Application of Hybrid I/O Automata in Safety Verification of Pitch

*

Controller for Model Helicopter System

Sayan Mitra' Yong Wang? Nancy Lynch'
Eric Feron?

IMIT Laboratory for Computer Science,
Cambridge, MA 02139, USA
{mitras,lynch}@theory.lcs.mit.edu

2MIT Laboratory for Information and Decision Systems,
Cambridge , MA 02139, USA
{y_wang, feron}@mit.edu

Abstract: This paper presents an application of the Hybrid I/O Automaton modelling frame-
work [9] to a realistic hybrid system verification problem. A supervisory pitch controller for ensur-
ing the safety of a model helicopter system is designed and verified. The supervisor periodically
observes the plant state and takes over control from the user when the latter is capable of taking
the plant to an unsafe state. The design of the supervisor is limited by the actuator bandwidth,
the sensor inaccuracies and the sampling rates. Safety is proved by inductively reasoning over the
executions of the composed system automaton. The paper also presents a set of language constructs
for specifying hybrid I/O automata.

1 Introduction

Formal verification of hybrid systems is a hard problem. It has been shown that checking reachabil-
ity for even a simple class of hybrid automata is undecidable [4]. Algorithmic techniques have been
developed for several smaller subclasses of hybrid automata making automatic verification possi-
ble [1]. However these subclasses are too weak to represent realistic hybrid systems. Consequently
the languages and tools, like HyTech [3], developed for algorithmic methods are not adequate for
describing general hybrid systems. An alternative approach to verification is based on the hybrid
Input/Output automaton (HIOA) model [10, 11, 9]. In this approach the properties of a system
are derived by induction on the executions of the automaton model, see [6, 14, 8] for related earlier
works. Being a more expressive model, hybrid I/O automata enables us to model a larger class
of hybrid systems. Although at present there is no tool support for HIOA, we intend to extend
the IOA Toolset [2] for checking HIOA code and also build theorem prover interfaces for HIOA to
partially automate the verification process.

This paper presents the verification of a supervisory controller of a model helicopter system
using the HIOA framework. The helicopter system (Figure 1) is manufactured by Quanser [5]. It
is driven by two rotors mounted at the two ends of its body and it is attached to an arm which is
fixed at one end. The helicopter can revolve about the fixed end of the arm and has three degrees

*Funding for this research has been provided by AFRL contract F33615-01-C-1850

of freedom. The rotor inputs are either controlled by the user with a joystick, or by controllers
designed by the user. Students of Aeronautics and Astronautics at MIT experiment with different
controllers for the helicopter. Controllers are often unsafe and damage the equipment by pitching
the helicopter too high or too low. This is also a hazard for the users. Therefore the safety of the
system is important. A supervisory controller is designed to prevent the helicopter from reaching
unsafe states. The supervisor periodically observes the position and the velocity of the helicopter
and overrides the user’s controller by conservatively estimating the worst that might happen if the
user is allowed to continue. The supervisor is limited by the actuator bandwidth, the sampling
rate, and sensor inaccuracies. These factors also make the verification more complex.

This paper also describes a specification language for HIOA. In this language discrete transitions
of hybrid I/O automata are specified in the usual precondition-effect style, and the continuous
evolution is written in terms of constrained “state-space” models called activities. The language,
to date is for manual use, it constitutes a first step for automating the verification process using

HIOA.

Figure 1: Helicopter model with three degrees of freedom.

The contributions of this paper are: (1) demonstration of a realistic application of the hybrid I/O
automata based verification methodology, (2) design of the supervisory controller which ensures
safety of the Quanser helicopter system along the pitch axis, and (3) a set of language constructs
for specifying hybrid I/O automata.

In Section 2 we review the hybrid I/O automata model and describe the specification language.
We present the HIOA models of the system components and the supervisor in Sections 3 and 4
respectively. We present the proof for safety of the system in Section 5. Concluding remarks and
future directions for research are discussed in Section 6.

2 Hybrid I/O Automata

In this section we briefly review the HIOA mathematical model. For a complete discussion of the
model refer to [9]. Earlier versions of the model appeared in [10] and [11].

2.1 The HIOA Model

A hybrid I/O automaton captures the hybrid behavior of a system in terms of discrete transitions
and continuous evolution of its state variables. Let V be the set of variables of automaton A.
Each v € V is associated with a (static) type defining the set of values v can assume. A valuation
v for V is a function that associates each variable v € V to a value in type(v). A trajectory 7

of V is defined as a mapping 7 : J — wval(V) where J is a left closed interval of time. If .J is
right closed then 7 is said to be closed and its limit time is the supremum of the domain of T,
also written as 7./time. Each variable v € V is also associated with a dynamic type (or dtype)
which is the set of trajectories that v may follow. Dynamic types must satisfy the time-shift,
subinterval and pasting closure properties described in [9]. A hybrid I/O automaton A is a tuple
(X,U,Y,Q,0,H,1,0,D,T) where

e X: set of internal or state variables, U : set of input variables, Y : set of output variables.
The set of variables V 2 U UY U X. The set of locally controlled variables Z 2XUY.

H : set of internal actions, I : set of input actions , O : set of output actions. The set of
actions A= HUTUO.

Q Cwal(X) : a set of states

e O C (@ : non-empty set of start states.

DCQxAxQ : set of discrete transitions. A transition (x,a,x’) € D is written in short as
Q,]
X —24X.

T : set of trajectories for V, such that for every trajectory 7 in T, and for every ¢ € 7.dom,
7(t).X € Q. Tt is required that 7 is closed under prefix, suffix, and concatenation. The
first state 7(0).X of trajectory 7 is written as 7.fstate. Similarly if 7.dom is finite then
T.Istate = 7(1.ltime). X.

In addition, a hybrid I/O automaton also satisfies: (1) the input action enabling property, which
prevents it from blocking any input action and (2) the input trajectory enabling property, which
ensures that it is able to accept any trajectory of the input variables either by allowing time to
progress for the entire length of the trajectory or by reacting with some internal action before that.

An ezxecution of A is a finite or infinite sequence of actions and trajectories { = 79, a1, 71,03 - ..,where
(1) each 7, € T, (2) 79.fstate € © and (3) if 7; is not the last trajectory in ¢ then 7; is finite and
7;.state A Tit1.fstate. An execution is closed if the sequence is finite and the domain of the final
trajectory is a finite closed interval. The length of an execution is the number of elements (actions
and trajectories) in the sequence.

2.2 New Addition to HIOA Structure: Activities

In the earlier works [6, 14, 8] using the HIOA model, trajectories of automata were specified using
an ad hoc mixture of integral, algebraic equations and English. While this form of specification is
simple to read, it does not lend itself easily to systematic analysis, nor does it enforce a consistent
style in writing specifications. The specification language [12] we use in this paper uses “state
space” representation [7] of the trajectories. This representation is concise, natural, and widely
used in the analysis of dynamical systems. To make this representation work, we have introduced
extra structure into the basic HIOA model of [9].

