
pdfauthor

Verifying Average Dwell Time of Hybrid Systems

Sayan Mitra

Massachusetts Institute of Technology

Daniel Liberzon

University of Illinois at Urbana-Champaign

and

Nancy Lynch

Massachusetts Institute of Technology

Average dwell time (ADT) properties characterize the rate at which a hybrid system performs

mode switches. In this paper, we present a set of techniques for verifying ADT properties. The
stability of a hybrid systemA can be verified by combining these techniques with standard methods

for checking stability of the individual modes of A.
We introduce a new type of simulation relation for hybrid automata—switching simulation—

for establishing that a given automaton A switches more rapidly than another automaton B. We

show that the question of whether a given hybrid automaton has ADT τa can be answered either
by checking an invariant or by solving an optimization problem. For classes of hybrid automata for

which invariants can be checked automatically, the invariant-based method yields an automatic

method for verifying ADT; for automata that are outside this class, the invariant has to be checked
using inductive techniques. The optimization-based method is automatic and is applicable to a

restricted class of initialized hybrid automata. A solution of the optimization problem either gives

a counterexample execution that violates the ADT property, or it confirms that the automaton
indeed satisfies the property. The optimization and the invariant-based methods can be used in

combination to find the unknown ADT of a given hybrid automaton.

Categories and Subject Descriptors: D. Software [D.2 Software Engineering]: D.2.4. Soft-
ware/Program Verification

General Terms: Hybrid Systems, Stability, Verification

Additional Key Words and Phrases: Hybrid systems, Simulation relation, Optimization-based
verification

A preliminary version of this paper was presented at the 2006 Workshop on Hybrid Systems:

Computation and Control, under the title Verifying Average Dwell Time by Solving Optimization
Problems.
Author’s addresses: S. Mitra and N. Lynch, Computer Science and Artificial Intelligence Labo-

ratory, Massachusetts Inst. of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. Email:
{mitras,lynch}@csail.mit.edu D. Liberzon, Coordinated Science Laboratory, Univ. of Illi-

nois at Urbana-Champaign, Urbana, IL 61801, U.S.A. Email: liberzon@uiuc.edu
This work is supported by the DARPA/AFOSR MURI F49620-02-1-0325 grant and by NSF’s
CSR program (Embedded and Hybrid Systems area) under grant NSF-CNS-0614993.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and

notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
© 20YY ACM 0000-0000/20YY/0000-100001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–??.

2 · S. Mitra, D. Liberzon and N. Lynch

1. INTRODUCTION

Rapid growth in communication and microprocessor technologies is fueling the
development of complex embedded devices which are being deployed to perform
increasingly more critical and sophisticated tasks. Stability of such devices and
systems is often a natural requirement. For digital control systems, stability is of
fundamental importance and has been an area of intense research. Stability prop-
erties are also important in distributed computation and control type applications.
For instance, a set of mobile robots starting from arbitrary locations in the plane
are required to coordinate and converge to some formation; a set of failure prone
processes communicating over unreliable channels are expected to perform some
useful computation once the failures cease and the message delays become normal.
Both the above requirements can be phrased as stability properties of the respective
systems.

The standard approach for describing complex embedded systems consisting of
software components and physical processes is to assume that the state space of
the system is partitioned into finite number of equivalence classes or modes. We
denote the set of modes by P. The evolution of the state x in mode i, for some
i ∈ P, is described by some differential equation of the form d(x) = fi(x). Mode
transitions are described by guards and reset maps. Hybrid automata-like models
(see, e.g., [Alur et al. 1995; Lynch et al. 2003]) embody the above point of view.
Verification of safety properties of hybrid automata through reachable set compu-
tations and deductive techniques have received a lot of attention in the recent years
(see, e.g., [Mitchell and Tomlin 2000; Prajna and Jadbabaie 2004; Kurzhanski and
Varaiya 2000; Henzinger and Majumdar 2000; Livadas et al. 1999; Heitmeyer and
Lynch 1994; Mitra et al. 2003].

Analyzing the stability of hybrid automata is challenging because the stability
of the continuous dynamics of each individual mode does not necessarily imply the
stability of the whole automaton. The basic technique for analyzing stability relies
on finding a Common Lyapunov function, whose derivative along the trajectories
of all the modes must satisfy suitable inequalities. When such a function cannot be
found or does not exist, Multiple Lyapunov functions [Branicky 1998] are useful for
proving stability of a chosen execution. These and many other stability results are
based on the switched system [Liberzon 2003; van der Schaft and Schumacher 2000]
view of hybrid systems. In the switched system model, the details of the discrete
mechanisms of a hybrid automaton, namely, the guards and the reset maps, are
neglected. Instead, an exogenous switching signal brings about the mode switches.

Assuming that the dynamics of the individual modes have certain properties, one
can characterize the class of switching signals, based only on the rate of switches
and not the particular sequence of switches, that guarantee stability of the entire
system. For example, if the individual modes of the automaton are stable, then
the notion of dwell time [Morse 1996] and the more general average dwell time
(ADT) [Hespanha and Morse 1999] precisely characterize such restricted classes of
switching signals that guarantee stability of the whole system. In order to apply
this ADT-based stability verification technique to an hybrid automaton A one has
to (a) find Lyapunov functions for the individual modes of A, and (b) check that
all executions of A satisfy the required ADT property. Roughly, A has ADT τa

ACM Journal Name, Vol. V, No. N, Month 20YY.

Verifying Average Dwell Time of Hybrid Systems · 3

if, in every execution of A, the rate of mode switches is 1
τa

plus some constant
burst rate. That is, over almost every τa interval A performs at most one switch.
A large average dwell time means that A spends enough time in each mode, so
as to dissipate the transient energy gained through mode switches. In this paper
we assume that the set of Lyapunov functions for the individual modes is known
from existing techniques from systems theory [Khalil 2002], and we present semi-
automatic methods for proving the ADT properties for a general class of hybrid
automata. Thus, we provide a missing piece in the toolbox for analysis of stability
of hybrid automata.

Application of ADT verification techniques are not limited to deducing stability
of hybrid automata with stable modes. In [Zhai et al. 2000] ADT properties have
been used to deduce stability conditions for systems with mixed stable and unstable
state models. Input-to-state stability in the presence of inputs [Vu et al. 2006]
and stochastic stability of randomly switched systems [Chatterjee and Liberzon
2006] can also be verified with the aid of ADT-like properties. In many settings,
the question of whether a system have a certain ADT is natural and interesting
independent of its connection to stability. For example, in queuing systems the
ADT properties are used to characterize burstiness of traffic [Cruz 1991]. Our
ADT verification techniques are likely to be valuable in these other contexts as
well.

1.1 Contributions

In order to verify ADT, we have to model both the discrete and continuous mech-
anisms in a hybrid system; we use the Structured Hybrid Automaton (SHA) model
derived from the Hybrid Input/Output Automata (HIOA) of [Lynch et al. 2003].

(i) We define what it means for a given SHA to switch “faster than” another SHA,
and introduce a new kind of simulation relation for inductively proving this
relationship between pairs of SHAs. This gives a sound method for abstraction
that preserves ADT properties.

(ii) We present a method for verifying whether a given SHA has a certain ADT.
This method relies on checking whether or not a transformed version of A,
satisfies a certain invariant property. Unlike ADT properties (which are prop-
erties of executions), an invariant property is a predicate on the states, and
hence, can be checked directly using suitable invariant checking tools such as
HyTech [Henzinger et al. 1997], PHAVer [Frehse 2005], and TAME [Archer
2001]. This method is applicable to a general class of hybrid automata; how-
ever, the invariant can be checked automatically only for restricted classes of
automata. For hybrid automata that are not amenable to automatic invariant
checking, we describe deductive techniques for proving invariants, which can
be partially automated using mechanical theorem provers such as the TAME
interface for PVS [Owre et al. 1996].

(iii) We present a second method for verifying ADT properties which relies on
solving certain optimization problems. In order to check if A has ADT τa, we
formulate an optimization problem OPT(τa). From the solution of OPT(τa) we
either get a counterexample execution fragment of A that violates the ADT
property τa, or else we know that no such counterexample exists, and that

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · S. Mitra, D. Liberzon and N. Lynch

A has ADT τa. For certain classes of initialized SHAs OPT(τa) can indeed
be solved using standard mathematical programming tools, and hence, this
method yields an automatic ADT verification technique.

