
Safety Veri�
ation of Model Heli
opter Controller using HybridInput/Output Automata�Sayan Mitra1 Yong Wang2 Nan
y Lyn
h1 Eri
 Feron21MIT LCS,Cambridge, MA 02139, USAfmitras,lyn
hg�theory.l
s.mit.edu 2MIT LIDS,Cambridge, MA 02139, USAfy wang, ferong�mit.eduAbstra
t: This paper presents an appli
ation of the Hybrid I/O Automaton modelling framework [9℄ to arealisti
 hybrid system veri�
ation problem. A supervisory pit
h 
ontroller for ensuring the safety of a modelheli
opter system is designed and veri�ed. The supervisor periodi
ally observes the plant state and takesover 
ontrol from the user when the latter is 
apable of taking the plant to an unsafe state. The design ofthe supervisor is limited by the a
tuator bandwidth, the sensor ina

ura
ies and the sampling rates. Safetyis proved by indu
tively reasoning over the exe
utions of the 
omposed system automaton. The paper alsopresents a set of language 
onstru
ts for spe
ifying hybrid I/O automata.1 Introdu
tionFormal veri�
ation of hybrid systems is a hard problem. It has been shown that 
he
king rea
hability for evena simple 
lass of hybrid automata is unde
idable [4℄. Algorithmi
 te
hniques have been developed for severalsmaller sub
lasses of hybrid automata making automati
 veri�
ation possible [1℄. However these sub
lassesare too weak to represent realisti
 hybrid systems. Consequently the languages and tools, like HyTe
h [3℄,developed for algorithmi
 methods are not adequate for des
ribing general hybrid systems. An alternativeapproa
h to veri�
ation is based on the hybrid Input/Output automaton (HIOA) model [10, 11, 9℄. In thisapproa
h the properties of a system are derived by indu
tion on the exe
utions of the automaton model, see[6, 15, 8℄ for related earlier works. Being a more expressive model, hybrid I/O automata enables us to modela larger 
lass of hybrid systems. Although at present there is no tool support for HIOA, we intend to extendthe IOA Toolset [2℄ for 
he
king HIOA 
ode and also build theorem prover interfa
es for HIOA to partiallyautomate the veri�
ation pro
ess.This paper presents the veri�
ation of a supervisory 
ontroller of a model heli
opter system using theHIOA framework. The heli
opter system (Figure 1) is manufa
tured by Quanser [5℄. It is driven by tworotors mounted at the two ends of its body and it is atta
hed to an arm whi
h is �xed at one end. Theheli
opter 
an revolve about the �xed end of the arm and has three degrees of freedom. The rotor inputs areeither 
ontrolled by the user with a joysti
k, or by 
ontrollers designed by the user. Students of Aeronauti
sand Astronauti
s at MIT experiment with di�erent 
ontrollers for the heli
opter. Controllers are often unsafeand damage the equipment by pit
hing the heli
opter too high or too low. This is also a hazard for theusers. Therefore the safety of the system is important. A supervisory 
ontroller is designed to prevent theheli
opter from rea
hing unsafe states. The supervisor periodi
ally observes the position and the velo
ity ofthe heli
opter and overrides the user's 
ontroller by 
onservatively estimating the worst that might happenif the user is allowed to 
ontinue. The supervisor is limited by the a
tuator bandwidth, the sampling rate,and sensor ina

ura
ies. These fa
tors also make the veri�
ation more 
omplex.This paper also des
ribes a spe
i�
ation language for HIOA. In this language dis
rete transitions of hybridI/O automata are spe
i�ed in the usual pre
ondition-e�e
t style, and the 
ontinuous evolution is writtenin terms of 
onstrained \state-spa
e" models 
alled a
tivities. The language, to date is for manual use, it�Funding for this resear
h has been provided by AFRL 
ontra
t F33615-01-C-18501




onstitutes a �rst step for automating the veri�
ation pro
ess using HIOA.

Figure 1: Heli
opter model with three degrees of freedom.The 
ontributions of this paper are: (1) demonstration of a realisti
 appli
ation of the hybrid I/O au-tomata based veri�
ation methodology, (2) design of the supervisory 
ontroller whi
h ensures safety of theQuanser heli
opter system along the pit
h axis, and (3) a set of language 
onstru
ts for spe
ifying hybridI/O automata.In Se
tion 2 we review the hybrid I/O automata model and des
ribe the spe
i�
ation language. Wepresent the HIOA models of the system 
omponents and the supervisor in Se
tions 3 and 4 respe
tively. Dueto limited spa
e we present brief proof sket
hes for the important invariants required for proving safety ofthe system in Se
tion 5. The 
omplete proofs are given in the Appendix and are also available in the formof a te
hni
al report[13℄. Con
luding remarks and future dire
tions for resear
h are dis
ussed in Se
tion 6.2 Hybrid I/O AutomataA brief review of the HIOA model is presented in this se
tion. For a 
omplete dis
ussion refer to [9℄. Earlierversions of the model appeared in [10℄ and [11℄.2.1 The HIOA ModelA hybrid I/O automaton 
aptures the hybrid behavior of a system in terms of dis
rete transitions and
ontinuous evolution of its state variables. Let V be the set of variables of automaton A. Ea
h v 2 V isasso
iated with a (stati
) type de�ning the set of values v 
an assume. A valuation v for V is a fun
tionthat asso
iates ea
h variable v 2 V to a value in type(v). A traje
tory � of V is de�ned as a mapping� : J ! val(V ) where J is a left 
losed interval of time. If J is right 
losed then � is said to be 
losedand its limit time is the supremum of the domain of � , also written as �:ltime. Ea
h variable v 2 V is alsoasso
iated with a dynami
 type (or dtype) whi
h is the set of traje
tories that v may follow.A hybrid I/O automaton A 
onsists of : (1) a set V of variables, partitioned into internal X , inputU , and output variables Y . The internal variables are also 
alled state variables. Z �= X [ Y is the setof lo
ally 
ontrolled or lo
al variables. (2) a set A of a
tions , partitioned into internal H , input I , andoutput a
tions O. (3) a set of states Q � val(X) , (4) a non-empty set of start states � � Q, (5) a set ofdis
rete transitions D � Q � A � Q. A transition (x; a;x0) 2 D is written in short as x a!A x0. (6) a setof traje
tories T for V , su
h that for every traje
tory � in T , and for every t 2 �:dom, �(t):X 2 Q. Itis required that T is 
losed under pre�x, suÆx, and 
on
atenation. The �rst state �(0):X of traje
tory isdenoted by �:fstate. If �:dom is �nite then �:lstate = �(�:ltime):X . In addition, a hybrid I/O automatonalso satis�es: (1) the input a
tion enabling property, whi
h prevents it from blo
king any input a
tion and(2) the input traje
tory enabling property, whi
h ensures that it is able to a

ept any traje
tory of the inputvariables either by allowing time to progress for the entire length of the traje
tory or by rea
ting with someinternal a
tion before that. 2



