Translating Timed I/O Automata Specifications
for Theorem Proving in PVS*

Hongping Lim, Dilsun Kaynar, Nancy Lynch, and Sayan Mitra

Massachusetts Institute of Technology,
Computer Science and Artificial Intelligence Laboratory,
32 Vassar Street, Cambridge MA 02139, USA

{hongping,dilsun,lynch,mitras}@csail.mit.edu

Abstract. Timed Input/Output Automaton (TIOA) is a mathematical
framework for specification and analysis of systems that involve discrete
and continuous evolution. In order to employ an interactive theorem
prover in deducing properties of a TIOA, its state-transition based de-
scription has to be translated to the language of the theorem prover. In
this paper, we describe a tool for translating TIOA to the language of the
Prototype Verification System (PVS)—a specification system with an in-
tegrated interactive theorem prover. We describe the translation scheme,
discuss the design decisions, and briefly present three case studies to il-
lustrate the application of the translator in the verification process.

1 Introduction

Timed Input/Output Automata [1,2] is a mathematical framework for composi-
tional modeling and analysis of systems that involve discrete and continuous evo-
lution. The state of a timed I/O automaton changes discretely through actions,
and continuously over time intervals through trajectories. A formal language
called TIOA [3,4] has been designed for specifying timed I/O automata. Like in
its predecessor IOA [5], in the TIOA language, discrete transitions are specified
in the precondition-effect style. In addition, TIOA introduces new constructs for
specifying trajectories. Based on the TIOA language, a set of software tools is
being developed [3]; these tools include a front-end type checker, a simulator,
and an interface to the Prototype Verification System (PVS) theorem prover [6]
(see Figure 1). This paper describes the new features of the TIOA language and
a tool for translating specifications written in TIOA to the language of PVS;
this tool is a part of the third component of the TIOA toolkit.

Motivation. Verification of timed I/O automata properties typically involves
proving invariants or simulation relations between pairs of automata. The timed
I/0 automata framework provides a means for constructing very stylized proofs,
which take the form of induction over the length of the executions of an automa-
ton or a pair of automata, and a systematic case analysis of the actions and the

* This research has been supported by Air Force Contract FA9550-04-C-0084.

TIOA Toolkit

TIOA file
automaton A
invariants of A
automaton B
invariants of B
forward
simulation
from A to B

AN
Intermediate
Language

Frontend

i

Translator W PVS <—‘

\ B_decls.pvs LN)
Other tools TIOA Library
(E.g. Simulator)

time.pvs
time_thy.pvs

time_machine.pvs

[B_invariants.pvs

timed_automaton.pvs
IA2B.pvs

forward_simulation.pvs
pvs—strategies
auto_induct
deadline_check
try_simp

Fig. 1. Theorem proving on TIOA specifications

trajectories. Therefore, it is possible to partially automate such proofs by us-
ing an interactive theorem prover, as shown in [7]. Apart of partial automation,
theorem prover support is useful for (a) managing large proofs, (b) re-checking
proofs after minor changes in the specification, and (c) generating human read-
able proofs from proof scripts. We have chosen to use the PVS theorem prover
because it provides an expressive specification language and an interactive the-
orem prover with powerful decision procedures. PVS also provides a way of
developing special strategies or tactics for partially automating proofs, and it
has been used in many real life verification projects [8].

To use a theorem prover like PVS for verification, one has to write the de-
scription of the timed I/O automaton model of the system in the language
of PVS, which is based on classical, typed higher-order logic. One could write
this automaton specification directly in PVS, but using the TIOA language has
the following advantages. (a) TIOA preserves the state-transition structure of
a timed I/O automaton, (b) allows the user to write programs to describe the
transitions using operational semantics, whereas in PVS, transition definitions
have to be functions or relations, (c) provides a natural way for describing tra-
jectories using differential equations, and also (d) allows one to use other tools
in the TIOA toolkit. Therefore, it is desirable to be able write the description of
a timed I/O automaton in the TIOA language, and then use an automated tool
to translate this description to the language of PVS.

Related Work and Contributions. Various tools have been developed to
translate IOA specifications to different theorem provers, for example, Larch [9,
10], PVS [11], and Isabelle [12,13]. Our implementation of the TIOA to PVS
translator builds upon [9]. However, unlike IOA, TIOA allows the state of a
timed I/O automaton to evolve continuously over time through trajectories. The
main contribution of this paper is the design of a translation scheme from TIOA
to PVS that can handle trajectories, and the implementation of the translator.

The Timed Automata Modeling Environment (TAME) [7] provides a PVS
theory template for describing MMT automata [14]— a special type of I/O
automaton that adds time bounds for enabled actions. This theory template
has to be manually instantiated with the states, actions, and transitions of an
automaton. A similar template is instantiated automatically by our translator

to specify timed I/O automata in PVS. This entails translating the operational
descriptions of transitions in TIOA to their corresponding functional descriptions
in PVS. Moreover, unlike a timed I/O automaton which uses trajectories, an
MMT automaton uses a time passage action to model continuous behavior. In
TAME, this time passage action is written as another action of the automaton,
with the properties of the pre- and post-state expressed in the enabling condition
of the action. This approach, however, if applied directly to translate a trajectory,
does not allow assertion of properties that must hold throughout the duration
of the trajectory. Our translation scheme solves this problem by embedding the
trajectory as a functional parameter of the time passage action.