2.2.1 Assumptions

We assume that the time domain is R. A variable v is discrete if its dynamic type is the pasting
closure of the set of constant functions from left closed intervals of time to type(v). A variable is

continuous if its dynamic type is the pasting closure of the set of continuous functions from left
closed intervals of time to R. For any set S of variables, Sy and S, refers to the discrete and
continuous subsets of S respectively. The following are the first two restrictions we impose on the
HIOA model:

R1 Every variable is either discrete or continuous.
R2 Locally controlled discrete variables remain constant over trajectories, that is,
Tlval[Zg = 1. fval[Zy, for all 7 € T.

Hence in this model, the evolution of the locally controlled variables of a HIOA is completely
specified by the discrete transitions and the evolution of the variables in Z,. The state space
representation is used to specify this evolution as explained in the next part.

2.2.2 State Model

Let e be a real valued algebraic expression involving the variables in X UU. For a given trajectory
7 we use 7.e to denote the function with domain 7.dom that gives the value of the expression e at
all times during trajectory 7. Given that v is a locally controlled continuous variable, a trajectory
T satisfies the algebraic equation v=e,

if for every t € T.dom, 7 | v(t) = T.e(t).
If an algebraic equation involves a nondeterministic choice such as
v € [er,ea],

then trajectory 7 satisfies the equation if for every t € T.dom, 7 | v(t) € [T.e1(t), T.ea(t)].
If the expression e is integrable when viewed as a function, then 7 satisfies the differential
equation v =ce,

if for every t € T.dom, T L v(t) = 7 L v(0) + [f T.e(t') dt'.

A state model of HIOA A consists of |Z,| number of algebraic and/or differential equations with
exactly one equation having v or d(v) as its left hand side. The right hand sides of the equations
are algebraic expressions involving the variables in X U U. It is also required that there are no
circular relationships between the state variables.

A state model specifies' the evolution of every variable v in Z, from some initial valuation. A
trajectory 7 satisfies a state model F if at all times in 7.dom, all the variables in Z, satisfy the
differential and algebraic equations in F with 7(0) defining the initial valuations.

2.2.3 Activities

An activity o of HIOA A consists of three components:
1. An operating condition P C @,
2. A stopping condition PT C @, and
3. A a state model E for A.

The set of trajectories defined by activity « is denoted by [a]. A trajectory 7 belongs to the set [a]
if the following conditions hold:

!By specifies we mean restricts rather than uniquely determines. Due to possible nondeterminism in the state
model, unique determination might be impossible.

o 7 satisfies the state model F.
e For all t € T.dom, (7 | X)(t) € P.
o If (T | X)(t) € P* for t € dom(r) then 7 is closed and t = T.ltime.

The set of trajectories of an automaton is defined to be the union of all the sets of trajectories

specified by the activities of an automaton. Suppose automaton A has n activities, namely «; for
i € T, where Z is an arbitrary index set with n elements. Then T4 = Uje 7 [ay].
With the present model, as defined so far, it would be possible for an automaton to switch activities
over a single trajectory in an execution. Our final restriction on the HIOA model prevents such
switches. In other words, the switching of activities (or state models) is brought about only by
discrete steps:

R3 Operating condition of all the activities are disjoint, that is, P, NP; = 0 if i # j.

It can be proved that a set of trajectories specified by a set of activities respecting R1, R2, and
R3, satisfy the prefix, suffix, and concatenation closure properties.

Lemma 2.1 Suppose T is a set of trajectories specified by the activities oy, © € T, where T is an
index set. Then T is closed under prefiz, suffiz, and concatenation.

Proof: 7 = U}, [«;] is closed under prefix and suffix because each of the sets [a;] are closed under
prefix and suffix. Let 79, 71,72, ... be a sequence of trajectories in 7 such that, for each non-final
index i, 7; is closed and 7;.lstate = 7;,1.fstate. From the concatenation closure requirement of T,
it is necessary that =79 "1 T 1... € T.

Let 7; € [a;], Tit1 € [og), where j,k € T, therefore 7;.lstate € P; and 7;11.fstate € Pj,. Let us
assume for the sake of contradiction that j # k. From R3, P; N P, must be empty. But we have
7;.lstate € P; N Py, which contradicts our assumption. Therefore it must be the case that j = k.
Therefore every trajectory in the sequence belongs to the same activity, say [a;]. As [a;] is closed
under concatenation, 7o "7 T 7 ...€ 7.0

2.3 Language Constructs

Our specification language is based on the above modified HIOA model. Variables are declared by
specifying their names, types, dtypes, and optionally their initial valuations. For input variables
initial valuations cannot be specified. Varibales declared with the analog keyword are continuous,
else they are discrete. Algebraic expressions are written using the operators 4+, —, %, and \. An
expression involving nondeterministic choice, such as v € [ey, es], is written as:

v = chooseleq, €]

The derivative of a continuous variable x is written as d(z). The discrete transitions are written in
the precondition—effect style of the IOA language [2]. An activity « : (P, P, E) is written as:

activity « when P evolve £ stop at P™.

For automata with a single activity, if the operating condition P is not specified explicitly, then it
is assumed to be the entire state space of the automaton. If the stopping condition P* is omitted
then it is assumed to empty.

Sensor

6d
now, nextime

Actuator
buffer, u
ready

dequeue

Supervisor

ready mode
Usup Uusr Us

[64]

UsrCtrl

command(u,st)
sample(6,0)

ready
Uu

samplé®,6)

Figure 2: Components of Helicopter system. Continuous and discrete communication between components
are shown by wide and thin arrows respectively. The internal variables are marked inside the circles. Internal
actions are shown with dased self loops.

3 Specification of System Components

In this section we present a HIOA model of the helicopter system, except for the supervisory
controller, which is in Section 4; the interaction among the different components of the system are
shown in Figure 2. A nonlinear dynamical model of the helicopter with three degrees of rotational
freedom can be found in [13]. In this paper we consider the pitch dynamics, which are critical for
safety. The roll and yaw effects are eliminated by making the initial conditions and the disturbances
along these axes to be zero and giving identical input to the two rotors. The pitch dynamics is
described by the following differential equation :

0+ O%cost =U(t), (1)

where €2 is the rotational inertia and U is the net input for the pitch axis. The Plant automaton
specifies the evolution of the pitch angle (67) and velocity (6,) of the helicopter in terms of the
input U. We define three global types RAD, RADPS and UTYPE for variables representing angle,
angular velocity and actuator output respectively. The constant @(@) corresponds to the largest
absolute value of any variable representing angle angle (angular velocity). The state variables
92 and 911, are initialized to some value from the set U, which is defined in equation (5). The
Plant automaton has a single activity pitch_dynamics, which describes the evolution of the locally
controlled continuous variables and it operates over the entire state space. The state variables
evolve according to equation (1), and the output variables copy values from the state variables.