The two ADT verification methods complement each other as they can be combined
to find the ADT of SHAs. By way of illustration, we verify the ADT properties of
several typical hybrid systems using abstraction, simulation and the two verification
methods.

1.2 Organization

In Section 2 the Structured Hybrid Automaton (SHA) model is introduced and
compared to other existing hybrid system models; the linguistic conventions used
throughout the paper for describing SHAs are presented; stability and ADT prop-
erties of SHAs are defined. Section 3 defines the “faster than” relation between
SHAs and presents a simulation-based inductive technique for proving this rela-
tionship, and establishes the soundness of this technique. Section 4 presents the
invariant-based approach for verifying ADT. The necessary transformations are
presented and the ADT verification of two hybrid systems—a scale-independent
hysteresis switch and a leaking gas burner—are described. Section 5 presents the
optimization-based method for verifying ADT. At first, the optimization problem
OPT corresponding to ADT verification is stated. It is established that for initial-
ized rectangular SHAs and for more restricted one-clock initialized SHAs OPT can
be solved effectively. These results along with switching simulation relations are
used to automatically verify ADT of a linear hysteresis switch and a thermostat
with nondeterministic switches. For initialized rectangular SHAs, a Mixed Integer
Linear Program formulation for solving OPT is presented. Section 6 concludes this
paper with a summary of contributions and some remarks on directions for future
research.

2. STRUCTURED HYBRID AUTOMATA

In this section, first, we introduce the Structured Hybrid Automata (SHA) model—
an automaton model that is derived from HIOA [Lynch et al. 2003] and tailored for
the results in this paper. In Section 2.5 we introduce the linguistic conventions used
throughout the paper for describing SHAs. In Section 2.6 we define the different
notions of stability and the role of ADT criterion in stability analysis.

2.1 Comparison of SHA with existing models

Several models for hybrid systems have been proposed in the literature. For in-
stance, the Hybrid Automaton model of [Alur et al. 1995] is well established; the
switched system model [Liberzon 2003] has been widely used to obtain many sta-
bility related results; the General Hybrid Dynamical System of [Branicky 1995;
Branicky et al. 1998] is proposed with particular emphasis of controller design. We
will not dwell on the relationship of the SHA model with all of the above, however,
we briefly note the features of the SHA model that make it suitable for this paper.

First, the SHA model imposes a variable structure on the state-space. Although
this adds some notational overhead, but it is a convenient feature for modeling
systems whose discrete state consists of data structures such as, counters, queues,
ACM Journal Name, Vol. V, No. N, Month 20YY.

Verifying Average Dwell Time of Hybrid Systems · 5

and heaps. Secondly, between the Hybrid Automaton model of [Alur et al. 1995]
and SHA, the latter is closer to the switched system model because it provides direct
handle on the trajectories and it does not require built in structures (such as guards
and reset maps) for describing the discrete mechanism. Thus, SHA is more suitable
for adopting results from the theory of switched systems such as stability via ADT.
Further, owing to the structure of SHAs, invariants and simulation relations can
be proved inductively by a case analysis on the actions and the trajectories. Even
for systems where fully automatic verification is impossible, such proofs can be
partially automated using theorem provers [Mitra and Archer 2005]. Finally, the
SHA framework provides powerful compositionality theorems. We do not make
use of composition in this paper, however, in the future when we study external
stability and input-to-state stability, we can do so within the same mathematical
framework.

2.2 Variables and trajectories

We denote the domain of a function f by f.dom. For a set S ⊆ f.dom, we write
f d S for the restriction of f to S. If f is a function whose range is a set of functions
and Y is a set, then we write f ↓ Y for the function g with g.dom = f.dom such
that for each c ∈ g.dom, g(c) = f(c) d Y . For a tuple or an array b with n elements,
we refer to its ith element by b[i].

We fix the time axis T to be R≥0. For any J ⊆ T we define J + t to be the
set {t′ + t | t′ ∈ J}. In the SHA framework, a variable is used to specify state
components. Each variable x ∈ X is associated with a type, which is the set
of values that x can assume. Each variable is also associated with a dynamic
type which governs how the value of x could evolve over time. A variable x is
discrete if its dynamic type is the set of piece-wise constant functions from T to
the type of x. A variable x is continuous if it is not discrete and its dynamic
type is the set of piece-wise continuous functions from T to the type of x. In
applications, discrete variables are used to model software state such as counters
and stacks, and continuous variables are used to model physical quantities such as
temperature, position, and velocity. We refer the reader to Chapter 2 of [Mitra
2007] for definitions of dynamic types and for examples of discrete and continuous
variables. We assume that all variables are either discrete or continuous. For a set
of variables X, denote the set of discrete and continuous variables by Xd and Xc,
respectively.

A valuation x for the set of variables X is a function that associates each x ∈ X
to a value in its type. The set of all valuations of X is denoted by val(X). A
trajectory τ : J → val(X) specifies the values of all variables in X over a time
interval J with left endpoint of J equal to 0, with the constraint that evolution of
each x ∈ X over the trajectory should be consistent with its dynamic type. The
set of all trajectories for the set of variables X is denoted by traj(X).

A trajectory with domain [0, 0] is called a point trajectory. The limit time of a
trajectory τ , written as τ.ltime, is the supremum of τ.dom. If τ.dom is right closed
then τ is closed . The first state of τ , τ.fstate is τ(0), and if τ is closed, then the
last state of τ , τ.lstate, is τ(τ.ltime).

Given a trajectory τ and t ∈ T, the function (τ + t) : (τ.dom + t) → X is
defined as (τ + t)(t′) := τ(t′ − t), for each t′ ∈ (τ.dom + t). Given two trajectories

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · S. Mitra, D. Liberzon and N. Lynch

τ1 and τ2, τ1 is a prefix of τ2, written as τ1 ≤ τ2, if τ1 = τ2 d τ1.dom. Also,
τ1 is a suffix of τ2 if τ1 = (τ2 d [t,∞)) − t, for some t ∈ τ2.dom. If τ1 is a
closed trajectory with τ1.ltime = t and τ2.fstate = τ1.lstate, then the function
τ1

_ τ2 : τ1.dom ∪ (τ2.dom + t) → X is defined as τ1(t) if t ≤ u and τ2(t − u)
otherwise.

A set of trajectories T for X is closed under prefix (suffix) if for any τ ∈ T a prefix
(suffix) τ ′ of τ is also in T . Suppose τ ∈ traj(X) and let x be some variable name
in X. With some abuse of notation we define the function x : τ.dom → type(x) to
be x(t) := (τ ↓ x)(t), for any t ∈ τ.dom.

2.3 Definition of Structured Hybrid Automata

The Structured Hybrid Automaton (SHA) model is derived from the Hybrid In-
put/Output Automaton (HIOA) model of [Lynch et al. 2003]. We are concerned
with internal stability of hybrid systems in this paper, and hence, unlike HIOAs,
SHAs do not have input/output variables and do not distinguish among input,
output, and internal actions. On the other hand, the trajectories of an SHA are
specified using “state models” that are collections of differential and algebraic equa-
tions, instead of abstract sets of functions.

Definition 2.1. A state model F for a set of variables X is a set of differential
equations for Xc of the form d(xc) = f(xc), such that: i(1) for all x ∈ val(X), there
exists solution τ of the differential and algebraic equations in F with τ.fstate = x d
Xc, and (2) for all t ∈ τ.dom, (τ ↓ Xd)(t) = (τ ↓ Xd)(0). The prefix and suffix
closure of the set of trajectories of X that satisfy the above conditions is denoted
by traj(X, F).

The above definition of state models can be naturally extended to include Differ-
ential and Algebraic Inequalities (DAIs). The formal definition (see, [Mitra 2007])
calls for the introduction of the notion of weak solutions of DAIs, which we omit in
this paper. Henceforth state models are allowed to have differential and algebraic
equations and inequalities.

Definition 2.2. A Structured Hybrid Automaton (SHA) A = (X, Q, Θ, A,D, P)
consists of (1) a set X of variables, including a special discrete variable called
mode, (2) a set Q ⊆ val(X) of states and a nonempty set Θ ⊆ Q of start states,
(3) a set A of transition labels or actions, (4) a set D ⊆ Q × A × Q of discrete
transitions, and (5) an indexed family P = {Fi}i∈P of state models, where P is an
index set.