An exe
ution of A is a �nite or in�nite sequen
e of a
tions and traje
tories � = �0; a1; �1; a2 : : : ,where (1)ea
h �i 2 T , (2) �0:fstate 2 � and (3) if �i is not the last traje
tory in � then �i is �nite and �i:lstate ai+1!�i+1:fstate. An exe
ution is 
losed if the sequen
e is �nite and the domain of the �nal traje
tory is a�nite 
losed interval. The length of an exe
ution is the number of elements (a
tions and traje
tories) in thesequen
e.An invariant I of A is either derived from other invariants or proved by indu
tion on the length of a
losed exe
ution of A. The indu
tion 
onsists of a base 
ase, and an indu
tion step. The base 
ase teststhat I(s) is satis�ed for all s 2 �. The indu
tion step 
onsists of : (1) A dis
rete part|whi
h tests that forevery dis
rete step s �! s0 2 D, I(s) implies I(s0). (2) A 
ontinuous part|whi
h tests that for any 
losedtraje
tory � 2 T , with �:fstate = s and �:lstate = s0, I(s) implies I(s0). We shall use s and s0 to denotethe pre and the post states of dis
rete transitions, and also the fstate and the lstate of 
losed traje
tories,as will be 
lear from the 
ontext.2.2 New Addition to HIOA Stru
ture: A
tivitiesIn the earlier works [6, 15, 8℄ using the HIOA model, traje
tories of automata were spe
i�ed using an ad ho
mixture of integral, algebrai
 equations and English. While this form of spe
i�
ation is simple to read, it doesnot lend itself easily to systemati
 analysis, nor does it enfor
e a 
onsistent style in writing spe
i�
ations.The spe
i�
ation language [12℄ used in this paper uses \state spa
e" representation [7℄ of the traje
tories.To make this representation work, the following extra stru
ture has been introdu
ed into the basi
 HIOAmodel of [9℄.The time domain is assumed to be the set of reals R. A variable v is dis
rete if its dynami
 type isthe pasting 
losure of the set of 
onstant fun
tions from left 
losed intervals of time to type(v). A variableis 
ontinuous if its dynami
 type is the pasting 
losure of the set of 
ontinuous fun
tions from left 
losedintervals of time to R. For any set S of variables, Sd and Sa refer to the dis
rete and 
ontinuous subsets ofS respe
tively.Let e be a real valued algebrai
 expression involving the variables in X [ U . For a given traje
tory � ,�:e denotes the fun
tion with domain �:dom that gives the value of the expression e at all times over � .Given that v is a lo
al 
ontinuous variable, a traje
tory � satis�es the algebrai
 equation v = e, if for everyt 2 �:dom, � # v(t) = �:e(t). If an algebrai
 equation involves a nondeterministi
 
hoi
e su
h as v 2 [e1; e2℄,then � satis�es the equation if for every t 2 �:dom, � # v(t) 2 [�:e1(t); �:e2(t)℄. If the expression e isintegrable when viewed as a fun
tion, then � satis�es the di�erential equation _v = e, if for every t 2 �:dom,� # v(t) = � # v(0) + R t0 �:e(t0) dt0.A state model of HIOA A 
onsists of jZaj number of independent algebrai
 and/or di�erential equations withexa
tly one equation having v or d(v) as its left hand side. The right hand sides of the equations are algebrai
expressions involving the variables in X [U . A state model spe
i�es1 the evolution of every variable v in Zafrom some initial valuation. A traje
tory � satis�es a state model E if at all times over � , all the variablesin Za satisfy the di�erential and algebrai
 equations in E with �(0) de�ning the initial valuations.An a
tivity � of HIOA A 
onsists of four 
omponents: (1) a starting 
ondition P� � Q, (2) a operating
ondition P � P�, (3) a stopping 
ondition P+ � Q, and (4) a state model E. The set of traje
tories de�nedby a
tivity � is denoted by [�℄. A traje
tory � belongs to the set [�℄ if the following 
onditions hold:1. � satis�es the state model E.2. For all t 2 �:dom, (� # X)(t) 2 P�.3. For all t 2 �:dom� f0g, � # X(t) 2 P .4. If (� # X)(t) 2 P+ for t 2 dom(�) then � is 
losed and t = �:ltime.We impose the following restri
tions on hybrid I/O automata model in order to spe
ify the traje
tories ofan automaton as the union of the sets of traje
tories spe
i�ed by its a
tivities.1By spe
i�es we mean restri
ts rather than uniquely determines. Due to possible nondeterminism in the state model, uniquedetermination might not be possible. 3



type RAD = Real su
hthat (i : RAD; jij � �)type RADPS = Real su
hthat (i : RADPS; jij � _�)type UTYPE = Real su
hthat (i : UTYPE j Umin � i � Umax)hybridautomaton Plant(
 : Real )variablesinput analog U : UTYPE,internal analog �0p : RAD, �1p : RADPS, initially (�0p; �1p) 2 U,output analog �0e : RAD, �1e : RADPS
% � max abs value for angles% _� max abs value of angular velo
itytraje
toriesa
tivity pit
h dynami
sevolve d(�0p) = �1p; d(�1p) = �
2 
os �0p + U ;�0e = �0p; �1e = �1pFigure 2: HIOA spe
i�
ation of the plantR1 Every variable is either dis
rete or 
ontinuous.R2 Lo
al dis
rete variables are 
onstant over traje
tories, that is, 8� 2 T ; �:lvaldZd = �:fvaldZd.R3 Starting 
ondition of all the a
tivities are disjoint, that is, P�i \ P�j = ; if i 6= j.It 
an be shown that (Lemma 6.1 in the Appendix) a set of traje
tories spe
i�ed by a set of a
tivities, satisfythe pre�x, suÆx, and 
on
atenation 
losure properties.2.3 Language Constru
tsIn the HIOA spe
i�
ation language variables are de
lared by their names, types, and optionally their initialvaluations. Varibales de
lared with the analog keyword are 
ontinuous, else they are dis
rete. A
tions arede
lared by their names, types, and optional list of parameters. Algebrai
 expressions are written using theoperators +;�; �; and n. A nondeterministi
 assignment, su
h as v 2 [e1; e2℄, is written as v := 
hoose[e1; e2℄.The derivative of a 
ontinuous variable x is written as d(x). The dis
rete transitions are written in thepre
ondition|e�e
t style of the IOA language [2℄. An a
tivity � : (P�; P; P+; E) is written as:a
tivity � when P� evolve E su
h that P stop at P+.For automata with a single a
tivity, if the starting 
ondition P� is not spe
i�ed expli
itly, then it is assumedto be equal to the entire state spa
e Q. If P and P+ are omitted then they are assumed to be equal to P�,and ; respe
tively.3 Spe
i�
ation of System ComponentsThis se
tion des
ribes the HIOA models for the 
omponents of the heli
opter system, ex
ept for the super-visory 
ontroller, whi
h is in Se
tion 4. Dis
rete and 
ontinuous 
ommuni
ation among the 
omponents areshown in Figure 3. In this paper we 
onsider the pit
h dynami
s of the heli
opter, whi
h are 
riti
al forsafety. A 
omplete dynami
al model of the heli
opter with three degrees of rotational freedom 
an be foundin [14℄. In pra
ti
e the roll and yaw e�e
ts are eliminated by making the initial 
onditions along these axesto be zero and giving identi
al input to the two rotors. The pit
h dynami
s is des
ribed by ��+
2 
os � = U(t),where 
 is the 
hara
teristi
 frequen
y of the system and U is the net input for the pit
h axis whi
h 
anrange between Umin and Umax. The Plant automaton (Figure 2) spe
i�es the evolution of the pit
h angle �0pand the velo
ity �1p with input U , a

ording to the pi
th dynami
s. The global types RAD, RADPS and UTYPEde�ne the domains for variables representing angle, angular velo
ity and a
tuator output respe
tively. Thestate variables �0p and �1p are initialized to some value from the set U, whi
h is de�ned in equation (4). ThePlant is safe at a given state s if the pit
h angle s:�0p is within the allowed limits �min and �max. Where�min 
orresponds to the heli
opter hitting the table (or the ground). And �max 
orresponds to the heli
opterhitting a very fragile me
hani
al stop. The set of safe states is de�ned as:S �= fs j �min � s:�0p � �maxg: (1)

4
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Figure 3: Components of Heli
opter system. Continuous and dis
rete 
ommuni
ation among 
omponents are shownby wide and thin arrows respe
tively. The internal variables are marked inside the 
ir
les and internal a
tions areshown by a dashed self loop.hybridautomaton Sensor(�0,�1, � : Real )a
tionsoutput sample ( �0d : RAD , �1d: RADPS )dis
rete transitionsoutput sample ( �0d , �1d)pre now = next time ^�0d 2 [�0a � �0; �0a + �0℄^�1d 2 [�1a � �1; �1a + �1℄e� next time := now + �traje
toriesa
tivity readevolve d(now) =1; �0a = �0e ; �1a = �1e;stop at now = next time
variablesinput analog �0e : RAD; �1e : RADPS,internal analog �0a : RAD := 0, �1a : RADPS := 0,now: Real := 0;internal next time : Real := �derived variables:time left �= s:next time � s:now.