The Plant is said to be safe at a given state if the pitch angle 92 is within the allowed limits 6,,,,

and 6,,,,. We define the set of safe states as:
S = {3 | gmzn < 392 < amam}a (2)

The function of the Sensor automaton is to periodically convey the state of Plant to the controllers
as observed by the physical sensors. It is parameterized by the sensor errors for pitch angle ¢,
and velocity €;, and the sampling period A. The values of the input variables °,0!, are copied
into % and 0! respectively. Value of the variable now increases monotonically with a constant rate
of unity along all trajectories. The stopping condition of the read activity ensures that a sample

action occurs after every A interval of time. The value of 69 (6}) is nondeterministically chosen to

type RAD = Real suchthat (i : RAD, |i| < ©)
type RADPS = Real suchthat (i : RADPS, |i| < ©)
type UTYPE = Real suchthat (i : UTYPE | Unin < i < Unaz)

hybridautomaton Plant (€2 : Real)

variables
input analog U : UTYPE,
internal analog 92 : RAD, 9; : RADPS, initially (02,9;) e U,
output analog 6¢ : RAD, 6! : RADPS

trajectories
activity pitch-dynamics
evolve d(6)) = 6,; d(0,

60 = 60; 61 0}

)= —Q%cos b + U;

Figure 3: HIOA specification of the plant

be within +¢ (+e;) of 60 (6!). This choice models the noise or the uncertainties in the sensing
devices.

The UsrCtrl automaton, shown in Figure 5, models an arbitrary user controller. This automaton
reads the sample action as input and triggers an output control(ug) action, which communicates the
output U, of the user’s controller to the supervisor. The output U, is modeled as a nondeterministic
choice over the entire range of possible values. This captures our assumption that the user is
capable of issuing arbitrarily bad outputs. The design of a safe supervisor for this particular
model of UsrCtrl ensures that the system is safe for any user designed controller because every
controller must implement this specification of UsrCtrl. The UsrCtrl automaton does not have
any continuous variables, and so the only activity void does not specify any state model. The
stopping condition ensures that the trajectories terminate when ready is set to true.

Next, we present the Actuator automaton, which models the actuator and the D/A converter. The
delay in the actuator response is modeled by a FIFO buffer of (u, st) pairs, where u is a command
issued from Supervisor, and the scheduled time st is the time at which u is to be delivered to the
plant. A command(u,m) action appends (u,timer + 7,¢) to buffer and a dequeue action copies
buffer.head.u to u, and removes buffer.head. The readyy flag is set when a new pair is added and
it is reset when a pair is removed from buffer. The following properties of Actuator can be derived
from its specification.

Invariant 3.1 In any reachable state s of Actuator, for all 0 <i < s.buffer.size —1,

s.now < s.buffer[i] .st < s.buffer[i+1].st < s.now + Tacs.

Proof: The base case is trivially true because s.buffer= {}. Consider a discrete steps of the form
s 5 §'. If m=sample or m =control then the invariant is preserved because none of the variables
involved in it are changed by .

Case 1: m =command(u,t). From the code it follows that s'.buffer= s.buffer + (u, s.now+
Tact). Since s'.now = s.now, it follows from the inductive hypothesis that s'.now <

hybridautomaton Sensor(eg,e1, A : Real)

actions variables
output sample (69 : RAD , 6}: RADPS) input analog 60 : RAD, . : RADPS,
internal analog 6° : RAD := 0, 6! : RADPS := 0,
discrete transitions now: Real :=0,
output sample (65 , 63) internal nezt_time : Real := A

pre now = next_time N\
69 € [62 — €0, 62 + o)A
0 € [0 — €1,05 + €1]

eff next_time := now + A

trajectories
activity read
evolve d(now) =1; 62 = 62 ; 6% = 6%;

stop at now = next_time

Figure 4: HIOA specification of the sensor and A/D conversion circuit

s'.buffer.nexttolast.st < s'.buffer.last.st< s'.now + Tact. Therefore s’ .now <
s buffer[i] .st < s'.buffer[i+1] .st< s'.now + Tact, forall0 < i < s'.buffer.size — 1.

Case 2: m =dequeue. From the code it follows that s'.buffer= s.buffer.tail. Since
s'.now = s.now, it follows from the inductive hypothesis that s".now < s'.buffer[i] .st
< s'.buffer[i+1] .st< s'.now + Tact, for all 0 < i < s.buffer.size — 1.

For the continuous part, consider a closed trajectory 7 of Actuator with s = 7.fsate, s’ = T.lstate,
and t' = rt.time. From the inductive hypothesis it is known that s.now < s.buffer[i].st <
s.buffer[i+1] .st< s.now 4+ Tact, for all 0 < i < s.buffer.size — 1. From the code it follows that
s'now = s.now + t' and s'.buf fer = s.buffer. We claim that s'.now < s'.buffer.head.st and
therefore the invarint holds at s’. Suppose this was not the case, that is s".now > s'.buffer.head.st.
Then there would exist t € 7.dom such that t" < ¢ and 7(t").now = ' .buffer.head.st. Since
7(t") satisfies the stopping condition for activity d2a therefore 7.ltime = t”, which contradicts our
assumption.O

4 Supervisory Controller

The supervisory controller has to ensure that the Plant state stays in the safe region S defined in
equation (2). A second requirement of the supervisor is to interfere as little as possible with the
user’s controller. In the next section we informally discuss the relevance of several different regions
in the state space, their actual definitions appear in the following section.

4.1 Supervisor Strategy

The design principle of the supervisor is simple: allow the user to be in control in all plant states
from which the supervisor is guaranteed to restore the plant to a safe state; in all other states block
the user’s controller, perform recovery, and return control to the user. The issue here is to find

hybridautomaton UsrCtrl

actions variables
input sample (9 : RAD , 4] : RADPS), internal #2: RAD := 0 , #. : RADPS := 0,
output control (ug : UTYPE) U, : UTYPE := 0,

ready : Bool := false

discrete transitions

input sample (69 , 65) output control (ug)
eff 2 :=69; 0% =6}, pre (ug = Uy) A ready
U, := choose [Upmin,Umaz]; eff ready := false

ready := true

trajectories
activity wvoid

evolve stop at ready

Figure 5: Specification of User’s Controller

the safe operating region U, that is, the largest set of states in which the user can be allowed to
operate without threatening the safety of the plant.

To intuitively explain our choice of U, let us first examine a few candidate regions which are
not suitable. Clearly any safe operating region has to be a subset of S. Also, S itself is not suitable
because the plant has non-zero inertia and the output from the actuator is limited between U,
and Upqz. Consider a region C C S, from which all trajectories are contained in S, provided that
the input to the plant is correct. Here correct means that the output from the actuator is Uy,
Unmaz or 0, whichever is most suitable for the safety of the plant. The region C is still not a safe
operating region, since the supervisor cannot change the output of the actuator sooner than 7,.¢
due to the delay in the buffer. Therefore the supervisor has to look ahead into the future for at
least T..¢ time, in order to ensure that the actuator output is correct in the worst case. Let us
consider the set of states R C C from which all reachable states over a period of 7¢¢¢ are within C,
with any input to the plant. From states within R, the supervisor can, if required, override the user
controller and issue correct recovery commands such that all future states in the next 7.¢¢ period
are within C, after which the correct commands of the supervisor appear at the actuator output,
which in turn ensures safety. This region R is close to what we want, except that the supervisor
cannot observe the plant state directly and for that it has to depend on the periodic updates from
the sensors which are prone to errors. For a given sensed state (87, 0}), the actual plant state is in
the set:

P(s) ={s | 6° — ¢ §5.6‘2 <O +egnbl - §5.6'11) <0 + e},

Finally, taking the errors and the delay into account we define the region U as follows: An observed
state s is in U if starting from any state in P(s) all the reachable states over a A interval of time
are in R. In Section 5 we shall prove that this choice of U ensures safety of the plant.

