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t: This paper presents an appli
ation of the Hybrid I/O Automaton modelling frame-work [9℄ to a realisti
 hybrid system veri�
ation problem. A supervisory pit
h 
ontroller for ensur-ing the safety of a model heli
opter system is designed and veri�ed. The supervisor periodi
allyobserves the plant state and takes over 
ontrol from the user when the latter is 
apable of takingthe plant to an unsafe state. The design of the supervisor is limited by the a
tuator bandwidth,the sensor ina

ura
ies and the sampling rates. Safety is proved by indu
tively reasoning over theexe
utions of the 
omposed system automaton. The paper also presents a set of language 
onstru
tsfor spe
ifying hybrid I/O automata.1 Introdu
tionFormal veri�
ation of hybrid systems is a hard problem. It has been shown that 
he
king rea
habil-ity for even a simple 
lass of hybrid automata is unde
idable [4℄. Algorithmi
 te
hniques have beendeveloped for several smaller sub
lasses of hybrid automata making automati
 veri�
ation possi-ble [1℄. However these sub
lasses are too weak to represent realisti
 hybrid systems. Consequentlythe languages and tools, like HyTe
h [3℄, developed for algorithmi
 methods are not adequate fordes
ribing general hybrid systems. An alternative approa
h to veri�
ation is based on the hybridInput/Output automaton (HIOA) model [10, 11, 9℄. In this approa
h the properties of a systemare derived by indu
tion on the exe
utions of the automaton model, see [6, 14, 8℄ for related earlierworks. Being a more expressive model, hybrid I/O automata enables us to model a larger 
lassof hybrid systems. Although at present there is no tool support for HIOA, we intend to extendthe IOA Toolset [2℄ for 
he
king HIOA 
ode and also build theorem prover interfa
es for HIOA topartially automate the veri�
ation pro
ess.This paper presents the veri�
ation of a supervisory 
ontroller of a model heli
opter systemusing the HIOA framework. The heli
opter system (Figure 1) is manufa
tured by Quanser [5℄. Itis driven by two rotors mounted at the two ends of its body and it is atta
hed to an arm whi
h is�xed at one end. The heli
opter 
an revolve about the �xed end of the arm and has three degrees�Funding for this resear
h has been provided by AFRL 
ontra
t F33615-01-C-18501



of freedom. The rotor inputs are either 
ontrolled by the user with a joysti
k, or by 
ontrollersdesigned by the user. Students of Aeronauti
s and Astronauti
s at MIT experiment with di�erent
ontrollers for the heli
opter. Controllers are often unsafe and damage the equipment by pit
hingthe heli
opter too high or too low. This is also a hazard for the users. Therefore the safety of thesystem is important. A supervisory 
ontroller is designed to prevent the heli
opter from rea
hingunsafe states. The supervisor periodi
ally observes the position and the velo
ity of the heli
opterand overrides the user's 
ontroller by 
onservatively estimating the worst that might happen if theuser is allowed to 
ontinue. The supervisor is limited by the a
tuator bandwidth, the samplingrate, and sensor ina

ura
ies. These fa
tors also make the veri�
ation more 
omplex.This paper also des
ribes a spe
i�
ation language for HIOA. In this language dis
rete transitionsof hybrid I/O automata are spe
i�ed in the usual pre
ondition-e�e
t style, and the 
ontinuousevolution is written in terms of 
onstrained \state-spa
e" models 
alled a
tivities. The language,to date is for manual use, it 
onstitutes a �rst step for automating the veri�
ation pro
ess usingHIOA.

Figure 1: Heli
opter model with three degrees of freedom.The 
ontributions of this paper are: (1) demonstration of a realisti
 appli
ation of the hybrid I/Oautomata based veri�
ation methodology, (2) design of the supervisory 
ontroller whi
h ensuressafety of the Quanser heli
opter system along the pit
h axis, and (3) a set of language 
onstru
tsfor spe
ifying hybrid I/O automata.In Se
tion 2 we review the hybrid I/O automata model and des
ribe the spe
i�
ation language.We present the HIOA models of the system 
omponents and the supervisor in Se
tions 3 and 4respe
tively. We present the proof for safety of the system in Se
tion 5. Con
luding remarks andfuture dire
tions for resear
h are dis
ussed in Se
tion 6.2 Hybrid I/O AutomataIn this se
tion we brie
y review the HIOA mathemati
al model. For a 
omplete dis
ussion of themodel refer to [9℄. Earlier versions of the model appeared in [10℄ and [11℄.2.1 The HIOA ModelA hybrid I/O automaton 
aptures the hybrid behavior of a system in terms of dis
rete transitionsand 
ontinuous evolution of its state variables. Let V be the set of variables of automaton A.Ea
h v 2 V is asso
iated with a (stati
) type de�ning the set of values v 
an assume. A valuationv for V is a fun
tion that asso
iates ea
h variable v 2 V to a value in type(v). A traje
tory �2



of V is de�ned as a mapping � : J ! val(V ) where J is a left 
losed interval of time. If J isright 
losed then � is said to be 
losed and its limit time is the supremum of the domain of � ,also written as �:ltime. Ea
h variable v 2 V is also asso
iated with a dynami
 type (or dtype)whi
h is the set of traje
tories that v may follow. Dynami
 types must satisfy the time-shift,subinterval and pasting 
losure properties des
ribed in [9℄. A hybrid I/O automaton A is a tuple(X;U; Y;Q;�;H; I;O;D;T ) where� X: set of internal or state variables, U : set of input variables, Y : set of output variables.The set of variables V �= U [ Y [X. The set of lo
ally 
ontrolled variables Z �= X [ Y .� H : set of internal a
tions, I : set of input a
tions , O : set of output a
tions. The set ofa
tions A �= H [ I [O.� Q � val(X) : a set of states� � � Q : non-empty set of start states.� D � Q�A�Q : set of dis
rete transitions. A transition (x; a;x0) 2 D is written in short asx a!A x0.� T : set of traje
tories for V , su
h that for every traje
tory � in T , and for every t 2 �:dom,�(t):X 2 Q. It is required that T is 
losed under pre�x, suÆx, and 
on
atenation. The�rst state �(0):X of traje
tory � is written as �:fstate. Similarly if �:dom is �nite then�:lstate = �(�:ltime):X.In addition, a hybrid I/O automaton also satis�es: (1) the input a
tion enabling property, whi
hprevents it from blo
king any input a
tion and (2) the input traje
tory enabling property, whi
hensures that it is able to a

ept any traje
tory of the input variables either by allowing time toprogress for the entire length of the traje
tory or by rea
ting with some internal a
tion before that.An exe
ution ofA is a �nite or in�nite sequen
e of a
tions and traje
tories � = �0; a1; �1; a2 : : :,where(1) ea
h �i 2 T , (2) �0:fstate 2 � and (3) if �i is not the last traje
tory in � then �i is �nite and�i:lstate ai+1! �i+1:fstate. An exe
ution is 
losed if the sequen
e is �nite and the domain of the �naltraje
tory is a �nite 
losed interval. The length of an exe
ution is the number of elements (a
tionsand traje
tories) in the sequen
e.2.2 New Addition to HIOA Stru
ture: A
tivitiesIn the earlier works [6, 14, 8℄ using the HIOA model, traje
tories of automata were spe
i�ed usingan ad ho
 mixture of integral, algebrai
 equations and English. While this form of spe
i�
ation issimple to read, it does not lend itself easily to systemati
 analysis, nor does it enfor
e a 
onsistentstyle in writing spe
i�
ations. The spe
i�
ation language [12℄ we use in this paper uses \statespa
e" representation [7℄ of the traje
tories. This representation is 
on
ise, natural, and widelyused in the analysis of dynami
al systems. To make this representation work, we have introdu
edextra stru
ture into the basi
 HIOA model of [9℄.2.2.1 AssumptionsWe assume that the time domain is R. A variable v is dis
rete if its dynami
 type is the pasting
losure of the set of 
onstant fun
tions from left 
losed intervals of time to type(v). A variable is3