Figure 4: HIOA spe
i�
ation of the sensor and A/D 
onversion 
ir
uitThe Sensor automaton (Figure 4) periodi
ally 
onveys the state of Plant to the 
ontrollers as observed bythe physi
al sensors. It is parameterized by the sampling period �, the sensor errors for pit
h angle �0, andvelo
ity �1. The variable now serves as a 
lo
k. The stopping 
ondition of the read a
tivity ensures that asample a
tion o

urs after every � interval of time. The value of �0d (�1d) is nondeterministi
ally 
hosen tobe within ��0 (��1) of �0a (�1a). This 
hoi
e models the noise or the un
ertainties in the sensing devi
es.The UsrCtrl automaton (Figure 5) models an arbitrary user 
ontroller. It reads the sample a
tion andtriggers an output 
ontrol(ud) a
tion, whi
h 
ommuni
ates the user's output Uu to the supervisor. Theoutput Uu is modeled as a nondeterministi
 
hoi
e over the entire range Umin to Umax. This 
aptures ourassumption that the user is 
apable of issuing arbitrarily bad 
ontrol inputs to the plant. The design ofa safe supervisor for UsrCtrl ensures that the system would be safe for any user 
ontroller be
ause every
ontroller must implement this spe
i�
ation of UsrCtrl.The A
tuator automaton (Figure 6) models the a
tuator and the D/A 
onverter. The delay in the a
tuatorresponse is modeled by a FIFO bu�er of (u; st) pairs, where u is a 
ommand issued from Supervisor, andthe s
heduled time st is the time at whi
h u is to be delivered to the plant. A 
ommand(u;m) a
tion appends(u; timer + �a
t) to bu�er and a dequeue a
tion 
opies bu�er.head.u to uo and removes bu�er.head. Thefollowing invariant for A
tuator 
an be derived from its spe
i�
ation. The proof follows from a simpleindu
tion and is given in the Appendix.Invariant 3.1 In any rea
hable state s of A
tuator, for all 0 � i < s:bu�er:size� 1,s:now � s:bu�er[i℄.st � s:bu�er[i+1℄.st � s.now + �a
t.5



hybridautomaton UsrCtrla
tionsinput sample ( �0d : RAD , �1d : RADPS ),output 
ontrol ( ud : UTYPE)dis
rete transitionsinput sample ( �0d , �1d )e� �0u := �0d; �1u = �1dUu := 
hoose [Umin; Umax℄;ready := truetraje
toriesa
tivity voidevolve stop at ready
variablesinternal �0u: RAD := 0 , �1u : RADPS := 0,Uu : UTYPE := 0,ready : Bool := falseoutput 
ontrol ( ud )pre (ud = Uu) ^ readye� ready := false

Figure 5: Spe
i�
ation of User's Controllertype MODES = f usr, sup ghybridautomaton A
tuator(�a
t)a
tionsinput 
ommand ( u : UTYPE )internal dequeuedis
rete transitionsinput 
ommand ( u )e� bu�er + := (u; now + �a
t);readyd := truetraje
toriesa
tivity d2aevolve U = uostop at bu�er:head:st = now
variablesinternal uo : UTYPE := 0, readyd : Bool := false,bu�er : seq of (u:UTYPE, st:Real, m:MODE) := fgoutput analog U : UTYPE := 0,input analog now : Realinternal dequeuepre bu�er.head.st = now ^ readyde� uo := bu�er.head.v;bu�er := bu�er:tail;readyd := falseFigure 6: A
tuator and D/A 
onversion4 Supervisory ControllerThe �rst goal of the supervisory 
ontroller is to ensure safety. A se
ond requirement is to interfere as littleas possible with the user's 
ontroller. The design prin
iple of the supervisor is simple: Allow the user to bein 
ontrol in a safe operating region U, from where the supervisor is guaranteed to restore the plant to a safestate; Outside of U, blo
k the user's 
ontroller, perform re
overy, and return 
ontrol to the user. In orderto satisfy the se
ond requirement it is also desirable to make U as large as possible. Therefore we have to�nd U, whi
h is the largest set of states in whi
h the user 
an be allowed to operate without threateningthe safety of the plant.4.1 Safe Operating RegionClearly the U has to be a subset of S. Consider a region C � S, from whi
h all the rea
hable states are
ontained in S, provided that the input U to the plant is 
orre
t. By 
orre
t we mean that the input tothe plant is U = Umin (or Umax) if the pit
h �0p is in the danger of hitting �min (�max resp.). Sin
e thesupervisor 
annot 
hange the output of the a
tuator instantaneously, due to the �a
t delay in A
tuatorbu�er, therefore the region C is not a safe operating region for the user. The supervisor has to estimate ifthe plant under user's 
ontrol would go outside of C in �a
t time. We use a 
onservative estimate and de�nethe region R as the set of states from whi
h all rea
hable states over a period of �a
t are within C. If theuser is restri
ted to operate in R and if the supervisor 
an monitor the plant state a

urately, then it 
antake a timely de
ision to take over. However, the supervisor 
annot observe the plant state a

urately, itrelies on the periodi
 updates from the ina

urate sensors. Taking the errors and the delay into a

ount we6



de�ne the region U as follows: An observed state s is in U if starting from any a
tual state 
orrespondingto s all the rea
hable states over a � interval of time are in R. Swit
hing ba
k to the user's 
ontroller fromthe supervisor is delayed until the supervisor brings the plant state within an inner region I � U. Thisasymmetry in swit
hing prevents high frequen
y 
hattering between the user and the supervisor.The regions C, R, U, and I are de�ned as follows. Umag = Umax � Umin.C �= fs j s:�0p 2 [�min; �max℄ ^ s:�1p 2 [��(s:�0p; 0);�+(s:�0p; 0)℄g; (2)R �= fs j �min � s:�0p � �max ^ ��(s:�0p; �a
t) � s:�1p � �+(s:�0p; �a
t)g; (3)U �= fs j �min + �0 � s:�0s � �max � �0 ^ U�(s:�0s) � s:�1s � U+(s:�0s)g; (4)I �= fs j �min + �0 � s:�0s � �max � �0 ^ I�(s:�0s) � s:�1s � I+(s:�0s)g: (5)�+(�; T ) = �UmagT + r2(
2 
os �max � Umin)(�max � � + 12UmagT 2); (6)��(�; T ) = UmagT �r2(Umax �
2)(� � �min + 12UmagT 2); (7)U+(�) = ��1 + �+(� + �0; �a
t +�) U�(�) = + �1 + ��(� � �0; �a
t +�)I+(�) = �2�1 + �+(� + 2�0; �a
t +�) I�(�) = + 2�1 + ��(� � 2�0; �a
t +�):From the above de�nitions the following properties are derived.Property 1 Over the interval ��2 � � � �2 the following properties hold :1. �+(�; T ) and ��(�;T ) are monotoni
ally de
reasing with respe
t to �.2. �+(�; T ) is monotoni
ally de
reasing with respe
t to T . (T � 0).3. ��(�;T ) is monotoni
ally in
reasing with respe
t to T . (T � 0).4. �+(�max;T ) < 0 and ��(�min;T ) > 0 for T > 0.Property 2 I � U � R � C � S
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Figure 7: (a) Regions in the statespa
e. (b) Traje
tories in the settling (dashed lines) and re
overy(solidlines) periods.4.2 Supervisor AutomatonThe Supervisor automaton (Figure 8) 
opies the observed plant state into internal variables �0s and �1swhen the sample a
tion o