We illustrate the application of the translator in three case studies: Fischer’s
mutual exclusion algorithm, a two-task race system, and a simple failure detector
[15,2]. The TIOA specifications of the system and its properties are given as
input to the translator and the output is a set of PVS theories. The PVS theorem
prover is then used to verify the properties using inductive invariant proofs. In
two of these case studies, we describe time bounds on the actions of interest using
an abstract automaton, and then prove the timing properties by a simulation
relation from the system to this abstraction. The simulation relations typically
involve inequalities between variables of the system and its abstraction. Our
experience with the tool suggests that the process of writing system descriptions
in TIOA and then proving system properties using PVS on the translator output
can be helpful in verifying more complicated systems.

In the next section we give a brief overview of the timed I/O automata
framework and the TIOA language. In Section 3, we describe the translation
scheme; in Section 4, we illustrate the application of the translator with brief
overviews of three case studies. Finally, we conclude in Section 5.

2 TIOA Mathematical Model and Language

Here we briefly describe the timed I/O automaton model and refer the reader
to [1] for a complete description of the mathematical framework.

2.1 TIOA Mathematical Model

Let V be the set of variables of a timed I/O automaton. Each variable v € V is
associated with a static type, type(v), which is the set of values v can assume.
A waluation for V is a function that associates each variable v € V' to a value in
type(v). val (V') denotes the set of all valuations of V. Each variable v € V is also
associated with a dynamic type, which is the set of trajectories v may follow.
The time domain 7' is a subgroup of (R, +). A time interval J is a nonempty,
left-closed sub-interval of R. J is said to be closed if it is also right-closed. A
trajectory 7 of V' is a mapping 7 : J — val(V'), where J is a time interval starting
with 0. The domain of 7, 7.dom, is the interval J. A point trajectory is one with
the trivial domain {0}. The first time of 7, 7.ftime, is the infimum of 7.dom.
If 7.dom is closed then 7 is closed and its limit time, 7.ltime, is the supremum

of T.dom. For any variable v € V, 7 | v(t) denotes the restriction of 7 to the
set val(v). Let 7 and 7' be trajectories for V', with 7 closed. The concatenation
of 7 and 7’ is the union of 7 and the function obtained by shifting 7'.dom until
T.ltime = 7'. ftime. The suffiz of a trajectory 7 is obtained by restricting 7.dom
to [t,00), and then shifting the resulting domain by —t.

A timed automaton A is a tuple of (X,Q,0,E,H,D,T) where:

. X is a set of variables.

. Q Cwal(X) is a set of states.

O C @ is a nonempty set of start states.

. Ais a set of actions, partitioned into external E and internal actions H.

. D C QxAxQ is aset of discrete transitions. We write a transition (x, a,x') €
D in short as x — x'. We say that a is enabled in x if x = x' for some x'.
6. T is a set of trajectories for X such that 7(t) € Q for every 7 € T and every

t € T.dom, and T is closed under prefix, suffix and concatenation.

Otk W N =

A timed I/0 automaton is a timed automaton with the set of external actions
E partitioned into input and output actions. This distinction is necessary for
composing timed I/O automata. In this paper, we consider only individual timed
I/0 automata and so we do not differentiate input and output actions. We use
the terms timed I/O automaton and timed automaton synonymously.

An execution fragment of a timed I/O automaton A is an alternating se-
quence of actions and trajectories a = 19a1110z2 - .., where 7; € T,a; € A, and if
7; is not the last trajectory in « then 7; is finite and 7;.Istate A Tiy1-fstate. An
execution fragment is closed if it is a finite sequence and the domain of the final
trajectory is a finite closed interval. An ezecution is an execution fragment whose
first state is a start state of A. A state of A is reachable if it is the last state
of some execution. An invariant property is one which is true in all reachable
states of A. A trace of an execution fragment « is obtained from « by remov-
ing internal actions and modifying the trajectories to contain only information
about the amount of elapsed time. traces, denotes the set of all traces of A.
We say that automaton A implements automaton B if tracesy4 C tracesp. A
forward simulation relation [1] from A to B is a sufficient condition for showing
that A implements B. A forward simulation from automaton A to B is a relation
R C Q4 x @Qp satisfying the following conditions for all states x4 € Q4 and
X5 € @Qp:

1. If x4 € @4 then there exists a state xg € Op such that x4 R xg.

2. If x4 R xp and a is a transition x — 4 x’, then B has a closed execution frag-
ment 3 with S.fstate = x5, trace(f) = trace(a), and a.lstate R (.lstate.

3. If x4 R xp and « is an execution fragment of A consisting of a single closed
trajectory, with a.fstate = x4, then B has a closed execution fragment
with B.fstate = xp, trace(f) = trace(a), and a.lstate R B.lstate.

