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Abstract— A formal method based technique is presented
for proving the average dwell time property of a hybrid system,
which is useful for establishing stability under slow switching.
The Hybrid Input/Output Automaton (HIOA) of [12] is used
as the model for hybrid systems, and it is shown that some
known stability theorems from system theory can be adapted
to be applied in this framework. The average dwell time
property of a given automaton is formalized as an invariant
of a corresponding transformed automaton, such that the
former has average dwell time if and only if the latter
satisfies the invariant. Formal verification techniques can be
used to check this invariance property. In particular, the
HIOA framework facilitates inductive invariant proofs by
systematically breaking them down into cases for the discrete
actions and continuous trajectories of the automaton. The
invariant approach to proving the average dwell time property
is illustrated by analyzing the hysteresis switching logic unit
of a supervisory control system.

Index Terms— Average dwell time, Hybrid systems, Hybrid
1/0 automaton, Hysteresis Switching, Invariant, Stability.

I. INTRODUCTION

for a very general class of hybrid systems and it subsumes
the class of untimed and timed distributed systems. Hybrid

behavior is modeled as an alternating sequence of actions
and trajectories; the actions correspond to discrete state
transitions and the trajectories capture continuous &eolu

of the state variables of an automaton. Owing to this

structure, safety properties which are also invariants of

HIOA, can be proved inductively by a systematic case

analysis of the automaton’s actions and trajectories. Most
of the prior work with HIOA focused on verifying safety

of hybrid systems (see, e.g., [16], [11]).

In this paper we demonstrate how formal methods and
the HIOA framework can be useful for proving invariants
arising in stability analysis of hybrid systems. First, we
show the straightforward adaptation of some known stabilit
theorems from system theory to the HIOA framework.
Then, we show that the task of proving the average dwell
time property [9] which is used to prove stability of
hybrid systems under slow switching, can be reduced to

Systems with both discrete and continuous dynamics aphiecking a set of invariants. We have chosen the average

called hybrid systems. Computer scientists have concedwell time property to demonstrate the invariant approach
trated on verification of hybrid systems, and have developdtkcause it decouples the problem of finding the Lyapunov
a wide range of techniques for proving safety properfunctions (which we assume are given), from the problem
ties, from model checking (see, e.g., [1] and [7]) whictof checking that all the executions of the HIOA satisfy
is automatic but limited to moderate sized linear hybricgcertain properties. In general, properties of the exensta
systems, to interactive theorem proving [2], [6], which isan automaton are harder to prove than invariant properties
applicable to larger and more complicated hybrid systemghich are properties of the state. We transform the given
Control theorists, on the other hand, have viewed hybritllOA A to a new HIOA A" and find a conditior? on the
systems as switched systems or as dynamical systems wétlates of.A’, such thatA satisfies the average dwell time
special boolean variables, and have addressed stabidity, ¢ property if and only ifZ is an invariant of4’. This enables
trollability, and controller synthesis of such systems][18 us to prove the average dwell time property by checking
[10]. The differences in these approaches espoused differavith a suitable formal verification technique. We illuserat
terminologies and mathematical models, which has led wur approach by analyzing the stability of the hysteresis
a lack of interaction between the two communities angwitching logic unit in a supervisory control system. In
isolated developments. this case study we have proved the invariants by hand;

A platform bridging the gap by allowing computer sci-however, our long term goal is to develop an integrated
entists and control theorists to apply their techniques iaystem which uses automatic theorem provers to efficiently
the same modeling framework is desirable. To this enderify the invariants arising in stability analysis of hidr
we introduce the Hybrid Input/Output Automaton (HIOA)systems.
of [12] to the Control Systems community. HIOA is a math- The rest of this paper is organized as follows: In Sec-
ematical model for developing compositional specificaiontion Il we describe the HIOA model, in Section Il we define

the various notions of stability and restate some known
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and invariants are stated without proof in this paper. Dgetaihybrid systems. In particular it subsumes the class of kybri
can be found in the extended version of the paper [15]. automata used in [1].