ontinuous if its dynami
 type is the pasting 
losure of the set of 
ontinuous fun
tions from left
losed intervals of time to R. For any set S of variables, Sd and Sa refers to the dis
rete and
ontinuous subsets of S respe
tively. The following are the �rst two restri
tions we impose on theHIOA model:R1 Every variable is either dis
rete or 
ontinuous.R2 Lo
ally 
ontrolled dis
rete variables remain 
onstant over traje
tories, that is,�:lvaldZd = �:fvaldZd, for all � 2 T .Hen
e in this model, the evolution of the lo
ally 
ontrolled variables of a HIOA is 
ompletelyspe
i�ed by the dis
rete transitions and the evolution of the variables in Za. The state spa
erepresentation is used to spe
ify this evolution as explained in the next part.2.2.2 State ModelLet e be a real valued algebrai
 expression involving the variables in X [U . For a given traje
tory� we use �:e to denote the fun
tion with domain �:dom that gives the value of the expression e atall times during traje
tory � . Given that v is a lo
ally 
ontrolled 
ontinuous variable, a traje
tory� satis�es the algebrai
 equation v = e;if for every t 2 �:dom, � # v(t) = �:e(t).If an algebrai
 equation involves a nondeterministi
 
hoi
e su
h asv 2 [e1; e2℄;then traje
tory � satis�es the equation if for every t 2 �:dom, � # v(t) 2 [�:e1(t); �:e2(t)℄.If the expression e is integrable when viewed as a fun
tion, then � satis�es the di�erentialequation _v = e;if for every t 2 �:dom, � # v(t) = � # v(0) + R t0 �:e(t0) dt0.A state model of HIOA A 
onsists of jZaj number of algebrai
 and/or di�erential equations withexa
tly one equation having v or d(v) as its left hand side. The right hand sides of the equationsare algebrai
 expressions involving the variables in X [ U . It is also required that there are no
ir
ular relationships between the state variables.A state model spe
i�es1 the evolution of every variable v in Za from some initial valuation. Atraje
tory � satis�es a state model E if at all times in �:dom, all the variables in Za satisfy thedi�erential and algebrai
 equations in E with �(0) de�ning the initial valuations.2.2.3 A
tivitiesAn a
tivity � of HIOA A 
onsists of three 
omponents:1. An operating 
ondition P � Q,2. A stopping 
ondition P+ � Q, and3. A a state model E for A.The set of traje
tories de�ned by a
tivity � is denoted by [�℄. A traje
tory � belongs to the set [�℄if the following 
onditions hold:1By spe
i�es we mean restri
ts rather than uniquely determines. Due to possible nondeterminism in the statemodel, unique determination might be impossible. 4



� � satis�es the state model E.� For all t 2 �:dom, (� # X)(t) 2 P .� If (� # X)(t) 2 P+ for t 2 dom(�) then � is 
losed and t = �:ltime.The set of traje
tories of an automaton is de�ned to be the union of all the sets of traje
toriesspe
i�ed by the a
tivities of an automaton. Suppose automaton A has n a
tivities, namely �i fori 2 I, where I is an arbitrary index set with n elements. Then TA = [i2 I [�i℄.With the present model, as de�ned so far, it would be possible for an automaton to swit
h a
tivitiesover a single traje
tory in an exe
ution. Our �nal restri
tion on the HIOA model prevents su
hswit
hes. In other words, the swit
hing of a
tivities (or state models) is brought about only bydis
rete steps:R3 Operating 
ondition of all the a
tivities are disjoint, that is, Pi \ Pj = ; if i 6= j.It 
an be proved that a set of traje
tories spe
i�ed by a set of a
tivities respe
ting R1, R2, andR3, satisfy the pre�x, suÆx, and 
on
atenation 
losure properties.Lemma 2.1 Suppose T is a set of traje
tories spe
i�ed by the a
tivities �i, i 2 I, where I is anindex set. Then T is 
losed under pre�x, suÆx, and 
on
atenation.Proof: T = [ni=1[�i℄ is 
losed under pre�x and suÆx be
ause ea
h of the sets [�i℄ are 
losed underpre�x and suÆx. Let �0; �1; �2; : : : be a sequen
e of traje
tories in T su
h that, for ea
h non-�nalindex i, �i is 
losed and �i:lstate = �i+1:fstate. From the 
on
atenation 
losure requirement of T ,it is ne
essary that � = �0 _ �1 _ �2 : : : 2 T .Let �i 2 [�j ℄, �i+1 2 [�k℄, where j; k 2 I, therefore �i:lstate 2 Pj and �i+1:fstate 2 Pk. Let usassume for the sake of 
ontradi
tion that j 6= k. From R3, Pj \ Pk must be empty. But we have�i:lstate 2 Pj \ Pk, whi
h 
ontradi
ts our assumption. Therefore it must be the 
ase that j = k.Therefore every traje
tory in the sequen
e belongs to the same a
tivity, say [�j ℄. As [�j℄ is 
losedunder 
on
atenation, �0 _ �1 _ �2 _ : : : 2 T : 22.3 Language Constru
tsOur spe
i�
ation language is based on the above modi�ed HIOA model. Variables are de
lared byspe
ifying their names, types, dtypes, and optionally their initial valuations. For input variablesinitial valuations 
annot be spe
i�ed. Varibales de
lared with the analog keyword are 
ontinuous,else they are dis
rete. Algebrai
 expressions are written using the operators +;�; �; and n. Anexpression involving nondeterministi
 
hoi
e, su
h as v 2 [e1; e2℄, is written as:v = 
hoose[e1; e2℄The derivative of a 
ontinuous variable x is written as d(x). The dis
rete transitions are written inthe pre
ondition|e�e
t style of the IOA language [2℄. An a
tivity � : (P; P+; E) is written as:a
tivity � when P evolve E stop at P+.For automata with a single a
tivity, if the operating 
ondition P is not spe
i�ed expli
itly, then itis assumed to be the entire state spa
e of the automaton. If the stopping 
ondition P+ is omittedthen it is assumed to empty. 5
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Figure 2: Components of Heli
opter system. Continuous and dis
rete 
ommuni
ation between 
omponentsare shown by wide and thin arrows respe
tively. The internal variables are marked inside the 
ir
les. Internala
tions are shown with dased self loops.3 Spe
i�
ation of System ComponentsIn this se
tion we present a HIOA model of the heli
opter system, ex
ept for the supervisory
ontroller, whi
h is in Se
tion 4; the intera
tion among the di�erent 
omponents of the system areshown in Figure 2. A nonlinear dynami
al model of the heli
opter with three degrees of rotationalfreedom 
an be found in [13℄. In this paper we 
onsider the pit
h dynami
s, whi
h are 
riti
al forsafety. The roll and yaw e�e
ts are eliminated by making the initial 
onditions and the disturban
esalong these axes to be zero and giving identi
al input to the two rotors. The pit
h dynami
s isdes
ribed by the following di�erential equation :�� +
2 
os � = U(t); (1)where 
 is the rotational inertia and U is the net input for the pit
h axis. The Plant automatonspe
i�es the evolution of the pit
h angle (�0p) and velo
ity (�1p) of the heli
opter in terms of theinput U . We de�ne three global types RAD, RADPS and UTYPE for variables representing angle,angular velo
ity and a
tuator output respe
tively. The 
onstant �( _�) 
orresponds to the largestabsolute value of any variable representing angle angle (angular velo
ity). The state variables�0p and �1p are initialized to some value from the set U, whi
h is de�ned in equation (5). ThePlant automaton has a single a
tivity pit
h dynami
s, whi
h des
ribes the evolution of the lo
ally
ontrolled 
ontinuous variables and it operates over the entire state spa
e. The state variablesevolve a