2.2 TIOA Language

The TIOA language [3] is a formal language for specifying the components and
properties of timed I/O automata. The states, actions and transitions of a timed

automaton TwoTaskRace(al,a2,bl,b2 : Real)
2 where (al > 0) A (a2 > 0) A (b1 > 0) A (b2 > 0) A (a2 > al) A (b2 > bl)

4 signature
internal increment, decrement, set
6 output report

8 states

count: Int := 0, flag: Bool := false,
10 reported: Bool := false, now: Real := 0,

first_main: Real := al, last_main: AugmentedReal := a2,
12 first_set: Real := bl, last_set: AugmentedReal := b2

14 transitions

internal increment internal decrement
16 pre pre
—flag A now > first_main flag A count > 0 A now > first_main
18 eff eff
count := count + 1; count := count - 1;
20 first_main:= (now + al); first_main := (now + al);
if (now+a2) > o then if (now+a2) > o then
22 last_main := now+a2 last_main := (now+a2)
fi fi
24
internal set output report
26 pre pre
—flag A now > first_set flag A count = 0 A —reported
28 eff A now > first_main
flag := true; eff
30 first_set := 0; reported := true;
last_set := infty first_main := 0;
32 last_main := infty
trajectories

34 trajdef traji

invariant now
36 stop when now
evolve d(now)

0
last_main v now = last_set
1

v

Fig. 2. TIOA description of TwoTaskRace

I/0 automaton are specified in TIOA in the same way as in the IOA language [5].
New features of the TIOA language include trajectories and a new AugmentedReal
data type. The trajectories are defined using differential and algebraic equa-
tions, invariants and stopping conditions. This approach is derived from [16],
in which the authors had used differential equations and English informally to
describe trajectories. Figure 2 shows an example of a TIOA specification. The
AugmentedReal type extends reals with a constructor for infinity. Each variable
has an explicitly defined static type, and an implicitly defined dynamic type. The
dynamic type of a Real variable is the set of piecewise-continuous functions; the
dynamic type of a variable of any other simple type or of the type discrete Real
is the set of piecewise constant functions.

The set of trajectories of a timed I/O automaton is defined systematically by
a set of trajectory definitions. A trajectory definition w is defined by an invariant
inv(w), a stopping condition stop(w), and a set of differential and algebraic
equations daes(w) (see definition of traj1 in Figure 2, lines 34-37). W 4 denotes
the set of trajectory definitions of A. Each w € W 4 defines a set of trajectories,
denoted by traj(w). A trajectory 7 belongs to traj(w) if the following conditions
hold: for each t € 7.dom: (a) 7(t) € inv(w). (b) If 7(t) € stop(w), then ¢t =
T.ltime. (c) T satisfies the set of differential and algebraic equations in daes(w).
(d) For each non-real variable v, (7 | v)(t) = (7 | v)(0); that is, the value of v

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

—-

S

3

TwoTaskRace_decls: THEORY 42
BEGIN
IMPORTING common_decls 44
states: TYPE =
[#count: int, flag: bool, 46
reported: bool, now: real,
first_main: real, last_main: time, 48
first_set: real, last_set: time#]
50
start(s: states): bool =
(count(s) = 0 A flag(s) = FALSE A 52

reported(s) = FALSE A now(s) = 0 A
first_.main(s) = a1 A last_main(s) = fintime(a2) As4

first_set(s) = b1 A lastset(s) = fintime(bz))
56
interval(é, j: (fintime?)): TYPE =
{s: (fintime?) | ¢ < s A s <jAi<j} s8
ftype(i, j: (fintime?)): TYPE =
[interval(i, j) — states] 60
actions: DATATYPE 62
BEGIN
nu_trajl(delta_t: {t: (fintime?) | dur(t) > 0}, 64
F: ftype(zero, delta_t) nu_trajl?
increment: increment? 66
decrement: decrement?
set: set? 68
report: report?
END actions 70
visible(a: actions): bool = 72
CASES a OF
nu_trajl(deltat, F): TRUE, increment: FALSE, 74
decrement: FALSE, set: FALSE, report: TRUE
ENDCASES 76
timepassageactions(a: actions): bool = 78
CASES a OF
nu_trajl(delta_t, F'): TRUE, increment: FALSE, 80
decrement: FALSE, set: FALSE, report: FALSE
ENDCASES 82

enabled(a: actions, s: states): bool =
CASES a OF
nu_trajl(delta_t, F):
V (t: interval(zero, delta_t)):
((now(F(t)) > 0) A
(fintime(now(F(t))) = last_.main(F(t)) V
fintime(now(F(t))) = last_set(F(t)))
= t = delta_t) A
F(t) = s witH [now := now(s) + 1 x dur(t)],
increment: ((— flag(s)) A (now(s) > first_main(s))),
decrement:
((flag(s) A (count(s) > 0)) A
(now(s) > first_main(s))),
set: ((— flag(s)) A (now(s) > firstset(s))),
report :
(((flag(s) A (count(s) = 0)) A
(= reported(s))) A (now(s) > first_main(s)))
ENDCASES

trans(a: actions, s: states): states =
CASES a OF
nu_trajl(delta_t, F): F(delta_t),
increment: s WITH
[first-main := (now(s) + a1),
last_main := (IF ((now(s) +az2) > 0)
THEN fintime(now(s) + az)
ELSE last_main(s) ENDIF),

count := (count(s) +1)],
decrement: s WITH
[first-main := (now(s) + a1),
last_main := (1F ((now(s) +a2) > 0)
THEN fintime(now(s) + az2)
ELSE last_main(s) ENDIF),
count := (count(s) — 1)],
set: s WITH
[last_set := infinity, first_set := 0, flag := TRUE],

report: s WITH
[first,main::O, reported:=TRUE, Iast,main::infinity]
ENDCASES

END TwoTaskRace_decls

Fig. 3. PVS description of TwoTaskRace

constant throughout the trajectory. The set of trajectories T4 of automaton
A is the concatenation closure of the functions in {J,, ¢y, traj(w).

