
Safety Veri�ation of Model Heliopter Controller using HybridInput/Output Automata�Sayan Mitra1 Yong Wang2 Nany Lynh1 Eri Feron21MIT LCS,Cambridge, MA 02139, USAfmitras,lynhg�theory.ls.mit.edu 2MIT LIDS,Cambridge, MA 02139, USAfy wang, ferong�mit.eduAbstrat: This paper presents an appliation of the Hybrid I/O Automaton modelling framework [9℄ to arealisti hybrid system veri�ation problem. A supervisory pith ontroller for ensuring the safety of a modelheliopter system is designed and veri�ed. The supervisor periodially observes the plant state and takesover ontrol from the user when the latter is apable of taking the plant to an unsafe state. The design ofthe supervisor is limited by the atuator bandwidth, the sensor inauraies and the sampling rates. Safetyis proved by indutively reasoning over the exeutions of the omposed system automaton. The paper alsopresents a set of language onstruts for speifying hybrid I/O automata.1 IntrodutionFormal veri�ation of hybrid systems is a hard problem. It has been shown that heking reahability for evena simple lass of hybrid automata is undeidable [4℄. Algorithmi tehniques have been developed for severalsmaller sublasses of hybrid automata making automati veri�ation possible [1℄. However these sublassesare too weak to represent realisti hybrid systems. Consequently the languages and tools, like HyTeh [3℄,developed for algorithmi methods are not adequate for desribing general hybrid systems. An alternativeapproah to veri�ation is based on the hybrid Input/Output automaton (HIOA) model [10, 11, 9℄. In thisapproah the properties of a system are derived by indution on the exeutions of the automaton model, see[6, 15, 8℄ for related earlier works. Being a more expressive model, hybrid I/O automata enables us to modela larger lass of hybrid systems. Although at present there is no tool support for HIOA, we intend to extendthe IOA Toolset [2℄ for heking HIOA ode and also build theorem prover interfaes for HIOA to partiallyautomate the veri�ation proess.This paper presents the veri�ation of a supervisory ontroller of a model heliopter system using theHIOA framework. The heliopter system (Figure 1) is manufatured by Quanser [5℄. It is driven by tworotors mounted at the two ends of its body and it is attahed to an arm whih is �xed at one end. Theheliopter an revolve about the �xed end of the arm and has three degrees of freedom. The rotor inputs areeither ontrolled by the user with a joystik, or by ontrollers designed by the user. Students of Aeronautisand Astronautis at MIT experiment with di�erent ontrollers for the heliopter. Controllers are often unsafeand damage the equipment by pithing the heliopter too high or too low. This is also a hazard for theusers. Therefore the safety of the system is important. A supervisory ontroller is designed to prevent theheliopter from reahing unsafe states. The supervisor periodially observes the position and the veloity ofthe heliopter and overrides the user's ontroller by onservatively estimating the worst that might happenif the user is allowed to ontinue. The supervisor is limited by the atuator bandwidth, the sampling rate,and sensor inauraies. These fators also make the veri�ation more omplex.This paper also desribes a spei�ation language for HIOA. In this language disrete transitions of hybridI/O automata are spei�ed in the usual preondition-e�et style, and the ontinuous evolution is writtenin terms of onstrained \state-spae" models alled ativities. The language, to date is for manual use, it�Funding for this researh has been provided by AFRL ontrat F33615-01-C-18501



onstitutes a �rst step for automating the veri�ation proess using HIOA.

Figure 1: Heliopter model with three degrees of freedom.The ontributions of this paper are: (1) demonstration of a realisti appliation of the hybrid I/O au-tomata based veri�ation methodology, (2) design of the supervisory ontroller whih ensures safety of theQuanser heliopter system along the pith axis, and (3) a set of language onstruts for speifying hybridI/O automata.In Setion 2 we review the hybrid I/O automata model and desribe the spei�ation language. Wepresent the HIOA models of the system omponents and the supervisor in Setions 3 and 4 respetively. Dueto limited spae we present brief proof skethes for the important invariants required for proving safety ofthe system in Setion 5. The omplete proofs are given in the Appendix and are also available in the formof a tehnial report[13℄. Conluding remarks and future diretions for researh are disussed in Setion 6.2 Hybrid I/O AutomataA brief review of the HIOA model is presented in this setion. For a omplete disussion refer to [9℄. Earlierversions of the model appeared in [10℄ and [11℄.2.1 The HIOA ModelA hybrid I/O automaton aptures the hybrid behavior of a system in terms of disrete transitions andontinuous evolution of its state variables. Let V be the set of variables of automaton A. Eah v 2 V isassoiated with a (stati) type de�ning the set of values v an assume. A valuation v for V is a funtionthat assoiates eah variable v 2 V to a value in type(v). A trajetory � of V is de�ned as a mapping� : J ! val(V ) where J is a left losed interval of time. If J is right losed then � is said to be losedand its limit time is the supremum of the domain of � , also written as �:ltime. Eah variable v 2 V is alsoassoiated with a dynami type (or dtype) whih is the set of trajetories that v may follow.A hybrid I/O automaton A onsists of : (1) a set V of variables, partitioned into internal X , inputU , and output variables Y . The internal variables are also alled state variables. Z �= X [ Y is the setof loally ontrolled or loal variables. (2) a set A of ations , partitioned into internal H , input I , andoutput ations O. (3) a set of states Q � val(X) , (4) a non-empty set of start states � � Q, (5) a set ofdisrete transitions D � Q � A � Q. A transition (x; a;x0) 2 D is written in short as x a!A x0. (6) a setof trajetories T for V , suh that for every trajetory � in T , and for every t 2 �:dom, �(t):X 2 Q. Itis required that T is losed under pre�x, suÆx, and onatenation. The �rst state �(0):X of trajetory isdenoted by �:fstate. If �:dom is �nite then �:lstate = �(�:ltime):X . In addition, a hybrid I/O automatonalso satis�es: (1) the input ation enabling property, whih prevents it from bloking any input ation and(2) the input trajetory enabling property, whih ensures that it is able to aept any trajetory of the inputvariables either by allowing time to progress for the entire length of the trajetory or by reating with someinternal ation before that. 2