For this paper we add the following extra assumptions
to the HIOA model of [12]: (1) all variables are either
The hybrid /O automaton framework of [12] evolveddiscrete or continuous. For a set of variabiswe denote

from the generalization of the timed I/O automatonts discrete and continuous subsets $yand S., and the
model [13] for real time distributed systems. A hybridcorresponding state vectors by ands... And, (2) discrete
/O automaton models hybrid behavior in terms of discretgansitionsdo notchange the valuation of the continuous
transitions and continuous evolution of its state varigble yariables, that is, ifx % x’, then x.X. = x'X.. These
Let V' be the set of variables of automateh Eachv € V' assumptions are made for simplicity and bring our model

is associated with gstatic) typewhich is the set of values  closer to the model of switched systems considered in [10].
can assume. A valuationfor V' is a function that associates

each variablew € V to a value intype(v). The set of all B. Executions and Invariants
valuations ofV is denoted byal(V'). A restriction ofv to
a subset of variableS C V' will be denoted byv.S.

A trajectoryr of V' is a mappingr : J — val(V'), where
J is a left closed interval of time. The domain ofis the
interval J and is denoted by.dom. The first time ofr is
the infimum of r.dom, also written asr. ftime. If 7.dom
is right closed thenr is closed and its limit time is the
supremum ofr.dom, also written asr.ltime.

Each variablev € V' is also associated with @namic
type (or dtype) which is the set of trajectories thatmay
follow. Dynamic typedtype(v) of a continuous(discretg
variable v is the pasting closure of continuous (constant§F
functions from left closed intervals of time tgpe(v).

Il. MATHEMATICAL PRELIMINARIES

An execution fragmenf A is a (possibly infinite)
sequence of actions and trajectories= 7,a1, 71,02 ...,
where each; € 7,a; € A, and if7; is not the last trajectory
in o thenT; is finite andr;.Istate “5' 7, 1. fstate. For an
execution fragmenty, the first statev. fstate = 7. f state,
likewise a.ftime = 7¢.ftime. An execution fragment is
closedif it is a finite sequence and the domain of the
final trajectory is a finite closed interval. THength of
a closed execution fragment is the number of elements
(actions and trajectories) in the sequence andiriti time
Atime is T,.ltime, wherer,, is the last trajectory ofv.
he duration of a closed execution fragment is its length in
time and is defined as.dur = 3" ,(7;.ltime—;. ftime).

A. HIOA Model We denote the valuation of the continuous variahls

at time t,a.ftime < t < «.ltime, in the execution
fragmenta by «(t). Note thata(¢) is uniquely determined
because the discrete actions do not alter the valuation of
the continuous variables. An execution fragmenis an
executionif «a.fstate € ©. A state of A is reachableif

it is the last state of some closed execution. An execution
fragmenta is reachableif «.fstate is reachable.

An invariant property of A is a condition onV that
remains true in all reachable states.4f The structure of
HIOA allows systematic proof of invariants. An invariant
7 is either derived from other invariants or proved by
induction on the length of a closed execution 4f as
Jollows:

1) base stepZ(s) is true for alls € ©,

2) induction step: (a) discrete part: for every discrete
transition s = s’, Z(s) implies Z(s’), and (b) con-

A hybrid 1/0O automatonA consists of :

1) AsetV of variables, partitioned intmternal X, input
U, andoutput variablesY’. The internal variables are
also calledstate variablesThe seti’ = UUY is the
set ofexternal variablesAnd, the setZ = X UY is
called the set ofocally controlled or local variables

2) A setA of actions , partitioned intternal H, input
I, andoutput actionsO.

3) A set of state€) C val(X) ,

4) A non-empty set obtart states® C @,

5) A set of discrete transitionsD C @ x A x Q.
A transition (x,a,x’) € D is written in short as
x 4 x'. The subscript is sometimes omitted an
written asx > x’ when the automatord is clear
from the context.

6) A set of trajectories 7 for V, such that for ev- ) \ )
ery trajectoryr in 7, and for everyt € r.dom, tinuous part: for any closed traject_ony_e 7T, with
7(t).X € Q and T is closed under prefix, suffix, 7.fstate = s andr.lstate = s', I(s) implies Z(s").
and concatenation. The first stat€0).X of trajec- This structure is particularly helpful in organizing large
tory is denoted byr.fstate. If T.dom is finite then complex proofs and for automating invariant proofs in a
T.lstate = 7(T.ltime). X. theorem prover.