Translation Scheme

For generating PVS theories that specify input TIOA descriptions, our translator
implements the approach prescribed in TAME [7]. The translator instantiates
a predefined PVS theory template that defines the components of a generic au-
tomaton. The translator automatically instantiates the template with the states,
actions, and transitions of the input TIOA specification. This instantiated the-
ory, together with several supporting library theories, completely specifies the
automaton, its transitions, and its reachable states in the language of PVS (see
Figure 1). Figure 3 shows the translator output in PVS for the TIOA description
in Figure 2. In the following sections, we describe in more detail the translation
of the various components of a TIOA description.

3.1 Data Types, Automaton Parameters, and States

Simple static types of the TIOA language Bool, Char, Int, Nat, Real and String
have their equivalents in PVS. PVS also supports declaration of TIOA types
enumeration, tuple, union, and array in its own syntax. The type AugmentedReal is
translated to the type time introduced in the time theory of TAME. time is defined
as a DATATYPE consisting of two subtypes: fintime and infinity. The subtype fintime
consists of only non-negative reals; infinity is a constant constructor.

The TIOA language allows the user to introduce new types and operators
by declaring the types and the signature of the operators within the TIOA
description. The semantics of these types and operators are written in PVS
library theories, which are imported by the translator output.

The TIOA language provides the construct states for declaring the variables
of an automaton (see Figure 2, lines 8-12). Each variable can be assigned an
initial value at the start state. An optional initially predicate can be used to
specify the start states. An automaton can have parameters which can be used
in expressions within the description of the automaton (see Figure 2, lines 1-2).

In PVS, the state of an automaton is defined as a record with fields corre-
sponding to the variables of the automaton. A boolean predicate start returns
true when a given state satisfies the conditions of a start state (see Figure 3,
lines 3-15). Assignments of initial values to variables in the TIOA description are
translated as equalities in the start predicate in PVS, while the initially predi-
cate is inserted as an additional conjunction into the start predicate. Automaton
parameters are declared as constants in a separate PVS theory common_decls (see
Figure 3, line 2) with axioms stating the relationship between them.

3.2 Actions and Transitions

In TIOA, actions are declared as internal or external (input or output). In PVS,
these are declared as subtypes of an action DATATYPE. A visible predicate returns
true for the external and time passage actions.

In TIOA, discrete transitions are specified in precondition-effect style using
the keyword pre followed by a predicate (precondition), and the keyword eff fol-
lowed by a program (effect). We define a predicate enabled in PVS parameterized
on an action a and a state s to represent the preconditions. enabled returns true
when the corresponding TIOA precondition for a is satisfied at s.

The program of the effect clause specifies the relation between the post-
state and the pre-state of the transition. The program consists of sequential
statements, which may be assignments, if-then-else conditionals or for loops
(see Figure 2, lines 14-32). A non-deterministic assignment is handled by adding
extra parameters to the action declaration and constraining the values of these
parameters in the enabled predicate of the action.

In TIOA, the effect of a transition is typically written in an imperative style
using a sequence of statements. We translate each type of statement to its cor-
responding functional relation between states, as shown in Table 1. The term P
is a program, while transp(s) is a function that returns the state obtained by

Table 1. Translation of program statements. v is a state variable; ¢ is an expression;
pred is a predicate; A is a finite set; choose picks an element from the given set A.
WITH makes a copy of the record s, assigning the field v with a new value ¢

program P transp(s)
vi=t s WITH [v:= t]
if pred then P fi IF pred THEN transp, (s) ELSE s ENDIF
if pred then P, else P, fi IF pred THEN transp, (s) ELSE transP;(s) ENDIF
for v in A do P; od forloop(A, s): RECURSIVE states = IF empty?(A) THEN s
ELSE LET v=choose(A), s’=forloop(remove(v, A), 5) IN
transpi(s’) ENDIF MEASURE card(A)

signature
internal foo(i: int), bar
transitions
internal foo(i: Int) internal bar
eff x :=x + i; eff t = x;
y =X * X; if x # y then
X (=X - 1; X :=Y;
y =y +1 y =t
fi

Fig. 4. Actions and transitions in TIOA

performing program P on state s. In PVS, we define a function trans parame-
terized on an action a and a state s, which returns the post-state of performing
the corresponding TIOA effect of a on s. Sequential statements like P;; P, are
translated to a composition of the corresponding functions transp, (transp, (s)).
Our translator can perform this composition in following two ways:

Substitution method: We first compute transp, , then substitute each variable
in transp, with its intermediate value obtained from transp,. This approach
explicitly specifies the resulting value of each variable in the post-state in terms
of the variables in the pre-state [9]. Figure 4 shows a simple example to illustrate
this approach. foo performs some arithmetic, while bar swaps x and y if they
are not equal. The translation is shown in the left column of Figure 5. In the
transition of bar, z and y are assigned new values only when their values are not
equal in the pre-state. Otherwise, they are assigned their previous values.