ording to equation (1), and the output variables 
opy values from the state variables.The Plant is said to be safe at a given state if the pit
h angle �0p is within the allowed limits �minand �max. We de�ne the set of safe states as:S �= fs j �min � s:�0p � �maxg; (2)The fun
tion of the Sensor automaton is to periodi
ally 
onvey the state of Plant to the 
ontrollersas observed by the physi
al sensors. It is parameterized by the sensor errors for pit
h angle �0,and velo
ity �1, and the sampling period �. The values of the input variables �0e ; �1e , are 
opiedinto �0a and �1a respe
tively. Value of the variable now in
reases monotoni
ally with a 
onstant rateof unity along all traje
tories. The stopping 
ondition of the read a
tivity ensures that a samplea
tion o

urs after every � interval of time. The value of �0d (�1d) is nondeterministi
ally 
hosen to6



type RAD = Real su
hthat (i : RAD; jij � �)type RADPS = Real su
hthat (i : RADPS; jij � _�)type UTYPE = Real su
hthat (i : UTYPE j Umin � i � Umax)hybridautomaton Plant(
 : Real )variablesinput analog U : UTYPE,internal analog �0p : RAD, �1p : RADPS, initially (�0p; �1p) 2 U,output analog �0e : RAD, �1e : RADPStraje
toriesa
tivity pit
h dynami
sevolve d(�0p) = �1p; d(�1p) = �
2 
os �0p + U ;�0e = �0p; �1e = �1pFigure 3: HIOA spe
i�
ation of the plantbe within ��0 (��1) of �0a (�1a). This 
hoi
e models the noise or the un
ertainties in the sensingdevi
es.The UsrCtrl automaton, shown in Figure 5, models an arbitrary user 
ontroller. This automatonreads the sample a
tion as input and triggers an output 
ontrol(ud) a
tion, whi
h 
ommuni
ates theoutput Uu of the user's 
ontroller to the supervisor. The output Uu is modeled as a nondeterministi

hoi
e over the entire range of possible values. This 
aptures our assumption that the user is
apable of issuing arbitrarily bad outputs. The design of a safe supervisor for this parti
ularmodel of UsrCtrl ensures that the system is safe for any user designed 
ontroller be
ause every
ontroller must implement this spe
i�
ation of UsrCtrl. The UsrCtrl automaton does not haveany 
ontinuous variables, and so the only a
tivity void does not spe
ify any state model. Thestopping 
ondition ensures that the traje
tories terminate when ready is set to true.Next, we present the A
tuator automaton, whi
h models the a
tuator and the D/A 
onverter. Thedelay in the a
tuator response is modeled by a FIFO bu�er of (u; st) pairs, where u is a 
ommandissued from Supervisor, and the s
heduled time st is the time at whi
h u is to be delivered to theplant. A 
ommand(u;m) a
tion appends (u; timer + �a
t) to bu�er and a dequeue a
tion 
opiesbu�er.head.u to uo and removes bu�er.head. The readyd 
ag is set when a new pair is added andit is reset when a pair is removed from bu�er. The following properties of A
tuator 
an be derivedfrom its spe
i�
ation.Invariant 3.1 In any rea
hable state s of A
tuator, for all 0 � i < s:bu�er:size� 1,s:now � s:bu�er[i℄.st � s:bu�er[i+1℄.st � s.now + �a
t.Proof: The base 
ase is trivially true be
ause s:bu�er= fg. Consider a dis
rete steps of the forms �! s0. If �=sample or � =
ontrol then the invariant is preserved be
ause none of the variablesinvolved in it are 
hanged by �.Case 1: � =
ommand(u,t). From the 
ode it follows that s0:bu�er= s:bu�er+ (u; s:now+�a
t). Sin
e s0:now = s:now, it follows from the indu
tive hypothesis that s0:now �7



hybridautomaton Sensor(�0,�1, � : Real )a
tionsoutput sample ( �0d : RAD , �1d: RADPS )dis
rete transitionsoutput sample ( �0d , �1d)pre now = next time ^�0d 2 [�0a � �0; �0a + �0℄^�1d 2 [�1a � �1; �1a + �1℄e� next time := now + �traje
toriesa
tivity readevolve d(now) =1; �0a = �0e ; �1a = �1e ;stop at now = next time

variablesinput analog �0e : RAD; �1e : RADPS,internal analog �0a : RAD := 0, �1a : RADPS := 0,now: Real := 0;internal next time : Real := �
Figure 4: HIOA spe
i�
ation of the sensor and A/D 
onversion 
ir
uits0:bu�er.nexttolast.st � s0:bu�er.last.st� s0:now + �a
t. Therefore s0:now �s0:bu�er[i℄.st � s0:bu�er[i+1℄.st� s0:now + �a
t, for all 0 � i < s0:bu�er:size� 1.Case 2: � =dequeue. From the 
ode it follows that s0:bu�er= s:bu�er.tail. Sin
es0:now = s:now, it follows from the indu
tive hypothesis that s0:now � s0:bu�er[i℄.st� s0:bu�er[i+1℄.st� s0:now + �a
t, for all 0 � i < s:bu�er:size� 1.For the 
ontinuous part, 
onsider a 
losed traje
tory � of A
tuator with s = �:fsate, s0 = �:lstate,and t0 = �:ltime. From the indu
tive hypothesis it is known that s:now � s:bu�er[i℄.st �s:bu�er[i+1℄.st� s:now + �a
t, for all 0 � i < s:bu�er:size� 1. From the 
ode it follows thats0:now = s:now + t0 and s0:buffer = s:buffer. We 
laim that s0:now � s0:bu�er.head.st andtherefore the invarint holds at s0. Suppose this was not the 
ase, that is s0:now > s0:bu�er.head.st.Then there would exist t00 2 �:dom su
h that t00 < t0 and �(t00):now = s0:bu�er.head.st. Sin
e�(t00) satis�es the stopping 
ondition for a
tivity d2a therefore �:ltime = t00, whi
h 
ontradi
ts ourassumption.24 Supervisory ControllerThe supervisory 
ontroller has to ensure that the Plant state stays in the safe region S de�ned inequation (2). A se
ond requirement of the supervisor is to interfere as little as possible with theuser's 
ontroller. In the next se
tion we informally dis
uss the relevan
e of several di�erent regionsin the state spa
e, their a
tual de�nitions appear in the following se
tion.4.1 Supervisor StrategyThe design prin
iple of the supervisor is simple: allow the user to be in 
ontrol in all plant statesfrom whi
h the supervisor is guaranteed to restore the plant to a safe state; in all other states blo
kthe user's 
ontroller, perform re
overy, and return 
ontrol to the user. The issue here is to �nd8



hybridautomaton UsrCtrla
tionsinput sample ( �0d : RAD , �1d : RADPS ),output 
ontrol ( ud : UTYPE)dis
rete transitionsinput sample ( �0d , �1d )e� �0u := �0d; �1u = �1dUu := 
hoose [Umin; Umax℄;ready := truetraje
toriesa
tivity voidevolve stop at ready