An exeution of A is a �nite or in�nite sequene of ations and trajetories � = �0; a1; �1; a2 : : : ,where (1)eah �i 2 T , (2) �0:fstate 2 � and (3) if �i is not the last trajetory in � then �i is �nite and �i:lstate ai+1!�i+1:fstate. An exeution is losed if the sequene is �nite and the domain of the �nal trajetory is a�nite losed interval. The length of an exeution is the number of elements (ations and trajetories) in thesequene.An invariant I of A is either derived from other invariants or proved by indution on the length of alosed exeution of A. The indution onsists of a base ase, and an indution step. The base ase teststhat I(s) is satis�ed for all s 2 �. The indution step onsists of : (1) A disrete part|whih tests that forevery disrete step s �! s0 2 D, I(s) implies I(s0). (2) A ontinuous part|whih tests that for any losedtrajetory � 2 T , with �:fstate = s and �:lstate = s0, I(s) implies I(s0). We shall use s and s0 to denotethe pre and the post states of disrete transitions, and also the fstate and the lstate of losed trajetories,as will be lear from the ontext.2.2 New Addition to HIOA Struture: AtivitiesIn the earlier works [6, 15, 8℄ using the HIOA model, trajetories of automata were spei�ed using an ad homixture of integral, algebrai equations and English. While this form of spei�ation is simple to read, it doesnot lend itself easily to systemati analysis, nor does it enfore a onsistent style in writing spei�ations.The spei�ation language [12℄ used in this paper uses \state spae" representation [7℄ of the trajetories.To make this representation work, the following extra struture has been introdued into the basi HIOAmodel of [9℄.The time domain is assumed to be the set of reals R. A variable v is disrete if its dynami type isthe pasting losure of the set of onstant funtions from left losed intervals of time to type(v). A variableis ontinuous if its dynami type is the pasting losure of the set of ontinuous funtions from left losedintervals of time to R. For any set S of variables, Sd and Sa refer to the disrete and ontinuous subsets ofS respetively.Let e be a real valued algebrai expression involving the variables in X [ U . For a given trajetory � ,�:e denotes the funtion with domain �:dom that gives the value of the expression e at all times over � .Given that v is a loal ontinuous variable, a trajetory � satis�es the algebrai equation v = e, if for everyt 2 �:dom, � # v(t) = �:e(t). If an algebrai equation involves a nondeterministi hoie suh as v 2 [e1; e2℄,then � satis�es the equation if for every t 2 �:dom, � # v(t) 2 [�:e1(t); �:e2(t)℄. If the expression e isintegrable when viewed as a funtion, then � satis�es the di�erential equation _v = e, if for every t 2 �:dom,� # v(t) = � # v(0) + R t0 �:e(t0) dt0.A state model of HIOA A onsists of jZaj number of independent algebrai and/or di�erential equations withexatly one equation having v or d(v) as its left hand side. The right hand sides of the equations are algebraiexpressions involving the variables in X [U . A state model spei�es1 the evolution of every variable v in Zafrom some initial valuation. A trajetory � satis�es a state model E if at all times over � , all the variablesin Za satisfy the di�erential and algebrai equations in E with �(0) de�ning the initial valuations.An ativity � of HIOA A onsists of four omponents: (1) a starting ondition P� � Q, (2) a operatingondition P � P�, (3) a stopping ondition P+ � Q, and (4) a state model E. The set of trajetories de�nedby ativity � is denoted by [�℄. A trajetory � belongs to the set [�℄ if the following onditions hold:1. � satis�es the state model E.2. For all t 2 �:dom, (� # X)(t) 2 P�.3. For all t 2 �:dom� f0g, � # X(t) 2 P .4. If (� # X)(t) 2 P+ for t 2 dom(�) then � is losed and t = �:ltime.We impose the following restritions on hybrid I/O automata model in order to speify the trajetories ofan automaton as the union of the sets of trajetories spei�ed by its ativities.1By spei�es we mean restrits rather than uniquely determines. Due to possible nondeterminism in the state model, uniquedetermination might not be possible. 3



type RAD = Real suhthat (i : RAD; jij � �)type RADPS = Real suhthat (i : RADPS; jij � _�)type UTYPE = Real suhthat (i : UTYPE j Umin � i � Umax)hybridautomaton Plant(
 : Real )variablesinput analog U : UTYPE,internal analog �0p : RAD, �1p : RADPS, initially (�0p; �1p) 2 U,output analog �0e : RAD, �1e : RADPS
% � max abs value for angles% _� max abs value of angular veloitytrajetoriesativity pith dynamisevolve d(�0p) = �1p; d(�1p) = �
2 os �0p + U ;�0e = �0p; �1e = �1pFigure 2: HIOA spei�ation of the plantR1 Every variable is either disrete or ontinuous.R2 Loal disrete variables are onstant over trajetories, that is, 8� 2 T ; �:lvaldZd = �:fvaldZd.R3 Starting ondition of all the ativities are disjoint, that is, P�i \ P�j = ; if i 6= j.It an be shown that (Lemma 6.1 in the Appendix) a set of trajetories spei�ed by a set of ativities, satisfythe pre�x, suÆx, and onatenation losure properties.2.3 Language ConstrutsIn the HIOA spei�ation language variables are delared by their names, types, and optionally their initialvaluations. Varibales delared with the analog keyword are ontinuous, else they are disrete. Ations aredelared by their names, types, and optional list of parameters. Algebrai expressions are written using theoperators +;�; �; and n. A nondeterministi assignment, suh as v 2 [e1; e2℄, is written as v := hoose[e1; e2℄.The derivative of a ontinuous variable x is written as d(x). The disrete transitions are written in thepreondition|e�et style of the IOA language [2℄. An ativity � : (P�; P; P+; E) is written as:ativity � when P� evolve E suh that P stop at P+.For automata with a single ativity, if the starting ondition P� is not spei�ed expliitly, then it is assumedto be equal to the entire state spae Q. If P and P+ are omitted then they are assumed to be equal to P�,and ; respetively.3 Spei�ation of System ComponentsThis setion desribes the HIOA models for the omponents of the heliopter system, exept for the super-visory ontroller, whih is in Setion 4. Disrete and ontinuous ommuniation among the omponents areshown in Figure 3. In this paper we onsider the pith dynamis of the heliopter, whih are ritial forsafety. A omplete dynamial model of the heliopter with three degrees of rotational freedom an be foundin [14℄. In pratie the roll and yaw e�ets are eliminated by making the initial onditions along these axesto be zero and giving idential input to the two rotors. The pith dynamis is desribed by ��+
2 os � = U(t),where 
 is the harateristi frequeny of the system and U is the net input for the pith axis whih anrange between Umin and Umax. The Plant automaton (Figure 2) spei�es the evolution of the pith angle �0pand the veloity �1p with input U , aording to the pith dynamis. The global types RAD, RADPS and UTYPEde�ne the domains for variables representing angle, angular veloity and atuator output respetively. Thestate variables �0p and �1p are initialized to some value from the set U, whih is de�ned in equation (4). ThePlant is safe at a given state s if the pith angle s:�0p is within the allowed limits �min and �max. Where�min orresponds to the heliopter hitting the table (or the ground). And �max orresponds to the heliopterhitting a very fragile mehanial stop. The set of safe states is de�ned as:S �= fs j �min � s:�0p � �maxg: (1)
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Figure 3: Components of Heliopter system. Continuous and disrete ommuniation among omponents are shownby wide and thin arrows respetively. The internal variables are marked inside the irles and internal ations areshown by a dashed self loop.hybridautomaton Sensor(�0,�1, � : Real )ationsoutput sample ( �0d : RAD , �1d: RADPS )disrete transitionsoutput sample ( �0d , �1d)pre now = next time ^�0d 2 [�0a � �0; �0a + �0℄^�1d 2 [�1a � �1; �1a + �1℄e� next time := now + �trajetoriesativity readevolve d(now) =1; �0a = �0e ; �1a = �1e;stop at now = next time
variablesinput analog �0e : RAD; �1e : RADPS,internal analog �0a : RAD := 0, �1a : RADPS := 0,now: Real := 0;internal next time : Real := �derived variables:time left �= s:next time � s:now.