LET method: Instead of performing the substitution explicitly, we make use
of the PVS LET keyword to obtain intermediate states on which to apply subse-
quent programs. The program P;; P, can be written as LET s = transp, (s) IN
transp, (s). The right column in Figure 5 shows the translation of the effects of
foo and bar using LET statements.

In the substitution method, the translator does the work of expressing the
final value of a variable in terms of the values of the variables in the pre-state.
In the LET method, the prover has to perform these substitutions to obtain
an expression for the post-state in an interactive proof. Therefore, the substi-
tution method is more efficient for theorem proving, whereas the LET method
preserves the sequential structure of the program, which is lost with the substi-
tution method. Since the style of translation in some cases may be a matter of
preference, we currently support both approaches as an option for the user.

trans(a: actions, s: states): states = trans(a: actions, s: states): states = CASES a OF

CASES a OF foo(s):
foo(i): s WITH (LET s: states = s WITH [z := z(s) +1] IN
[z = (z(s)+i)—1, (LET s: states = s WITH [y := z(s) x z(s)] IN
y = (z(s) + i) x (z(s) +4) + 1], (LET s: states = s WITH |z := z(s)—l} N
bar: s WITH (LET s: states = s WITH |y := y(s) + 1] IN s)))),
[y == (% (z(s) # y(s)) THEN z(s) bar:
ELSE y(s) ENDIF), (LET s: states = s WITH [t := z(s)] IN
z = (IF (2(s) # y(s)) THEN y(s) (LET s: states =
ELSE z(s) ENDIF), 1F (z(s) # y(s)) THEN
t == z(s)] (LET s: states = s WITH [z := y(s)] IN
ENDCASES (LET s: states = s WITH [y := t(s)] IN s))

ELSE s ENDIF
IN 35))
ENDCASES

Fig. 5. Translation of transitions using substitution (left) and LET (right)

3.3 Trajectories

The set of trajectories of an automaton is the concatenation closure of the set of
trajectories defined by the trajectory definitions of the automaton. A trajectory
definition w is specified by the trajdef keyword in a TIOA description followed
by an invariant predicate for inv(w), a stop when predicate for stop(w), and
an evolve clause for specifying daes(w) (see traj1 in Figure 2, lines 34-37).

Each trajectory definition in TIOA is translated as a time passage action in
PVS containing the trajectory map as one of its parameters. The precondition of
this time passage action contains the conjunction of the predicates corresponding
to the invariant, the stopping condition, and the evolve clause of the trajectory
definition. In general, translating an arbitrary set of differential and algebraic
equations (DAES) in the evolve clause to the corresponding precondition may
be hard, but our translation scheme is designed to handle a large class of DAES,
including the most common classes like constant and linear differential equations,
and ordinary differential equations. The translator currently handles algebraic
equations, constant differential equations and inclusions; it is being extended to
handle linear differential equations.

Like other actions, a time passage action is declared as a subtype of the action
DATATYPE, and specified using enabled-trans predicates. A time passage action has
two required parameters: the length of the time interval of the trajectory, delta_t,
and a trajectory map F mapping a time interval to a state of the automaton.

The transition function of the time passage action returns the last state of the
trajectory, obtained by applying the trajectory map F on delta_t (see Figure 3,
line 63). The precondition of a time passage action has conjunctions stating
(1) the trajectory invariant, (2) the stopping condition, and (3) the evolution of
variables (see nu_trajl in Figure 3, lines 44-50, corresponding to traj1 in Figure 2).

If the evolve clause contains a constant differential inclusion of the form
d(z) < k, we introduce an additional parameter x_r in the time passage action
for specifying the rate of evolution. We then add a fourth conjunction into the
precondition to assert the restriction xr < k. The following example uses a
constant differential inclusion that allows the rate of change of x to be between

0 and 2. The PVS output in Figure 6 contains an additional parameter x_r as

the rate of change of z. The value of x_r is constrained in the precondition.

trajdef progress invariant x > o stop when x = 10
evolve d(x) > o0; dx) < 2

actions: DATATYPE enabled(a: actions, s: states): bool =
BEGIN CASES a OF

nu_progress(delta_t: {t: (fintime?) | dur(t) > 0}, nu_progress(delta_t, F', x.r):

F: f_type(zero, delta_t), x_r: real) : nu_progress? xr >0Axr<2A
END actions (V (t: interval(zero, delta_t)):

(z(F(t)) > 0) A

trans(a: actions, s: states): states = (((z(F(t)) < 10)) = t = delta_t) A
CASES a OF nu_progress(delta_t, F', x.r): F(t) = s WITH

F(deltat) [z == @(s) +xr x dur(t)])
ENDCASES ENDCASES

Fig. 6. Using an additional parameter to specify rate of evolution

3.4 Correctness of Translation

Consider a timed I/O automaton A, and its PVS translation B. A closed execu-
tion of B is an alternating finite sequence of states and actions (including time
passage actions): 8 = sg,b1,$1,ba, ..., br, s, where s¢ is a start state, and for
all i, 0 <i <, s; is a state of B, and b; is an action of B. We define the following
two mappings:

Let 8 = so,b1,581,b2, ..., by, s, be a closed execution of B. We define the
mapping F(8) as a sequence Ty, a1, 71, --- obtained from B by performing the
following: (1) Each state s; is replaced with a point trajectory 7; such that
7;.fstate = 7;.lstate = s;. (2) Each time passage action b; is replaced by T'(b;),
where T'(b;) is the parameter F' of b;, which is the same as the corresponding
trajectory in A. (3) Consecutive sequences of trajectories are concatenated into
single trajectories.