A transition (x, a,x′) ∈ D is written in short as x a→A x′ or as x a→ x′ when A is
clear from context. A transition x a→ x′ is called a mode switch if x d mode 6= x′ d
mode. The set of mode switching transitions is denoted by MA. The precondition
of action a, Prea, is the set of states from which a transition labeled by action a is
enabled. Formally, Prea := {x ∈ Q | ∃x′,x a→ x′ ∈ D}.

An initialized SHA is one in which every mode switching transition resets the
values of the variables, nondeterministically, by choosing the values from a set that
is independent of the pre-state. Formally, SHA A is said to be initialized if every
action a ∈ A is associated with two sets Ra, P rea ⊆ Q, such that x a→ x′ is a mode
switch if and only if x ∈ Prea and x′ ∈ Ra. The set Ra is called the initialization
ACM Journal Name, Vol. V, No. N, Month 20YY.

Verifying Average Dwell Time of Hybrid Systems · 7

predicate of action a. An SHA is linear if the V -DAIs of all its state models
are linear and the precondition and the initialization predicates (restricted to the
set of continuous variables) are described by linear inequalities. A linear SHA is
rectangular1 if the differential equations in all the state models have constant right
hand sides. Initialized SHAs are suitable for modeling periodic systems and systems
with reset timers. Rectangular dynamics is suitable for modeling drifting clocks,
motion under constant velocity, fluid-level under constant flow, etc.

In this paper, we make the following two assumptions about SHAs

(1) The collection of state models P is finite. If a discrete transition changes the
values of the continuous variables then it is a mode switch.

(2) The right hand sides of the differential equations in the state models are well
behaved (locally Lipschitz), and the differential equations have solutions defined
globally in time. Therefore, for each Fi, i ∈ P and x ∈ Q with x d mode = i,
there exists a trajectory τ starting from x that satisfies Fi and if τ.dom is finite
then τ.lstate ∈ Prea for some a ∈ A.

The second part of assumption (1) is without loss of generality because the set
of state models P, can be redefined, possibly by adding new elements, such that
this condition is met. Assumption (2) is essential for the validity of the average
dwell time theorem of Hespanha and Morse (Theorem 2.4) which gives a sufficient
condition for stability based on average dwell time. Relaxing this assumption and
verifying more general sufficient conditions for stability of SHAs is an avenue for
future research.

2.4 Executions and invariants

The set T of trajectories of SHA A is defined as T :=
⋃

i∈P traj(X, Fi). An
execution fragment captures a particular run of A; it is defined as an alternating
sequence of actions and trajectories α = τ0a1τ1a2 . . ., where (1) each τi ∈ T , and
(2) if τi is not the last trajectory then τi.lstate

ai+1→ τi+1.fstate. The first state
of an execution fragment α, α.fstate, is τ0.fstate. An execution fragment α is an
execution of A if α.fstate ∈ Θ. The set of executions of A is denoted by ExecsA.
The length of a finite execution fragment α is the number of actions in α. An
execution fragment is closed if it is a finite sequence, and the domain of the last
trajectory is closed. Given a closed execution fragment α = τ0, a1, . . . , τn, its last
state, α.lstate, is τn.lstate and its limit time, α.ltime, is defined as

∑n
i=0 τi.ltime.

A closed execution fragment α of SHA A is a cycle if α.fstate = α.lstate. We
define the following shorthand notation for the valuation of the variables of A at
t ∈ [0, α.ltime), α(t) := α′.lstate, where α′ is the longest closed prefix of α with
α′.ltime = t. If α is a closed execution, then this definition extends to α(t) for
t = α.ltime.

A state x ∈ Q is reachable if it is the last state of some execution of A. An
execution fragment α is reachable if α.fstate is reachable. The set of reachable

1This definition of rectangular SHA is more general than the commonly used one, as for example
in [Henzinger and Kopke 1996]. In the latter, for each action a, the precondition Prea and the

reset map Ra are required to be rectangles.

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · S. Mitra, D. Liberzon and N. Lynch

states of A is denoted by ReachA. An invariant property or simply an invariant of
A is a condition on X that holds in all reachable states of A.

2.5 Linguistic conventions

The standard circle-arrow diagrams used for specifying states and transitions of
hybrid automata become a little cumbersome for automata with many modes and
transitions. Instead, in this paper, we use the HIOA Language [Mitra 2007] for
specifying SHAs. In what follows, we briefly describe the semantics of this language
with the code of Figure 1 as an example; see Chapter 3 of [Mitra 2007] for a complete
description of the language.

Variable names, their static and dynamic types, and initial values are defined in
the variables section (lines 3–6). All non-real-valued variables are considered to
be discrete; a real valued variable declared using the discrete keyword is discrete,
if the keyword is omitted, the variable is continuous.

Action names are declared in the actions section and the corresponding tran-
sitions are defined in the transitions section. The predicate following the pre
keyword after action a defines Prea. The assignment statements after the keyword
effect define the relation between pre- and the post-state of the corresponding
transition.

The trajectories section (lines 20–26) defines a state model for each mode in
terms of an invariant condition, a stopping condition, and a set of differential equa-
tions. For example, in the leaking mode, the continuous variables evolve accord-
ing to the simple differential equation d(x) = 1 (line 25); the stopping condition
x = D2 following the stop when keyword, means that if (τ ↓ x)(t) = D2, for
some t ∈ τ.dom, then t is the limit time of τ . There is a subtle difference between
the role of the invariant and stopping conditions: the former defines parts of the
states space over which a state model can be active and the latter force discrete
transitions to occur by stopping trajectories.

automaton Burner(D1, D2)
2 where D1, D2 ∈ R≥0

variables

4 mode ∈ {normal, leaking},
initially normal

6 x ∈ R, initially x = 0

8 actions
leak, repair

10

transitions

12 leak
pre mode = normal ∧ x ≥ D1

14 effect mode ← leaking, x ← 0

15repair
pre mode = leaking ∧ x = D2

17effect mode ← normal, x ← 0

19trajectories

trajdef normal
21evolve d(x) = 1

23trajdef leaking
invariant x ≤ D2

25evolve d(x) = 1

stop when x = D2

Fig. 1: Leaking gas burner

ACM Journal Name, Vol. V, No. N, Month 20YY.

Verifying Average Dwell Time of Hybrid Systems · 9

2.6 Stability and ADT

We adopt the standard stability definitions [Khalil 2002] and state them in the
language of SHAs. Stability is a property of the continuous variables of SHA A,
with respect to the standard Euclidean norm in Rn which we denote as | · |. In
defining the different types of stability properties for A, we assume2 that each
state model Fi ∈ P of A has the origin as its common equilibrium point, that is,
Fi(0) = 0 for all i ∈ P. The origin is a stable equilibrium point of a SHA A, in
the sense of Lyapunov, if for every ε > 0, there exists a δ > 0, such that for every
closed execution α of A,

|α(0)| ≤ δ ⇒ |α(t)| ≤ ε ∀t 0 ≤ t ≤ α.ltime, (1)

and we say that A is stable. An SHA A is asymptotically stable if it is stable and
there exists δ2 such that

|α(0)| ≤ δ2 ⇒ α(t) → 0 as t →∞ (2)

If the above condition holds for all δ2 then A is globally asymptotically stable.
In the above definitions, the constants are quantified prior to the executions, and

hence, these notions of stability are uniform over all executions. In this paper,
we will employ the term “uniform” in the more conventional sense to describe
uniformity with respect to the initial time of observation. Thus, uniform stability
guarantees that the stability property in question holds not just for all executions,
but for any suffix of the executions, that is, for all reachable execution fragments.
An SHA A is uniformly stable in the sense of Lyapunov, if for every ε > 0 there
exists a constant δ1 = δ1(ε) > 0, such that for any reachable closed execution
fragment α, |α(0)| ≤ δ1 implies that |α(t)| ≤ ε, for all t, 0 ≤ t ≤ α.ltime.