Figure 4: HIOA spei�ation of the sensor and A/D onversion iruitThe Sensor automaton (Figure 4) periodially onveys the state of Plant to the ontrollers as observed bythe physial sensors. It is parameterized by the sampling period �, the sensor errors for pith angle �0, andveloity �1. The variable now serves as a lok. The stopping ondition of the read ativity ensures that asample ation ours after every � interval of time. The value of �0d (�1d) is nondeterministially hosen tobe within ��0 (��1) of �0a (�1a). This hoie models the noise or the unertainties in the sensing devies.The UsrCtrl automaton (Figure 5) models an arbitrary user ontroller. It reads the sample ation andtriggers an output ontrol(ud) ation, whih ommuniates the user's output Uu to the supervisor. Theoutput Uu is modeled as a nondeterministi hoie over the entire range Umin to Umax. This aptures ourassumption that the user is apable of issuing arbitrarily bad ontrol inputs to the plant. The design ofa safe supervisor for UsrCtrl ensures that the system would be safe for any user ontroller beause everyontroller must implement this spei�ation of UsrCtrl.The Atuator automaton (Figure 6) models the atuator and the D/A onverter. The delay in the atuatorresponse is modeled by a FIFO bu�er of (u; st) pairs, where u is a ommand issued from Supervisor, andthe sheduled time st is the time at whih u is to be delivered to the plant. A ommand(u;m) ation appends(u; timer + �at) to bu�er and a dequeue ation opies bu�er.head.u to uo and removes bu�er.head. Thefollowing invariant for Atuator an be derived from its spei�ation. The proof follows from a simpleindution and is given in the Appendix.Invariant 3.1 In any reahable state s of Atuator, for all 0 � i < s:bu�er:size� 1,s:now � s:bu�er[i℄.st � s:bu�er[i+1℄.st � s.now + �at.5



hybridautomaton UsrCtrlationsinput sample ( �0d : RAD , �1d : RADPS ),output ontrol ( ud : UTYPE)disrete transitionsinput sample ( �0d , �1d )e� �0u := �0d; �1u = �1dUu := hoose [Umin; Umax℄;ready := truetrajetoriesativity voidevolve stop at ready
variablesinternal �0u: RAD := 0 , �1u : RADPS := 0,Uu : UTYPE := 0,ready : Bool := falseoutput ontrol ( ud )pre (ud = Uu) ^ readye� ready := false

Figure 5: Spei�ation of User's Controllertype MODES = f usr, sup ghybridautomaton Atuator(�at)ationsinput ommand ( u : UTYPE )internal dequeuedisrete transitionsinput ommand ( u )e� bu�er + := (u; now + �at);readyd := truetrajetoriesativity d2aevolve U = uostop at bu�er:head:st = now
variablesinternal uo : UTYPE := 0, readyd : Bool := false,bu�er : seq of (u:UTYPE, st:Real, m:MODE) := fgoutput analog U : UTYPE := 0,input analog now : Realinternal dequeuepre bu�er.head.st = now ^ readyde� uo := bu�er.head.v;bu�er := bu�er:tail;readyd := falseFigure 6: Atuator and D/A onversion4 Supervisory ControllerThe �rst goal of the supervisory ontroller is to ensure safety. A seond requirement is to interfere as littleas possible with the user's ontroller. The design priniple of the supervisor is simple: Allow the user to bein ontrol in a safe operating region U, from where the supervisor is guaranteed to restore the plant to a safestate; Outside of U, blok the user's ontroller, perform reovery, and return ontrol to the user. In orderto satisfy the seond requirement it is also desirable to make U as large as possible. Therefore we have to�nd U, whih is the largest set of states in whih the user an be allowed to operate without threateningthe safety of the plant.4.1 Safe Operating RegionClearly the U has to be a subset of S. Consider a region C � S, from whih all the reahable states areontained in S, provided that the input U to the plant is orret. By orret we mean that the input tothe plant is U = Umin (or Umax) if the pith �0p is in the danger of hitting �min (�max resp.). Sine thesupervisor annot hange the output of the atuator instantaneously, due to the �at delay in Atuatorbu�er, therefore the region C is not a safe operating region for the user. The supervisor has to estimate ifthe plant under user's ontrol would go outside of C in �at time. We use a onservative estimate and de�nethe region R as the set of states from whih all reahable states over a period of �at are within C. If theuser is restrited to operate in R and if the supervisor an monitor the plant state aurately, then it antake a timely deision to take over. However, the supervisor annot observe the plant state aurately, itrelies on the periodi updates from the inaurate sensors. Taking the errors and the delay into aount we6



de�ne the region U as follows: An observed state s is in U if starting from any atual state orrespondingto s all the reahable states over a � interval of time are in R. Swithing bak to the user's ontroller fromthe supervisor is delayed until the supervisor brings the plant state within an inner region I � U. Thisasymmetry in swithing prevents high frequeny hattering between the user and the supervisor.The regions C, R, U, and I are de�ned as follows. Umag = Umax � Umin.C �= fs j s:�0p 2 [�min; �max℄ ^ s:�1p 2 [��(s:�0p; 0);�+(s:�0p; 0)℄g; (2)R �= fs j �min � s:�0p � �max ^ ��(s:�0p; �at) � s:�1p � �+(s:�0p; �at)g; (3)U �= fs j �min + �0 � s:�0s � �max � �0 ^ U�(s:�0s) � s:�1s � U+(s:�0s)g; (4)I �= fs j �min + �0 � s:�0s � �max � �0 ^ I�(s:�0s) � s:�1s � I+(s:�0s)g: (5)�+(�; T ) = �UmagT + r2(
2 os �max � Umin)(�max � � + 12UmagT 2); (6)��(�; T ) = UmagT �r2(Umax �
2)(� � �min + 12UmagT 2); (7)U+(�) = ��1 + �+(� + �0; �at +�) U�(�) = + �1 + ��(� � �0; �at +�)I+(�) = �2�1 + �+(� + 2�0; �at +�) I�(�) = + 2�1 + ��(� � 2�0; �at +�):From the above de�nitions the following properties are derived.Property 1 Over the interval ��2 � � � �2 the following properties hold :1. �+(�; T ) and ��(�;T ) are monotonially dereasing with respet to �.2. �+(�; T ) is monotonially dereasing with respet to T . (T � 0).3. ��(�;T ) is monotonially inreasing with respet to T . (T � 0).4. �+(�max;T ) < 0 and ��(�min;T ) > 0 for T > 0.Property 2 I � U � R � C � S
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Figure 7: (a) Regions in the statespae. (b) Trajetories in the settling (dashed lines) and reovery(solidlines) periods.4.2 Supervisor AutomatonThe Supervisor automaton (Figure 8) opies the observed plant state into internal variables �0s and �1swhen the sample ation ours. Based on this state information the tentative output Usup to the atuatoris deided. When the ontrol ation ours, the supervisor opies the user's ommand into another internalvariable Uusr and sets output ommand Us and mode for the next � interval based on (�0s ; �1s) and theurrent value of mode. If mode is usr and the observed state is in U then mode remains unhanged andUs is set to Uusr. If the present state is not in U then mode is hanged to sup and the Us is set to Usup.If mode = sup then Us is opied from Usup and the mode hanges only when (�0s ; �1s) is in I. The ontrolation enables the ommand output ation by setting the ready ag.7



hybridautomaton Supervisorationsinput sample (�0d: RAD �1d: RADPS),input ontrol (ud : UTYPE),output ommand (ud : UTYPE, m : MODES)disrete transitionsinput sample (�0d, �1d)e� �0s := �0d; �1s := �1d;if �1s � I+(�0s) then Usup := Uminelseif �1s � I�(�0s) then Usup := Umax �output ommand (ud, m)pre ready ^ (ud = Us) ^m = modee� ready := falsetrajetoriesativity supervisorwhen mode = supevolve d(rt) = 1 stop at ready