Let @« = 719,a1,71,... be a closed execution of .A. We define the mapping
G(a) as a sequence $g,by1,81,b2, ..., be, s, obtained from « by performing the
following. Let 7; be a concatenation of 7(; 1), 7(;,2), - - -, such that 7; ;) € traj(w;)
for some trajectory definition w; of A. Replace 7(; 1), 7(i,2), - - - With 7(; 1. f state,
v(Ti1)), Teia)-lstate, v(7i2)), T(i2)-Istate, ..., where v(1) denotes the corre-
sponding time passage action in B for 7.

Using these mappings, we state the correctness of our translation scheme as
a theorem, in the sense that any closed execution (or trace) of a given timed I/O
automaton .4 has a corresponding closed execution (resp. trace) of the automaton
B, and vice versa, where B is described by the PVS theories generated by the
translator. Owing to limited space, we state the theorem and omit the proof,
which will be available in a complete version of the paper.

Theorem 1 (a) For any closed execution 8 of B, F(B) is a closed execution of
A. (b) For any closed execution o of A, G(a) is a closed execution of B.

invariant of fischer_me: Inv(s: states): bool =

v i:iInt v j: Int i o V (i: int): (V (j: int):
peti) 2 pecrity v (G >0) A G>0)AG#34) =
(pcljl # pc_crit))) ((pe(s)(2) # pecrit) V (pe(s)(j) # pccrit)))))

lemma: LEMMA (V (s: states): reachable(s) = Inv(s));

Fig. 7. TIOA and PVS descriptions of the mutual exclusion property

3.5 Implementation

Written in Java, the translator is a part of the TIOA toolkit (see Figure 1). The
implementation of the tool builds upon the existing IOA to Larch translator [9,
17]. Given an input TIOA description, the translator first uses the front-end
type checker to parse the input, reporting any errors if necessary. The front-
end produces an intermediate language which is also used by other tools in the
TIOA toolkit. The translator parses the intermediate language to obtain Java
objects representing the TIOA description. Finally, the translator performs the
translation as described in this paper, and generates a set of files containing PVS
theories specifying the automata and their properties. The translator accepts
command line arguments for selecting the translation style for transitions, as
well as for specifying additional theories that the output should import for any
user defined data types. The current version of the translator can be found at:
http://web.mit.edu/hongping/www/tioa/tioa2pvs-translator

4 Proving Properties in PVS

In this section, we briefly discuss our experiences in verifying systems using the
PVS theorem prover on the theories generated by our translator. To evaluate the
translator we have so far studied the following three systems. We have specifically
selected distributed systems with timing requirements so as to test the scalabil-
ity and generality of our proof techniques. Although these distributed systems
are typically specified component-wise, we use a single automaton, obtained by
composing the components, as input to the translator for each system.

(1) Fischer’s mutual exclusion algorithm [15]: In this algorithm, each pro-
cess proceeds through different phases like try, test, etc. in order to get to the
critical phase where it gains access to the shared resource. The safety property
we want to prove is that no two processes are simultaneously in the critical
phase, as shown in Figure 7. Each process is indexed by a positive integer; pc is
an array recording the region each process is in. Notice that we are able to state
the invariant using universal quantifiers without having to bound the number of
processes.

(2) The two-task race system [15,4] (see Figure 2) increments a variable
count repeatedly, within a1l and a2 time, al < a2, until it is interrupted by a
set action. This set action can occur within b1 and b2 time from the start,
where b1 < b2. After set, the value of count is decremented (every [al, a2]

time) and a report action is triggered when count reaches 0. We want to show
that the time bounds on the occurrence of the report action are: lower bound:

if a2 < bl then min(bl,al) + (bl_—ggﬁ else a1, and upper bound: b2 + a2 +

b2: a2 To prove this, we create an abstract automaton TwoTaskRaceSpec which

performs a report action within these bounds, and show a forward simulation
from TwoTaskRace t0 TwoTaskRaceSpec.

(3) A simple failure detector system [2] consisting of a sender, a delay prone
channel, and a receiver. The sender sends messages to the receiver, within u1 time
after the previous message. A timed_queue delays the delivery of each message by
at most b. A failure can occur at any time, after which the sender stops sending.
The receiver timeouts after not receiving a message for at least u2 time. We are
interested in proving two properties for this system: (a) safety: a timeout occurs
only after a failure has occurred, and (b) timeliness: a timeout occurs within
u2 + b time after a failure. As in the two-task race example, to show the time
bound, we first create an abstract automaton that timeouts within u2 + b time
of occurrence of a failure, and then we prove a forward simulation.

We specify the systems and state their properties in the TIOA language. The
translator generates separate PVS theory files for the automaton specifications,
invariants, and simulation relations (see Figure 1). We invoke the PVS-prover
on these theories to interactively prove the translated lemmas and theorems.