variablesinternal �0u: RAD := 0 , �1u : RADPS := 0,Uu : UTYPE := 0,ready : Bool := falseoutput 
ontrol ( ud )pre (ud = Uu) ^ readye� ready := false
Figure 5: Spe
i�
ation of User's Controllerthe safe operating region U, that is, the largest set of states in whi
h the user 
an be allowed tooperate without threatening the safety of the plant.To intuitively explain our 
hoi
e of U, let us �rst examine a few 
andidate regions whi
h arenot suitable. Clearly any safe operating region has to be a subset of S. Also, S itself is not suitablebe
ause the plant has non-zero inertia and the output from the a
tuator is limited between Uminand Umax. Consider a region C � S, from whi
h all traje
tories are 
ontained in S, provided thatthe input to the plant is 
orre
t. Here 
orre
t means that the output from the a
tuator is Umin,Umax or 0, whi
hever is most suitable for the safety of the plant. The region C is still not a safeoperating region, sin
e the supervisor 
annot 
hange the output of the a
tuator sooner than �a
tdue to the delay in the bu�er. Therefore the supervisor has to look ahead into the future for atleast �a
t time, in order to ensure that the a
tuator output is 
orre
t in the worst 
ase. Let us
onsider the set of states R � C from whi
h all rea
hable states over a period of �eff are within C,with any input to the plant. From states withinR, the supervisor 
an, if required, override the user
ontroller and issue 
orre
t re
overy 
ommands su
h that all future states in the next �eff periodare within C, after whi
h the 
orre
t 
ommands of the supervisor appear at the a
tuator output,whi
h in turn ensures safety. This region R is 
lose to what we want, ex
ept that the supervisor
annot observe the plant state dire
tly and for that it has to depend on the periodi
 updates fromthe sensors whi
h are prone to errors. For a given sensed state (�0s ; �1s), the a
tual plant state is inthe set: P (s) = fs j �0s � �0 � s:�0p � �0s + �0 ^ �1s � �1 � s:�1p � �1s + �1g;Finally, taking the errors and the delay into a

ount we de�ne the region U as follows: An observedstate s is in U if starting from any state in P (s) all the rea
hable states over a � interval of timeare in R. In Se
tion 5 we shall prove that this 
hoi
e of U ensures safety of the plant.Swit
hing ba
k to the user's 
ontroller from the supervisor is delayed until the supervisor bringsthe plant state within a inner region I � U. This asymmetry in the swit
hing is introdu
ed toprevent high frequen
y 
hattering between the user and the supervisory 
ontroller.

9



type MODES = f usr, sup ghybridautomaton A
tuator(�a
t)a
tionsinput 
ommand ( u : UTYPE )internal dequeuedis
rete transitionsinput 
ommand ( u )e� bu�er + := (u; now + �a
t);readyd := truetraje
toriesa
tivity d2aevolve U = uostop at bu�er:head:st = now

variablesinternal uo : UTYPE := 0, readyd : Bool := false,bu�er : seq of (u:UTYPE, st:Real, m:MODE) := fgoutput analog U : UTYPE := 0,input analog now : Realinternal dequeuepre bu�er.head.st = now ^ readyde� uo := bu�er.head.v;bu�er := bu�er:tail;readyd := false
Figure 6: A
tuator and D/A 
onversion4.2 Regions of ControlIn the previous se
tion we des
ribed the intuitive meanings of the regions C, R, U, and I; here wepresent their de�nitions.C �= fs j �min � s:�0p � �max ^ ��(s:�0p; 0) � s:�1p � �+(s:�0p; 0)g; (3)R �= fs j �min � s:�0p � �max ^ ��(s:�0p; �a
t) � s:�1p � �+(s:�0p; �a
t)g; (4)U �= fs j �min + �0 � s:�0s � �max � �0 ^ U�(s:�0s) � s:�1s � U+(s:�0s)g; (5)I �= fs j �min + �0 � s:�0s � �max � �0 ^ I�(s:�0s) � s:�1s � I+(s:�0s)g: (6)Where the fun
tions �+ and ��, are as follows:�+(�; T ) = �UmagT + r2(
2 
os �max � Umin)(�max � � + 12UmagT 2); (7)��(�; T ) = UmagT �r2(Umax � 
2)(� � �min + 12UmagT 2); (8)Umag = Umax � Umin (9)U+(�) = ��1 + �+(� + �0; �a
t +�); (10)U�(�) = +�1 + ��(� � �0; �a
t +�); (11)I+(�) = �2�1 + �+(� + 2�0; �a
t +�); (12)I�(�) = +2�1 + ��(� � 2�0; �a
t +�): (13)From the de�nitions of �+ and �� the following properties 
an be shown,Property 1 Over the interval ��2 � � � �2 the following properties hold :10



1. �+(�; T ) and ��(�;T ) are monotoni
ally de
reasing with respe
t to �.2. �+(�; T ) is monotoni
ally de
reasing with respe
t to T . (T � 0).3. ��(�; T ) is monotoni
ally in
reasing with respe
t to T . (T � 0).4. �+(�max; T ) < 0 and ��(�min;T ) > 0 for T > 0.Using these properties, the following sequen
e of 
ontainments 
an be proved.Property 2 I � U � R � C � S
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Figure 7: Regions in the statespa
e.4.3 Supervisor AutomatonThe Supervisor automaton (Fig. 8) 
opies the observed plant state into internal variables �0s and�1s when the sample a
tion o

urs. Based on this state information the tentative output Usup tothe a
tuator is de
ided. When the 
ontrol a
tion o

urs, the supervisor 
opies the user's 
ommandinto another internal variable Uusr and sets output 
ommand Us and mode for the next � intervalbased on (�0s ; �1s) and the 
urrent value of mode. If mode is usr and the observed state is in Uthen mode remains un
hanged and Us is set to Uusr. If the present state is not in U then modeis 
hanged to sup and the Us is set to Usup. If mode = sup then Us is 
opied from Usup and themode 
hanges only when (�0s ; �1s) is in I. The 
ontrol a
tion enables the 
ommand output a
tion bysetting the ready
 
ag.5 Analysis of Heli
opter SystemIn this se
tion we verify the safety of the heli
opter system with the supervisory 
ontroller. Let Adenote the 
omposition of the Plant, Sensor, UsrCtrl, A
tuator, and the Supervisor automata.The heli
opter system is safe if all the rea
hable states of the A are 
ontained within the region S.We assume the following relationships amongst the di�erent parameters in the model:11



hybridautomaton Supervisora
tionsinput sample (�0d: RAD �1d: RADPS),input 
ontrol (ud : UTYPE),output 
ommand (ud : UTYPE, m : MODES)dis
rete transitionsinput sample (�0d, �1d)e� �0s := �0d; �1s := �1d;if �1s � I+(�0s) then Usup := Uminelseif �1s � I�(�0s) then Usup := Umax �output 
ommand (ud, m)pre ready
 ^ (ud = Us) ^m = modee� ready
 := falsetraje
toriesa
tivity supervisorwhen mode = supevolve d(rt) = 1 stop at ready