variablesinternal �0s : RAD := 0, �1s : RADPS := 0,Usup; Uusr; Us : UTYPE := 0,internal ready : Bool := false;mode : MODES := usrinternal analog rt : Real := 0;input ontrol (ud)e� Uusr := ud; ready := trueif mode = usr thenif (�0s ; �1s) 2 U then Us := Uusrelse Us := Usup; mode := sup �elseif mode = sup thenif (�0s ; �1s) 2 I then Us := Uusr ; mode := usrelse Us := Usup � �ativity userwhen mode = usrevolve rt = 0 stop at readyFigure 8: HIOA spei�ation of supervisor automaton5 Analysis of Heliopter SystemIn this setion we present the safety veri�ation of the omposed system. Let A denote the ompositionof the Plant, Sensor, UsrCtrl, Atuator, and the Supervisor automata. Safety is preserved if all thereahable states of the A are ontained within the region S. It is assumed that: (1) �min < 0 < j�minj < �max,(2) Umax > 
2, Umin � 0, and (3) For any sample ation s �! s0, if s:�1s > I+(s:�0s) then, s0:�1s � I�(s0:�0s), andif s:�1s < I�(s:�0s) then, s0:�1s � I+(s0:�0s). Assumptions (1) and (2) are derived from the dimensions of thephysial system. Assumption (3) is a requirement whih limits the speed of the plant and the samplingperiod so that it is not possible for the plant to jump aross I without the sensors deteting it.In the next setion we present some preliminary properties of A, then we state the key invariants of A inthe user and the supervisor modes along with their proofs. The details of all the invariant proofs are givenin the Appendix and an also be found in [13℄.5.1 Some Preliminary Properties of AThe spei�ation of the omponents of A satisfy restritions R2, R2 and R3 and the plant state variables�0p and �1p are not modi�ed by any disrete ation. The next two properties are onsequenes of these fats:Property 3 The disrete variables of A are not hanged over any losed trajetory � .Property 4 For any disrete step s �! s0 of automaton A, s0:�0p = s:�0p and s0:�1p = s:�1p.Invariant 5.1 follows from the ode by a straightforward indution. Lemma 5.1 follows from Invariant 5.1and indiates the times at whih the di�erent ations of A our. Invariant 5.2 limits the size of the bu�erand it is a onsequene of Invariant 3.1 and Lemma 5.1.Invariant 5.1 In every reahable state s of A, 0 � s:time left � �.Lemma 5.1 In any exeution of A, sample, ontrol, and ommand ations our when now = n�, anddequeue ations ours when timer = �at + n� for some integer n > 0.Invariant 5.2 In every reahable state s, for all 0 � i < s:bu�er:size� 1,s:bu�er[i+1℄.st= s:bu�er[i℄.st + �, and s.bu�er.size � d �at� e.8



5.2 User ModeIn this setion we prove that A is safe in the user mode. We de�ne a set of regions At for 0 � t � �,At �= fs j s:�0p 2 [�min; �max℄ ^ s:�1p 2 [��(s:�0p; �eff + t);�+(s:�0p; �eff + t)g. Lemma 5.2 states the properties ofthe At regions.Lemma 5.2 The regions At satisfy: 1: A0 = R, 2: U � A�, and 3: If 0 � t � t0 � � then At0 � At.The next lemma bounds the reahable sates over a singe trajetory and is used to prove safety when atarjetory starts from the safe operating region U. Invariant 5.3 makes use of Lemma 5.3. The safety of thesystem in the user mode is established by Invariant 5.4.Lemma 5.3 For any losed trajetory � of A, if �:fstate 2 At then �:lstate 2 At�ltime(�).Proof: Consider a losed trajetory � . Assume that s 2 At. From the de�nition of At it follows that,�min � s:�0p � �max and ��(s:�0p; �eff + t) � s:�1p � �+(s:�0p; �eff + t). We onservatively estimate s0 byonsidering the maximum and the minimum input U to Plant. First onsidering the maximum positiveinput, U = Umax, from the state model of Plant we get the upper bound on the aeleration at any state s00in � : d(s00:�1p) � �
2 os �max+Umax. Integrating from t to t0, it follows that s0:�1p � (Umax�
2 os �max)t0+s:�1p,and s0:�0p � 12 (Umax � 
2 os �max)t02 + s:�1pt0 + s:�0p. Simplifying and using the de�nition of �+ we get thefollowing bounds on s0:�0p and s0:�1p: s0:�0p � �max, and s0:�1p � �+(s0:�0p; �eff + t � t0). Similarly onsideringmaximum negative output, U = Umin, we get the lower bounds on s0:�0s and s0:�1s . s0:�0p � �min, ands0:�1p � ��(s0:�0p; �eff + t� t0). Combining equations all the above bounds on s0 it follows that s0 2 At�t0 . 2Invariant 5.3 In any reahable state s, if s:mode = usr and :s:ready then s 2 As:time left.Invariant 5.4 In any reahable state s, if s:mode = usr then s 2 R.Proof: The base ase holds beause all initial states are in U and U � R. Consider any disrete transitions �! s0, with s0:mode = usr. We split the proof into two ases: If :s0:ready, then using Invariant 5.3,s0 2 As0:time left � R. On the other hand, if s0:ready, then � 6=ontrol , and s:mode = usr sine only theontrol ation an hange mode. So from the indutive hypothesis s 2 R. It follows that s0 2 R from theProperty 4.For the ontinuous part onsider a losed trajetory � with �:fstate = s, �:lstate = s0, and s0:mode = usr.One again there are two ases, if :s0:ready then s0 2 R by Invariant 5.3. Else if s0:ready, then s:ready ands:mode = usr beause ready and mode does not hange over the trajetories. Sine s satis�es the stoppingondition for ativity void in UsrCtrl, therefore � is a point trajetory, that is, s0 = s. From the indutivehypothesis, s 2 R. Therefore s0 2 R. 25.3 Supervisor Mode : Settling PhaseFor proving safety in the supervisor mode, we �rst state some of the simple invariants. Invariant 5.5 statesthat, in all reahable with ready set to false, if the sensed plant state is within I+ and I�, then the systemis in the user mode. Invariant 5.6 follows from the ode of the sample ation. And Invariant 5.7 is provedby a simple indution.Invariant 5.5 In any reahable state s, I�(s:�0s) � s:�1s � I+(s:�0s) ^ :s:ready ) s:mode = usr.Invariant 5.6 In any reahable state s, else if s:�1s > I+(s:�0s) then s:Usup = Umin, and if s:�1s < I+(s:�0s)then s:Usup = Umax.Invariant 5.7 In any reahable state s, s:rt = n�� s:time left, for some integer n � 1.We de�ne two prediatesQ+k and Q�k that apture the progress made by the system while the atuator delaysthe delivery of ommands issued by the supervisor. A state s satis�es Q+k (or Q�k ), if the last k ommandsin s:bu�er are equal to Umin (or Umax respetively). More formally, for any k � 0,9