An SHA A is said to be uniformly asymptotically stable if it is uniformly stable
and there exists δ2 > 0, such that for every ε > 0 there exists a T > 0, such that
for any reachable closed execution fragment α,

|α(0)| ≤ δ2 ⇒ |α(t)| ≤ ε, ∀t ≥ T (3)

It is said to be globally uniformly asymptotically stable if the above holds for all δ2,
with T = T (δ2, ε).

It is well known that a switched system is stable if all the individual subsystems
are stable and the switching is sufficiently slow, so as to allow the dissipation of the
transient effects after each switch. The dwell time [Morse 1996] and the average
dwell time [Hespanha and Morse 1999] criteria define restricted classes of switching
signals, based on switching speeds, and one can conclude the stability of a system
with respect to these restricted classes.

Definition 2.3. Given a duration of time τa > 0, SHA A has Average Dwell
Time (ADT) τa if there exists a positive constant N0, such that for every reachable
execution fragment α,

N(α) ≤ N0 + α.ltime/τa, (4)

2These definitions can be easily generalized to the case where the state models have some other

common equilibrium point.

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · S. Mitra, D. Liberzon and N. Lynch

where N(α) is the number of mode switches in α. The number of extra switches of
α with respect to τa is defined as Sτa

(α) := N(α)− α.ltime/τa.

Theorem 1 from [Hespanha and Morse 1999], adapted to SHA, gives a sufficient
condition for stability based on average dwell time. Informally, it states that a
hybrid system is stable if the discrete switches are between modes which are in-
dividually stable, provided that the switches do not occur too frequently on the
average.

Theorem 2.4. Suppose there exist positive definite, continuously differentiable
functions Vi : Rn → Rn, for each i ∈ P , such that we have two positive num-
bers λ0 and µ, and two strictly increasing continuous functions β1, β2 such that:

β1(|xc|) ≤ Vi(xc) ≤ β2(|xc|), ∀xc, ∀i ∈ P, (5)
∂Vi

∂xc
fi(xc) ≤ −2λ0Vi(xc), ∀xc, ∀i ∈ P, and (6)

Vi(x′c) ≤ µVj(xc), ∀x a→A x′, where i = x′ d mode and j = x d mode. (7)

Then, A is globally uniformly asymptotically stable if it has an ADT τa > log µ
λ0

.

Its worth making a few remarks about this theorem. First of all, it is well-known
that if the state model Fi, i ∈ P, is globally asymptotically stable, then there
exists a Lyapunov function Vi that satisfies (5) and ∂Vi

∂xc
fi(xc) ≤ −2λiVi(xc), for

appropriately chosen λi > 0. As the index set P is finite a λ0 independent of i
can be chosen such that for all i ∈ P, Equation (6) holds. The third assumption,
Equation (7), restricts the maximum increase in the value of the current Lyapunov
functions over any mode switch, by a factor of µ.

In [Hespanha and Morse 1999] and [Liberzon 2003] this theorem is presented
for the switched system model which differs from the more general SHA model in
two ways: (a) In the switched system model, all variables are continuous except
for the mode variable which determines the active state model. In SHA, there are
both discrete and continuous variables. (b) The (discrete) transitions of a switched
system correspond to the switching signal changing the value of mode; values of
continuous variables remain unchanged over transitions. In SHAs, transitions can
change the value of continuous variables. For example, a stopwatch is typically
modeled as a continuous variable that is reset by discrete transitions. The proof
of Theorem 2.4 still works for the SHA model because for this analysis, it suffices
to consider only those discrete transitions of SHAs that are also mode switches.
Assumption (1) guarantees that non-mode switching transitions do not change the
value of the continuous variables. Secondly, resetting continuous variables change
the value of the Lyapunov functions, but Equation (7) guarantees that the change
is bounded by a factor of µ.

Proof sketch for Theorem 2.4. This proof is adapted from the proof of Theorem 3.2
of [Liberzon 2003] which constructs an exponentially decaying bound on the Lya-
punov functions of each mode along any execution. Suppose α is any execution of
A. Let T = α.ltime and t1, . . . , tN be instants of mode switches in α. We will find
an upper-bound on the value of Vα(T)dmode(α(T)), where α(t) d mode

∆= i, i ∈ I if
ACM Journal Name, Vol. V, No. N, Month 20YY.

Verifying Average Dwell Time of Hybrid Systems · 11

and only if α(t) ∈ Invi. We define a function W (t) ∆= e2λ0tVα(t)dmode(α(t)). Using
the fact that W is non-increasing between mode switches and Equation 7 it can
be shown that W (ti+1) ≤ µW (ti). Iterating this inequality N(α) times we get
W (T) ≤ µN(α)W (0), that is

e2λ0TVα(T)dmode(α(T)) ≤ µN (α)Vα(0)dmode(α(0)),

Vα(T)dmode(α(T)) ≤ e−2λ0T+N(α) log µVα(0)dmode(α(0))

If α has average dwell time τa, then

Vα(T)dmode(α(T)) ≤ e−2λ0T+(N0+
T
τa

) log µVα(0)dmode(α(0))

≤ eN0 log µe(log µ
τa

−2λ0)TVα(0)dmode(α(0)).

Now, if τa > log µ
2λ then Vα(T)dmode(α(T)) converges to 0 as T → 0. Then from (5)

it follows that A is globally asymptotically stable.

3. EQUIVALENCE WITH RESPECT TO ADT: SWITCHING SIMULATIONS

In order to check if τa is an ADT for a given SHA A, it is often easier to check
the same ADT property for another, more abstract, SHA B that is “equivalent” to
A with respect to switching behavior. We formalize this notion of equivalence as
follows:

Definition 3.1. Given SHAs A and B, if for all τa > 0, τa is an ADT for B implies
that τa is an ADT for A, then we say that A switches slower than B and write
this as A ≤switch B. If B ≤switch A and A ≤switch B then we say A and B are
ADT-equivalent.

We propose an inductive method for proving ADT-equivalence. In concurrency
theory, simulation relations (see, e.g., [Lynch and Vaandrager 1996]) have been
widely used to prove that the set of visible behavior of one automaton is included
in that of another. For ADT verification, the “visible” part of an execution we are
concerned with is the number of mode switches that occur and the amount of time
that elapses over the execution. Hence, we define a new kind of simulation relation
that gives us an inductive technique for proving the ≤switch relationship between a
pair of SHAs.

Definition 3.2. Consider SHAs A and B. A switching simulation relation from A
to B is a relation R ⊆ QA ×QB satisfying the following conditions, for all states x
and y of A and B, respectively:

(1) (Start condition) If x ∈ ΘA then there exists a state y ∈ ΘB such that x R y.
(2) (Transition condition) If x R y and α is an execution fragment of A with

α.fstate = x and consisting of one single action surrounded by two point tra-
jectories, then B has a closed execution fragment β, such that β.fstate = y,
N(β) ≥ 1, β.ltime = 0, and α.lstate R β.lstate.

(3) (Trajectory condition) If x R y and α is an execution fragment of A with
α.fstate = x and consisting of a single closed trajectory τ of a particular state

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · S. Mitra, D. Liberzon and N. Lynch

model S, then B has a closed execution fragment β, such that β.fstate = y,
β.ltime ≤ α.ltime, and α.lstate R β.lstate.

Lemma 3.3. Let A and B be SHAs, and let R be a switching simulation relation
from A to B, then for all τa > 0 and for every execution α of A, there exists an
execution β of B such that Sτa

(α) ≤ Sτa
(β).

Proof. We fix τa and α and construct an execution of B that has more extra
switches than α. Let α = τ0a1τ1a2τ2 . . . and let α.fstate = x. We consider cases:

Case 1: α is an infinite sequence. We can write α as an infinite concatenation
α0

_ α1
_ α2 . . ., in which the execution fragments αi with i even consist of a

trajectory only, and the execution fragments αi with i odd consist of a single
discrete transition surrounded by two point trajectories.
We define inductively a sequence β0β1β2 . . . of closed execution fragments of B
such that x R β0.fstate, β0.fstate ∈ ΘB, and for all i, βi.lstate = βi+1.fstate,
αi.lstate R βi.lstate, and Sτa(β) ≥ Sτa(α). Property 1 of Definition 3.2 ensures
that there exists such a β0.fstate because α0.fstate ∈ ΘA. We use Property 3
of Definition 3.2 for the construction of the βi’s with i even. This gives us
βi.ltime ≤ αi.ltime for every even i. We use Property 2 of Definition 3.2 for
the construction of the βi’s with i odd. This gives us βi.ltime = αi.ltime and
N(βi) ≥ N(αi) for every odd i. Let β = β0

_ β1
_ β2 Since β0.fstate ∈ ΘB,

β is an execution for B. Since β.ltime ≤ α.ltime and N(β) ≥ N(α), the required
property follows.