Switching back to the user’s controller from the supervisor is delayed until the supervisor brings
the plant state within a inner region I C U. This asymmetry in the switching is introduced to
prevent high frequency chattering between the user and the supervisory controller.

type MODES = { usr, sup }

hybridautomaton Actuator(7ac)

actions

variables

input command (u : UTYPE) internal u, : UTYPE := 0, readyy : Bool := false,

internal dequeue

buffer : seq of (u:UTYPE, st:Real, m:MODE) := {}
output analog U : UTYPE := 0,

input analog now : Real

discrete transitions

input command (u) internal dequeue
eff buffer + := (u, now + Tact); pre bufferhead.st = now A readyq
ready, := true eff u, := buffer.head.v;

trajectories
activity d2a

evolve U = u,

buffer := buffer.tail;

ready, := false

stop at buffer.head.st = now

Figure 6: Actuator and D/A conversion

4.2 Regions of Control

In the previous section we described the intuitive meanings of the regions C, R, U, and I; here we

present their definitions.

c 2
R 2
u =2
1 2

. 0 — 0 1 + 0
{s | Omin < 5.0 < Omaa AT (5.0,,0) < 5.0, <T7(5.0,,0)},
{s | Omin < 5.02 < bmaz /\Ff(s.ﬂg,Tact) < 5.9; < F+(s.€2,’ract)},
{s | Omin + €0 < 5-92 < Omaz —€0 A Uﬁ(S-ag) < 5-93 < U+(5-62)}:

{5 | Omin +e0 < 5.0° < Oman —e0 AT (5.09) < 5.0] <T17(5.09)}.

Where the functions r+ and r—, are as follows:

o, 7)

1
*UmagT + \/2(92 cos Omaz — Umzn)(amaa: -0+ EUmagTQ);

= UmagT — \/Q(Um,n - Q2)(0 — Omin + %Umag’rz),
= Umaz — Unin

= —e1+TH(0+ €0, Tacs + A),

= +e1+T7(0 — €0, Tact + A),

= 21 +TF(0 + 20, Tacs + D),

= +2€1 + F7(0 — 250, Tact + A)

From the definitions of ' and '~ the following properties can be shown,

Property 1 Over the interval —5 < 0 < 3 the following properties hold :

10

3)
(4)
(5)
(6)

1. v+, T) and v (6, T) are monotonically decreasing with respect to 0.
2. 1+(0,T) is monotonically decreasing with respect to T. (T >0).
3. 1-(8,T) is monotonically increasing with respect to T. (T >0).

4 TH(0maz, T) <0 and U~ (Opmin,T) > 0 for T > 0.

Using these properties, the following sequence of containments can be proved.

Property 2 ICUCRCCCS

+ +w+ O+
T
/ /

A

Figure 7: Regions in the statespace.

4.3 Supervisor Automaton

The Supervisor automaton (Fig. 8) copies the observed plant state into internal variables % and
6! when the sample action occurs. Based on this state information the tentative output Usup to
the actuator is decided. When the control action occurs, the supervisor copies the user’s command
into another internal variable U, and sets output command U, and mode for the next A interval
based on (0%,0!) and the current value of mode. If mode is usr and the observed state is in U
then mode remains unchanged and U is set to Uy,,. If the present state is not in U then mode
is changed to sup and the U is set to Ugyp. If mode = sup then U is copied from Uy,, and the
mode changes only when (0%, 0!) is in I. The control action enables the command output action by

5§78
setting the ready. flag.

5 Analysis of Helicopter System

In this section we verify the safety of the helicopter system with the supervisory controller. Let A
denote the composition of the Plant, Sensor, UsrCtrl, Actuator, and the Supervisor automata.
The helicopter system is safe if all the reachable states of the A are contained within the region S.
We assume the following relationships amongst the different parameters in the model:

11

hybridautomaton Supervisor

actions variables
input sample (69: RAD 6}: RADPS), internal 6% : RAD := 0, 6! : RADPS := 0,
input control (ug : UTYPE), Usup, Uusr, Us : UTYPE := 0,
output command (uq : UTYPE, m : MODES) internal ready. : Bool := false, mode : MODES := usr

internal analog rt : Real := 0;
discrete transitions

input sample (89, 63)

eff 09 :=69; 6! .= 0); input control (uq)
if 9! > I+(€2) then Usyp := Unin eff U,s, := uq; ready. := true
elseif 0! < I~ (92) then Usyp := Unmas fi if mode = usr then
if (02,6}) € U then U; := Uys,
output command (ugq, m) else Us 1= Usyp; mode := sup fi
pre ready. A (uq = Us) A m = mode elseif mode = sup then
eff ready. := false if (02, 051) € I then U := Uysr; mode := usr
else Us :==Usup fi i
trajectories
activity supervisor activity user
when mode = sup when mode = usr
evolve d(rt) = 1 stop at readyc evolve rt = 0 stop at ready.

Figure 8: HIOA specification of supervisor automaton

1. amzn <0< ‘Hmm‘ < amama
2. Umaz > QQ, Umm S 0.

3. For any sample action s = s',
if .01 > I*(5.0°) then, 5.0} > I~ (

s'.0%), and
if 5.0) < I~ (5.0%) then, 5.0} < I*(s".6°

5)-
The first two are facts derived from the dimensions of the actual system. The third constraint
is required to prevent the supervisor from holding control forever by jumping between the region
above I" and the region below I~ over a single A interval of time. This condition imposes certain
bounds on the values of T,c¢, A, and Upyqq.

All the invariants in this paper are either derived from other invariants or proved by induction
on the length of a closed execution of automaton A. The induction for an invariant Z consists of a
base case, and an induction step. The base case tests that 7 is satisfied at all the initial sates of
A. The induction step consists of : (1) a discrete part to test that for every discrete step s = s/,
from any reachable state s, preserves Z, and (2) a continuous part—to test that for any closed
trajectory 7, starting from a reachable state s, Z is preserved at the 7./sate. We shall use s and s’
to denote the pre and the post states of discrete transitions, as well as fstate and [state of closed
trajectories, as will be clear from the context.

In the remainder of this section we first present some preliminary properties of the system, then
we state the key invariants of A, and present the proof of safety in the user and the supervisor
modes.

12

5.1 Some Preliminary Properties

Property 3 The discrete variables of A are not changed over any closed trajectory T.

Proof: Follows from the code of the components of A.
Property 4 For any discrete step s — s' of automaton A, 3’.92 = 5.92 and s’.G; = 3.9;.

Proof: From the code of Plant it follows that 92 and 9; are not altered by any discrete step.

Let us define a derived state variable time_left at a given state s as : s.time_left 2 s.newt_time —
s.now.

Invariant 5.1 In every reachable state s of A, 0 < s.time_left < A.

Proof: The base case holds trivially because s.time_left = A. For the discrete part of the induction
we consider transitions s = s', where 7 = sample action. Other actions do not alter any of the
variables in the invariant. It follows from the code that s.now = s.next_time, s'.next_time =
s.next_time + A, and s'.now = s.now. Therefore s'.next_time — s'.now = A.