Q+k (s) �= 8i; max(0; s.bu�er.size �k) � i < s.bu�er.size, s:bu�er[i℄.u = Umin, andQ�k (s) �= 8i; max(0; s.bu�er.size �k) � i < s.bu�er.size, s:bu�er[i℄.u = Umax.Clearly, for all k > 0, Q+k (s) implies Q+k�1(s), and therefore for any k � s:bu�er.size, Q+k (s) implies thatQ+j (s) holds for all j < s:bu�er.size. Similar results hold for Q�k . The next invariant states that everyreahable state s in the supervisor mode, satis�es either Q+d s:rt� e(s) or Q�d s:rt� e(s), depending on whether s isabove I+ or below I� respetively. In addition if s:readyd is true, that is, s is in between a ommand ationand a dequeue ation, then Q+d s:rt� e+1(s) or Q�d s:rt� e+1(s) holds, depending on the loation of s with respetto I+ and I�.Invariant 5.8 In any reahable state s, suh that s:mode = sup:1. If s:�1s > I+(s:�0s) then (a) Q+d s:rt� e(s), (b) If readyd then Q+d s:rt� e+1(s), and2. If s:�1s < I�(s:�0s) then (a) Q�d s:rt� e(s), (b) If readyd then Q�d s:rt� e+1(s), andThe next invariant formalizes the notion that after a ertain �at period of time in the supervisor mode theinput to the plant is orret.Invariant 5.9 In any reahable state s, suh that s:mode = sup and s:rt > �at1. If s:�1s > I+(s:�0s) then s:U = Umin, and 2. If s:�1s < I�(s:�0s) then s:U = Umax,We split the exeution of A in the supervisor mode (Figure 7(b)) into (a) a settling phase of length �at inwhih the input U to the plant is arbitrary, and (b) a variable length reovery phase during whih rt > �atand the input to the plant is orret, that is, in aordane with Invariant 5.9.Next we de�ne a set of regionsBt whih are analogous to the At regions. Bt �= fs j s:�0p 2 [�min; �max℄ ^ s:�1p 2[��(s:�0p; �at�t);�+(s:�0p; �at�t)℄g, for 0 � t � �at. Lemma 5.4 states the relationship between the Bt regionsand its proof is similar to that of Lemma 5.2. Invariant 5.10 bounds the loation of a state s in terms of theBt regions, when s:rt � �at. This implies the safety of the system in the settling phase.Lemma 5.4 The regions Bt satisfy: 1: B0 = R, 2: B�at = C, 3: If 0 � t � t0 � �at then Bt � Bt0 .Invariant 5.10 For any reahable state s, if s:mode = sup ^ s:rt � �at then s 2 Bs:rt.5.4 Supervisor Mode: Reovery PhaseInvariant 5.11 states that C is an invariant set for the system in the reovery phase. A sketh of the proofis given here, the omplete proof is in the Appendix.Invariant 5.11 In any reahable states s, if s:mode = sup and s:rt � �at then s 2 C.proof sketh: The base ase is trivially satis�ed. The disrete part of the indution is also straightforward,the ontrol ation alters the mode. If s:mode = sup then using the indutive hypothesis, s0 2 C. Otherwises:mode = usr and s0:rt = 0 and the invariant holds vauously. For all other disrete ations the invariantis preserved. For the ontinuous part of the indution, onsider losed trajetory � with s0:mode = sup ands0:rt � �at. We laim that s 2 C. From Property 3 it is known that s:mode = sup, (1) If s:rt < �at thenfrom Invariant 5.10 it follows that s 2 C. Otherwise (2) s:rt � �at and from the indutive hypothesis itfollows that s 2 C: If s 2 U, then from Lemma 5.3 it follows that s0 2 R � C. So it remains to show thatif s 2 C nU then s0 2 C. This is proved by ontradition, suppose s0 =2 C, then there must exist t0 2 �:domsuh that � leaves the C at �(t0). Then it must be the ase that the trajetory � and the outer-normal ofboundary of C should form an aute angle. It is known from Lemma 5.9 that at any intermediate state �(t0),the input U to the plant is orret. A ontradition is reahed by showing that if �(t0) is on the boundaryof C, then the angle between the above-mentioned vetors is obtuse.Finally, ombining the Invariants proved above the safety property of the omposed system an be proved.10



Theorem 1 All reahable states of A are ontained in C.Proof: For any reahable state s, if s:mode = usr then s 2 R � C by Invariant 5.4. Otherwise s:mode = sup,and there are two possibilities: if s:rt < �at then, by Invariant 5.10, s 2 Bs:rt � C. Else s:rt � �at and itfollows from Invariant 5.11 that s 2 C.6 ConlusionsIn this paper we have presented and formally veri�ed a supervisory ontroller for a model heliopter system.This supervisory ontroller allows the user to ontrol in a safe operating region, beyond whih it overridesthe user, performs appropriate reovery, and returns ontrol to the user. The duration of the reovery periodhas not been disussed here, it has been shown in [14℄ that this period is bounded. The size of the safeoperating region, depends on the plant dynamis, sensor errors, sampling period, atuator bandwidth andsaturation. An implementation of supervisory ontroller in the atual system is in progress.The spei�ation language used is based on the hybrid I/O automaton model. Certain extra strutureshave been added to the HIOA model of [9℄ in order to speify the trajetories using ativities. We intend toinorporate the language extensions into a toolset for aiding veri�ation of hybrid systems. In verifying safety,all the invariants were proved in the assertional style. The proof tehniques presented here demonstratetwo properties whih we believe are important for reasoning about omplex systems: (1) the proofs aredeomposed into disrete and ontinuous parts, whih are independent of eah other, and (2) the reasoningis based on urrent state of the system, rather than omplete exeutions.In the future we intend to design and verify a lass supervisory ontrollers that redue unneessaryinterferenes by utilizing additional information about the users ontroller. We also intend to evaluate theappliability of the proof methods, to hybrid systems with more ompliated disrete behavior and dynamis,possibly using mehanial theorem provers.Referenes[1℄ R. Alur, C. Couroubetis, N. Halbwahs, T. A. Henzinger, P.-H. Ho, X. Niollin, A. Olivero, J. Sifakis, and S. Yovine. Thealgorithmi analysis of hybrid systems. Theoretial Computer Siene, 138(1):3{34, 1995.[2℄ Stephen Garland, Nany Lynh, and Mandana Vaziri. IOA: A language for speifying, programming and validating dis-tributed systems. Tehnial report, Laboratory for Computer Siene, Massahusetts Institute of Tehnology, Cambridge,MA, Otober 1999.[3℄ Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. Hyteh: A model heker for hybrid systems. In CoputerAided Veri�ation (CAV '97), volume 1254 of Leture Notes in Computer Siene, pages 460{483, 1997.[4℄ Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What's deidable about hybrid automata? InACM Symposium on Theory of Computing, pages 373{382, 1995.[5℄ http://www.quanser.om/english/htm/about/fs about splash.htm.[6℄ Carolos Livadas, John Lygeros, and Nany A. Lynh. High-level modeling and analysis of TCAS. In Proeedings of the20th IEEE Real-Time Systems Symposium (RTSS'99),Phoenix, Arizona, pages 115{125, Deember 1999.[7℄ David G. Luenberger. Introdution to Dynami Systems: Theory, Models, and Appliations. John Wiley and Sons, In.,New York, 1979.[8℄ Nany Lynh. A three-level analysis of a simple aeleration maneuver, with unertainties. In Proeedings of the ThirdAMAST Workshop on Real-Time Systems, pages 1{22, Salt Lake City, Utah, Marh 1996. World Sienti� PublishingCompany.[9℄ Nany Lynh, Roberto Segala, and Frits Vaandraager. Hybrid I/O automata. Tehnial Report MIT-LCS-TR-827b,MIT Laboratory for Computer Siene, Tehnial Report, Cambridge, MA 02139, February 2002. submitted for journalpubliation, theory.ls.mit.edu/tds/papers/Lynh/HIOA-�nal.ps.[10℄ Nany Lynh, Roberto Segala, Frits Vaandrager, and H. B. Weinberg. Hybrid I/O automata. In T. Henzinger R. Alur andE. Sontag, editors, Hybrid Systems III, volume 1066 of Leture Notes in Computer Siene, New Brunswik, New Jersey,Otober 1995. Springer-Verlag.[11℄ Nany A. Lynh, Roberto Segala, and Frits W. Vaandrager. Hybrid I/O automata revisited. In M.D. Di Benedetto andA.L. Sangiovanni-Vinentelli, editors, Proeedings Fourth International Workshop on Hybrid Systems: Computation andControl (HSCC'01), Rome, Italy, volume 2034 of lns. springer, Marh 2001.11