urs. Based on this state information the tentative output Usup to the a
tuatoris de
ided. When the 
ontrol a
tion o

urs, the supervisor 
opies the user's 
ommand into another internalvariable Uusr and sets output 
ommand Us and mode for the next � interval based on (�0s ; �1s) and the
urrent value of mode. If mode is usr and the observed state is in U then mode remains un
hanged andUs is set to Uusr. If the present state is not in U then mode is 
hanged to sup and the Us is set to Usup.If mode = sup then Us is 
opied from Usup and the mode 
hanges only when (�0s ; �1s) is in I. The 
ontrola
tion enables the 
ommand output a
tion by setting the ready
 
ag.7



hybridautomaton Supervisora
tionsinput sample (�0d: RAD �1d: RADPS),input 
ontrol (ud : UTYPE),output 
ommand (ud : UTYPE, m : MODES)dis
rete transitionsinput sample (�0d, �1d)e� �0s := �0d; �1s := �1d;if �1s � I+(�0s) then Usup := Uminelseif �1s � I�(�0s) then Usup := Umax �output 
ommand (ud, m)pre ready
 ^ (ud = Us) ^m = modee� ready
 := falsetraje
toriesa
tivity supervisorwhen mode = supevolve d(rt) = 1 stop at ready


variablesinternal �0s : RAD := 0, �1s : RADPS := 0,Usup; Uusr; Us : UTYPE := 0,internal ready
 : Bool := false;mode : MODES := usrinternal analog rt : Real := 0;input 
ontrol (ud)e� Uusr := ud; ready
 := trueif mode = usr thenif (�0s ; �1s) 2 U then Us := Uusrelse Us := Usup; mode := sup �elseif mode = sup thenif (�0s ; �1s) 2 I then Us := Uusr ; mode := usrelse Us := Usup � �a
tivity userwhen mode = usrevolve rt = 0 stop at ready
Figure 8: HIOA spe
i�
ation of supervisor automaton5 Analysis of Heli
opter SystemIn this se
tion we present the safety veri�
ation of the 
omposed system. Let A denote the 
ompositionof the Plant, Sensor, UsrCtrl, A
tuator, and the Supervisor automata. Safety is preserved if all therea
hable states of the A are 
ontained within the region S. It is assumed that: (1) �min < 0 < j�minj < �max,(2) Umax > 
2, Umin � 0, and (3) For any sample a
tion s �! s0, if s:�1s > I+(s:�0s) then, s0:�1s � I�(s0:�0s), andif s:�1s < I�(s:�0s) then, s0:�1s � I+(s0:�0s). Assumptions (1) and (2) are derived from the dimensions of thephysi
al system. Assumption (3) is a requirement whi
h limits the speed of the plant and the samplingperiod so that it is not possible for the plant to jump a
ross I without the sensors dete
ting it.In the next se
tion we present some preliminary properties of A, then we state the key invariants of A inthe user and the supervisor modes along with their proofs. The details of all the invariant proofs are givenin the Appendix and 
an also be found in [13℄.5.1 Some Preliminary Properties of AThe spe
i�
ation of the 
omponents of A satisfy restri
tions R2, R2 and R3 and the plant state variables�0p and �1p are not modi�ed by any dis
rete a
tion. The next two properties are 
onsequen
es of these fa
ts:Property 3 The dis
rete variables of A are not 
hanged over any 
losed traje
tory � .Property 4 For any dis
rete step s �! s0 of automaton A, s0:�0p = s:�0p and s0:�1p = s:�1p.Invariant 5.1 follows from the 
ode by a straightforward indu
tion. Lemma 5.1 follows from Invariant 5.1and indi
ates the times at whi
h the di�erent a
tions of A o

ur. Invariant 5.2 limits the size of the bu�erand it is a 
onsequen
e of Invariant 3.1 and Lemma 5.1.Invariant 5.1 In every rea
hable state s of A, 0 � s:time left � �.Lemma 5.1 In any exe
ution of A, sample, 
ontrol, and 
ommand a
tions o

ur when now = n�, anddequeue a
tions o

urs when timer = �a
t + n� for some integer n > 0.Invariant 5.2 In every rea
hable state s, for all 0 � i < s:bu�er:size� 1,s:bu�er[i+1℄.st= s:bu�er[i℄.st + �, and s.bu�er.size � d �a
t� e.8



5.2 User ModeIn this se
tion we prove that A is safe in the user mode. We de�ne a set of regions At for 0 � t � �,At �= fs j s:�0p 2 [�min; �max℄ ^ s:�1p 2 [��(s:�0p; �eff + t);�+(s:�0p; �eff + t)g. Lemma 5.2 states the properties ofthe At regions.Lemma 5.2 The regions At satisfy: 1: A0 = R, 2: U � A�, and 3: If 0 � t � t0 � � then At0 � At.The next lemma bounds the rea
hable sates over a singe traje
tory and is used to prove safety when atarje
tory starts from the safe operating region U. Invariant 5.3 makes use of Lemma 5.3. The safety of thesystem in the user mode is established by Invariant 5.4.Lemma 5.3 For any 
losed traje
tory � of A, if �:fstate 2 At then �:lstate 2 At�ltime(�).Proof: Consider a 
losed traje
tory � . Assume that s 2 At. From the de�nition of At it follows that,�min � s:�0p � �max and ��(s:�0p; �eff + t) � s:�1p � �+(s:�0p; �eff + t). We 
onservatively estimate s0 by
onsidering the maximum and the minimum input U to Plant. First 
onsidering the maximum positiveinput, U = Umax, from the state model of Plant we get the upper bound on the a