One advantage of using a theorem prover like PVS is the ability to develop
and use special strategies to partially automate proofs. PVS strategies are writ-
ten to apply specific proof techniques to recurring patterns found in proofs.
In proving the system properties, we use special PVS strategies developed for
TAME and TIOA [7,18]. As many of the properties involve inequalities over real
numbers, we also use the strategies in the Manip [19] and the Field [20] packages.

PVS generates Type Correctness Conditions (TCCs), which are proof obli-
gations to show that certain expressions have the right type. As we have defined
the enabled predicate and trans function separately, it is sometimes necessary to
add conditional statements into the eff program of the TIOA description, so as
to ensure type correctness in PVS.

Prior to proving the properties using the translator output, we had proved the
same properties using hand-translated versions of the system specifications [4].
These hand-translations were done assuming that all the differential equations
are constant, and that the all invariants and stopping conditions are convex. In
the proof of invariants, we are able to use a strategy to handle the induction
step involving the parameterized trajectory, thus the length of the proofs in the
hand translated version were comparable to those with the translators output.
However, such a strategy is still not available for use in simulation proofs, and
therefore additional proof steps were necessary when proving simulation relations
with the translator output, making the proofs longer by 105% in the worst case!.
Nonetheless, the advantage of our translation scheme is that it is general enough
to work for a large class of systems and that it can be implemented in software.

! We did not attempt to make the proofs compact.

4.1 Invariant Proofs for Translated Specifications

To prove that a property holds in all reachable states, we use induction to prove
that (a) the property holds in the start states, and (b) given that the prop-
erty holds in any reachable pre-state, the property also holds in the post-state
obtained by performing any action that is enabled in the pre-state.

We use the auto_induct strategy to inductively prove invariants. This strat-
egy breaks down the proofs into a base case, and one subgoal for each action type.
Trivial subgoals are discharged automatically, while other simple branches are
proved by using TIOA strategies like apply_specific_precond and try_simp
with decision procedures of PVS. Harder subgoals require more careful user in-
teraction in the form of using simpler invariants and instantiating formulas.

In branches involving time passage actions, to obtain the post-state, we in-
stantiate the universal quantifier over the domain of the trajectory in the time
passage action with the limit time of the trajectory. A commonly occurring type
of invariant asserts that a continuously evolving variable, say v, does not cross a
deadline, say d. Within the trajectory branch of the proof of such an invariant,
we instantiate the universal quantifier over the domain of the trajectory with
the time required for v to reach the value of d. In particular, if v grows at a con-
stant rate k, we instantiate with (d —v)/k. We have also written a PVS strategy
deadline_check which performs this instantiation.

The strategies provided by Field and Manip deals only with real values,
while our inequalities may involve time values. For example, in the two-task race
system, we want to show that last_set > fintime(now). Here, last_set is a time value,
that is, a positive real or infinity, while now is a real value. If last_set is infinite,
the inequality follows from the definitions of > and infinity in the time theory
of TAME. For the finite case, we extract the real value from last_set, and then
prove the version of the same inequality involving only reals.

4.2 Simulation Proofs for Translated Specifications

In our examples, we prove a forward simulation relation from the system to the
abstract automaton to show that the system satisfies the timing properties. The
proof of the simulation relation involves using induction, performing splits on the
actions, and verifying the inequalities in the relation. The induction hypothesis
assumes that a pre-state x4 of the system automaton A is related to a pre-state
xp of the abstract automaton B. If the action a4 is an external action or a time
passage action, we show the existence of a corresponding action ag in B such that
the ap is enabled in xp and that the post-states obtained by performing a4 on
x4 and ap on xp are related. If the action a4 is internal, we show that the post-
state of a4 is related to xg. To show that two states are related, we prove that
the relation holds between the two states using invariants of each automaton, as
well as techniques for manipulating inequalities and the time type. We have not
used automaton-specific strategies in our current proofs for simulation relations.
Such strategies have been developed in [21]. Once tailored to our translation
scheme, they will make the proofs shorter.

A time passage action contains the trajectory map as a parameter. When we
show the existence of a corresponding action in the abstract automaton, we need
to instantiate the time passage action with an appropriate trajectory map. For
example, in the proof of the simulation relation in the two-task race system, the
time passage action nu_trajl of TwoTaskRace is simulated by the following time
passage action of TwoTaskRaceSpec:

nu_post_report(delta_t(a_A), LAMBDA(¢: TTRSpec_decls. interval(zero,delta_t(a-A))):
s-B WITH [now := now(s_B)+dur(t)])

The time passage action nu_post_report of TwoTaskRaceSpec (abbreviated as TTR-
Spec) has two parameters. The first parameter has value equal to the length of
a_A, the corresponding time passage action in the automaton TwoTaskRace. The
second parameter is a function that maps a given time interval of length ¢ to
a state of the abstract automaton. This state is same as the pre-state s_B of
TwoTaskRaceSpec, except that the variable now is incremented by ¢.

5 Conclusion and Future Work

In this paper we have introduced the TIOA language and presented a tool for
translating TIOA descriptions to the language of the PVS theorem prover. Al-
though the TIOA language provides convenient and natural constructs for de-
scribing a timed I/O automaton, it cannot be used directly in a theorem prover
such as PVS. Our tool performs the translation from TIOA to PVS, trans-
lating programs in the transition effects of TIOA descriptions into functional
relations in PVS, and trajectories into parameterized time passage actions. We
have described briefly three case studies in which we have successfully written
the systems in TIOA, and proved properties of the systems in PVS using the
output of the translator. Our experience suggests that the process of writing
system descriptions in TIOA and then proving system properties using PVS on
the translator output is useful for analyzing more complicated systems.