[12℄ Sayan Mitra. Language for Hybrid Input/Output Automata, 2002. Work in progress.http://theory.ls.mit.edu/mitras/researh/omposing ativities.ps.[13℄ Sayan Mitra, Yong Wang, Nany Lynh, and Eri Feron. Appliation of Hybrid I/O Automata in safety veri�ation ofpith ontroller for model heliopter system. Tehnial report, MIT Laboratory for Computer Siene, Cambridge, MA02139, Otober 2002. http://theory.ls.mit.edu/mitras/researh/QuanTR02.ps.[14℄ Yong Wang, S. Mitra, C. Livadas, N. Lynh, and E. Feron. Design of Supervisory Safety Control for 3DOF Heliopterusing Hybrid I/O Automata, 2002. pre-print http://gewurtz.mit.edu/ishut/darpa se mit/papers/quanser.ps.[15℄ H. B. Weinberg, Nany Lynh, and Norman Delisle. Veri�ation of automated vehile protetion systems. In T. HenzingerR. Alur and E. Sontag, editors, Hybrid Systems III: Veri�ation and Control (DIMACS/SYCON Workshop on Veri�ationand Control of Hybrid Systems), volume 1066 of Leture Notes in Computer Siene, pages 101{113, New Brunswik, NewJersey, Otober 1995. Springer-Verlag.Appendix6.1 Ativities satisfy trajetory losure propertiesLemma 6.1 Suppose T is a set of trajetories spei�ed by the ativities �i, i 2 I, where I is an index set. Then Tis losed under pre�x, suÆx, and onatenation.Proof: T = [ni=1[�i℄ is losed under pre�x and suÆx beause eah of the sets [�i℄ are losed under pre�x andsuÆx. Let �0; �1; �2; : : : be a sequene of trajetories in T suh that, for eah non-�nal index i, �i is losedand �i:lstate = �i+1:fstate. Let �i 2 [�j ℄, �i+1 2 [�k℄, where j; k 2 I and let us also assume for the sake ofontradition that j 6= k. From R3, P�j \P�k must be empty. But it is known that �i:lstate 2 P�j \P�k , whihontradits the assumption. Therefore it must be the ase that j = k. Therefore every trajetory in thesequene belongs to the same ativity, say [�j ℄. As [�j ℄ is losed under onatenation, �0_ �1_ �2_ : : : 2 T :26.2 Relation between C, R, U, and IProperty 1 Over the interval ��2 � � � �2 the following properties hold :1. �+(�; T ) and ��(�; T ) are monotonially dereasing with respet to �.2. �+(�; T ) is monotonially dereasing with respet to T . (T � 0).3. ��(�; T ) is monotonially inreasing with respet to T . (T � 0).4. �+(�max; T ) < 0 and ��(�min; T ) > 0 for T > 0.Proof: Part (1): Using the de�nitions of �+ and ��.�+(�; T ) = �UmagT + r2(Umin +
2 os �max)(�max � � + 12UmagT 2)��(�; T ) = UmagT �r2(Umax � 
2)(� � �min + 12UmagT 2)The monotoniity properties an be shown by alulating the partial derivatives.��+�� = �s 2(Umin +
2 os �max)(�max � � + 12UmagT 2) < 0 and ����� = �s Umax +
22(� � �min + 12UmagT 2) < 0Part (2): ��+�T = �Umag + 12UmagTs 2(Umin +
2 os �max)(�max � � + 12UmagT 2)Using Umax > 
2, � � �max and Umag = Umin + Umax. We get��+�T < �Umag + UmagTsUmin + UmaxUmagT 2 = 0 i:e: ��+�T < 0:12



Part (3) ����T = Umag � 12UmagTs 2(Umax � 
2)(� � �min + 12UmagT 2)Using Umax > 
2, � � �min and Umag = Umin + Umax � Umax. We get����T < Umag � Umagr Umax �
2Umax + Umin > 0 i:e: ����T > 0:Part (4) �+(�max; T ) = �UmagT +p(Umin +
2 os �max)UmagT�+(�max; T ) < �UmagT + UmagT = 0and ��(�min; T ) = �UmagT +p(Umax �
2)UmagT��(�max; T ) > UmagT � UmagT = 0: 2Property 2 I � U � R � C � S.Proof: The set inlusions are trivial to prove by using the monotoniity properties of Property 1. I � Uand R � S follow diretly from the de�nition of these regions. To prove that U � R, let us onsider a pointp = (�; _�) 2 U. As p 2 U, it must satisfy �min + �0 � � � �max� �0. Sine �0 � 0 we have �min � � � �max. Also��(���0; T +�)+�1 � _� � �+(�+�0; T +�)��1. Sine �1y > 0, implies ��(���0; T +�) � _� � �+(�+�0; T +�).From Property 1 we know that �+ and �� derease with respet to �, so ��(�; T +�) � _� � �+(�; T +�).Also from Property 1 �+ and �� respetively inrease and dereases monotonially with respet to T and� > 0 so ��(�; T ) � _� � �+(�; T ).i.e. p 2 R. 26.3 Preliminary PropertiesInvariant 3.1 In any reahable state s of Atuator, for all 0 � i < s:bu�er:size� 1,s:now � s:bu�er[i℄.st � s:bu�er[i+1℄.st � s.now + �at.Proof: The base ase is trivially true beause s:bu�er= fg. Consider a disrete steps of the form s �! s0.If �=sample or � =ontrol then the invariant is preserved beause none of the variables involved in it arehanged by �.Case 1: � =ommand(u,t). From the ode it follows that s0:bu�er= s:bu�er + (u; s:now + �at).Sine s0:now = s:now, it follows from the indutive hypothesis that s0:now � s0:bu�er.nexttolast.st� s0:bu�er.last.st� s0:now + �at. Therefore s0:now � s0:bu�er[i℄.st � s0:bu�er[i+1℄.st�s0:now + �at, for all 0 � i < s0:bu�er:size� 1.Case 2: � =dequeue. From the ode it follows that s0:bu�er= s:bu�er.tail. Sine s0:now =s:now, it follows from the indutive hypothesis that s0:now � s0:bu�er[i℄.st� s0:bu�er[i+1℄.st�s0:now + �at, for all 0 � i < s:bu�er:size� 1.For the ontinuous part, onsider a losed trajetory � of Atuator with s = �:fsate, s0 = �:lstate, andt0 = �:ltime. From the indutive hypothesis it is known that s:now � s:bu�er[i℄.st � s:bu�er[i+1℄.st�s:now + �at, for all 0 � i < s:bu�er:size� 1. From the ode it follows that s0:now = s:now + t0 ands0:buffer = s:buffer. We laim that s0:now � s0:bu�er.head.st and therefore the invarint holds at s0.Suppose this was not the ase, that is s0:now > s0:bu�er.head.st. Then there would exist t00 2 �:dom suhthat t00 < t0 and �(t00):now = s0:bu�er.head.st. Sine �(t00) satis�es the stopping ondition for ativity d2atherefore �:ltime = t00, whih ontradits our assumption.2Invariant 5.1 In every reahable state s of A, 0 � s:time left � �.13