eleration at any state s00in � : d(s00:�1p) � �
2 
os �max+Umax. Integrating from t to t0, it follows that s0:�1p � (Umax�
2 
os �max)t0+s:�1p,and s0:�0p � 12 (Umax � 
2 
os �max)t02 + s:�1pt0 + s:�0p. Simplifying and using the de�nition of �+ we get thefollowing bounds on s0:�0p and s0:�1p: s0:�0p � �max, and s0:�1p � �+(s0:�0p; �eff + t � t0). Similarly 
onsideringmaximum negative output, U = Umin, we get the lower bounds on s0:�0s and s0:�1s . s0:�0p � �min, ands0:�1p � ��(s0:�0p; �eff + t� t0). Combining equations all the above bounds on s0 it follows that s0 2 At�t0 . 2Invariant 5.3 In any rea
hable state s, if s:mode = usr and :s:ready then s 2 As:time left.Invariant 5.4 In any rea
hable state s, if s:mode = usr then s 2 R.Proof: The base 
ase holds be
ause all initial states are in U and U � R. Consider any dis
rete transitions �! s0, with s0:mode = usr. We split the proof into two 
ases: If :s0:ready, then using Invariant 5.3,s0 2 As0:time left � R. On the other hand, if s0:ready, then � 6=
ontrol , and s:mode = usr sin
e only the
ontrol a
tion 
an 
hange mode. So from the indu
tive hypothesis s 2 R. It follows that s0 2 R from theProperty 4.For the 
ontinuous part 
onsider a 
losed traje
tory � with �:fstate = s, �:lstate = s0, and s0:mode = usr.On
e again there are two 
ases, if :s0:ready then s0 2 R by Invariant 5.3. Else if s0:ready, then s:ready ands:mode = usr be
ause ready and mode does not 
hange over the traje
tories. Sin
e s satis�es the stopping
ondition for a
tivity void in UsrCtrl, therefore � is a point traje
tory, that is, s0 = s. From the indu
tivehypothesis, s 2 R. Therefore s0 2 R. 25.3 Supervisor Mode : Settling PhaseFor proving safety in the supervisor mode, we �rst state some of the simple invariants. Invariant 5.5 statesthat, in all rea
hable with ready set to false, if the sensed plant state is within I+ and I�, then the systemis in the user mode. Invariant 5.6 follows from the 
ode of the sample a
tion. And Invariant 5.7 is provedby a simple indu
tion.Invariant 5.5 In any rea
hable state s, I�(s:�0s) � s:�1s � I+(s:�0s) ^ :s:ready ) s:mode = usr.Invariant 5.6 In any rea
hable state s, else if s:�1s > I+(s:�0s) then s:Usup = Umin, and if s:�1s < I+(s:�0s)then s:Usup = Umax.Invariant 5.7 In any rea
hable state s, s:rt = n�� s:time left, for some integer n � 1.We de�ne two predi
atesQ+k and Q�k that 
apture the progress made by the system while the a
tuator delaysthe delivery of 
ommands issued by the supervisor. A state s satis�es Q+k (or Q�k ), if the last k 
ommandsin s:bu�er are equal to Umin (or Umax respe
tively). More formally, for any k � 0,9



Q+k (s) �= 8i; max(0; s.bu�er.size �k) � i < s.bu�er.size, s:bu�er[i℄.u = Umin, andQ�k (s) �= 8i; max(0; s.bu�er.size �k) � i < s.bu�er.size, s:bu�er[i℄.u = Umax.Clearly, for all k > 0, Q+k (s) implies Q+k�1(s), and therefore for any k � s:bu�er.size, Q+k (s) implies thatQ+j (s) holds for all j < s:bu�er.size. Similar results hold for Q�k . The next invariant states that everyrea
hable state s in the supervisor mode, satis�es either Q+d s:rt� e(s) or Q�d s:rt� e(s), depending on whether s isabove I+ or below I� respe
tively. In addition if s:readyd is true, that is, s is in between a 
ommand a
tionand a dequeue a
tion, then Q+d s:rt� e+1(s) or Q�d s:rt� e+1(s) holds, depending on the lo
ation of s with respe
tto I+ and I�.Invariant 5.8 In any rea
hable state s, su
h that s:mode = sup:1. If s:�1s > I+(s:�0s) then (a) Q+d s:rt� e(s), (b) If readyd then Q+d s:rt� e+1(s), and2. If s:�1s < I�(s:�0s) then (a) Q�d s:rt� e(s), (b) If readyd then Q�d s:rt� e+1(s), andThe next invariant formalizes the notion that after a 
ertain �a
t period of time in the supervisor mode theinput to the plant is 
orre
t.Invariant 5.9 In any rea
hable state s, su
h that s:mode = sup and s:rt > �a
t1. If s:�1s > I+(s:�0s) then s:U = Umin, and 2. If s:�1s < I�(s:�0s) then s:U = Umax,We split the exe
ution of A in the supervisor mode (Figure 7(b)) into (a) a settling phase of length �a
t inwhi
h the input U to the plant is arbitrary, and (b) a variable length re
overy phase during whi
h rt > �a
tand the input to the plant is 
orre
t, that is, in a

ordan
e with Invariant 5.9.Next we de�ne a set of regionsBt whi
h are analogous to the At regions. Bt �= fs j s:�0p 2 [�min; �max℄ ^ s:�1p 2[��(s:�0p; �a
t�t);�+(s:�0p; �a
t�t)℄g, for 0 � t � �a
t. Lemma 5.4 states the relationship between the Bt regionsand its proof is similar to that of Lemma 5.2. Invariant 5.10 bounds the lo
ation of a state s in terms of theBt regions, when s:rt � �a
t. This implies the safety of the system in the settling phase.Lemma 5.4 The regions Bt satisfy: 1: B0 = R, 2: B�a
t = C, 3: If 0 � t � t0 � �a
t then Bt � Bt0 .Invariant 5.10 For any rea
hable state s, if s:mode = sup ^ s:rt � �a
t then s 2 Bs:rt.5.4 Supervisor Mode: Re
overy PhaseInvariant 5.11 states that C is an invariant set for the system in the re
overy phase. A sket
h of the proofis given here, the 
omplete proof is in the Appendix.Invariant 5.11 In any rea
hable states s, if s:mode = sup and s:rt � �a
t then s 2 C.proof sket
h: The base 
ase is trivially satis�ed. The dis
rete part of the indu
tion is also straightforward,the 
ontrol a
tion alters the mode. If s:mode = sup then using the indu
tive hypothesis, s0 2 C. Otherwises:mode = usr and s0:rt = 0 and the invariant holds va
uously. For all other dis
rete a
tions the invariantis preserved. For the 
ontinuous part of the indu
tion, 
onsider 
losed traje
tory � with s0:mode = sup ands0:rt � �a
t. We 
laim that s 2 C. From Property 3 it is known that s:mode = sup, (1) If s:rt < �a
t thenfrom Invariant 5.10 it follows that s 2 C. Otherwise (2) s:rt � �a
t and from the indu
tive hypothesis itfollows that s 2 C: If s 2 U, then from Lemma 5.3 it follows that s0 2 R � C. So it remains to show thatif s 2 C nU then s0 2 C. This is proved by 
ontradi
tion, suppose s0 =2 C, then there must exist t0 2 �:domsu
h that � leaves the C at �(t0). Then it must be the 
ase that the traje
tory � and the outer-normal ofboundary of C should form an a
ute angle. It is known from Lemma 5.9 that at any intermediate state �(t0),the input U to the plant is 
orre
t. A 
ontradi
tion is rea
hed by showing that if �(t0) is on the boundaryof C, then the angle between the above-mentioned ve
tors is obtuse.Finally, 
ombining the Invariants proved above the safety property of the 
omposed system 
an be proved.10