variablesinternal �0s : RAD := 0, �1s : RADPS := 0,Usup; Uusr; Us : UTYPE := 0,internal ready
 : Bool := false;mode : MODES := usrinternal analog rt : Real := 0;input 
ontrol (ud)e� Uusr := ud; ready
 := trueif mode = usr thenif (�0s ; �1s) 2 U then Us := Uusrelse Us := Usup; mode := sup �elseif mode = sup thenif (�0s ; �1s) 2 I then Us := Uusr; mode := usrelse Us := Usup � �a
tivity userwhen mode = usrevolve rt = 0 stop at ready
Figure 8: HIOA spe
i�
ation of supervisor automaton1. �min < 0 < j�minj < �max,2. Umax > 
2, Umin � 0.3. For any sample a
tion s �! s0,if s:�1s > I+(s:�0s) then, s0:�1s � I�(s0:�0s), andif s:�1s < I�(s:�0s) then, s0:�1s � I+(s0:�0s).The �rst two are fa
ts derived from the dimensions of the a
tual system. The third 
onstraintis required to prevent the supervisor from holding 
ontrol forever by jumping between the regionabove I+ and the region below I� over a single � interval of time. This 
ondition imposes 
ertainbounds on the values of �a
t;�; and Umag .All the invariants in this paper are either derived from other invariants or proved by indu
tionon the length of a 
losed exe
ution of automaton A. The indu
tion for an invariant I 
onsists of abase 
ase, and an indu
tion step. The base 
ase tests that I is satis�ed at all the initial sates ofA. The indu
tion step 
onsists of : (1) a dis
rete part|to test that for every dis
rete step s �! s0,from any rea
hable state s, preserves I, and (2) a 
ontinuous part|to test that for any 
losedtraje
tory � , starting from a rea
hable state s, I is preserved at the �:lsate. We shall use s and s0to denote the pre and the post states of dis
rete transitions, as well as fstate and lstate of 
losedtraje
tories, as will be 
lear from the 
ontext.In the remainder of this se
tion we �rst present some preliminary properties of the system, thenwe state the key invariants of A, and present the proof of safety in the user and the supervisormodes. 12



5.1 Some Preliminary PropertiesProperty 3 The dis
rete variables of A are not 
hanged over any 
losed traje
tory � .Proof: Follows from the 
ode of the 
omponents of A.Property 4 For any dis
rete step s �! s0 of automaton A, s0:�0p = s:�0p and s0:�1p = s:�1p.Proof: From the 
ode of Plant it follows that �0p and �1p are not altered by any dis
rete step.Let us de�ne a derived state variable time left at a given state s as : s:time left �= s:next time�s:now.Invariant 5.1 In every rea
hable state s of A, 0 � s:time left � �.Proof: The base 
ase holds trivially be
ause s:time left = �. For the dis
rete part of the indu
tionwe 
onsider transitions s �! s0, where � = sample a
tion. Other a
tions do not alter any of thevariables in the invariant. It follows from the 
ode that s:now = s:next time, s0:next time =s:next time+�, and s0:now = s:now. Therefore s0:next time� s0:now = �.For the 
ontinuous part, 
onsider a 
losed traje
tory � with limit time k � 0, let s:time left =t 2 [0;�℄. Let us assume for the sake of 
ontradi
tion that k > t. Then � # now(t) = � #next time(t), whi
h satis�es the stopping 
ondition of read a
tivity, therefore t = �:ltime. This
ontradi
ts our assumption, and therefore k � t. From a
tivity read , s0:time left = t � k. As0 � t � �, we have 0 � s0:time left � �. 2Corollary 5.1 The limit time of every traje
tory of A is upper bounded by �.Lemma 5.1 In any exe
ution of A, sample, 
ontrol, and 
ommand a
tions o

ur only whennow = n�, for some integer n > 0.Corollary 5.2 In every rea
hable state s, for all 0 � i < s:bu�er:size� 1,s:bu�er[i+1℄.st= s:bu�er[i℄.st + �.Lemma 5.2 In any exe
ution of A, a dequeue a
tion o

urs when timer = �a
t + n�,for every integer n � 0.Invariant 5.2 In any rea
hable state s, s.bu�er.size � d �a
t� e.Proof: Consider any rea
hable state s su
h that s:bu�er 6= fg. From Corollary 5.2, s:bu�er[i+1℄.st=s:bu�er[i℄.st + �, for all 0 � i < s:bu�er:size. From Invariant 3.1, s:bu�er.last.st�s:bu�er.head.st � �a
t. The property follows by showing a simple 
ontradi
tion.We de�ne the quantityM as the maximum possible size of bu�er in any rea
hable state, M �= d �a
t� e.5.2 User ModeIn this se
tion we prove that A is safe in the user mode. We de�ne a set of regions At for 0 � t � �,At �= fs j �min+ � s:�0p � �max ^ ��(s:�0p; �eff + t) � s:�1p � �+(s:�0p; �eff + t)g; (14)and we prove the following properties.Lemma 5.3 The region At satis�es the following:13



1. A0 = R,2. U � A�,3. If 0 � t � t0 � � then At0 � At.Proof: For part 1, set t = 0 in equation (14).For part 2, �0s � �0 � �0p � �0s + �0 and �1s � �1 � �1p � �1s + �1. Setting t = � we have:A� = fs j �min � �0 � s:�0s � �max + �0 ^ ��(s:�0p; �eff +�)� �1 � s:�1s � �+(s:�0p; �eff +�) + �1g:From Property 1, �0p � �0s � �0 ) ��(�0p; y) � ��(�0s � �0; y) and �0p � �0s + �0 ) �+(�0p; y) � �+(�0s + �0; y).Therefore,fs j �min � s:�0p � �max ^ ��(s:�0s � �0; �eff +�) + �1 � s:�1p � �+(s:�0s + �0; �eff +�)� �1g � A�:The left hand side is equal to U as de�ned in equation (5).For part 3, we observe that in equation (14) �+ and �� are monotoni
ally de
reasing and mono-toni
ally in
reasing respe
tively with respe
t to t. Therefore if 0 � t � t0 � � then At0 � At. 2Lemma 5.4 For any 
losed traje
tory � of A, if �:fstate 2 At then �:lstate 2 At�ltime(�).Proof: Consider a 
losed traje
tory � . Assume that s 2 At. From the de�nition of At it followsthat, �min � s:�0p � �max and ��(s:�0p; �eff + t) � s:�1p � �+(s:�0p; �eff + t). We 
onservativelyestimate s0 by 
onsidering the maximum and the minimum input U to Plant. First 
onsideringthe maximum positive input, U = Umax, from the state model of Plant we get the upper boundon the a

eleration at any state s00 in � :d(s00:�1p) � �
2 
os �max + Umax. Integrating from t to t0,s0:�1p � (Umax � 
2 
os �max)t0 + s:�1p; (15)s0:�0p � 12(Umax �
2 
os �max)t02 + s:�1pt0 + s:�0p: (16)Simplifying and using the de�nition of �+ we get the bounds on s0:�0p and s0:�1p.s0:�0p � �max; and (17)s0:�1p � �+(s0:�0p; �eff + t� t0): (18)Likewise 
onsidering U = Umin, we get the lower bounds on s0:�0s and s0:�1s .s0:�0p � �min; and (19)s0:�1p � ��(s0:�0p; �eff + t� t0): (20)Combining equations (17) (18) (19) and (20) we have s0 2 At�t0 . 2Invariant 5.3 In any rea
hable state s, s:mode = usr ^ :s:ready ) s 2 As:time left.
14



