
Developing Strategies for Specialized Theorem

Proving about Untimed, Timed, and Hybrid I/O

Automata

?

Sayan Mitra

1

and Myla Archer

2

1

MIT Laboratory for Computer Science,

200 Technology Square, Cambridge, MA 02139

mitras@theory.lcs.mit.edu,

2

Code 5546, Naval Research Laboratory,

Washington, DC 20375

archer@itd.nrl.navy.mil

Abstract. In this paper we discuss how we intend to develop a special-

ized theorem proving environment for the Hybrid I/O Automata (HIOA)

framework [6] over the PVS [10] theorem prover, and some of the issues

involved. In particular, we describe approaches to using PVS that allow

and encourage the development of useful proof strategies, and note some

desired PVS features that would further help us to do so for our HIOA

environment.

1 Introduction

Interest in specialized theorem proving environments has emerged from various

application domains [3, 12, 5, 1]. A major motivation for developing such envi-

ronments is to relieve the developers and veri�cation engineers from mastering

the speci�cation language and the proof commands of a general theorem prover.

Specialized environments also help expert users of theorem provers by replacing

repetitive proof patterns with strategies, and by making it possible to generate

human readable proofs.

We plan to develop a specialized theorem proving environment to be used

with the Hybrid I/O Automata (HIOA) framework. HIOA is a very general

framework for modeling systems with both discrete and continuous behavior,

and subsumes both the timed and untimed I/O automata models. Therefore,

any strategies and metatheories for HIOA would be applicable to timed and un-

timed I/O automata as well. A theory template for specifying HIOAs has been

presented in [8]. This formalization of HIOA in PVS is similar to the formaliza-

tion of Lynch-Vaandrager (LV) timed automaton [7] in the Timed Automaton

Modeling Environment (TAME) [1]. However, important di�erences arise in the

two formalizations because LV-timed automata communicate via shared actions

alone, whereas HIOAs also communicate via shared variables. Therefore, the evo-

lution of continuous variables is modeled in TAME using time passage actions to

?

Funding for this research has been provided by ONR

1

capture cumulative changes over an interval, while in the HIOA model, the evo-

lution of the continuous state variables over time is modeled using trajectories.

Our HIOA environment must allow for these di�erences.

The rest of this paper is organized as follows: In Section 2 we discuss the

main types of proofs which will be supported by our HIOA environment and the

design issues involved in developing proof strategies for each type. In Section 3

we suggest certain new features of PVS which would aid the development of

strategies for PVS. Finally, we summarize and conclude in Section 4.

2 Supported Proof Types

Apart from simplifying direct proofs of properties, the HIOA proving environ-

ment will provide special strategies for mechanizing inductive invariant proofs

and abstraction (e.g., simulation) proofs for timed, hybrid and untimed I/O

automata. Apart from TAME, another theorem proving environment has been

developed, based on Isabelle, which mechanizes invariant proofs for I/O au-

tomata [9]. In [2], the authors present a simulation proof of a leader election

protocol in PVS. However, we have not come across any work which addresses

the development of strategies for mechanizing simulation proofs.

2.1 Inductive Proofs

The approach we intend to take for supporting inductive invariant proofs is

derived from the Timed Automaton Modeling Environment (TAME) [1]. As

in TAME, we will develop a parameterized theory machine which de�nes the

reachable states of an automaton in terms of its states, initial states, actions

and (in case of hybrid I/O automata) activities [8]. This theory will also estab-

lish the theorem that allows proving invariants inductively. We will also develop

a general theory template which can be instantiated with particular state vari-

ables and actions (optionally, activities) to obtain an automatonName decls

theory describing the automaton. The automatonName decls theory will im-

port an instance of the theory machine with the declared states and actions

as parameters. Instantiation of the theory machine de�nes reachability and the

induction theorem for the particular automaton. All the invariants and the asso-

ciated lemmas of an automaton will be collected and proved in a theory named

automatonName inv.

The advantages of this (TAME) approach are as follows: (1) It is possible to

write generic strategies which work for all automata speci�ed using the template.

The strategies for induction are tailored for the de�ned automaton template,

and are de�ned in the �le pvs-strategies. Therefore, (2) the user can use the

specialized environment from within the PVS system. Finally, (3) it is easy to

generate human readable proofs using the generic strategies, provided that the

strategies implement proof steps meaningful to humans.

A slightly di�erent approach has been taken by the developers of DisCo [5,

4], where the PVS speci�cation of the automaton is processed by a \generator"

2

to produce the proof scripts. One advantage of this approach, due to the clearly

de�ned interface between the theorem prover (PVS) and the specialized environ-

ment (DisCo), is that the generated proof scripts are relatively insensitive to the

modi�cations of the internals of theorem prover commands and data structures.

However, we would like our strategies to be directly applicable to all automata

speci�ed with our template theory. The success of our approach does depend

on access to the data-structures in the proof state maintained by PVS, and

the consistency of the behavior of PVS proof commands. We discuss the PVS

support necessary to achieve this in Section 3.