Further, A is: (1) input action enabledthat is, it cannot
block input actions, and (2nput trajectory enabledthat
is, it accepts any trajectory of the input variables either In this section we define what it means for a HIOA

by allowing time to progress for the entire length of theto be stable. Here and in the following section, we are
trajectory or by reacting with some internal action beforeoncerned with hybrid systems with no continuous inputs,
that. As HIOA imposes few natural restrictions on itsand we assume that there exists a family of sufficiently
trajectories, it is capable of modeling a large class afegular (locally Lipschitz) functiong, : R"" — R", p € P,

IIl. STABILITY THEOREMS INHIOA FRAMEWORK



such that every trajectory ofl satisfiesx. = f,(x.) for ~C. Multiple Lyapunov Functions

somep € P, where? is a finite index set. In the absence of a common Lyapunov function for all

A. Stability Definitions the subsystems irP, the stability of HIOA in general
depends on the choice of an execution. Multiple Lyapunov
functions [3] is an useful tool for proving stability of a
chosen execution. In this case, each subsysiem P is
associated with a Lyapunov functidrj,, and one attempts
to prove the stability of the execution using the contin-
uous decay of thd/,’s and the switching logic between
la(0)| <6 = |a(t)| < e ¥Vt 0<t< a.ltime, (1) the subsystems. In control theory literature [10], [9] the
switches between the subsystemsc P are defined in
and we say tha# is stable A HIOA A is asymptotically terms of a “switching signal” which is a piece-wise constant
stableif it is stable andj can be chosen so that function o : [0, 00) — P. In the HIOA model the switches
1a(0)] <6 = a(t) = 0 as t — oo ) are defined by the; discrete. tra.nsiticlms of the automaton, so
we define the notion of switching times as follows:
If the above condition holds for alf then A is globally Let M : T — P be a function that gives the index
asymptotically stable of the function f,,, which is active over the trajectory.
Uniform stabilityis a concept which guarantees that théVhenever a discrete actien occurs such thad/ (r;,_1) #
stability property in question holds, not just for execap M (7;), the HIOA A is said to undergo awitch
but for any execution fragment. Thereford,is uniformly
stable in the sense of Lyapunov, if for every> 0 there
exists a constant > 0, such that for any execution
fragmentao,

Let us assume that all the subsystemgldfave the origin
as their common equilibrium point, that i,(0) = 0 for all
p € P. The origin is astableequilibrium point of a HIOA
A, in the sense of Lyapunov, if for eveey> 0, there exists
aé > 0, such that for every executiom of A, we have

Definition 2. For any execution fragment = rgai7 .. .,
an instant of timet € a.dom is called a switching time
if there existsi such thatt = ;.itime, and M(1;) #
M(Ti+1).

< < <to<t<alti .
lalto)]l < 0 = la(t)] < € ¥to,t, 0 <to <t < avltime Theorem 2. Let V, be a radially unbounded Lyapunov

A HIOA A is said to be uniformly asymptotically stable if function corresponding to the globally asymptoticallybdéa
it is uniformly stable and there existsia> 0, such that for systemi = f,(z) for eachp € P. An executiona
every e > 0 there exists &, such that for any execution of a HIOA A is globally asymptotically stable if there

fragmenta, exists a family of positive definite continuous functions
Wp,p € P such that, for every pair of switching times
la(to)l <0 = |a(t)] <€, VE=to+T ©) t,t’ in «, and the corresponding trajectories;, 7;, if

It is said to beglobally uniformly asymptotically stablig M (7:) = M(7;) = p and M () # p,Vk, i < k < j then
the above holds for ali, with T = T'(6, €). Vo(75(t1) = Va(mi(t)) < =Wip(7i(t)).

All the above stability properties are by definition uni-D Stability Under Slow Switching
form over executions. We will also make use of the fol-—
lowing weaker notion of stability: a given execution is It is well known that a switched system is stable if
stable (uniformly stable, asymptotically stable, etc.jhi¢ all the individual subsystems are stable and the switching

corresponding property is satisfied for this execution.  is sufficiently slow, so as to allow the dissipation of the
_ transient effects after each switch. Ttieell time[17] and
B. Common Lyapunov Function the average dwell timd9] criteria define restricted classes

The basic tool for studying uniform stability of hybrid of switching signals, based on switching speeds, and one
systems relies on the existence of a single Lyapundsan conclude the stability of a system with respect to these
function whose derivative along the trajectories of all theestricted classes.

subsystems irP satisfies the suitable inequalities. Definition 3. Let #1,4,,... be the switching times of an

Definition 1. Given a positive definite continuously differ-execution fragment of a HIOA A. The execution fragment
entiable functiorl” : R* — R”, we say that it is a common « has a dwell timer; > 0 if it satisfies the inequality
Lyapunov function for a HIOAA if there exists a positive ti+1—t; > 74, for all i. If all reachable execution fragments
definite continuous functiof : R — R”, such that we of .4 have dwell times> 7, then A has a dwell timer,.