Proof: The base 
ase holds be
ause for any initial state s, s:time left = � and s 2 U � A�.We have to 
onsider three possible 
ases for dis
rete steps s �! s0: if � = sample(x; y), thens0:ready = true and the invariant holds va
uously. if � = 
ontrol(x), assume s0:mode = usr, we havetwo sub-
ases: if s:mode = usr, then from the 
ode of the 
ontrol a
tion, s 2 U ) s0 2 U � A�.Sin
e s0:time left � �, s0 2 As:time left. Otherwise, if s:mode = sup, then s 2 I ) s0 2 I � A�,whi
h implies that s0 2 As0:time left. if � = 
ommand(x), assume s0:mode = usr ^ :s0:ready, thens:mode = usr ^ :s:ready. By indu
tive hypothesis s 2 As:time left, therefore s0 2 As0:time left.For the 
ontinuous part, 
onsider a 
losed traje
tory � with �:ltime = t0. Assume s0:mode =usr ^ :s0:ready. As the valuations of mode and ready do not 
hange over � , s:mode = usr ^:s:ready. From the indu
tive hypothesis s 2 As:time left. Using Lemma 5.4, s0 2 As:time left � t0 =As0:time left: 2Invariant 5.4 In any rea
hable state s, s:mode = usr) s 2 R.Proof: The base 
ase holds be
ause all initial states are in U and U � R. Consider any dis
retetransition s �! s0, with s0:mode = usr. We split the proof into two 
ases: If :s0:ready, thenusing Invariant 5.3, s0 2 As0:time left � R. On the other hand, if s0:ready, then � 6=
ontrol , ands:mode = usr sin
e only the 
ontrol a
tion 
an 
hange mode. So from the indu
tive hypothesiss 2 R. It follows that s0 2 R from the Property 4.For the 
ontinuous part 
onsider a 
losed traje
tory � with �:fstate = s, �:lstate = s0, ands0:mode = usr. On
e again there are two 
ases, if :s0:ready then s0 2 R by Invariant 5.3. Elseif s0:ready, then s:ready and s:mode = usr be
ause ready and mode does not 
hange over thetraje
tories. Sin
e s satis�es the stopping 
ondition for a
tivity void in UsrCtrl, therefore � is apoint traje
tory, that is, s0 = s. From the indu
tive hypothesis, s 2 R. Therefore s0 2 R. 25.3 Supervisor ModeThe �rst invariant in this se
tion states that in all rea
hable states that have ready set to false, ifthe sensed plant state is within I+ and I�, then the system is in the user mode.Invariant 5.5 In any rea
hable state s, I�(s:�0s) � s:�1s � I+(s:�0s) ^ :s:ready ) s:mode = usr.Proof: The base 
ase holds from initialization. Consider dis
rete steps s �! s0 with I�(s0:�0s) �s0:�1s � I+(s0:�0s). If � =sample, then s0:ready = true and therefore the invariant holds va
uously. If� =
ontrol, then it follows from the 
ode that I�(s:�0s) � s:�1s � I+(s:�0s) and therefore s0:mode =usr. For 
ommand and dequeue a
tions and also for any traje
tory of A, the invariant is preservedbe
ause none of the variables involved in it are altered. 2Invariant 5.6 In any rea
hable state s,if s:�1s > I+(s:�0s) then s:Usup = Umin, andif s:�1s < I+(s:�0s) then s:Usup = Umax.Proof: Immediate from the 
ode of sample a
tion. None of the other a
tions or a
tivities alter anyof the variables involved in the invariant.Invariant 5.7 In any rea
hable state s, s:rt = n�� s:time left, for some integer n � 1.Proof: For the base 
ase: s:time left = �, s:rt = 0 and therefore the invariant holds for n = 1.Consider dis
rete step s �! s0 with � =sample. From the indu
tion hypothesis it follows thats:rt = n� � s:time left, for some n � 1 ; �x n. From the 
ode it follows that s0:rt = s:rt,15



s:time left = 0 and s0:time left = �. Hen
e s0:rt = (n + 1)� � s0:time left. The invariant ispreserved by all other dis
rete a
tions be
ause the variables rt and time left are not 
hanged bythem.Consider a 
losed traje
tory � with �:ltime = t0. From indu
tion hypothesis it follows thats:rt = n�� s:time left, for some n � 1; �x n. Therefore s0:rt = s:rt+ t0 = n�� s:time left+ t0 =n�� s0:time left. 2We de�ne two predi
ates Q+k and Q�k that 
apture the progress made by the system while thea
tuator delays the delivery of 
ommands issued by the supervisor. A state s satis�es Q+k (or Q�k ),if the last k 
ommands in s:bu�er are equal to Umin (or Umax respe
tively). More formally , forany k � 0,Q+k (s) �= 8i; max(0; s.bu�er.size �k) � i < s.bu�er.size, s:bu�er[i℄.u = Umin, andQ�k (s) �= 8i; max(0; s.bu�er.size �k) � i < s.bu�er.size, s:bu�er[i℄.u = Umax.Clearly, for all k > 0, Q+k (s) implies Q+k�1(s), and therefore for any k � s:bu�er.size, Q+k (s)implies that Q+j (s) holds for all j < s:bu�er.size. Similar results hold for Q�k . The next invariantstates that every rea
hable state s in the supervisor mode, satis�es either Q+d s:rt� e(s) or Q�d s:rt� e(s),depending on whether s is above I+ or below I� respe
tively. In addition if s:readyd is true, thatis, s is in between a 
ommand a
tion and a dequeue a
tion, then Q+d s:rt� e+1(s) or Q�d s:rt� e+1(s) holds,depending on the lo
ation of s with respe
t to I+ and I�.Invariant 5.8 In any rea
hable state s, su
h that s:mode = sup:1. If s:�1s > I+(s:�0s) then(a) Q+d s:rt� e(s),(b) If readyd then Q+d s:rt� e+1(s), and2. If s:�1s < I�(s:�0s) then(a) Q�d s:rt� e(s),(b) If readyd then Q�d s:rt� e+1(s), andProof: We shall prove part 1 of the invariant. The proof for part 2 is similar to that of part 1.The base 
ase holds trivially be
ause s:mode = usr. We 
onsider the dis
rete steps s �! s0 withs0:mode = sup and s0:�1s > I+(s0:�0s).Case 1: � = sample. Sin
e s:ready = false and s:mode = sup, it follows from the
ontrapositive of Invariant 5.5 that s:�1s > I+(s:�0s) or s:�1s < I�(s:�0s). A

ording toAssumption 3, s:�1s � I�(s:�0s), therefore s:�1s > I+(s:�0s). Part 1(a): From part 1(a) ofthe indu
tive hypothesis it follows that Q+d s:rt� e(s) holds. Sin
e bu�er is not 
hanged by� therefore Q+d s0 :rt� e(s0) holds.Part 1(b): Assume s0:readyd = true. Sin
e sample does not 
hange readyd, it fol-lows that s:readyd = true. Therefore from the indu
tive hypothesis it follows thatQ+d s:rt� e+1(s) holds. Sin
e bu�er is not 
hanged by � therefore Q+d s0:rt� e+1(s0) holds.Case 2: � = 
ontrol. If s:mode = sup. The invariant is preserved sin
e � does not 
hangeany of the variables involved other than mode. If s:mode = usr then s:rt = 0 = s0:rt.The invariant is satis�ed be
ause Q+0 is trivially true.16