Case 2: α is a finite sequence ending with a closed trajectory. Similar to first case.
Case 3: α is a finite sequence ending with an open trajectory. Similar to first case

except that the final open trajectory τ of α is constructed using a concatenation
of infinitely many closed trajectories of A such that τ = τ0

_ τ1
_ Then,

working recursively, we construct a sequence β0β1 . . . of closed execution frag-
ments of B such that for each i, τi.lstateRβi.lstate, βi.lstate = βi+1.fstate, and
βi.ltime ≤ τi.ltime. This construction uses induction on i, using Property 3 of
Definition 3.2 in the induction step. Now, let β = β0

_ β1
_ Clearly, β is

an execution fragment of B and τ.fstateRβ.fstate and β.ltime ≤ τ.ltime.

Theorem 3.4. If A and B are SHAs and R is a switching simulation relation from
A to B, then A ≤switch B.

Proof. We fix a τa. Given N0 such that for every execution β of B, Sτa(β) ≤ N0,
it suffices to show that for every execution α of A, Sτa(α) ≤ N0. We fix α. From
Lemma 3.3 we know that there exists a β such that Sτa

(β) ≥ Sτa
(α), from which

the result follows.

Corollary 3.5. Let A and B be SHAs. Suppose R1 and R2 be a switching sim-
ulation relation from A to B and from B to A, respectively. Then, A and B are
ADT-equivalent.

Switching simulation relations and Corollary 3.5 give us an inductive method for
proving that any given pair of SHA are equivalent with respect to switching speed,
that is, average dwell time.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Verifying Average Dwell Time of Hybrid Systems · 13

4. VERIFYING ADT: INVARIANT APPROACH

In general, verifying that a SHA satisfies a property that is quantified over all the
executions, such as the ADT property, is hard. Our first approach for verifying
ADT relies on simple transformations defined by a small set of history variables,
that convert the ADT property to an equivalent invariant. Thus, to prove ADT
it suffices to prove an invariant, and the latter can be accomplished using existing
tools and techniques. This approach is applicable to any SHA, although, the degree
of automation depends on the dynamics of the SHA in question. SHAs for which
automated invariant checking is not possible, appropriately strengthened version of
the invariant can be proved inductively. Such proofs can be partially automated
using theorem provers (see, e.g., [Mitra and Archer 2005]). In Sections 4.3 and 4.4
we use this method to verify ADT of a simple leaking gas-burner and a scale-
independent hysteresis switch.

4.1 Transformations for ADT verification

In order to prove that a given SHA A = (X, Q, Θ, A,D, P) has average dwell time
τa, we transform it to a new SHA A(τa) = (X1, Q1,Θ1, A1,D1, P1) as follows:

(1) X1 = X ∪ {q, y}, where q ∈ Z and y ∈ R≥0.
(2) Θ1 = {(x, q, y) | x ∈ Θ, q = 0, y = 0}
(3) A1 = A ∪ {decrement.}.
(4) D1 has the following transitions:

i. ∀ x a→A x′ ∈ D \MA, q ∈ Z, y ∈ R≥0 (x, q, y) a−→A(τa)(x′, q, y),
ii. ∀ x a→A x′ ∈ MA, q ∈ Z, y ∈ R≥0, (x, q, y) a−→A(τa)(x′, q + 1, y),
iii. ∀ x ∈ Q, q ∈ Z, (x, q, τa)decrement−→ A(τa)(x, q − 1, 0).

(5) P1 is obtained by adding to each state model in P the differential equation
d(y) = 1 and the stopping condition y = τa.

Informally, the variable q is a counter that increments every time there is a mode
switch of A, and the variable y is a timer; every τa time q is decremented by 1 by
triggering the decrement action. For every trajectory τ ∈ T ′, the restriction of τ
on the set of variables X is a trajectory of A, and d(y) = 1, and if (τ ↓ y)(t) = τa

then τ.ltime = t.

Lemma 4.1. If τa is not an ADT for automaton A, then for every N0 ∈ N there
exists a closed execution α of A, such that N(α) > N0 + α.ltime/τa.

Proof. Let us fix N0. Automaton A does not have ADT τa, so we know that
there exists an execution α of A such that N(α) > N0 +α.ltime/τa. If α is infinite,
then there is a closed prefix of α that violates (4). If α is finite and open, then the
closed prefix of α excluding the last trajectory of α violates (4).

Theorem 4.2. Given τa > 0, all executions of A have ADT τa if and only if there
exists N0 ∈ N such that q ≤ N0 is an invariant for A(τa).

Proof. From Lemma 4.1 we know that it is sufficient to show that all closed
executions of A satisfy (4) if and only if q ≤ N0 is an invariant for A(τa). For
the “if” part, consider a closed execution α of A. Let α′ be the corresponding

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · S. Mitra, D. Liberzon and N. Lynch

execution of A(τa), that is, the restriction of α′ to the variables and actions of A
equals α. Let x′ = α.lstate, from the invariant we know that x′ d q ≤ N0. From
construction of A(τa) we know that N(α) = N(α′) and α′.ltime = α.ltime and
therefore x′ d q = N(α′)− bα′.ltime

τa
c. It follows that N(α)− α.ltime

τa
≤ N0.

For the “only if” part, consider a reachable state x′ of A(τa). There exists a
closed execution α′ such that x′ is the last state of α′. Let α be an execution of A
corresponding to α′, that is, α is the restriction of α′ to the variables and actions
of A. Since N(α) ≤ N0 + bα.time

τa
c implies N(α′) ≤ N0 + bα′.ltime

τa
c, it follows that

x′ d q ≤ N0.

In Equation (4), the number N0 can be arbitrary. Thus to show that a given
τa is an average dwell time of an automaton, we need to show that q is bounded
uniformly over all executions.

The transformation is acceptable for asymptotic stability, but it does not guar-
antee uniform stability. For uniform stability we want all reachable execution
fragments of A to satisfy Equation (4). Consider an execution α of A such that
α = α0

_ α1, where α0.ltime = t1, and α.ltime = t2. Let N(α1) and Sτa
(α1) denote

the number of mode switches and the number of extra mode switches (w.r.t. τa)
over the execution fragment α1. For α1 to satisfy (4), we require that

N(α1) ≤ N0 +
t2 − t1

τa
, or Sτa(α1) ≤ N0,

which is not guaranteed by the invariant q ≤ N0. This is because it is possible for q
to become negative and then rapidly return to zero, all the time being less than N0.
For uniform stability we need to show that the total change in q between any two
reachable states is bounded by N0. So, we introduce an additional variable qmin

which stores the magnitude of the smallest value ever attained by q. For uniform
stability we need to show that the total change in q between any two reachable
states is bounded by N0. Instead of introducing the new variable qmin we could
also restrict the variable q to have only non-negative values, to obtain uniform
stability.

Theorem 4.3. Given τa > 0, all reachable execution fragments of A have ADT τa

if and only if q − qmin ≤ N0 is an invariant for A(τa).