have Definition 4. Let N(«) denote the number of switches

— fp(xe) < —W(x.) Vx., VpeP (4) over an execution fragment of a HIOAA. The execution
0%, fragment has an average dwell timg > 0 if there exists
Theorem 1. If a HIOA A has a radially unbounded @ positive numberV, such that:
common Lyapunov function thed is globally uniformly a.dur

asymptotically stable. N(a) < No + ()

a



If all reachable execution fragments of have average Proof. Sincea is a closed execution ofl, we can replace
dwell times> 7, with a fixed Ny then A has an average «.dur in Equation (5) witha.ltime. For the “if” part,
dwell time,. consider a closed executiom of A and let o’ be the
corresponding” execution ofd’. Let s’ be the last state
f «, therefore from the invariant we know thdtQ < N,.
rom construction ofA’ we know that,N(a) = N(a/)
and o/ .ltime = «.ltime and therefores’.QQ = N(o') —

| eltime | it follows that N (a) — @Lme < N,

For the “only if” part, consider a reachable statef A'.
Theorem 3. Consider a HIOA A with its trajectories There exists an executiad such thats’ is the last state of
specified by a family of functiong,,p € P. Suppose there «’. Let o be an execution aofl “corresponding” tan’. Since
exist positive definite, radially unbounded, and contirslpu N (o) < Ny + L%’:@EJ implies N (o) < Np + La,‘l%m%
differentiable functiond/, : R* — R", for eachp € P, and it follows that s’.Q < Ny.
positive numbers\y and i such that:

“

The following theorem, adapted to the HIOA framework
from the results in [9], uses the concept of average dw
time to give a sufficient condition for stability. Since divel
time is a special case of average dwell time wih = 1,

a separate theorem for dwell time is not necessary.

oV Theorem 4. All executions of4 satisfy Equation (5) if and
8xp fo(xe) < =AoVp(xe), Vx¢, VpEP (6) onlyif Q@ < Ny in all reachable states afl’.
Vp(xc) < pVy(xe), Vxe, Vp,geP. (7) Proof. We only have to show that if any executien of

A violates (5), then there exists a closed executidrof

ThenA is globally uniformly asymptotically stable if it has A that violates (5) as well. I is infinite, then there is a

an average dwell time, > 1284

2Xo0 closed prefix ofa that violates (5). If« is finite and open,
Theorem 3 roughly states that a hybrid system is unthen the closed prefix of excluding the last trajectory of
formly stable if the discrete switches are between modes violates (5). O

which are individually stable, provided that the switches

do not occurtoo frequently on the averagdhis stability N (5), the numberV, can be arbitrary. Thus to show that
condition effectively allows us to decouple the construc@ givenT, is an average dwell time of an execution, we
tion of Lyapunov functions—one for eagh € P, which need to show tha®) is bounded, while to show that it is an
we assume are known from available methods of systefyerage dwell time of an automaton, we need to show that
theory—from the problem of checking that every executio®? iS bounded uniformly over all executions.

of the automaton satisfies Equation (5). _ ) N o
B. Transformation for Uniform Stability Verification

IV. AVERAGE DWELL TIME: INVARIANT APPROACH o :
The above transformation is acceptable for asymptotic

In general, it is harder to prove properties of executiongiapijity, but it allows @ to become negative, and then
of automata than it is to prove invariants, which are proprapidly return to zero, so it does not guarantee uniform sta-
erties of state. Several formal verification techniquesehav,ijity For uniform stability we want all reachable exeanti
been developed expressly for checking invariants of hybrilagments ofA to satisfy (5).
automata (see [1], [7], [6], and Chapters 5 and 6 of [18]). consider any reachable execution fragmerdf A, with
So, once we have translated the average dwell time proper&yfﬁme = t1, and a.ltime = to. Let N(t,t1) and
to a set of invariant properties, we can appeal to the seitab(b(t2 t) ’ ’
formal verification tool for checking the invariants. §

denote the number of switches and the number
of “extra” switches overx with respect to dwell timer,,

A. Transformation for Stability Verification that is, Q(ta,11) = N(ta,t1) — (t2 — t1)/7a. Thus, every
We transform the given HIOAA to a new HIOA A’ as reachable execution fragmentof A satisfies (5), if

follows: In addition to all the variables ofl, automatonA’ t 1o t—1o
. . ! . = _ — <

has two new internal variables: a count@rand a timer N(t.to) = Q(1,0) + Ta Q(to,0) Ta No + Ta

t, both initialized0. The counter) counts the number of or,

mode switches, and the timer reduces the countl kg Q(t,to) < No,

every 7, time. For every discrete transition— 4 s’ of A,

automaton4’ has a corresponding transitien—"4 s’, such wheret, = a.ftime, andt = «a.ltime. So, we introduce
thats’.QQ = s.Q+1. In addition.4’ has internal action which an additional variable?,,.;, which stores the magnitude
occurs everyr, time and decrement§ by one. Finally, of the smallest value ever attained @y Then, for uniform
for every trajectoryr’ of A’, the restriction ofr on the stability we need to show that the total chang&libetween
set of continuous variables ol is a trajectory ofA, i.e., any two reachable states is bounded/y.