2.2 Abstraction Proofs

Given automata A and C, it is often useful for the purposes of veri�cation to

show that there exists an abstraction relation between them. Several kinds of

abstraction relation, e.g., homomorphism, re�nement, forward and backward

simulation, etc., are described in the literature, and there may also be other

such relations of interest.

Abstraction proofs can be performed directly by specifying both automata

A and C, and the abstraction relation between them, within the same PVS the-

ory. However, this approach makes it di�cult to construct generic strategies for

automating the proofs, and to use invariants which have been proved separately

for the individual automata.

Instead, we intend to make use of PVS support for theory parameters, as fol-

lows. Two parameters A and C of the type automaton theory (Figure 1) can be

passed as parameters to the theory abstraction (Figure 2), which also takes the

abstraction relation absrel and the action map actmap as parameters. The the-

automaton: THEORY

BEGIN

actions : TYPE+;

visible (a:actions) : bool;

stutter? (a:actions) : bool;

states : TYPE+;

start (s:states) : bool;

enabled (a:actions, s:states) : bool;

trans (a:actions, s:states) : states;

reachable (s:states) : bool;

equivalent (s1, s2: states) : bool;

END automaton

Fig. 1. The automaton abstract theory

3

ory abstraction, which somewhat resembles the theory group homomorphism

in [11] for setting up proofs of homomorphism between groups, de�nes the ab-

straction relations between the two interpretations of the automaton theory. To

pass actual theory parameters to group homomorphism, the various elements of

the group theories must be named: the members of the groups, identities and

composition operators, etc. But, when individual automata follow the same nam-

ing conventions as in the theory automaton, a shortcut is in principle possible in

passing actual theory parameters to abstraction: because the various elements

of the actual parameters can be matched to the formal parameters syntactically,

only the actual theory names need to be provided. A modi�cation to PVS that

will allow this shortcut is under construction at SRI.

abstraction [A, C: automaton,

actmap: [C.actions -> A.actions],

absrel: [C.states, A.states -> bool]] : THEORY

BEGIN

a_C : VAR C.actions;

a_A : VAR A.actions;

s_C, s1_C, s2_C: VAR C.states;

s_A : VAR A.states;

vis_ax: AXOIM

(FORALL a_C: C.visible(a_C) => A.visible(actmap(a_C)));

invis_ax: AXIOM

(FORALL a_C: NOT(C.visible(a_C)) => A.stutter(actmap(a_C)));

refinement_base : bool =

(FORALL s_C, s_A:

C.start(s_C) & absrel(s_C, s_A)

=> A.start(s_A));

refinement_step : bool =

(FORALL s_C, s1_C, a_C, s_A:

C.reachable(s_C) &

C.equivalent(s_C, s1_C) & C.visible(a_C) & C.enabled(a_C, s1_C) &

A.reachable(s_A) &

absrel(s1_C, s_A)

=> A.enabled(actmap(a_C), s_A) &

(EXISTS (s2_C: C.states):

C.equivalent(C.trans(a_C, s1_C), s2_C) &

absrel(s2_C, A.trans(actmap(a_C), s_A))));

refinement : bool = refinement_base & refinement_step;

END abstraction

Fig. 2. The abstraction theory

4

The actmap relation in the theory abstraction maps an action of the con-

crete automaton C to an action of the abstract automaton A. The axioms vis ax

and invis ax that indicate that the visible actions in C map to visible actions

in A and invisible (i.e., internal) actions in C map to a stutter step in A, become

proof obligations when abstraction is instantiated.

For abstraction proofs the theory abstraction assumes a role analogous

to that of the theory machine in the case of induction proofs, in that it will

de�ne the abstraction relations and also establish the theorems (e.g., concerning

trace inclusion) that are the consequences of the existence of such relations

between pairs of automata. In Figure 2, only one sort of re�nement relation has

been de�ned; in practice, the theory abstraction will de�ne all possible useful

abstraction relations between the two automata. The theory abstraction will

thus provide us with a starting point for developing generic strategies for proving

abstraction relations.

3 PVS Support

In this section we suggest some PVS features which would be helpful for writing

strategies, particularly for the above types of proofs.

1. Naming in theory interpretations. The abstraction proofs involve many

related theories, for example di�erent instances of automatonName decl,

automatonName inv, machine, etc. It is di�cult to write general strate-

gies that involve formulas or de�nitions in multiple theories: the user often

has to identify the particular theory instances explicitly. It would be useful

for strategy writers if PVS provided well documented naming conventions

and functions for determining theory instances associated with names, and

supported the automatic context-based selection by user strategies of appro-

priate theory instances for names.

2. Functions to access information in speci�cation and in proof states.

A strategy often depends on the nature of the automaton speci�cation. It

can also make choices based on the current proof state. The CLOS structure

used by PVS provides functions to access various slots of the current proof

state object. However, these are not guaranteed to be �xed, and indeed can

sometimes change dynamically. For writing strategies it would be helpful

if functions to access the de�nitions in a particular theory|for example

the invariance lemmas or the action de�nitions|and functions for accessing

parts of a sequent, formulae, etc, were provided as a part of a PVS strategy

language.