Proof. From Lemma 4.1 we know that it suffices to consider closed execution
fragments only. For the “if” part, consider a reachable closed execution fragment
α of A which is a part of the execution β, such that α.fstate = β(t1) and α.lstate =
β(t2). Let α′ and β′ be the corresponding executions (fragments) of A(τa). Based
on whether or not qmin changes over the interval [t1, t2], we have the following two
cases:

If qmin does not change in the interval, then β′(t1) d qmin = β′(t2) d qmin =
β′(t) d q for some tmin < t1, and q(t2, t1) = q(t2, tmin) − q(t1, tmin) ≤ q(t2, tmin).
Since β′(t2) satisfies the invariant, q(t2, tmin) = β′(t2) d q − β′(t2) d qmin ≤ N0

from which we get q(t2, t1) ≤ N0.
Otherwise, there exists some tmin ∈ [t1, t2], such that β′(t2) d qmin = β′(tmin) d

q < β′(t1) d qmin, and q(t2, t1) = q(t2, tmin)+ q(tmin, t1) ≤ q(t2, tmin). Again, from
the invariant property at β′(t2), we get q(t2, t1) ≤ q(t2, tmin) ≤ N0.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Verifying Average Dwell Time of Hybrid Systems · 15

For the “only if” part, let x′ be a reachable state, and ξ′ be a closed execution of
A(τa), such that x′ = ξ′.lstate. Further, let ξ be the corresponding execution of A,
and t0 be the intermediate point where q attains its minimal value over ξ, that is,
ξ(t) d qmin = ξ(t0) d q. Since ξ is a reachable execution fragment of A, it satisfies
Equation (4), and we have: N(t, t0) ≤ N0 + t−t0

τa
. Rewriting,

q(t, 0) +
t

τa
− q(t0, 0)− t0

τa
≤ N0 +

t− t0
τa

By assumption, q(t0, 0) = ξ′(t) d qmin = x′ d qmin, therefore, it follows that
x′ d q − x′ d qmin ≤ N0.

4.2 Proving invariants

Using theorem 4.2 (and 4.3) we can verify whether τa is an ADT of a SHA A, by
checking whether q ≤ N0 (and q − qmin ≤ N0) is an invariant for A(τa). Recall
that for an SHA A(τa) with set of variables X and set of states Q ⊆ val(X), a
predicate I on X is an invariant if ReachA(τa) ⊆ I. Here the set of states satisfying
the predicate is also denoted by I. Given A(τa) and a predicate I on X, how do
we verify that I is an invariant of A(τa)? If the set of reachable states of A(τa),
ReachA(τa), is computable then we can check if ReachA(τa) ⊆ I. It has been known
since [Henzinger et al. 1995] that computing ReachA(τa), is decidable if A belongs to
a restricted class, such as the class of rectangular, initialized SHAs. In Section 4.3
we verify the ADT of a hybrid system which falls within this class. Several other
classes of hybrid automata with linear, polynomial, and exponential state models
have been identified (see, reachability related papers in [Tomlin and Greenstreet
2002; Maler and Pnueli 2003; Alur and Pappas 2004; Morari and Thiele 2005; Hes-
panha and Tiwari 2006]), for which the reachability problem is decidable. These
decidable classes generally fall within, what is called the class of order minimal or
o-minimal hybrid automata [Lafferriere et al. 1999]. The notion of o-minimality
comes from mathematical logic. Informally, a theory of real numbers is said to be
o-minimal if every definable subset of reals is a finite union of points and inter-
vals. Then, a hybrid system is o-minimal, if its initial states, preconditions, reset
maps, invariant sets, stopping conditions, and DAIs are all definable in the same
o-minimal theory. Currently a practical algorithm for computing the reachable
sets of general o-minimal hybrid automata remains unknown, however, in practice,
software tools such as Phaver [Frehse 2005] and Rsolver [?] can be used to auto-
matically check invariant properties of certain subclasses, and also for automata
that are not o-minimal. Another alternative is to compute an overapproximation
of ReachA(τ) (see, for example, [Bayen et al. 2002]), say ReachA(τa), and then check
if ReachA(τa) ⊆ I. If true then I is verified, otherwise one has to check if the states
in ReachA(τa) ∩I are really reachable or if they are false-positives generated by the
overapproximation. In the latter case ReachA(τa) is iteratively refined.

For SHAs that do not admit any of the above automated techniques, invariants
can be deduced partially automatically by: (a) finding an inductive property I ′ ⊆
I, and (b) checking that the transitions and trajectories of A preserve I ′. This
technique has been applied extensively for verifying invariant properties of various
hybrid systems arising in air-traffic control [Livadas et al. 1999; Umeno and Lynch

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · S. Mitra, D. Liberzon and N. Lynch

2007] and vehicle control [Mitra et al. 2003; Lynch 1996; Weinberg and Lynch 1996;
Weinberg et al. 1995].

Definition 4.4. Let A be a SHA with set of internal variables X and set of states
Q ⊆ val(X). A predicate I on X is an inductive property of A if any execution
that starts from a state satisfying I reaches only states that also satisfy I.

An inductive property that is satisfied by all starting states of A is an invariant.
Inductive properties can be verified by checking that each transition and trajec-
tory of A preserves the property. The following lemma which is an adaptation of
the classical inductive proof schema à la Floyd [Floyd 1967] to the SHA setting,
formalizes this verification task.

Lemma 4.5. Given a SHA A, the set of states I ⊆ Q is an invariant of A if it
satisfies:

(1) (Start condition) For any starting state x ∈ Θ, x ∈ I.
(2) (Transition condition) For any action a ∈ A, if x a→ x′ and x ∈ I then x′ ∈ I.
(3) (Trajectory condition) For any state model S ∈ P, any trajectory τ ∈ trajs(S),

if τ.fstate ∈ I then τ.lstate ∈ I.

Proof. For any state x ∈ ReachA there exists an execution α of A such that
α.lstate = x. The proof is by induction on the length of the execution α. For the
base case, α is consisting of a single starting state x ∈ Θ and by the start condition,
x ∈ I. For the inductive step, we consider two subcases:

Case 1: α = α′ax where a is an action of A. By the induction hypothesis we know
that α′.lstate ∈ I. Invoking the transition condition we obtain x ∈ I.

Case 2: α = α′τ where τ is a trajectory of A and τ.lstate = x. By the induction
hypothesis, α′.lstate ∈ I. Since τ is a trajectory of A, it follows that there exists
a state model S such that τ ∈ trajs(S). Invoking the trajectory condition we
get that τ.lstate = x ∈ I.

In Section 4.4, we apply this deductive technique for verifying invariants, and hence
ADT, of a noninitialized hybrid system.

4.3 Leaking gas burner

We illustrate the invariant-based ADT verification technique with the aid of the
leaking gas-burner example from [Alur et al. 1993]. The gas-burner system (see,
Figure 1) has two modes, the normal mode and the leaking mode, and it switches
between these two modes according to the following two rules. Every leak continues
for D2 seconds after which it is repaired and the system returns to the normal
mode, and no leak occurs within the next D1 seconds, D2 < D1. Mode switches
are brought about by the leak and repair actions. Indeed, the ADT of this simple
hybrid automaton is D1+D2

2 . In this hybrid automaton model the individual modes
are not stable and hence, ADT is verified only to illustrate the aforementioned
technique, and it does not guarantee stability of the overall system.

In order to check whether a given τa is an average dwell time for Burner we
transform this automaton according to the transformation described in Section 4.1.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Verifying Average Dwell Time of Hybrid Systems · 17

As the dynamics of the continuous variables in this system are suitable for model
checking, we use the HyTech tool [Henzinger et al. 1997] to check if the q ≤ N0 is an
invariant property of the transformed automaton Burner(τa). For D1 = 20, D2 =
4, N0 = 1000 and for different values of τa, we check if q ≤ N0 is an invariant
for Burner(τa). HyTech tells us that q ≤ N0 is an invariant for Burner(τa) only
if τa ≤ 12, and not otherwise. It follows that the ADT of Burner with the above
parameters is 12.

4.4 Scale-independent hysteresis switch

We verify the ADT property of a more interesting hybrid system, namely a Scale-
independent hysteresis switch. This switching logic unit is a subsystem of an adap-
tive supervisory control system taken from [Hespanha et al. 2003] (also Chapter 6
of [Liberzon 2003]). Our goal is to prove the ADT property of this switching logic,
which guarantees stability of the overall supervisory control system. The above
references also present a proof of this property by a different approach.

Let P = {1, . . . ,m}, m ∈ N, be the index set for for a family of controllers.
An adaptive supervisory controller consists of a family of candidate controllers
ui, i ∈ {1, . . . ,m}, which correspond to the parametric uncertainty range of the
plant in a suitable way. Such a controller structure is particularly useful when the
parametric uncertainty is so large that robust control design tools are not applicable.
The controller operates in conjunction with a set of on-line estimators that provide
monitoring signals µi, i ∈ {1, . . . ,m}. Intuitively, smallness of µi indicates high
likelihood that i is the actual parameter value. Based on these signals, the switching
logic unit changes the variable mode, which in turn determines the controller to be
applied to the plant.