Proof: The base ase holds trivially beause s:time left = �. For the disrete part of the indution weonsider transitions s �! s0, where � = sample ation. Other ations do not alter any of the variables inthe invariant. It follows from the ode that s:now = s:next time, s0:next time = s:next time + �, ands0:now = s:now. Therefore s0:next time� s0:now = �. For the ontinuous part, onsider a losed trajetory� with limit time k � 0, let s:time left = t 2 [0;�℄. Let us assume for the sake of ontradition thatk > t. Then � # now(t) = � # next time(t), whih satis�es the stopping ondition of read ativity, thereforet = �:ltime. This ontradits our assumption, and therefore k � t. From ativity read , s0:time left = t� k.As 0 � t � �, we have 0 � s0:time left � �. 26.4 User modeLemma 5.2 The regions At satisfy the following:1: A0 = R, 2: U � A�, and 3: If 0 � t � t0 � � then At0 � At.Proof: For part 1, set t = 0 in the de�nition of At. For part 2, �0s� �0 � �0p � �0s + �0 and �1s� �1 � �1p � �1s+ �1.Setting t = � it follows that:A� = fs j �min � �0 � s:�0s � �max + �0 ^ ��(s:�0p; �eff +�)� �1 � s:�1s � �+(s:�0p; �eff +�) + �1g:From Property 1, �0p � �0s��0 =) ��(�0p; y) � ��(�0s��0; y) and �0p � �0s+�0 =) �+(�0p; y) � �+(�0s+�0; y). Therefore,fs j �min � s:�0p � �max ^ ��(s:�0s � �0; �eff +�) + �1 � s:�1p � �+(s:�0s + �0; �eff +�)� �1g � A�:The left hand side is equal to U as de�ned in equation (4). For part 3, we observe that in the de�nition of At,�+ and �� are monotonially dereasing and monotonially inreasing respetively with respet to t. Therefore if0 � t � t0 � � then At0 � At. 2Invariant 5.3 In any reahable state s, if s:mode = usr and :s:ready then s 2 As:time left.Proof: The base ase holds beause for any initial state s, s:time left = � and s 2 U � A�. We have toonsider three possible ases for disrete steps s �! s0: if � = sample(x; y), then s0:ready = true and theinvariant holds vauously. if � = ontrol(x), assume s0:mode = usr, we have two sub-ases: if s:mode = usr,then from the ode of the ontrol ation, s 2 U ) s0 2 U � A�. Sine s0:time left � �, s0 2 As:time left.Otherwise, if s:mode = sup, then s 2 I ) s0 2 I � A�, whih implies that s0 2 As0:time left. if � =ommand(x), assume s0:mode = usr ^ :s0:ready, then s:mode = usr ^ :s:ready. By indutive hypothesiss 2 As:time left, therefore s0 2 As0:time left.For the ontinuous part, onsider a losed trajetory � with �:ltime = t0. Assume s0:mode = usr ^:s0:ready. As the valuations of mode and ready do not hange over � , s:mode = usr ^ :s:ready. From theindutive hypothesis s 2 As:time left. Using Lemma 5.3, s0 2 As:time left � t0 = As0:time left: 26.5 Supervisor modeInvariant 5.8 In any reahable state s, suh that s:mode = sup:1. If s:�1s > I+(s:�0s) then (a) Q+d s:rt� e(s), (b) If readyd then Q+d s:rt� e+1(s), and2. If s:�1s < I�(s:�0s) then (a) Q�d s:rt� e(s), (b) If readyd then Q�d s:rt� e+1(s), andProof: We shall prove part 1 of the invariant. The proof for part 2 is similar to that of part 1. The basease holds trivially beause s:mode = usr. We onsider the disrete steps s �! s0 with s0:mode = sup ands0:�1s > I+(s0:�0s).Case 1: � = sample. Sine s:ready = false and s:mode = sup, it follows from the ontrapositiveof Invariant 5.5 that s:�1s > I+(s:�0s) or s:�1s < I�(s:�0s). Aording to Assumption 3, s:�1s �I�(s:�0s), therefore s:�1s > I+(s:�0s). Part 1(a): From part 1(a) of the indutive hypothesisit follows that Q+d s:rt� e(s) holds. Sine bu�er is not hanged by � therefore Q+d s0:rt� e(s0) holds.Part 1(b): Assume s0:readyd = true. Sine sample does not hange readyd, it follows that14



s:readyd = true. Therefore from the indutive hypothesis it follows that Q+d s:rt� e+1(s) holds.Sine bu�er is not hanged by � therefore Q+d s0:rt� e+1(s0) holds.Case 2: � = ontrol. If s:mode = sup. The invariant is preserved sine � does not hange any ofthe variables involved other than mode. If s:mode = usr then s:rt = 0 = s0:rt. The invariant issatis�ed beause Q+0 is trivially true.Case 3: � =ommand. Part 1(b): From the ode it follows that s:mode = sup and s:�1s > I+(s:�0s).Therefore it follows from Invariant 5.6 that s:Usup = Umin. Sine s0:bu�er= s:bu�er+ (s:Usup; s:now+�at), and Q+d s:rt� e(s) holds from the indutive hypothesis, therefore it follows that Q+d s0:rt� e+1(s0)holds. Part 1(a) follows from the above beause Q+d s0:rt� e+1(s0) implies that Q+d s0:rt� e(s0) holds.Case 4: � = dequeue. From the ode it follows that s:mode = sup, s:�1s > I+(s:�0s), s0:bu�er=s:bu�er.tail, and that s:readyd = true. Part 1(b): From the indutive hypothesis it follows thatQ+d s:rt� e+1(s) holds, whih implies that Q+d s0:rt� e(s0) holds. Part 1(b): From the ode it followsthat s0:ready = false therefore the invariant holds trivially.For the ontinuous part, onsider a losed trajetory � , with t0 = �:ltime, s0:mode = sup and s0:�1s >I+(s0:�0s). From the ode it follows that s0:bu�er = s:bu�er, s:�1s > I+(s:�0s) and s0:rt = s:rt + t0. UsingInvariant 5.7 s:rt an be written as s:rt = n� � s:time left for some n � 1; �x n. Therefore s0:rt =n�� s:time left+ t0 = n�� s0:time left. Sine 0 � s:time left � � and 0 � s0:time left � �, therefored s:rt� e = d s0:rt� e = n. Part 1(a): From part 1(a) of the indutive hypothesis it follows that Q+n (s) holds.Sine bu�er is not hanged over � it follows that Q+n (s0) holds.Part 1(b): Assume s0:readyd = true. Therefore s:readyd = true. From part 1(b) of the indutive hy-pothesis it follows that Q+n+1(s) holds and sine bu�er is not hanged over � it follows that Q+n+1(s0) holds. 2Invariant 6.5 In any reahable state s with s:mode = sup ^ s:rt � �at1. If s:�1s > I+(s:�0s) then s:bu�er.head.u = Umin, and 2. If s:�1s < I+(s:�0s) then s:bu�er.head.u = Umax.Proof: We shall prove part 1 of the invariant. Consider a reahable state s and assume that s:mode = sup,s:rt > �at and s:�1s > I+(s:�0s). From part 1 of Invariant 5.8 it follows that Q+d �at� e(s) holds. From Invari-ant 5.2 it is known that the maximum size of bu�er is d �at� e. Therefore it follows from the de�nition of Q+that s:bu�er.head= Umin.2Invariant 5.9 In any reahable state s, suh that s:mode = sup and s:rt > �at1. If s:�1s > I+(s:�0s) then s:U = Umin, and 2. If s:�1s < I�(s:�0s) then s:U = Umax,Proof:We shall prove part 1 of the invariant. The proof of part 2 is similar to that of part 1. The base aseis trivially true beause s:mode = usr. Consider disrete transitions s �! s0 with s0:mode = sup, s0:rt > �at,and s:�1s > I+(s:�0s): Sine none of the disrete steps hange rt, it follows that s:rt > �at.Case 1: � = sample. Sine s:ready is false and s:mode = sup, it follows from the ontrapositiveof Invariant 5.5 that s:�1s > I+(s:�0s) or s:�1s < I�(s:�0s). Aording to Assumption 3, s:�1s �I�(s:�0s), therefore s:�1s > I+(s:�0s). From part 1 of the indutive hypothesis it follows thats:U = Umin. Sine U is not hanged by �, therefore s0:U = Umin.Case 2: � =ontrol. We laim that s:mode = sup. The invariant is preserved sine � does nothange any of the variables involved other than mode. If s:mode = usr then s:rt = 0 = s0:rt,whih ontradits our assumption that s0:rt > �at.Case 3: � =ommand. From the ode it follows that s:mode = sup; s0:U = s:U and s:�1s >I+(s:�0s). Therefore From part 1 of the indutive hypothesis it follows that s0:U = s:U = Umin.Case 4: � = dequeue. From the ode it follows that s:mode = sup and s:�1s > I+(s:�0s). Frompart 1 of Invariant 5.8 it follows that Q+d s:rt� e holds. Sine s:rt > �at, therefore s:bu�er.head.u=Umin, by Invariant 6.5. It follows from the ode that s0:U = Umin.15