3. Documentation of implementation details in PVS proof commands.

The LISP/CLOS functions used in writing the internal PVS strategies (e.g.,

induct) are not well documented. Many of these functions, for example

typep, tc-eq, can be useful for writing new strategies. Therefore, proper

documentation of these functions would save e�ort and help new strategy

writers learn the art.

5

4. Improved support for maintaining compatibility with PVS. The ef-

fects of some basic PVS commands (e.g. SKOLEM, EXPAND) have altered over

PVS versions owing largely to changes in PVS's decision procedures and their

use in conjunction with such basic steps. As a result, strategies developed for

older versions of PVS do not always work in the newer PVS versions. There-

fore, it is highly desirable to provide a feature in future versions of PVS that

would allow strategies to invoke prover commands and get the same result

as in some speci�ed previous version. Because most changes in e�ects appear

to involve the decision procedures and their hidden uses, there should at the

very least be optional versions of proof steps that decouple them from any

use of these procedures.

4 Conclusions

Domain speci�c theorem proving is a practical means for harnessing the power

of mechanical theorem provers for system design and testing. In this paper

we have outlined design principles for the development of proof strategies of

a specialized theorem proving environment for hybrid I/O automata based on

PVS. Our aim is to make the more complex component of the environment|the

proof strategies|generic, based on a speci�c HIOA template, leaving the sim-

pler component|the speci�cation|to be written by instantiating the template.

We have outlined the support we believe would help us develop e�ective generic

strategies.

Acknowledgements

We wish to thank John Rushby and Natarajan Shankar of SRI for helpful discus-

sions about our plans for a framework supporting generic strategies for abstrac-

tion relations between automata. We thank Sam Owre and Natarajan Shankar

for undertaking enhancements to PVS that will support our plans. We also thank

Nancy Lynch of MIT for helpful discussions and her comments about the design

of the speci�cation language for HIOA.

References

1. Myla Archer. TAME: PVS Strategies for special purpose theorem proving. Annals

of Mathematics and Arti�cial Intelligence, 29(1/4), February 2001.

2. M. Devillers, D. Gri�oen, J. Romijn, and F. Vaandrager. Veri�cation of a leader

election protocol|formal methods applied to IEEE 1394. Formal Methods in Sys-

tem Design, 16(3):307{320, June 2000.

3. Urban Engberg. Reasoning in the Temporal Logic of Actions - The Design and

Implementation of an Interactive Computer System. PhD thesis, University of

Aarhus, Denmark, 1995.

4. Pertti Kellom�aki. Mechanizing invariant proofs of joint action systems. In Pro-

ceedings of the Fourth Symposium on Programming Languages and Software Tool,

pages 141{152, Visegrad, Hungary, June 1995.

6

5. Pertti Kellom�aki. Mechanical veri�cation of DisCo speci�cations. In Israeli-Finnish

Binational Symposium on Speci�cation, Development, and Veri�cation of Concur-

rent Systems, Technion, Haifa, January 1996.

6. Nancy Lynch, Roberto Segala, and Frits Vaandraager. Hybrid I/O automata. To

appear in Information and Computation. Also, Technical Report MIT-LCS-TR-

827d, MIT Laboratory for Computer Science Technical Report, Cambridge, MA

02139, January 13, 2003.

theory.lcs.mit.edu/tds/papers/Lynch/HIOA-final.ps.

7. Nancy Lynch and Frits Vaandrager. Forward and backward simulations - part ii:

Timing-based systiems. Information and Computation, 128(1):1{25, July 1996.

8. Sayan Mitra. HIOA+: Speci�cation language and proof tools for hybrid

systems, 2003. Submitted for publication, http://theory.lcs.mit.edu/ mi-

tras/research/LCPTHIOA.ps.

9. Olaf M�uller. A Veri�cation Environment for I/O Automata Based on Formalized

Meta-Theory. PhD thesis, Technische Universit�at M�unchen, Sept. 1998.

10. S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS: Combining

speci�cation, proof checking, and model checking. In Rajeev Alur and Thomas A.

Henzinger, editors, Computer-Aided Veri�cation, CAV '96, number 1102 in Lecture

Notes in Computer Science, pages 411{414, New Brunswick, NJ, July/August 1996.

Springer-Verlag.

11. S. Owre and N. Shankar. Theory interpretations in PVS. Technical report, Com-

puter Science Lab., SRI Intl., Menlo Park, CA, 2001.

12. S. Kalvala. A Formulation of TLA in Isabelle. In E.T. Schubert, P.J. Windley, and

J. Alves-Foss, editors, 8th International Workshop on Higher Order Logic Theorem

Proving and its Applications, volume 971, pages 214{228, Aspen Grove, Utah, USA,

1995. Springer-Verlag.

7