/ .
7'l Ze € Ty, andt = 1. Theorem 5. All reachable execution fragments df satisfy

Lemma 1. All closed executions ofl satisfy Equation (5) Equation (5), if and only i) — Q.:n, < Ny in all reachable
if and only if @ < Ny in all reachable states afl’. states ofA4'.



V. HYSTERESISSWITCHING of the ;s are set to a null value.. The variablec, counts

In this section the invariant based technique is applied {§€ number of intervals in whick equaledp; and, is a
a hysteresis switching logic unit which is a subsystem dieSet timer measuring the length of the last such interval.
an adaptive supervisory control system taken from [8] (also The discrete transitions section defme; the two actions
Chapter 6 of [10]). Our goal is to prove the average dwefff the automaton, namebequeue andswitch,, p € P. An

time property of this switching logic, which guarantees2ction isenabledor in other words, itcan occur when the
stability of the overall supervisory control system (see theondition following theprecondition keyword is true. The
above references for details). change in the state variables when the action does occur is

An adaptive supervisory controller consists of a familylescribed by theffect part of the transition definition.
of candidate controllers,,,p € P, which correspond to | N€ trajectories section defines the evolution of the
the parametric uncertainty range of the plant in a suitabf@Pntinuous variables in terms of the differential and al-
way. Such a controller structure is particularly useful whe 9€Praic equations. The(.) in the evolve section stands
the parametric uncertainty is so large that robust contr(g?r der|\{a_t|ve. _The stopplng_ condition, in this aut(_)maton,
design tools are not applicable. The controller operates [ € disjunction of the action preconditions, so it forces
conjunction with a set of on-line estimators that providd® actions to occur whenever they are enabled.
monitoring signalsy,,p € P; intuitively, smallness ofu,  B. Invariant Properties
indicates high likelihood that is the actual parameter value. | this section we state a sequence of invariants which
Based on these signals, the switching logic unit generatggay o the target average dwell time property of the
at each instant of time, the indexa (t) of the controller to 1y st er esi sSwi t ch automaton. As a representative in-
be applied to the plant. _ variant proof in the HIOA framework we present the proof

In building the HIOA model, we take as inputs theyg nyariant 2. The proofs of the other invariants are orditte
monitoring signalg., and focus on the switching logic unit 4ing to space constraints and can be found in the longer
which implements scale independent hysteresis switct8ng gnjine version of the paper [15]. The first three invariants
follows: at an instant of time when controlleiis operating, a4 to give a lower bound on the change in the history
thatis,o = r for somer € P, if there exists @ € P such \grjgples (i;’'s) necessary to perform a certain number of
that i, (1 + h) < u, for some fixed hysteresis constant  gyjitches. And we already have an upper bound on the rate
then the switching logic sets = p and applies output of ot growth of the monitoring signals from Equations (8)
controller p to the plant. Below we describe and analyze,,q (9). Putting these two pieces together in Invariant 5,

the HIOA representing this switching logic unit, which weg4 using Theorem 4 we derive the average dwell time
call Hyst er esi sSwi t ch automaton.

. ey . . roperty.
We consider a finite set of continuous, monotomcall;P perty
nondecreasingnonitoring signals,, p € P satisfying: Invariant 1. Q <c— 2% 41,
pp(0) > Co (8) Invariant 2. vq € P,
pps(t) < C1 4 Cae*™ for somep® € P 9 (1) o=q=VYpeP,ug<(1+h)u,