For the continuous part, consider a closed trajectory 7 with limit time k > 0, let s.time_left =
t € [0,A]. Let us assume for the sake of contradiction that & > t. Then 7 | now(t) = 7 |
next_time(t), which satisfies the stopping condition of read activity, therefore ¢ = 7.ltime. This
contradicts our assumption, and therefore k& < t. From activity read, s'.time_left =t — k. As
0<t<A, wehave 0 < s'.time_left < A. O

Corollary 5.1 The limit time of every trajectory of A is upper bounded by A.

Lemma 5.1 In any execution of A, sample, control, and command actions occur only when
now = nA, for some integer n > 0.

Corollary 5.2 In every reachable state s, for all 0 < i < s.buffer.size — 1,
s.buffer[i+1] .st= s.buffer[i] .st + A.

Lemma 5.2 In any execution of A, a dequeue action occurs when timer = Tact + nA,
for every integer n > 0.

Invariant 5.2 In any reachable state s, s.buffer.size < [Tsg].

Proof: Consider any reachable state s such that s.buffer # {}. From Corollary 5.2, s.buffer[i+1] .st=
s.buffer[i].st + A, for all 0 < ¢ < s.buffer.size. From Invariant 3.1, s.buffer.last.st
—s.buffer.head.st < 7act- The property follows by showing a simple contradiction.

We define the quantity M as the maximum possible size of buffer in any reachable state, M 2 [Tzt].

5.2 User Mode

In this section we prove that A is safe in the user mode. We define a set of regions A; for 0 < ¢ < A,
Ay = {5 | Opint < 800 < Oag AT (5,09, Tegs +1) < 5.00 < T (5.0, Tege + 1)}, (14)
and we prove the following properties.

Lemma 5.3 The region A; satisfies the following:

13

1. Ay =R,
2. UC An,
3. If 0<t<t <A then Ay C A,.
Proof: For part 1, set ¢ = 0 in equation (14).
For part 2, 92 — € < 92 < 92 + ¢¢ and Hi -6 < 9; < 9; + €1. Setting t = A we have:
Arn = 5] Omin — €0 < 5.0 <Omaz +e0 AT (500, Toss + A) — €1 < 5.00 <TH (8.0, 7oes + A) + €1}

From Property 1, 69 > 62 —eo = I (65,y) < T7(09 — co,y) and 6% < 02 + o = TT(89,y) > T'T(00 + o, y).
Therefore,

{8 | Omin < 5.0p) < Omaw AT (8.0 — €0, Tote + A) + €1 < 5.0, <TT(5.0) + €0, 7ot + A) —e1} C An.

The left hand side is equal to U as defined in equation (5).
For part 3, we observe that in equation (14) TT and I'" are monotonically decreasing and mono-
tonically increasing respectively with respect to t. Therefore if 0 <t <# <A then A, C A;. O

Lemma 5.4 For any closed trajectory T of A, if 7.fstate € Ay then T.lstate € Ay_yime(r)-

Proof: Consider a closed trajectory 7. Assume that s € A;. From the definition of A; it follows
that, 0, < 3.92 < 0,10 and F*(S.HS, Tets +1) < 5.911, < F+(5.6'2, Tets +t). We conservatively
estimate s’ by considering the maximum and the minimum input U to Plant. First considering
the maximum positive input, U = U,,4;, from the state model of Plant we get the upper bound
on the acceleration at any state s” in 7 :

d(s”ﬂ;) < =02 ¢080pmas + Upae- Integrating from ¢ to ¢/,

I ol
s.Gp

IN

Umaz — Q2 €08 Oz)t + 3.9;, (15)

.00 < = (Umaz — Q€08 0oy)t + .05t + .00, (16)

N —

Simplifying and using the definition of '™ we get the bounds on s'.Hg and 5’.9;.

IN

! n0
s.Gp

1 nl
5.9p

Omaz, and (17)
IH(s".0), Tegs +1—1). (18)

IN

Likewise considering U = Uy, we get the lower bounds on s'.6% and s'.6!.

s'.Gg Opmin, and (19)
s'.G; > Ff(s'ﬂg, Tess +1 — 1), (20)

v

Combining equations (17) (18) (19) and (20) we have s’ € A; y. O

Invariant 5.3 In any reachable state s, s.mode = usr A —s.ready = s € Ay time_jeft-

14

Proof: The base case holds because for any initial state s, s.time_left = A and s € U C Ax.
We have to consider three possible cases for discrete steps s = st if 7 = sample(z,y), then
s'.ready = true and the invariant holds vacuously. if 7 = control(z), assume s'.mode = usr, we have
two sub-cases: if s.mode = usr, then from the code of the control action, s € U= s’ € U C Anx.
Since s'.time_left < A, s' € Agjimeiefi- Otherwise, if s.mode = sup, then s € I = s' € I C A,
which implies that s’ € Ay ime_teft- if @ = command(z), assume s'.mode = usr A =s'.ready, then
s.mode = usr A —s.ready. By inductive hypothesis s € A time_jeft, therefore s’ e Ay time_teft-

For the continuous part, consider a closed trajectory 7 with 7.ltime = t'. Assume s’ .mode =
usr A —s'.ready. As the valuations of mode and ready do not change over 7, s.mode = usr A
—s.ready. From the inductive hypothesis s € A time_jefi- Using Lemma, 5.4, s’ e A time teft — t =

As’.time_left- t
Invariant 5.4 In any reachable state s, s.mode = usr = s € R.

Proof: The base case holds because all initial states are in U and U C R. Consider any discrete
transition s = s', with s'.mode = usr. We split the proof into two cases: If —s'.ready, then
using Invariant 5.3, s’ € Ay time_ierr € R. On the other hand, if s'.ready, then 7 #control, and
s.mode = usr since only the control action can change mode. So from the inductive hypothesis
s € R. Tt follows that s’ € R from the Property 4.

For the continuous part consider a closed trajectory 7 with 7.fstate = s, T.lstate = s', and
s'.mode = usr. Once again there are two cases, if —s’.ready then s’ € R by Invariant 5.3. Else
if s'.ready, then s.ready and s.mode = usr because ready and mode does not change over the
trajectories. Since s satisfies the stopping condition for activity woid in UsrCtrl, therefore 7 is a
point trajectory, that is, s’ = s. From the inductive hypothesis, s € R. Therefore s’ € R. O

5.3 Supervisor Mode

The first invariant in this section states that in all reachable states that have ready set to false, if
the sensed plant state is within I and I—, then the system is in the user mode.

Invariant 5.5 In any reachable state s, [~ (5.0°) < 5.0} < I1(5.0%) A —s.ready = s.mode = usr.

Proof: The base case holds from initialization. Consider discrete steps s - s with I~ (s".6%) <
5.0 < I7(s".0Y). If 1 =sample, then s'.ready = true and therefore the invariant holds vacuously. If
7 =control, then it follows from the code that I (s.0%) < 5.0} < I (5.0%) and therefore s'.mode =
usr. For command and dequeue actions and also for any trajectory of A, the invariant is preserved
because none of the variables involved in it are altered. O

Invariant 5.6 In any reachable state s,
if s.01 > I17(5.0Y) then s.Usyp = Upnin, and
if 5.0} < I*(5.0%) then 5.Usup = Upnag -

Proof: Immediate from the code of sample action. None of the other actions or activities alter any
of the variables involved in the invariant.