Some features remain to be implemented in the translator tool, like for loops,
and composition of automata. In future, we want to develop PVS strategies to
exploit the structure of the translator output for shorter and more readable
proofs. We will continue to work on other case studies to evaluate the translator
as a theorem proving interface for the TIOA language. These examples include
clock synchronization algorithms and implementation of atomic registers.

References

1. Kaynar, D., Lynch, N., Segala, R., Vaandrager, F.: Timed I/O automata: A math-
ematical framework for modeling and analyzing real-time systems. In: RTSS 2003:
The 24th IEEE International Real-Time Systems Symposium, Cancun, Mexico
(2003)

2. Kaynar, D., Lynch, N., Segala, R., Vaandrager, F.: The theory of timed I/O
automata. Technical Report MIT/LCS/TR-917, MIT Laboratory for Computer
Science (2003) Available at http://theory.lcs.mit.edu/tds/reflist.html.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Kaynar, D., Lynch, N., Mitra, S., Garland, S.: TIOA Language. MIT Computer
Science and Artificial Intelligence Laboratory, Cambridge, MA. (2005)

Kaynar, D., Lynch, N., Mitra, S.: Specifying and proving timing properties with
tioa tools. In: Work in progress session of the 25th IEEE International Real-Time
Systems Symposium (RTSS 2004), Lisbon, Portugal (2004)

Garland, S., Lynch, N., Tauber, J., Vaziri, M.: IOA User Guide and Reference
Manual. MIT Computer Science and Artificial Intelligence Laboratory, Cambridge,
MA. (2003) Available at http://theory.lcs.mit.edu/tds/ioa.html.

Owre, S., Rajan, S., Rushby, J., Shankar, N., Srivas, M.: PVS: Combining speci-
fication, proof checking, and model checking. In Alur, R., Henzinger, T.A., eds.:
Computer-Aided Verification, CAV ’96. Number 1102 in Lecture Notes in Com-
puter Science, New Brunswick, NJ, Springer-Verlag (1996) 411-414

Archer, M.: TAME: PVS Strategies for special purpose theorem proving. Annals
of Mathematics and Artificial Intelligence 29 (2001)

Owre, S., Rushby, J., Shankar, N., Stringer-Calvert, D.: PVS: an experience re-
port. In Hutter, D., Stephan, W., Traverso, P., Ullman, M., eds.: Applied Formal
Methods—FM-Trends 98. Volume 1641 of Lecture Notes in Computer Science.,
Boppard, Germany, Springer-Verlag (1998) 338-345

Bogdanov, A., Garland, S., Lynch, N.: Mechanical translation of I/O automaton
specifications into first-order logic. In: Formal Techniques for Networked and Dis-
tributed Sytems - FORTE 2002 : 22nd IFIP WG 6.1 International Conference,
Texas, Houston, USA (2002) 364-368

Garland, S.J., Guttag, J.V.: A guide to LP, the Larch prover. Technical re-
port, DEC Systems Research Center (1991) Available at http://nms.lcs.mit.
edu/Larch/LP.

Devillers, M.: Translating IOA automata to PVS. Technical Report CSI-R9903,
Computing Science Institute, University of Nijmegen (1999) Available at http:
//www.cs.ru.nl/research/reports/info/CSI-R9903.html.

Ne Win, T.: Theorem-proving distributed algorithms with dynamic analysis. Mas-
ter’s thesis, Massachusetts Institute of Technology, Cambridge, MA (2003)
Paulson, L.C.: The Isabelle reference manual. Technical Report 283, University of
Cambridge (1993)

Merritt, Modugno, Tuttle: Time-constrained automata. In: CONCUR: 2nd Inter-
national Conference on Concurrency Theory, LNCS, Springer-Verlag (1991)
Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc. (1996)
Lynch, N.; Segala, R., Vaandrager, F.: Hybrid I/O automata. Information and
Computation 185 (2003) 105-157

Bogdanov, A.: Formal verification of simulations between I/O automata. Master’s
thesis, Massachusetts Institute of Technology, Cambridge, MA (2000) Available at
http://theory.lcs.mit.edu/tds/ioa.html.

Mitra, S., Archer, M.: Reusable PVS proof strategies for proving abstraction prop-
erties of I/O automata. In: STRATEGIES 2004, IJCAR Workshop on strategies
in automated deduction, Cork, Ireland (2004)

Munoz, C., Mayero, M.: Real automation in the field. Technical Report NASA/CR-
2001-211271 Interim ICASE Report No. 39, ICASE-NASA Langley, ICASE Mail
Stop 132C, NASA Langley Research Center, Hampton VA 23681-2199, USA (2001)
Vito, B.: A PVS prover strategy package for common manipulations (2003) Avail-
able at http://shemesh.larc.nasa.gov/people/bld/manip.html.

Mitra, S., Archer, M.: PVS strategies for proving abstraction properties of au-
tomata. Electronic Notes in Theoretical Computer Science 125 (2005) 45-65