Case 3: � =
ommand. Part 1(b): From the 
ode it follows that s:mode = sup ands:�1s > I+(s:�0s). Therefore it follows from Invariant 5.6 that s:Usup = Umin. Sin
es0:bu�er= s:bu�er + (s:Usup; s:now + �a
t), and Q+d s:rt� e(s) holds from the indu
tivehypothesis, therefore it follows that Q+d s0:rt� e+1(s0) holds.Part 1(a) follows from the above be
ause Q+d s0:rt� e+1(s0) implies that Q+d s0 :rt� e(s0) holds.Case 4: � = dequeue. From the 
ode it follows that s:mode = sup, s:�1s > I+(s:�0s),s0:bu�er= s:bu�er.tail, and that s:readyd = true. Part 1(b): From the indu
tivehypothesis it follows that Q+d s:rt� e+1(s) holds, whi
h implies that Q+d s0:rt� e(s0) holds.Part 1(b): From the 
ode it follows that s0:ready = false therefore the invariant holdstrivially.For the 
ontinuous part, 
onsider a 
losed traje
tory � , with t0 = �:ltime, s0:mode = sup ands0:�1s > I+(s0:�0s). From the 
ode it follows that s0:bu�er = s:bu�er, s:�1s > I+(s:�0s) and s0:rt =s:rt + t0. Using Invariant 5.7 s:rt 
an be written as s:rt = n� � s:time left for some n � 1; �xn. Therefore s0:rt = n� � s:time left + t0 = n� � s0:time left. Sin
e 0 � s:time left � � and0 � s0:time left � �, therefore d s:rt� e = d s0:rt� e = nPart 1(a): From part 1(a) of the indu
tive hypothesis it follows that Q+n (s) holds. Sin
ebu�er is not 
hanged over � it follows that Q+n (s0) holds.Part 1(b): Assume s0:readyd = true. Therefore s:readyd = true. From part 1(b) of theindu
tive hypothesis it follows that Q+n+1(s) holds and sin
e bu�er is not 
hanged over� it follows that Q+n+1(s0) holds. 2The next invariant formalizes the notion that after a 
ertain �a
t period of time in the supervisormode the input to the plant is 
orre
t.Invariant 5.9 In any rea
hable state s with s:mode = sup ^ s:rt � �a
t1. If s:�1s > I+(s:�0s) then s:bu�er.head.u = Umin, and2. If s:�1s < I+(s:�0s) then s:bu�er.head.u = Umax.Proof: We shall prove part 1 of the invariant. Consider a rea
hable state s and assume thats:mode = sup, s:rt > �a
t and s:�1s > I+(s:�0s). From part 1 of Invariant 5.8 it follows thatQ+d �a
t� e(s) holds. From Invariant 5.2 it is known that the maximum size of bu�er is d �a
t� e. Thereforeit follows from the de�nition of Q+ that s:bu�er.head= Umin.2Invariant 5.10 In any rea
hable state s, su
h that s:mode = sup and s:rt > �a
t1. If s:�1s > I+(s:�0s) then s:U = Umin, and2. If s:�1s < I�(s:�0s) then s:U = Umax,Proof: We shall prove part 1 of the invariant. The proof of part 2 is similar to that of part 1.The base 
ase is trivially true be
ause s:mode = usr. Consider dis
rete transitions s �! s0 withs0:mode = sup, s0:rt > �a
t, and s:�1s > I+(s:�0s): Sin
e none of the dis
rete steps 
hange rt, itfollows that s:rt > �a
t. 17



Case 1: � = sample. Sin
e s:ready is false and s:mode = sup, it follows from the
ontrapositive of Invariant 5.5 that s:�1s > I+(s:�0s) or s:�1s < I�(s:�0s). A

ordingto Assumption 3, s:�1s � I�(s:�0s), therefore s:�1s > I+(s:�0s). From part 1 of theindu
tive hypothesis it follows that s:U = Umin. Sin
e U is not 
hanged by �, therefores0:U = Umin.Case 2: � =
ontrol. We 
laim that s:mode = sup. The invariant is preserved sin
e �does not 
hange any of the variables involved other than mode. If s:mode = usr thens:rt = 0 = s0:rt, whi
h 
ontradi
ts our assumption that s0:rt > �a
t.Case 3: � =
ommand. From the 
ode it follows that s:mode = sup; s0:U = s:U ands:�1s > I+(s:�0s). Therefore From part 1 of the indu
tive hypothesis it follows thats0:U = s:U = Umin.Case 4: � = dequeue. From the 
ode it follows that s:mode = sup and s:�1s > I+(s:�0s).From part 1 of Invariant 5.8 it follows that Q+d s:rt� e holds. Sin
e s:rt > �a
t, therefores:bu�er.head.u= Umin, by Invariant 5.9. It follows from the 
ode that s0:U = Umin.For the 
ontinuous part of the indu
tion 
onsider a 
losed traje
tory � with �:ltime = t0. Assumes0:mode = sup, s0:rt � �a
t and s0:�1s > I+(s0:�0s). We 
laim that s:rt � �a
t. Sin
e U , mode, �0sand �1s do not 
hange over � , therefore it follows from the indu
tive hypothesis that s0:U = Umin.Contrary to our 
laim, if s:rt < �a
t, then there exists a t00 2 �:dom, su
h that t00 < t0 and�(t00):rt = �a
t. From Lemma 5.2 it follows that su
h a t00 would have to be equal to �:ltimebe
ause the stopping 
ondition of a
tivity d2a would be enabled at �(t00). This 
ontradi
ts ourassumption �:ltime = t0. 2We split the exe
ution in the supervisor mode into (a) a settling phase of length �a
t in whi
h theinput U to the plant is arbitrary, and (b) a variable length re
overy phase during whi
h rt > �a
tand the input to the plant is 
orre
t, that is, in a

ordan
e with Invariant 5.10.
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Figure 9: Traje
tories in the settling (dashed lines) and re
overy(solid lines) periods.18



5.4 Settling PhaseWe de�ne a set of regions for 0 � t � �a
t:Bt �= fs j �min � s:�0p � �max ^ ��(s:�0p; �a
t � t) � s:�1p � �+(s:�0p; �a
t � t)g: (21)Lemma 5.5 The region Bt satis�es the following:1. B0 = R,2. B�a
t = C,3. If 0 � t � t0 � �a
t then Bt � Bt0 .Proof: Parts 1 and 2 are proved by setting t = 0, and t = �a
t in equation (21) respe
tively. Sin
et � t0, part 3 follows from Property 1.Invariant 5.11 For any rea
hable state s, if s:mode = sup ^ s:rt � �a
t then s 2 Bs:rt.Proof: The base 
ase holds trivially be
ause s:mode = usr. For the dis
rete part, 
onsider dis
retetransitions s �! s0 with s0:mode = sup. If � =
ontrol there are two sub
ases: if s:mode = sup thenfrom the indu
tion hypothesis it follows that s0 2 Bs0:rt. Otherwise s:mode = usr, and s 2 R byInvariant 5.3. From Property 4 it follows that s0 2 R. Sin
e R = B0 � Bs0:rt for any s0:rt � 0therefore the invariant holds at s0.Consider a 
losed traje
tory � with t0 = �:ltime. Assume s0:mode = sup and s0:rt � �a
t. FromProperty 3 it follows that s:mode = sup and s:rt � �a
t. From the indu
tion hypothesis it followsthat s 2 Bs:rt, that is �min � s:�0p � �max and ��(s:�0p; �a
t � s:rt) � s:�1p � �+(s:�0p; �a
t � s:rt).For all intermediate states between s and s0 the input U to Plant is arbitrary. Using the maximumvalue Umax and integrating over �:dom the same upper bounds on s0:�1p and s0:�0p are obtained asexpressed by equations (15) and (16). Simplifying:s0:�0p � �max; and (22)s0:�1p � �+(s0:�0p; �a
t � s:rt� t0); (23)Similarly using the lower bound on U , we gets0:�0p � �min; and (24)s0:�1p � ��(s0:�0p; �a
t � s:rt� t0): (25)Combining equations (22) (23) (24) and (25) we have s0 2 Bs:rt+t0 = Bs0:rt 2.5.5 Re
overy PhaseWe introdu
e a few notations before moving on to prove the safety of the system in the re
overyphase. In the 
ontext of a parti
ular traje
tory � , we abbreviate � # x(t) as simply x(t). Thetangent and the normal ve
tors to a 
urve at the point (x; y) are denoted by n(x; y) and d(x; y)respe
tively.Invariant 5.12 In any rea
hable states s, if s:mode = sup and s:rt � �a
t then s 2 C.19