Theorem 1 All rea
hable states of A are 
ontained in C.Proof: For any rea
hable state s, if s:mode = usr then s 2 R � C by Invariant 5.4. Otherwise s:mode = sup,and there are two possibilities: if s:rt < �a
t then, by Invariant 5.10, s 2 Bs:rt � C. Else s:rt � �a
t and itfollows from Invariant 5.11 that s 2 C.6 Con
lusionsIn this paper we have presented and formally veri�ed a supervisory 
ontroller for a model heli
opter system.This supervisory 
ontroller allows the user to 
ontrol in a safe operating region, beyond whi
h it overridesthe user, performs appropriate re
overy, and returns 
ontrol to the user. The duration of the re
overy periodhas not been dis
ussed here, it has been shown in [14℄ that this period is bounded. The size of the safeoperating region, depends on the plant dynami
s, sensor errors, sampling period, a
tuator bandwidth andsaturation. An implementation of supervisory 
ontroller in the a
tual system is in progress.The spe
i�
ation language used is based on the hybrid I/O automaton model. Certain extra stru
tureshave been added to the HIOA model of [9℄ in order to spe
ify the traje
tories using a
tivities. We intend toin
orporate the language extensions into a toolset for aiding veri�
ation of hybrid systems. In verifying safety,all the invariants were proved in the assertional style. The proof te
hniques presented here demonstratetwo properties whi
h we believe are important for reasoning about 
omplex systems: (1) the proofs arede
omposed into dis
rete and 
ontinuous parts, whi
h are independent of ea
h other, and (2) the reasoningis based on 
urrent state of the system, rather than 
omplete exe
utions.In the future we intend to design and verify a 
lass supervisory 
ontrollers that redu
e unne
essaryinterferen
es by utilizing additional information about the users 
ontroller. We also intend to evaluate theappli
ability of the proof methods, to hybrid systems with more 
ompli
ated dis
rete behavior and dynami
s,possibly using me
hani
al theorem provers.Referen
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tivities satisfy traje
tory 
losure propertiesLemma 6.1 Suppose T is a set of traje
tories spe
i�ed by the a
tivities �i, i 2 I, where I is an index set. Then Tis 
losed under pre�x, suÆx, and 
on
atenation.Proof: T = [ni=1[�i℄ is 
losed under pre�x and suÆx be
ause ea
h of the sets [�i℄ are 
losed under pre�x andsuÆx. Let �0; �1; �2; : : : be a sequen
e of traje
tories in T su
h that, for ea
h non-�nal index i, �i is 
losedand �i:lstate = �i+1:fstate. Let �i 2 [�j ℄, �i+1 2 [�k℄, where j; k 2 I and let us also assume for the sake of
ontradi
tion that j 6= k. From R3, P�j \P�k must be empty. But it is known that �i:lstate 2 P�j \P�k , whi
h
ontradi
ts the assumption. Therefore it must be the 
ase that j = k. Therefore every traje
tory in thesequen
e belongs to the same a
tivity, say [�j ℄. As [�j ℄ is 
losed under 
on
atenation, �0_ �1_ �2_ : : : 2 T :26.2 Relation between C, R, U, and IProperty 1 Over the interval ��2 � � � �2 the following properties hold :1. �+(�; T ) and ��(�; T ) are monotoni
ally de
reasing with respe
t to �.2. �+(�; T ) is monotoni
ally de
reasing with respe
t to T . (T � 0).3. ��(�; T ) is monotoni
ally in
reasing with respe
t to T . (T � 0).4. �+(�max; T ) < 0 and ��(�min; T ) > 0 for T > 0.Proof: Part (1): Using the de�nitions of �+ and ��.�+(�; T ) = �UmagT + r2(Umin +
2 
os �max)(�max � � + 12UmagT 2)��(�; T ) = UmagT �r2(Umax � 
2)(� � �min + 12UmagT 2)The monotoni
ity properties 
an be shown by 
al
ulating the partial derivatives.��+�� = �s 2(Umin +
2 
os �max)(�max � � + 12UmagT 2) < 0 and ����� = �s Umax +
22(� � �min + 12UmagT 2) < 0Part (2): ��+�T = �Umag + 12UmagTs 2(Umin +
2 
os �max)(�max � � + 12UmagT 2)Using Umax > 
2, � � �max and Umag = Umin + Umax. We get��+�T < �Umag + UmagTsUmin + UmaxUmagT 2 = 0 i:e: ��+�T < 0:12



Part (3) ����T = Umag � 12UmagTs 2(Umax � 
2)(� � �min + 12UmagT 2)Using Umax > 
2, � � �min and Umag = Umin + Umax � Umax. We get����T < Umag � Umagr Umax �
2Umax + Umin > 0 i:e: ����T > 0:Part (4) �+(�max; T ) = �UmagT +p(Umin +
2 
os �max)UmagT�+(�max; T ) < �UmagT + UmagT = 0and ��(�min; T ) = �UmagT +p(Umax �
2)UmagT��(�max; T ) > UmagT � UmagT = 0: 2Property 2 I � U � R � C � S.Proof: The set in
lusions are trivial to prove by using the monotoni
ity properties of Property 1. I � Uand R � S follow dire
tly from the de�nition of these regions. To prove that U � R, let us 
onsider a pointp = (�; _�) 2 U. As p 2 U, it must satisfy �min + �0 � � � �max� �0. Sin
e �0 � 0 we have �min � � � �max. Also��(���0; T +�)+�1 � _� � �+(�+�0; T +�)��1. Sin
e �1y > 0, implies ��(���0; T +�) � _� � �+(�+�0; T +�).From Property 1 we know that �+ and �� de
rease with respe
t to �, so ��(�; T +�) � _� � �+(�; T +�).Also from Property 1 �+ and �� respe
tively in
rease and de
reases monotoni
ally with respe
t to T and� > 0 so ��(�; T ) � _� � �+(�; T ).i.e. p 2 R. 26.3 Preliminary PropertiesInvariant 3.1 In any rea
hable state s of A
tuator, for all 0 � i < s:bu�er:size� 1,s:now � s:bu�er[i℄.st � s:bu�er[i+1℄.st � s.now + �a
t.Proof: The base 
ase is trivially true be
ause s:bu�er= fg. Consider a dis
rete steps of the form s �! s0.If �=sample or � =
ontrol then the invariant is preserved be
ause none of the variables involved in it are
hanged by �.Case 1: � =
ommand(u,t). From the 
ode it follows that s0:bu�er= s:bu�er + (u; s:now + �a
t).Sin
e s0:now = s:now, it follows from the indu
tive hypothesis that s0:now � s0:bu�er.nexttolast.st� s0:bu�er.last.st� s0:now + �a
t. Therefore s0:now � s0:bu�er[i℄.st � s0:bu�er[i+1℄.st�s0:now + �a
t, for all 0 � i < s0:bu�er:size� 1.Case 2: � =dequeue. From the 
ode it follows that s0:bu�er= s:bu�er.tail. Sin
e s0:now =s:now, it follows from the indu
tive hypothesis that s0:now � s0:bu�er[i℄.st� s0:bu�er[i+1℄.st�s0:now + �a
t, for all 0 � i < s:bu�er:size� 1.For the 
ontinuous part, 
onsider a 
losed traje
tory � of A
tuator with s = �:fsate, s0 = �:lstate, andt0 = �:ltime. From the indu
tive hypothesis it is known that s:now � s:bu�er[i℄.st � s:bu�er[i+1℄.st�s:now + �a
t, for all 0 � i < s:bu�er:size� 1. From the 
ode it follows that s0:now = s:now + t0 ands0:buffer = s:buffer. We 
laim that s0:now � s0:bu�er.head.st and therefore the invarint holds at s0.Suppose this was not the 
ase, that is s0:now > s0:bu�er.head.st. Then there would exist t00 2 �:dom su
hthat t00 < t0 and �(t00):now = s0:bu�er.head.st. Sin
e �(t00) satis�es the stopping 
ondition for a
tivity d2atherefore �:ltime = t00, whi
h 
ontradi
ts our assumption.2Invariant 5.1 In every rea
hable state s of A, 0 � s:time left � �.13