For the ontinuous part of the indution onsider a losed trajetory � with �:ltime = t0. Assume s0:mode =sup, s0:rt � �at and s0:�1s > I+(s0:�0s). We laim that s:rt � �at. Sine U , mode, �0s and �1s do not hangeover � , therefore it follows from the indutive hypothesis that s0:U = Umin.Contrary to our laim, if s:rt < �at, then there exists a t00 2 �:dom, suh that t00 < t0 and �(t00):rt = �at.From Lemma 5.1 it follows that suh a t00 would have to be equal to �:ltime beause the stopping onditionof ativity d2a would be enabled at �(t00). This ontradits our assumption �:ltime = t0. 2We introdue a few notations before moving on to prove the safety of the system in the reovery phase.In the ontext of a partiular trajetory � , we abbreviate � # x(t) as simply x(t). The normal and thetangent vetors to a urve at the point (x; y) are denoted by n(x; y) and d(x; y) respetively.Invariant 5.11 In any reahable states s, if s:mode = sup and s:rt � �at then s 2 C.Proof: The base ase is trivially satis�ed beause s:mode = usr. For the disrete part, onsider disretetransitions s �! s0 with s0:mode = sup. If � =ontrol there are two subases: if s:mode = sup then from theindutive hypothesis s 2 C. Therefore using Property 3 it follows that s0 2 C. Otherwise s:mode = usr ands0:rt = 0 and the invariant holds vauously. For all other disrete ations the invariant is preserved beausenone of the variables involved are altered.For the ontinuous part of the indution, onsider losed trajetory � with s0:mode = sup and s0:rt � �at.We laim that s 2 C. From Property 3 it is known that s:mode = sup, Consider two possible ases: (1) Ifs:rt < �at then from Invariant 5.10 it follows that s 2 C. Otherwise (2) s:rt � �at and from the indutivehypothesis it follows that s 2 C:If s 2 U, then from Lemma 5.3 it follows that s0 is in R and therefore in C. So it remains to show thatif s 2 C nU then s0 2 C. We shall prove this by ontradition. Sine s:�1s > I+(s:�0S) or s:�1s < I+(s:�0S)it follows from Invariant 5.9 that s:U = Umin or Umax respetively. Now, suppose s0 =2 C, then theremust exist t0 2 �:dom suh that � leaves the C at �(t0). At the boundary of C it must be the ase thatd(�0p(t0); �1p(t0)) � n(�0p(t0); �1p(t0)) � 0, where � denotes the inner produt between the two vetors. We reaha ontradition by showing that at eah point s00 on the boundary of C, d(s00:�0p; s00:�1p) � n(s00:�0p; s00:�1p) < 0Now onwards we shall write x instead of s00:x where it is understood that x is the state omponent of apoint in the state spae whih is on the boundary of C. We onsider the urves de�ning the boundary ofC(Figure 7).Case 1: The upper boundary �+(�0p; 0) an be written as:C+ = �d(�0p; �1p) j �min � �0p � �max ^ �1p � 0 ^ V1(�0p; �1p) = ��Umin + 
2 os �max� �max	 ;where V1(�0p; �1p) = 12 �1p2 + ��Umin +
2 os �max� �0p. So the outer normal of C+ is given byn(�0p; �1p) = rV1 :=  �V1��0p ; �V1��1p ! = (�Umin + 
2 os �max; �1p);where r is the gradient operator. Sine �1s � I+(�0s) and rt > �at therefore U = Umin by Invariant 5.9. Theplant equations are given by: d(�0p) = �1p, and d(�1p) = �
2 os �0p + Umin. So we haven(�0p; �1p) � d(�0p; �1p) = (�Umin + 
2 os �max; �1p) � (�1p;�
2 os �0p + Umin)= 
2(os �max � os �0p)�1p � 0;for (�0p; �1p) 2 C+. The equal sign is valid i� (�0p; �1p) = (�max; 0). So the point (�0p; �1p) = (�max; 0) needs speialtreatment. Integrating for initial ondition (�max; 0), we getsin �0p = sin �max + 1
2 �Umin(�0p � �max)� 12 �1p2� : (8)This impliit funtion de�nes an integral urve �0p = F1(�1p). Di�erentiating (8) with respet to �1p, we getd�0pd�1p = �1pUmin � 
2 os �0p ; and d2�0pd�1p2 = 1Umin � 
2 os �0p � �1p sin �0p�Umin � 
2 os �0p�3 :16



By evaluating the above derivatives at (�max; 0), we haved�0pd�1p (�max; 0) = 0; d2�0pd�1p2 (�max; 0) = 1Umin � 
2 os �max < 0:The inequality holds beause Umin � 0 and ��2 < �0p < �2 . So the integral urve �0p = F1(�1p) ahieves a maximumat (�max; 0), whih implies the trajetory goes inside C.Case 2: The left boundary of C is given by Cl = �d(�0p; �1p)j� = �min ^ 0 < �1p < �+	,where �+ �=p2 (�Umin + 
2 os �max) (�max � �min). The outer normal of Cl is given by n = (�1; 0), and we haven(�0p; �1p) � d(�0p; �1p) = (�1; 0) � (d�0p; d�1p) = �d�0p = ��1p < 0; for (�0p; �1p) 2 Cl, whih implies the trajetory will notleave C through Cl.The proof for the lower and the right boundary are symmetrial to that of Case 1 and Case 2 respetively.By ombining all the ases, we have shown that for any t00 2 �:dom, at any point on the boundary of Cd(�0p(t0); �1p(t0)) � n(�0p(t0); �1p(t0)) < 0. Therefore s0 is in C.2
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