In building the SHA model HSwitch (see Figure 2), we consider the monitoring
signals to be generated by differential equations of the form, d(µ) = fi(µ), where
i ∈ {1, . . . ,m}, and µ is the vector of monitoring signals. Our analysis does not
depend on the exact nature of these differential equations. Instead, we require
the monitoring signals for each µi to be continuous, monotonically nondecreasing,
satisfying the following lower and upper bounds:

µi(0) ≥ C0 (8)
µi∗(t) ≤ C1 + C2e

λt, for some i∗ ∈ {1, . . . ,m} (9)

where λ, C0, C1 and C2 are positive constants. The switching logic unit implements
scale-independent hysteresis switching as follows: at an instant of time when con-
troller i is operating, that is, mode = i for some i ∈ {1, . . . ,m}, if there exists a
j ∈ {1, . . . ,m} such that µj(1 + h) ≤ µi, then the switching logic sets mode = j
and applies output of controller j to the plant. Here h is a fixed positive hysteresis
constant.

Since the monitoring signals are specified in terms of nonlinear bounds and there
are arbitrary number of modes, we cannot apply model checking techniques directly
to this system. Instead, we inductively prove a sequence of invariants which together
with Theorem 4.2 establish the ADT of the hysteresis switch to be at least log(1+h)

mλ .
For the ease of this analysis we introduce several extra history variables to

HSwitch in addition to those described at the beginning of Section 4.1. The re-
ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · S. Mitra, D. Liberzon and N. Lynch

sult is the automaton TRHSwitch of Figure 3. Lines 6–8, lines 27–29 and line 36
correspond to the transformation of Section 4.1. Note that the timer y is not reset
to 0 after every decrement and therefore it records the total time elapsed. The fol-
lowing additional variables are introduced for ease of analysis: c counts the number
of mode switches; ci counts the number of switches to mode i; µr

i stores the value of
µi at the instant when mode became equal to i for the rth time. Initially µ0

i = µi,
for all i ∈ {1, . . . ,m}, µ1

i0
= µi0 , where i0 is the initial mode; the rest of the µr

i s
are set to a null value ⊥.

automaton HSwitch(m,h)

2 where m ∈ N, h ∈ R≥0

variables

4 mode ∈ {1, . . . , m}, initially mode = i0
µ ∈ Rm, initially µi ≥ C0 ∀ i ∈ {1, . . . , m}

6 derived

µmin = mini{µi}
8

actions

10 switch(i,j), i,j ∈ {1, . . . , m}

11transitions
switch(i,j)

13pre mode = i ∧ (1+h)µj ≤ µi

effect mode ← j
15

trajectories

17trajdef modei, i ∈ {1, . . . , m}
evolve d(µ) = fi(µ)

19stop when ∃ j ∈ {1, . . . , m},
(1 + h)µj ≤ µi

Fig. 2: Hysteresis switch

automaton TRHSwitch(m, h, τa)

2 where m ∈ N, h, τa ∈ R≥0

variables

4 mode ∈ {1, . . . , m}, initially mode = i0
µ ∈ Rm, initially µi ≥ C0 ∀ i ∈ {1, . . . , m}

6 q ∈ Z, initially q = 0

k ∈ N, initially k = 0

8 y ∈ R, initially y = 0
discrete µk ∈ R ∪ {⊥}, k ∈ N,

10 initially µ0 = µ, ∀ k 6= 0, µk = ⊥
c, ci ∈ N, i ∈ {1, . . . , m}

12 initially c = 0, ci0 = 1, ∀ i 6= i0, ci = 0,

14 derived
µmin = mini{µi}

16

actions

18 switch(i,j), i,j ∈ {1, . . . , m}
decrement

19

transitions
21switch(i,j)

pre mode = i ∧ (1+h)µj ≤ µi

23effect mode ← j
c← c + 1; cj ← cj + 1;

25q ← q + 1; µcj = µj

27decrement
precondition y = (k + 1)τa

29effect q ← q − 1; k ← k + 1

31trajectories

trajdef modei, i ∈ {1, . . . , m}
33evolve d(µ) = fi(µ)

stop when ∃ j ∈ {1, . . . , m}
35(1 + h)µj ≤ µi

∨ y = (k + 1)τa

Fig. 3: Transformed hysteresis switch

For simplicity of presentation, we prove the invariants required for asymptotic
stability, and not uniform asymptotic stability. Accordingly the average dwell time
ACM Journal Name, Vol. V, No. N, Month 20YY.

Verifying Average Dwell Time of Hybrid Systems · 19

property we get is over executions and not over execution fragments of the automa-
ton. The first two invariants state some straightforward properties of the state
variables.

Invariant 4.6. q ≤ c− y
τa

+ 1.

Invariant 4.7. For all i, j ∈ {1, . . . ,m}, if mode = j then µj ≤ (1 + h)µi, in
addition if cj > 0 and yj = 0 then µj ≤ µi.

Invariant 4.8. For all i ∈ {1, . . . ,m}, ci ≥ 2 ⇒ µci
i ≥ (1 + h)µci−1

i .

Proof. We fix some i in {1, . . . ,m}. The base case holds vacuously. For the
induction step, since the invariant involves only discrete variables, we only have
to consider discrete transitions of the form x a→ x′, where a = switchi. Let x d
mode = j and x′ d ci = r + 1. That is, action a is the (r + 1)st switch to mode
i. From the transition relation, we know that (1 + h)(x d µi) = x d µj . It follows
that:

x′ d µr+1
i = x′ d µi = (1 + h)(x′ d µj) (10)

Let x′′ be the post state of the rth switchi action. From the first part of In-
variant 4.7, (1 + h)(x′′ d µj) ≥ x′′ d µi = x′′ d µr

i . From monotonicity of µi,
x′ d µi ≥ x′′ d µi. Since x′′ d µr

i = x′ d µr
i (no switchi action in between),

we get x′ d µj ≥ x′ d µr
i . Combining this last inequality with (10) we get,

x′ d µr+1
i ≥ (1 + h)(x′ d µr

i).

Now we are ready to prove the main invariant property, which states that for a
particular choice of τa, the value of the variable q is bounded by some constant.

Theorem 4.9. Let τa = log(1+h)
λm . q ≤ N0 is an invariant of TRHSwitch, where

N0 = 2 + m + m
log(1+h) log

(
C1+C2

C0

)
.

Proof. Consider any reachable state x. We observe that, the counter c is in-
cremented every time a switchi action occurs for any i ∈ {1, . . . ,m}, and for each
i ∈ {1, . . . ,m} the counter ci is incremented when the corresponding switchi ac-
tion occurs. If x d c is less than m then the result follows immediately from
Invariant 4.6. Otherwise, x d c ≥ m and there must be some j ∈ {1, . . . ,m},
such that mode j is visited more than dxdc−1

m e times, that is, x d cj ≥ dxdc−1
m e.

Therefore, from Invariant 4.8 we know that there exists j in {1, . . . ,m} such that
x d µ

cj

j ≥ (1 + h)d
xdc−1

m e−1(x d µ1
j). Taking logarithm and rearranging we have,

x d c ≤ 1 + m +
m

log(1 + h)
log

(
x d µ

cj

j

x d µ1
j

)

Let x′ be the post state of the cth
j switchj action, then x d µ

cj

j = x′ d µj . From the
second part of Invariant 4.7 and monotonicity of the monitoring signals, it follows
that, for all k ∈ {1, . . . ,m}, x d µ

cj

j = x′ d µ
cj

j ≤ x′ d µk ≤ x d µk. It follows that,
for all k ∈ {1, . . . ,m},

x d c ≤ 1 + m +
m

log(1 + h)
log

(
x d µk

x d µ1
j

)
.

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · S. Mitra, D. Liberzon and N. Lynch

Form monotonicity and property (8) of the monitoring signals, µ1
j ≥ µ0

j ≥ C0.
Therefore, for all k ∈ {1, . . . ,m},

x d c ≤ 1 + m +
m

log(1 + h)
log

(
x d µk

C0

)
.

≤ 1 + m +
m

log(1 + h)
log

(
C1 + C2e

λ (xdy)

C0

)
, replacing k with i∗ of (9)

≤ 1 + m +
m

log(1 + h)
log

(
C1 + C2

C0

)
+

λm (x d y)

log(1 + h)

Using Invariant 4.6, and putting τa = log(1+h)
λm , we get the result.