- . 2 =qgAcg>0Nt,=0=VpeP,ug < pip.
where Cy, C; and C, are positive constants. Equation (8)( ) o=ahe ¢ P Ha = Hr

sets a lower bound on the initial values of all the monitoring’roof. Part(1): Initial states satisfy. For the induction step
signals, and Equation (9) states that there exists som@  we need to consider only discrete transitiané: s, where
P for which the corresponding monitoring signal satisfies = switch,. Let s.c = r, we know thats’.c = ¢. By
the exponential upper bound. inductive hypothesis.yu, < (1+ h)s.u,, for all p € P. By
o recondition ofswitch,, (1+h)s.u, < s.u-. By continuit
A. HIOA Specification Ef 'S (1+h)s' g qu’.(ur S)(lljrqh)s’.fjp, fo)r/ allp € 79)./
The hysteresis switch is specified as a HIOA (Figure 1) in From the above it follows that'.., < (1 + h)s’.u,, for
the style described in [16]. The variables of the automatoall p € P. The stopping condition of activitylow ensures
are declared and initialized in theariables section; each that the invariant is preserved over all trajectories.
variable’s name is followed by its type and its initial value Part(2) : Initial states satisfy the invariant becayse
The analog keyword preceding a variable name indicatesirg min,cpu,. For the induction step, consider a discrete
that it is a continuous variable. The input variables, transitions % s, wherea = switch,. Let s.0 = r, we
p € P model the monitoring signals that are inputs tdknow thats’.c = ¢g. From Part (1)s.u, < (14 h)s.u,, for
the switch. The discrete switching signalis an output all p € P. By precondition ofswitch,, (14 h)s.uq < s.pr,
variable because it is visible to the outside word; rema@ninand by continuity ofu,’s, s".u, < s".u,, for all p € P.
variables are internal to the automaton. The variakles We note that thelequeue actions do not alter any of
and d count the number of switches and the numberpof the variables involved in the invariant. Now, consider any
periods elapsed. Variable, stores the values qi, at the trajectory 7. If 7 is a point trajectory, then the invariant
instant whenr became equal tp for thei‘” time; initially ~ holds. If 7 is not a point trajectory, then the invariant holds
py = pp, for all p € P, p), = p,p, for p = o, and the rest vacuously becauselstate.t, # 0. O



hybridautomaton Hyst er esi sSwi t ch(h:PosReal , P:l ndexSet )
variables
input analog 1, : Real, for eachp € P,
output o : P, initially o = arg minpep pp,
internal analog now : Real, initially 0,
internal ¢, d : Int, initially 0,
internal ;LL :RealU {L}, forp € Pandi € {0,1,2,...},
initially p) = iy, pe = po, Otherwiseu? = L,
internal ¢, : Int, initially 0, for p # o, andc, =1
internal t, : Real, initially 0, for eachp € P,
derived variables m : Int = |P|,Q : Int = c—d

discrete transitions
switch, for eachp € P
precondition (1 + h)pp < po
effecto := p; c:=c+ 1;
cpi=Cp + 1 pgP = pp; tp =0
dequeue
precondition now = ktq
effectd :=d+1
trajectory definitions
evolve d(now) :=1; d(tp):=1
stop at (3p, (1 + h)pp < po) V (now = k7q)

Fig. 1.

Invariant 3. ¥V qge P, cq > 2= pue? > (1+ h)ug? .

Invariant 4. 3 ¢ € P such thatc, > [<1]. [
Invariant 5. If we setr, to 50" then,
(2]
m C1+C>
<2 1

Q=2Hmt i+ h) Og( Co ) 3]

Theorem 6. TheHyst er esi sSwi t ch automaton has an
average dwell time of at leagtg|t") [4]
To ensure stability of the overall supervisory control -
5

system, the parameters and A must be such that this
average dwell time satisfies the inequality of Theorem 3. [g]

VI. REMARKS AND FUTURE WORK

(7]

We have introduced the hybrid 1/0O automaton framework
as a modeling platform in which analysis techniques from!®)
both computer science and control theory can be applied.
To demonstrate its utility and expressive power, we havd®l
shown how known stability theorems from system theory
literature can be adapted and applied in this frameworkio]
Then, we formalized the average dwell time property of
hybrid systems as a set of invariants, thereby making it
possible to prove (uniform) stability of hybrid systems and
slow switching using formal verification techniques. The
suggested method has been illustrated by analyzing tl[11e2]
stability of a hysteresis switching logic unit in a supeovis  [13]
control system.

In this paper we examined internal stability only; how-14]
ever, the explicit external variables of HIOA make the
framework suitable for studying input-output propertids o 15]
hybrid systems as well. Secondly, the hand-proofs of irvari
ants can be partially-mechanized with theorem provers, as
shown in [2], [14]. Another direction of future research is16
to extend these techniques to stochastic hybrid systems, by
combining the probabilistic IOA model of [5] with stability
results for stochastic switched systems from [4].
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