Invariant 5.7 In any reachable state s, s.rt = nA — s.time_left, for some integer n > 1.

Proof: For the base case: s.time_left = A, s.rt = 0 and therefore the invariant holds for n = 1.
Consider discrete step s — s’ with @ =sample. From the induction hypothesis it follows that
s.rt = nA — s.time_left, for some n > 1 ; fix n. From the code it follows that s'.rt = s.rt,

15

s.time_left = 0 and s'.time_left = A. Hence s'.rt = (n + 1)A — s’ .time_left. The invariant is
preserved by all other discrete actions because the variables rt and time_left are not changed by
them.

Consider a closed trajectory 7 with 7.ltime = t'. From induction hypothesis it follows that
s.rt = nA — s.time_left, for some n > 1; fix n. Therefore s'.rt = s.rt +t = nA — s.timeleft+t =
nA — s'.time_left. O

We define two predicates Q;C" and Q, that capture the progress made by the system while the
actuator delays the delivery of commands issued by the supervisor. A state s satisfies Q; (or Q.),
if the last k£ commands in s.buffer are equal to Upin (or Upes respectively). More formally | for
any k > 0,

Q9 (s) 2 Vi, max(0, s.buffer. size —k) < i < s.buffer.size, s.bufferfi].u = Upnip, and
Q. (s) 2 Vi, max(0, s.buffer. size —k) < i < s.buffer.size, s.bufferfil.u = Upnaz.

Clearly, for all k& > 0, Q;(s) implies Q; ,(s), and therefore for any k > s.buffer.size, Qj (s)
implies that Q+() holds for all j < s.buffer.size. Similar results hold for Q, . The next invariant

states that every reachable state s in the supervisor mode, satisfies either Q. oty (s) or Qf:"”] (s),
x vy

depending on whether s is above I or below I~ respectively. In addition if s.readyd is true, that
(s) or Qf:"—”Hl(s) holds,
A

is, s is in between a command action and a dequeue action, then ot rert] 41

depending on the location of s with respect to I™ and 1.
Invariant 5.8 In any reachable state s, such that s.mode = sup:

1. If 5.0 > I (5.0°) then
(@) Qayey (5),

(b) If readyd then Q. et +1(s), and
2. If s.01 < I (s5.0%) then

(1) Qpugey (),

(b) If readyd then Q (s), and

Proof: We shall prove part 1 of the invariant. The proof for part 2 is similar to that of part 1.
The base case holds trivially because s.mode = usr. We consider the discrete steps s — s’ with
s'.mode = sup and s'.0} > I*(s'.6?).

Case 1: m = sample. Since s.ready = false and s.mode = sup, it follows from the
contrapositive of Invariant 5.5 that s.6! > I7(5.0%) or 5.0 < I (5.6?). According to
Assumption 3, s.0! > I~ (s.0Y), therefore s.0! > I'"(5.6%). Part 1(a): From part 1(a) of
the inductive hypothesis it follows that Q7 et (s) holds. Since buffer is not changed by

7 therefore Q+S ”W(s") holds.

A
Part 1(b): Assume s'.readyy = true. Since sample does not change readyg, it fol-
lows that s.readyy; = true. Therefore from the inductive hypothesis it follows that

ot ezt +1(s) holds. Since buffer is not changed by 7 therefore Q7 (s') holds.

s Tt'l+1

Case 2: m = control. If s.mode = sup. The invariant is preserved since m does not change
any of the variables involved other than mode. If s.mode = usr then s.rt = 0 = s'.rt.
The invariant is satisfied because QS’ is trivially true.

16

Case 3: m =command. Part 1(b): From the code it follows that s.mode = sup and
5.0) > I*(s.0%). Therefore it follows from Invariant 5.6 that s.Ugy, = Upin. Since
s'.buffer="s.buffer + (5.Usyp, s.now + Tacy), and Q+ﬂW (s) holds from the inductive

s

hypothesis, therefore it follows that QF 1(s') holds.

Sl."‘
[+

Part 1(a) follows from the above because Q;,_MHI(S’) implies that Q;,_”](s’) holds.
R A

Case 4 7 = dequeue. From the code it follows that s.mode = sup, s.0} > I (s.6?),

s'.buffer= s.buffer.tail, and that s.readyy = true. Part 1(b): From the inductive
hypothesis it follows that QJ“S_MHl(s) holds, which implies that QF“S,_”] (s") holds.
A

[*x
Part 1(b): From the code it follows that s'.ready = false therefore the invariant holds
trivially.

For the continuous part, consider a closed trajectory 7, with ¢ = 7.ltime, s'.mode = sup and
s'.01 > I17(s".0Y). From the code it follows that s'.buffer = s.buffer, s.0} > I (s5.6°) and s'.rt =
s.rt + t'. Using Invariant 5.7 s.rt can be written as s.rt = nA — s.time_left for some n > 1; fix
n. Therefore s'.rt = nA — s.time_left +t = nA — s'.time_left. Since 0 < s.time_left < A and
0 < s'.time_left < A, therefore [5!] = [SIA”} =n

Part 1(a): From part 1(a) of the inductive hypothesis it follows that Q,(s) holds. Since
buffer is not changed over 7 it follows that O (s’) holds.

Part 1(b): Assume s'.readyy = true. Therefore s.ready,; = true. From part 1(b) of the
inductive hypothesis it follows that Q! (s) holds and since buffer is not changed over

7 it follows that Q' (s') holds. O

The next invariant formalizes the notion that after a certain 7,c; period of time in the supervisor
mode the input to the plant is correct.

Invariant 5.9 In any reachable state s with s.mode = sup A s.1t > Tact

1. If 5.0) > I (5.0°) then s.buffer.head.u = Upyip, and
2. If 5.0} < I'(5.0%) then s.buffer.head.u = U,qq-

Proof: We shall prove part 1 of the invariant. Consider a reachable state s and assume that

s.mode = sup, S.rt > Tacy and 3-951 > I+(s.92). From part 1 of Invariant 5.8 it follows that

QF“H_“] (s) holds. From Invariant 5.2 it is known that the maximum size of buffer is [75]. Therefore
A

it follows from the definition of Q" that s.buffer.head= U,,;,.0

Invariant 5.10 In any reachable state s, such that s.mode = sup and s.rt > Tact
1. If 5.0 > I (5.0°) then s.U = Upjn, and
2. If 5.0} < I (5.0%) then s.U = Upqq,

Proof: We shall prove part 1 of the invariant. The proof of part 2 is similar to that of part 1.
The base case is trivially true because s.mode = usr. Consider discrete transitions s = s’ with
s'.mode = sup, s'.rt > Taes, and s5.0! > I1(5.0°). Since none of the discrete steps change rt, it
follows that s.rt > 7Tact.-

17

Case 1: w = sample. Since s.ready is false and s.mode = sup, it follows from the
contrapositive of Invariant 5.5 that s.0) > I1(s.0%) or s.0! < I(s.0%). According
to Assumption 3, s5.0! > I (5.0?), therefore s.6! > I7(5.6%). From part 1 of the
inductive hypothesis it follows that s.U = Upy,. Since U is not changed by m, therefore
U = Umzn

Case 2: m =control. We claim that s.mode = sup. The invariant is preserved since 7
does not change any of the variables involved other than mode. If s.mode = usr then
s.rt = 0 = s'.rt, which contradicts our assumption that s'.rt > Tacs.