Proof: The base 
ase holds trivially be
ause s:time left = �. For the dis
rete part of the indu
tion we
onsider transitions s �! s0, where � = sample a
tion. Other a
tions do not alter any of the variables inthe invariant. It follows from the 
ode that s:now = s:next time, s0:next time = s:next time + �, ands0:now = s:now. Therefore s0:next time� s0:now = �. For the 
ontinuous part, 
onsider a 
losed traje
tory� with limit time k � 0, let s:time left = t 2 [0;�℄. Let us assume for the sake of 
ontradi
tion thatk > t. Then � # now(t) = � # next time(t), whi
h satis�es the stopping 
ondition of read a
tivity, thereforet = �:ltime. This 
ontradi
ts our assumption, and therefore k � t. From a
tivity read , s0:time left = t� k.As 0 � t � �, we have 0 � s0:time left � �. 26.4 User modeLemma 5.2 The regions At satisfy the following:1: A0 = R, 2: U � A�, and 3: If 0 � t � t0 � � then At0 � At.Proof: For part 1, set t = 0 in the de�nition of At. For part 2, �0s� �0 � �0p � �0s + �0 and �1s� �1 � �1p � �1s+ �1.Setting t = � it follows that:A� = fs j �min � �0 � s:�0s � �max + �0 ^ ��(s:�0p; �eff +�)� �1 � s:�1s � �+(s:�0p; �eff +�) + �1g:From Property 1, �0p � �0s��0 =) ��(�0p; y) � ��(�0s��0; y) and �0p � �0s+�0 =) �+(�0p; y) � �+(�0s+�0; y). Therefore,fs j �min � s:�0p � �max ^ ��(s:�0s � �0; �eff +�) + �1 � s:�1p � �+(s:�0s + �0; �eff +�)� �1g � A�:The left hand side is equal to U as de�ned in equation (4). For part 3, we observe that in the de�nition of At,�+ and �� are monotoni
ally de
reasing and monotoni
ally in
reasing respe
tively with respe
t to t. Therefore if0 � t � t0 � � then At0 � At. 2Invariant 5.3 In any rea
hable state s, if s:mode = usr and :s:ready then s 2 As:time left.Proof: The base 
ase holds be
ause for any initial state s, s:time left = � and s 2 U � A�. We have to
onsider three possible 
ases for dis
rete steps s �! s0: if � = sample(x; y), then s0:ready = true and theinvariant holds va
uously. if � = 
ontrol(x), assume s0:mode = usr, we have two sub-
ases: if s:mode = usr,then from the 
ode of the 
ontrol a
tion, s 2 U ) s0 2 U � A�. Sin
e s0:time left � �, s0 2 As:time left.Otherwise, if s:mode = sup, then s 2 I ) s0 2 I � A�, whi
h implies that s0 2 As0:time left. if � =
ommand(x), assume s0:mode = usr ^ :s0:ready, then s:mode = usr ^ :s:ready. By indu
tive hypothesiss 2 As:time left, therefore s0 2 As0:time left.For the 
ontinuous part, 
onsider a 
losed traje
tory � with �:ltime = t0. Assume s0:mode = usr ^:s0:ready. As the valuations of mode and ready do not 
hange over � , s:mode = usr ^ :s:ready. From theindu
tive hypothesis s 2 As:time left. Using Lemma 5.3, s0 2 As:time left � t0 = As0:time left: 26.5 Supervisor modeInvariant 5.8 In any rea
hable state s, su
h that s:mode = sup:1. If s:�1s > I+(s:�0s) then (a) Q+d s:rt� e(s), (b) If readyd then Q+d s:rt� e+1(s), and2. If s:�1s < I�(s:�0s) then (a) Q�d s:rt� e(s), (b) If readyd then Q�d s:rt� e+1(s), andProof: We shall prove part 1 of the invariant. The proof for part 2 is similar to that of part 1. The base
ase holds trivially be
ause s:mode = usr. We 
onsider the dis
rete steps s �! s0 with s0:mode = sup ands0:�1s > I+(s0:�0s).Case 1: � = sample. Sin
e s:ready = false and s:mode = sup, it follows from the 
ontrapositiveof Invariant 5.5 that s:�1s > I+(s:�0s) or s:�1s < I�(s:�0s). A

ording to Assumption 3, s:�1s �I�(s:�0s), therefore s:�1s > I+(s:�0s). Part 1(a): From part 1(a) of the indu
tive hypothesisit follows that Q+d s:rt� e(s) holds. Sin
e bu�er is not 
hanged by � therefore Q+d s0:rt� e(s0) holds.Part 1(b): Assume s0:readyd = true. Sin
e sample does not 
hange readyd, it follows that14



s:readyd = true. Therefore from the indu
tive hypothesis it follows that Q+d s:rt� e+1(s) holds.Sin
e bu�er is not 
hanged by � therefore Q+d s0:rt� e+1(s0) holds.Case 2: � = 
ontrol. If s:mode = sup. The invariant is preserved sin
e � does not 
hange any ofthe variables involved other than mode. If s:mode = usr then s:rt = 0 = s0:rt. The invariant issatis�ed be
ause Q+0 is trivially true.Case 3: � =
ommand. Part 1(b): From the 
ode it follows that s:mode = sup and s:�1s > I+(s:�0s).Therefore it follows from Invariant 5.6 that s:Usup = Umin. Sin
e s0:bu�er= s:bu�er+ (s:Usup; s:now+�a
t), and Q+d s:rt� e(s) holds from the indu
tive hypothesis, therefore it follows that Q+d s0:rt� e+1(s0)holds. Part 1(a) follows from the above be
ause Q+d s0:rt� e+1(s0) implies that Q+d s0:rt� e(s0) holds.Case 4: � = dequeue. From the 
ode it follows that s:mode = sup, s:�1s > I+(s:�0s), s0:bu�er=s:bu�er.tail, and that s:readyd = true. Part 1(b): From the indu
tive hypothesis it follows thatQ+d s:rt� e+1(s) holds, whi
h implies that Q+d s0:rt� e(s0) holds. Part 1(b): From the 
ode it followsthat s0:ready = false therefore the invariant holds trivially.For the 
ontinuous part, 
onsider a 
losed traje
tory � , with t0 = �:ltime, s0:mode = sup and s0:�1s >I+(s0:�0s). From the 
ode it follows that s0:bu�er = s:bu�er, s:�1s > I+(s:�0s) and s0:rt = s:rt + t0. UsingInvariant 5.7 s:rt 
an be written as s:rt = n� � s:time left for some n � 1; �x n. Therefore s0:rt =n�� s:time left+ t0 = n�� s0:time left. Sin
e 0 � s:time left � � and 0 � s0:time left � �, therefored s:rt� e = d s0:rt� e = n. Part 1(a): From part 1(a) of the indu
tive hypothesis it follows that Q+n (s) holds.Sin
e bu�er is not 
hanged over � it follows that Q+n (s0) holds.Part 1(b): Assume s0:readyd = true. Therefore s:readyd = true. From part 1(b) of the indu
tive hy-pothesis it follows that Q+n+1(s) holds and sin
e bu�er is not 
hanged over � it follows that Q+n+1(s0) holds. 2Invariant 6.5 In any rea
hable state s with s:mode = sup ^ s:rt � �a
t1. If s:�1s > I+(s:�0s) then s:bu�er.head.u = Umin, and 2. If s:�1s < I+(s:�0s) then s:bu�er.head.u = Umax.Proof: We shall prove part 1 of the invariant. Consider a rea
hable state s and assume that s:mode = sup,s:rt > �a
t and s:�1s > I+(s:�0s). From part 1 of Invariant 5.8 it follows that Q+d �a
t� e(s) holds. From Invari-ant 5.2 it is known that the maximum size of bu�er is d �a
t� e. Therefore it follows from the de�nition of Q+that s:bu�er.head= Umin.2Invariant 5.9 In any rea
hable state s, su
h that s:mode = sup and s:rt > �a
t1. If s:�1s > I+(s:�0s) then s:U = Umin, and 2. If s:�1s < I�(s:�0s) then s:U = Umax,Proof:We shall prove part 1 of the invariant. The proof of part 2 is similar to that of part 1. The base 
aseis trivially true be
ause s:mode = usr. Consider dis
rete transitions s �! s0 with s0:mode = sup, s0:rt > �a
t,and s:�1s > I+(s:�0s): Sin
e none of the dis
rete steps 
hange rt, it follows that s:rt > �a
t.Case 1: � = sample. Sin
e s:ready is false and s:mode = sup, it follows from the 
ontrapositiveof Invariant 5.5 that s:�1s > I+(s:�0s) or s:�1s < I�(s:�0s). A

