinement proofs. We have begun the development of a reusable forward
simulation strategy.

We plan to complete the development of the forward simulation strategy and add
similar support for proving other abstraction relations using TAME. We also expect to
add further TAME steps, if needed, for (interactively) completing proofs of action cases.
Eventually, we expect to add our enhanced version of TAME to the set of tools being
developed to support specification and verification of timed I/O automata (TIOA) [4].

Acknowledgements

We thank Sam Owre and Natarajan Shankar of SRI International for adding the features
to PVS that have made our work possible.

References

[1] Myla Archer. TAME: Using PVS strategies for special-purpose theorem proving. Annals
of Math. and Artif. Intel., 29(1-4):139-181, 2000.

[2] Myla Archer, Constance Heitmeyer, and Elvinia Riccobene. Proving invariants of I/0
automata with TAME. Automated Software Engineering, 9(3):201-232, 2002.

[3] M. Devillers, D. Griffioen, J. Romijn, and F. Vaandrager. Verification of a leader elec-
tion protocol—formal methods applied to ieee 1394. Formal Methods in System Design,
16(3):307-320, June 2000.

[4] D. K. Kaynar, N. A. Lynch, R. Segala, and F. Vaandrager. The theory of timed I/O
automata. Draft. MIT Laboratory for Computer Science, Apr., 2004.

[5] N.Lynch and F. Vaandrager. Forward and backward simulations — Part I: Untimed systems.
Information and Computation, 121(2):214-233, Sept. 1995.

[6] N. Lynch and F. Vaandrager. Forward and backward simulations — Part II: Timing-based
systems. Information and Computation, 128(1):1-25, July 1996.

[7] M. Merritt, F. Modugno, and M. R. Tuttle. Time constrained automata. In J. C. M. Baeten
and J. F. Goote, eds., CONCUR’91: 2nd Intern. Conference on Concurrency Theory, vol.
527 of Lect. Notes in Comp. Sci. Springer-Verlag, 1991.

[8] S. Mitra and M. Archer. Developing strategies for specialized theorem proving about
untimed, timed, and hybrid I/O automata. In Proc. 1st Int’l Wkshop on Design and Appl.
of Strategies/Tactics in Higher Order Logics (STRATA 2003), Rome, Italy, Sept. 8 2003.

[9] Olaf Miiller. A Verification Environment for I/O Automata Based on Formalized Meta-
Theory. PhD thesis, Technische Universitdt Miinchen, Sept. 1998.

[10] S. Owre and N. Shankar. Theory Interpretations in PVS. Technical report, Computer
Science Lab., SRI Intl., Menlo Park, CA, April 2001. Draft.

[11] J. Romijn. Tackling the RPC-Memory Specification Problem with I/O automata. In Formal
Systems Specification — The RPC-Memory Specification Case, volume 1169 of Lect. Notes
in Comp. Sci., pages 437-476. Springer-Verlag, 1996.

10