Case 3: ™ =command. From the code it follows that s.mode = sup,s’.U = s.U and
5.00 > I7(5.0%). Therefore From part 1 of the inductive hypothesis it follows that
s\ U = s.U = Upin.-

Case 4: 7 = dequeue. From the code it follows that s.mode = sup and 5.0} > It (s.69).
From part 1 of Invariant 5.8 it follows that QF—&T holds. Since s.rt > Tuct, therefore
A

s.buffer.head.u= U,,;,, by Invariant 5.9. It follows from the code that s'.U = Upyp.

For the continuous part of the induction consider a closed trajectory 7 with 7./time = /. Assume
s'.mode = sup, s'.rt > Taey and s'.01 > IT(s.0%). We claim that s.rt > 7.c.. Since U, mode, 6°
and 0! do not change over 7, therefore it follows from the inductive hypothesis that s'.U = Uyy,.

Contrary to our claim, if s.rt < 7+, then there exists a t” € 7.dom, such that ¢t < ¢ and
7(t").rt = Tacy. From Lemma 5.2 it follows that such a " would have to be equal to T.ltime
because the stopping condition of activity d2a would be enabled at 7(¢"). This contradicts our
assumption 7.ltime = t'. O

We split the execution in the supervisor mode into (a) a settling phase of length T,c¢ in which the
input U to the plant is arbitrary, and (b) a variable length recovery phase during which rt > 7,c¢
and the input to the plant is correct, that is, in accordance with Invariant 5.10.

Figure 9: Trajectories in the settling (dashed lines) and recovery(solid lines) periods.

18

5.4 Settling Phase

We define a set of regions for 0 < ¢ < Taet:

Bt é {S ‘ emin S 892 S emaz A F7(5927 Tact — t) S 39; S F+(5927 Tact — t)} (21)

Lemma 5.5 The region By satisfies the following:
1. Bp =R,

2. B, =C,

Tact

3. If OStStISTaCt then Bt gBt"

Proof: Parts 1 and 2 are proved by setting ¢ = 0, and ¢ = T,ct in equation (21) respectively. Since
t < t', part 3 follows from Property 1.

Invariant 5.11 For any reachable state s, if s.mode = sup A s.rt < Tacr then s € By .

Proof: The base case holds trivially because s.mode = usr. For the discrete part, consider discrete
transitions s = s’ with s’.mode = sup. If 7 =control there are two subcases: if s.mode = sup then
from the induction hypothesis it follows that s’ € By ,;. Otherwise s.mode = usr, and s € R by
Invariant 5.3. From Property 4 it follows that s’ € R. Since R = By C By ,; for any s'.rt > 0
therefore the invariant holds at s’.

Consider a closed trajectory 7 with ¢’ = 7.ltime. Assume s’.mode = sup and s'.rt < Tac¢. From
Property 3 it follows that s.mode = sup and s.7t < Tacy. From the induction hypothesis it follows
that s € By 4, that is 6,,;, < 3.92 < Oz and F*(sﬂg, Tact — §.11) < 5.6‘11) < F+(s.92, Tact — S-T1).
For all intermediate states between s and s’ the input U to Plant is arbitrary. Using the maximum
value U,,q,; and integrating over 7.dom the same upper bounds on s’ .011) and s’ .02 are obtained as
expressed by equations (15) and (16). Simplifying:

1 n0
s .Gp

I ol
5.9p

IN

Omaz, and (22)
F+(5'.92, Tact — 8.1t — 1), (23)

IN

Similarly using the lower bound on U, we get

5'.92 > Opin, and (24)
s'.G; > Ff(s'ﬂg, Tact — 8.7t — 1), (25)

Combining equations (22) (23) (24) and (25) we have s’ € B; 41 ¢ = By, O.

5.5 Recovery Phase

We introduce a few notations before moving on to prove the safety of the system in the recovery
phase. In the context of a particular trajectory 7, we abbreviate 7 | z(t) as simply x(¢). The
tangent and the normal vectors to a curve at the point (z,y) are denoted by n(z,y) and d(z,y)
respectively.

Invariant 5.12 In any reachable states s, if s.mode = sup and s.rt > Tacy then s € C.

19

Proof: The base case is trivially satisfied because s.mode = usr. For the discrete part, consider
discrete transitions s = s’ with s’.mode = sup. If ® =control there are two subcases: if s.mode =
sup then from the inductive hypothesis s € C. Therefore using Property 3 it follows that s’ € C.
Otherwise s.mode = usr and s'.rt = 0 and the invariant holds vacuously. For all other discrete
actions the invariant is preserved because none of the variables involved are altered.

For the continuous part of the induction, consider closed trajectory 7 with s’.mode = sup and
s'.rt > Tact. We claim that s € C. From Property 3 it is known that s.mode = sup, Consider
two possible cases: (1) If s.rt < 7uc¢ then from Invariant 5.11 it follows that s € C. Otherwise (2)
5.1t > Tacy and from the inductive hypothesis it follows that s € C.

If s € U, then from Lemma 5.4 it follows that s’ is in R and therefore in C. So it remains to
show that if s € C\ U then s’ € C. We shall prove this by contradiction. Since 5.0} > I'*(s5.6%) or
5.0! < I+(s.9g) it follows from Invariant 5.10 that s.U = U, or Upes respectively. Now, suppose
s' ¢ C, then there must exist ¢ € 7.dom such that 7 leaves the C at 7(¢'). At the boundary of C it
must be the case that d(69(¢'),05(t')) - n(69('),05(t')) > 0, where - denotes the inner product be-
tween the two vectors. We reach a contradiction by showing that at each point s” on the boundary
of C, d(s".09,5".0)) n(s".0),5".0]) <0 Now onwards we shall write z instead of s”.z where it is
understood that x is the state component of a point in the state space which is on the boundary
of C. We consider the curves defining the boundary of C(Figure 7).