Proof: The base 
ase is trivially satis�ed be
ause s:mode = usr. For the dis
rete part, 
onsiderdis
rete transitions s �! s0 with s0:mode = sup. If � =
ontrol there are two sub
ases: if s:mode =sup then from the indu
tive hypothesis s 2 C. Therefore using Property 3 it follows that s0 2 C.Otherwise s:mode = usr and s0:rt = 0 and the invariant holds va
uously. For all other dis
retea
tions the invariant is preserved be
ause none of the variables involved are altered.For the 
ontinuous part of the indu
tion, 
onsider 
losed traje
tory � with s0:mode = sup ands0:rt � �a
t. We 
laim that s 2 C. From Property 3 it is known that s:mode = sup, Considertwo possible 
ases: (1) If s:rt < �a
t then from Invariant 5.11 it follows that s 2 C. Otherwise (2)s:rt � �a
t and from the indu
tive hypothesis it follows that s 2 C:If s 2 U, then from Lemma 5.4 it follows that s0 is in R and therefore in C. So it remains toshow that if s 2 C nU then s0 2 C. We shall prove this by 
ontradi
tion. Sin
e s:�1s > I+(s:�0S) ors:�1s < I+(s:�0S) it follows from Invariant 5.10 that s:U = Umin or Umax respe
tively. Now, supposes0 =2 C, then there must exist t0 2 �:dom su
h that � leaves the C at �(t0). At the boundary of C itmust be the 
ase that d(�0p(t0); �1p(t0)) � n(�0p(t0); �1p(t0)) � 0, where � denotes the inner produ
t be-tween the two ve
tors. We rea
h a 
ontradi
tion by showing that at ea
h point s00 on the boundaryof C, d(s00:�0p; s00:�1p) � n(s00:�0p; s00:�1p) < 0 Now onwards we shall write x instead of s00:x where it isunderstood that x is the state 
omponent of a point in the state spa
e whi
h is on the boundaryof C. We 
onsider the 
urves de�ning the boundary of C(Figure 7).Case 1: The upper boundary �+(�0p; 0) 
an be written as:C+ = �d(�0p; �1p) j �min � �0p � �max ^ �1p � 0 ^ V1(�0p; �1p) = ��Umin +
2 
os �max� �max	 ;where V1(�0p; �1p) = 12�1p2 + ��Umin +
2 
os �max� �0p. So the outer normal of C+ is given byn(�0p; �1p) = rV1 := ��V1��0p ; �V1��1p� = (�Umin +
2 
os �max; �1p);where r is the gradient operator. Sin
e �1s � I+(�0s) and rt > �a
t therefore U = Umin by Invariant5.10. The plant equations are given by: d(�0p) = �1p, and d(�1p) = �
2 
os �0p + Umin. So we haven(�0p; �1p) � d(�0p; �1p) = (�Umin +
2 
os �max; �1p) � (�1p;�
2 
os �0p + Umin)= 
2(
os �max � 
os �0p)�1p � 0;for (�0p; �1p) 2 C+. The equal sign is valid i� (�0p; �1p) = (�max; 0). So the point (�0p; �1p) = (�max; 0)needs spe
ial treatment. Integrating for initial 
ondition (�max; 0), we getsin �0p = sin �max + 1
2 hUmin(�0p � �max)� 12�1p2i : (26)This fun
tion de�nes an integral 
urve �0p = F1(�1p). Di�erentiating (26) with respe
t to �1p,d�0pd�1p = �1pUmin � 
2 
os �0p ; and d2�0pd�1p2 = 1Umin �
2 
os �0p � �1p sin �0p(Umin �
2 
os �0p)3 :By evaluating the above derivatives at (�max; 0), we haved�0pd�1p (�max; 0) = 0; d2�0pd�1p2 (�max; 0) = 1Umin � 
2 
os �max < 0:20



The inequality holds be
ause Umin � 0 and ��2 < �0p < �2 . So the integral 
urve �0p = F1(�1p) a
hieves amaximum at (�max; 0), whi
h implies the traje
tory goes inside C.Case 2: The left boundary of C is given by Cl = �d(�0p; �1p)j� = �min ^ 0 < �1p < �+	,where �+ �= p2 (�Umin +
2 
os �max) (�max � �min). The outer normal of Cl is given by n = (�1; 0),and we have n(�0p; �1p) � d(�0p; �1p) = (�1; 0) � (d�0p; d�1p) = �d�0p = ��1p < 0; for (�0p; �1p) 2 Cl, whi
h implies thetraje
tory will not leave C through Cl.The proof for the lower and the right boundary are symmetri
al to that of Case 1 and Case 2 re-spe
tively. By 
ombining all the 
ases, we have shown that for any t00 2 �:dom, at any point on theboundary of C d(�0p(t0); �1p(t0)) � n(�0p(t0); �1p(t0)) < 0. Therefore s0 is in C.25.6 SafetyCombining the above invariants the safety of the 
omposed system is established.Theorem 1 All rea
hable states of A are 
ontained in C.Proof: For any rea
hable state s, if s:mode = usr then s 2 R � C by Invariant 5.4. Otherwises:mode = sup, and there are two possibilities: if s:rt < �a
t then, by Invariant 5.11, s 2 Bs:rt � C.Else s:rt � �a
t and it follows from Invariant 5.12 that s 2 C. 26 Con
lusionsIn this paper we have presented an advan
ed appli
ation of the HIOA framework for verifyinghybrid systems. The safety of the designed supervisory 
ontroller was established by proving a setof invariants. The proof te
hniques demonstrate two properties that are important for reasoningabout 
omplex hybrid systems: (1) the proofs are de
omposed into dis
rete and 
ontinuous parts,whi
h are independent of ea
h other, and (2) the reasoning style is purely assertional, that is, basedon the 
urrent state of the system, rather than 
omplete exe
utions.The design of the supervisory 
ontroller uses a safe operating region of the plant, beyond whi
hit overrides the user 
ontroller, performs appropriate re
overy, and returns 
ontrol to the user. Theduration of the re
overy period has not been dis
ussed here, but it has been shown to be boundedin [13℄. The size of the safe operating region, depends on the plant dynami
s, sensor errors, samplingperiod, a
tuator bandwidth and saturation. An implementation of the supervisory 
ontroller in thea
tual system is in progress. We also intend to design and verify a 
lass of supervisory 
ontrollersthat redu
e unne
essary interferen
es by utilizing additional information about parti
ular user
ontrollers.The spe
i�
ation language used in this paper is based on the hybrid I/O automaton model. Cer-tain extra stru
tures have been added to the HIOA model of [9℄ in order to spe
ify the traje
toriesusing a
tivities. We intend to in
orporate the language extensions into a toolset for automati
ally
he
king HIOA programs. At present we are also working on building a theorem prover interfa
efor HIOA whi
h would allow us to partially automate the veri�
ation pro
ess.
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