ording to Assumption 3, s:�1s �I�(s:�0s), therefore s:�1s > I+(s:�0s). From part 1 of the indu
tive hypothesis it follows thats:U = Umin. Sin
e U is not 
hanged by �, therefore s0:U = Umin.Case 2: � =
ontrol. We 
laim that s:mode = sup. The invariant is preserved sin
e � does not
hange any of the variables involved other than mode. If s:mode = usr then s:rt = 0 = s0:rt,whi
h 
ontradi
ts our assumption that s0:rt > �a
t.Case 3: � =
ommand. From the 
ode it follows that s:mode = sup; s0:U = s:U and s:�1s >I+(s:�0s). Therefore From part 1 of the indu
tive hypothesis it follows that s0:U = s:U = Umin.Case 4: � = dequeue. From the 
ode it follows that s:mode = sup and s:�1s > I+(s:�0s). Frompart 1 of Invariant 5.8 it follows that Q+d s:rt� e holds. Sin
e s:rt > �a
t, therefore s:bu�er.head.u=Umin, by Invariant 6.5. It follows from the 
ode that s0:U = Umin.15



For the 
ontinuous part of the indu
tion 
onsider a 
losed traje
tory � with �:ltime = t0. Assume s0:mode =sup, s0:rt � �a
t and s0:�1s > I+(s0:�0s). We 
laim that s:rt � �a
t. Sin
e U , mode, �0s and �1s do not 
hangeover � , therefore it follows from the indu
tive hypothesis that s0:U = Umin.Contrary to our 
laim, if s:rt < �a
t, then there exists a t00 2 �:dom, su
h that t00 < t0 and �(t00):rt = �a
t.From Lemma 5.1 it follows that su
h a t00 would have to be equal to �:ltime be
ause the stopping 
onditionof a
tivity d2a would be enabled at �(t00). This 
ontradi
ts our assumption �:ltime = t0. 2We introdu
e a few notations before moving on to prove the safety of the system in the re
overy phase.In the 
ontext of a parti
ular traje
tory � , we abbreviate � # x(t) as simply x(t). The normal and thetangent ve
tors to a 
urve at the point (x; y) are denoted by n(x; y) and d(x; y) respe
tively.Invariant 5.11 In any rea
hable states s, if s:mode = sup and s:rt � �a
t then s 2 C.Proof: The base 
ase is trivially satis�ed be
ause s:mode = usr. For the dis
rete part, 
onsider dis
retetransitions s �! s0 with s0:mode = sup. If � =
ontrol there are two sub
ases: if s:mode = sup then from theindu
tive hypothesis s 2 C. Therefore using Property 3 it follows that s0 2 C. Otherwise s:mode = usr ands0:rt = 0 and the invariant holds va
uously. For all other dis
rete a
tions the invariant is preserved be
ausenone of the variables involved are altered.For the 
ontinuous part of the indu
tion, 
onsider 
losed traje
tory � with s0:mode = sup and s0:rt � �a
t.We 
laim that s 2 C. From Property 3 it is known that s:mode = sup, Consider two possible 
ases: (1) Ifs:rt < �a
t then from Invariant 5.10 it follows that s 2 C. Otherwise (2) s:rt � �a
t and from the indu
tivehypothesis it follows that s 2 C:If s 2 U, then from Lemma 5.3 it follows that s0 is in R and therefore in C. So it remains to show thatif s 2 C nU then s0 2 C. We shall prove this by 
ontradi
tion. Sin
e s:�1s > I+(s:�0S) or s:�1s < I+(s:�0S)it follows from Invariant 5.9 that s:U = Umin or Umax respe
tively. Now, suppose s0 =2 C, then theremust exist t0 2 �:dom su
h that � leaves the C at �(t0). At the boundary of C it must be the 
ase thatd(�0p(t0); �1p(t0)) � n(�0p(t0); �1p(t0)) � 0, where � denotes the inner produ
t between the two ve
tors. We rea
ha 
ontradi
tion by showing that at ea
h point s00 on the boundary of C, d(s00:�0p; s00:�1p) � n(s00:�0p; s00:�1p) < 0Now onwards we shall write x instead of s00:x where it is understood that x is the state 
omponent of apoint in the state spa
e whi
h is on the boundary of C. We 
onsider the 
urves de�ning the boundary ofC(Figure 7).Case 1: The upper boundary �+(�0p; 0) 
an be written as:C+ = �d(�0p; �1p) j �min � �0p � �max ^ �1p � 0 ^ V1(�0p; �1p) = ��Umin + 
2 
os �max� �max	 ;where V1(�0p; �1p) = 12 �1p2 + ��Umin +
2 
os �max� �0p. So the outer normal of C+ is given byn(�0p; �1p) = rV1 :=  �V1��0p ; �V1��1p ! = (�Umin + 
2 
os �max; �1p);where r is the gradient operator. Sin
e �1s � I+(�0s) and rt > �a
t therefore U = Umin by Invariant 5.9. Theplant equations are given by: d(�0p) = �1p, and d(�1p) = �
2 
os �0p + Umin. So we haven(�0p; �1p) � d(�0p; �1p) = (�Umin + 
2 
os �max; �1p) � (�1p;�
2 
os �0p + Umin)= 
2(
os �max � 
os �0p)�1p � 0;for (�0p; �1p) 2 C+. The equal sign is valid i� (�0p; �1p) = (�max; 0). So the point (�0p; �1p) = (�max; 0) needs spe
ialtreatment. Integrating for initial 
ondition (�max; 0), we getsin �0p = sin �max + 1
2 �Umin(�0p � �max)� 12 �1p2� : (8)This impli
it fun
tion de�nes an integral 
urve �0p = F1(�1p). Di�erentiating (8) with respe
t to �1p, we getd�0pd�1p = �1pUmin � 
2 
os �0p ; and d2�0pd�1p2 = 1Umin � 
2 
os �0p � �1p sin �0p�Umin � 
2 
os �0p�3 :16



By evaluating the above derivatives at (�max; 0), we haved�0pd�1p (�max; 0) = 0; d2�0pd�1p2 (�max; 0) = 1Umin � 
2 
os �max < 0:The inequality holds be
ause Umin � 0 and ��2 < �0p < �2 . So the integral 
urve �0p = F1(�1p) a
hieves a maximumat (�max; 0), whi
h implies the traje
tory goes inside C.Case 2: The left boundary of C is given by Cl = �d(�0p; �1p)j� = �min ^ 0 < �1p < �+	,where �+ �=p2 (�Umin + 
2 
os �max) (�max � �min). The outer normal of Cl is given by n = (�1; 0), and we haven(�0p; �1p) � d(�0p; �1p) = (�1; 0) � (d�0p; d�1p) = �d�0p = ��1p < 0; for (�0p; �1p) 2 Cl, whi
h implies the traje
tory will notleave C through Cl.The proof for the lower and the right boundary are symmetri
al to that of Case 1 and Case 2 respe
tively.By 
ombining all the 
ases, we have shown that for any t00 2 �:dom, at any point on the boundary of Cd(�0p(t0); �1p(t0)) � n(�0p(t0); �1p(t0)) < 0. Therefore s0 is in C.2
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