Case 1: The upper boundary F+(02, 0) can be written as:

D

Ct ={d(6y,6,) | Omin < 0y < Omaz Ay > 0AVI(0),0}) = (—Unmin + Q08 bmaz) Omas } ,

where Vl(Hg, 911)) = %0},2 + (=Upmin + Q2% c08 0,02 92. So the outer normal of C¥ is given by

Vi oV .
M£ﬂb:V%u:<&@5E>:(lmm+Q%w%mﬂD

where V is the gradient operator. Since 6} > I (0%) and rt > T, therefore U = U, by Invariant
5.10. The plant equations are given by: d(6;) = 6,, and d(6}) = —Q? cos 0y + Unmin. SO we have
n(6y,0,)-d(6,05) = (~Umin + Q€08 Omaz,0p) - (61, —Q cos 0y + Unmin)

p1Up p1Up
Q% (co8 Omaz — cos 8,6, < 0,

for (0),6,) € C*. The equal sign is valid iff (6),6)) = (fmaz,0). So the point (6),6)) = (Omaz-0)

needs special treatment. Integrating for initial condition (6,,4:,0), we get

smﬁzgn%w+égpw4£—emﬁ—%@j. (26)

This function defines an integral curve 92 = Fl(%). Differentiating (26) with respect to 9;,

doy _ 6, J d’6y _ 1 6, sin 69
dfh "~ Upmin — Q2 cos 63’ an dG;2 " Upin — 92 cos 6 (Umin — Q2 cos 92)3-

By evaluating the above derivatives at (6,,,42,0), we have

a6’
a6}

d*o, 1
ng(em”,(]) == < 0
p

emaajy 0) = 07 -
() Umzn - Q2 Cos emaa:

20

The inequality holds because U.in <0 and —% < 6, < Z. So the integral curve) = Fi(6,) achieves a
maximum at (6mq.,0), which implies the trajectory goes inside C.

Case 2: The left boundary of C is given by C' = {d(6},6})|6 = 6min A0 <6, <OT},
where ©F = /2 (~Upnin + 92 c080maz) (Bmaz — Omin). The outer normal of C' is given by n = (-1,0),
and we have n(69,6,) - d(69,65) = (—1,0) - (d65,d6;) = —dbS = —6, < 0, for (6),6}) € C', which implies the

trajectory will not leave C through C'.

The proof for the lower and the right boundary are symmetrical to that of Case 1 and Case 2 re-
spectively. By combining all the cases, we have shown that for any ¢’ € r.dom, at any point on the
boundary of C d(63(t'),6,(t")) - n(8(t'),6,(t')) < 0. Therefore ' is in C.O

1P g

5.6 Safety

Combining the above invariants the safety of the composed system is established.
Theorem 1 All reachable states of A are contained in C.

Proof: For any reachable state s, if s.mode = usr then s € R C C by Invariant 5.4. Otherwise
s.mode = sup, and there are two possibilities: if s.rt < Tac¢ then, by Invariant 5.11, s € B, ,; C C.
Else s.rt > 7ac¢ and it follows from Invariant 5.12 that s € C. O

6 Conclusions

In this paper we have presented an advanced application of the HIOA framework for verifying
hybrid systems. The safety of the designed supervisory controller was established by proving a set
of invariants. The proof techniques demonstrate two properties that are important for reasoning
about complex hybrid systems: (1) the proofs are decomposed into discrete and continuous parts,
which are independent of each other, and (2) the reasoning style is purely assertional, that is, based
on the current state of the system, rather than complete executions.

The design of the supervisory controller uses a safe operating region of the plant, beyond which
it overrides the user controller, performs appropriate recovery, and returns control to the user. The
duration of the recovery period has not been discussed here, but it has been shown to be bounded
in [13]. The size of the safe operating region, depends on the plant dynamics, sensor errors, sampling
period, actuator bandwidth and saturation. An implementation of the supervisory controller in the
actual system is in progress. We also intend to design and verify a class of supervisory controllers
that reduce unnecessary interferences by utilizing additional information about particular user
controllers.

The specification language used in this paper is based on the hybrid I/O automaton model. Cer-
tain extra structures have been added to the HIOA model of [9] in order to specify the trajectories
using activities. We intend to incorporate the language extensions into a toolset for automatically
checking HIOA programs. At present we are also working on building a theorem prover interface
for HIOA which would allow us to partially automate the verification process.

21

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer
Science, 138(1):3 34, 1995.

[2] Stephen Garland, Nancy Lynch, and Mandana Vaziri. IOA: A language for specifying, pro-
gramming and validating distributed systems. Technical report, Laboratory for Computer
Science, Massachusetts Institute of Technology, Cambridge, MA, October 1999.

[3] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. Hytech: A model checker for
hybrid systems. In Computer Aided Verification (CAV ’97), volume 1254 of Lecture Notes in
Computer Science, pages 460-483, 1997.

[4] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What’s decidable
about hybrid automata? In ACM Symposium on Theory of Computing, pages 373 382, 1995.

[5] http://www.quanser.com/english/html/products/fs_product_challenge.asp?lang_code=english&pcat_code=ex
spe&prod_code=S1-3dofheli.

[6] Carolos Livadas, John Lygeros, and Nancy A. Lynch. High-level modeling and analysis of
TCAS. In Proceedings of the 20th IEEE Real-Time Systems Symposium (RTSS’99),Phoeniz,
Arizona, pages 115 125, December 1999.

[7] David G. Luenberger. Introduction to Dynamic Systems: Theory, Models, and Applications.
John Wiley and Sons, Inc., New York, 1979.

[8] Nancy Lynch. A three-level analysis of a simple acceleration maneuver, with uncertainties.
In Proceedings of the Third AMAST Workshop on Real-Time Systems, pages 1-22, Salt Lake
City, Utah, March 1996. World Scientific Publishing Company.

[9] Nancy Lynch, Roberto Segala, and Frits Vaandraager. Hybrid I/O automata. Tech-
nical Report MIT-LCS-TR-827b, MIT Laboratory for Computer Science, Technical Re-
port, Cambridge, MA 02139, February 2002. To appear in Information and Computation,
http://theory.les.mit.edu/tds/papers/Lynch/HIOA-final.ps.

[10] Nancy Lynch, Roberto Segala, Frits Vaandrager, and H. B. Weinberg. Hybrid I/O automata.
In T. Henzinger R. Alur and E. Sontag, editors, Hybrid Systems III, volume 1066 of Lecture
Notes in Computer Science, New Brunswick, New Jersey, October 1995. Springer-Verlag.

[11] Nancy A. Lynch, Roberto Segala, and Frits W. Vaandrager. Hybrid I/O automata revisited. In
M.D. Di Benedetto and A.L. Sangiovanni-Vincentelli, editors, Proceedings Fourth International
Workshop on Hybrid Systems: Computation and Control (HSCC’01), Rome, Italy, volume
2034 of Incs. springer, March 2001.

[12] Sayan Mitra. Language for Hybrid Input/Output Automata, 2002. Work in progress.
http://theory.lcs.mit.edu/mitras/research /composing_activities.ps.

[13] Yong Wang, Masha Ishutkina, Sayan Mitra, Carolos Livadas, Nancy A. Lynch, and Eric Feron.
Design of Supervisory Safety Control for 3DOF Helicopter using Hybrid I/O Automata, 2002.
pre-print http://gewurtz.mit.edu/ishut/darpa_sec_mit/papers/quanser.ps.

22

[14] H. B. Weinberg, Nancy Lynch, and Norman Delisle. Verification of automated vehicle protec-
tion systems. In T. Henzinger R. Alur and E. Sontag, editors, Hybrid Systems III: Verification
and Control (DIMACS/SYCON Workshop on Verification and Control of Hybrid Systems),
volume 1066 of Lecture Notes in Computer Science, pages 101 113, New Brunswick, New
Jersey, October 1995. Springer-Verlag.

23