From the above invariant and Theorem 4.2 it is established that HSwitch has an
average dwell time of at least log(1+h)

λm . The following property of the switch is a
consequence of the ADT property and the assumptions on the monitoring signals,
and it states the desirable property in terms of switches between controllers.

Theorem 4.10. If there exists an index i ∈ P such that the monitoring signal µi

is bounded then the the switching between controllers stop in finite time at some
index j ∈ I and µj is bounded.

To ensure stability of the overall supervisory control system, the parameters h and
λ must be such that this average dwell time satisfies the inequality of Theorem 2.4.

5. OPTIMIZATION BASED APPROACH

In this section we develop the second method for verifying ADT properties. We
attempt to find an execution of the automaton, that violates (4). We show that
this search can be formulated as an optimization problem, and for certain restricted
classes of SHAs, the resulting optimization problem can be solved efficiently. This
approach is complete for sub-classes of initialized SHAs and yields an automatic
method for verifying ADT. The hardness of the resulting optimization problem
depends on the dynamics of the SHA in question.

From Definition 2.3 it follows that τa > 0 is not an ADT of a given SHA A if
and only if, for every N0 > 0 there exists a reachable execution fragment α of A
such that Sτa(α) > N0. Thus, if we solve the following optimization problem:

OPT(τa) : maxSτa(α)

where α is an execution of A, and the optimal value Sτa(α∗) turns out to be
bounded, then we can conclude that A has ADT τa. Otherwise, if Sτa(α∗) is
unbounded then we can conclude that τa is not an ADT for A. However, OPT(τa)
may not be directly solvable because, among other things, the executions of A may
not have finite descriptions. In the remainder of this paper we study particular
classes of SHA for which OPT(τa) can be formulated and solved efficiently.

5.1 One-clock initialized SHA

Recall the definition of initialized SHAs from Section 2.3. Here we consider a special
class of initialized SHA, called one-clock initialized SHA. As the name suggests, such
automata have a single clock variable which is reset at every mode switch. Clearly,
computing reachable states is decidable for one-clock initialized SHAs and therefore,
ACM Journal Name, Vol. V, No. N, Month 20YY.

Verifying Average Dwell Time of Hybrid Systems · 21

we can apply the invariant based technique of Section 4 and model-checking to
automatically verify ADT properties. Yet we apply the optimization-based ADT
verification technique here because, as we shall see shortly, OPT(τa) can be solved
efficiently using classical graph algorithms for this class. In Section 5.3, we consider
the case of general initialized SHAs.

A weighted directed graph uniquely defines a one-clock initialized SHA. Consider
a directed graph G = (V, E , w, e0), where (1) V is a finite set of vertices, (2) E ⊆
V × V is a set of directed edges, (3) w : E → R≥0 is a cost function for the edges,
and (4) e0 ∈ E is a special start edge. The cost of a path in G is the sum of the
costs of the edges in the path. Given the graph G, the corresponding one-clock
initialized SHA Aut(G) is specified by the code in Figure 4. The source and the
target vertices of an edge e are denoted by e[1] and e[2], respectively.

automaton Aut(G) where G = (V, E ⊆ V × V, w : E → R≥0, e0 ∈ E)
2 variables

mode ∈ E, initially e0

4 x ∈ R, initially 0

6 actions
switch(e, e′), e,e′ ∈ E

9transitions

switch(e,e′)
11pre mode = e ∧ e[2] = e′[1] ∧ x = w(e)

effect mode ← e′, x ← 0

13

trajectories

15trajdef edge(mode)
evolve d(x) = 1

17invariant x ≤ w(mode)

stop when x = w(mode)

Fig. 4: Automaton Aut(G) defined by directed graph G

Intuitively, the state of Aut(G) captures the motion of a particle moving with
unit speed along the edges of the graph G. The position of the particle is given by
the mode, which is the edge it resides on, and the value of x, which is its distance
from the source vertex of mode. A switch from mode e to mode e′ corresponds to
the particle arriving at vertex e[2] via edge e, and departing on edge e′. Within edge
e the particle moves at unit speed from e[1], where x = 0 to e[2], where x = w(e).

The next theorem implies that in order to search for an execution of Aut(G) that
maximizes OPT(τa), it is necessary and sufficient to search over the space of the
cycles of G.

Theorem 5.1. Consider τa > 0 and a one-clock initialized SHA Aut(G). OPT(τa)
for Aut(G) is bounded if and only if for all m > 1, the cost of any reachable cycle
of G with m segments is at least mτa.

Proof. It is easy to see that if there is a cycle of G, β = v0e1v1 . . . emvm,
such that the cost

∑m
i=1 w(ei) < mτa, then OPT(τa) is unbounded. Since β is a

cycle with v0 = vm, we can construct an execution γ of Aut(G) by concatenating
β _ β _ β . . ., k times. Therefore, the total number of extra mode switches in
γ is Sτa

(γ) = N(γ) − γ.ltime
τa

= km − k
τa

∑m
i=1 w(ei) = k

τa
(mτa −

∑m
i=1 w(ei)).

If mτa >
∑m

i=1 w(ei), then the right hand side can be made arbitrarily large by
increasing k.

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · S. Mitra, D. Liberzon and N. Lynch

For the other direction, suppose OPT(τa) is unbounded for Aut(G). We choose
N0 to be larger than the number of vertices |V| of G. Let β be the shortest execution
of Aut(G) with more than N0 extra switches. Suppose the length of β is l. Since
Sτa

(β) > N0, l − 1
τa

∑l
i=1 wi > N0. Since N0 is larger than the number of vertices

Aut(G), some of the vertices must be repeated in β. That is, β must contain a
cycle. Suppose β = βp.γ.βs, where γ is cycle, and let l1, l2, l3 be the lengths of
βp, γ, and βs, respectively. Then,

l1 + l2 + l3 > N0 +
1
τa

l1∑
i=1

wi +
1
τa

l2∑
i=1

wi +
1
τa

l3∑
i=1

wi

For the sake of contradiction we assume that the cost of the cycle γ,
∑l2

i=1 wi ≥ l2τa.
Therefore,

l1 + l3 > N0 +
1
τa

[
l1∑

i=1

wi +
l3∑

i=1

wi

]
(11)

From Equation (11), Sτa
(βp

_ βs) > N0, and we already know that βp
_ βs is

shorter that β, which contradicts our assumption that β is the shortest execution
with more than N0 extra switches.

Thus, the problem of solving OPT(τa) for Aut(G) reduces to checking whether G
contains a cycle of length m, for any m > 1, with cost less than mτa. This is
the well known mean cost cycle problem for directed graphs and can be solved
efficiently using Bellman-Ford algorithm or Karp’s minimum mean-weight cycle
algorithm [Cormen et al. 1990].

5.2 Linear hysteresis switch

Using Theorem 5.1 and switching simulations we verify the ADT of a linear version
of the HSwitch automaton of Figure 2 in Section 4.4. For the linear hysteresis
switch LinHSwitch (shown in Figure 5), we consider monitoring signals generated
by linear differential equations. For each i ∈ {1, . . . ,m}, d(µi) = ciµi if mode = i,
otherwise d(µi) = 0. Here the ci’s are positive constants. The switching logic unit
implements the same scale independent hysteresis switching as in HSwitch.

automaton LinHSwitch(m, h) where m ∈ N, h ∈ R≥0

2 variables

mode ∈ {1, . . . , m},
4 initially mode = i0

µi ∈ R, i ∈ {1, . . . , m},
6 initialy µi0 = (1+h)C0

∀ i 6= i0, µi = C0

8 derived
µmin = mini{µi}

10

actions

11

transitions
13switch(i,j)

pre mode = i ∧ (1+h)µj ≤ µi

15effect mode ← j

17trajectories
trajdef modei, i ∈ {1, . . . , m}

19evolve d(µi) = ciµi

d(µj) = 0 ∀ j ∈ {1, . . . , m}, j 6= i
21stop when ∃ j ∈ {1, . . . , m} (1 + h)µj ≤ µi

Fig. 5: Linear hysteresis switch

ACM Journal Name, Vol. V, No. N, Month 20YY.

Verifying Average Dwell Time of Hybrid Systems · 23

The LinHSwitch automaton is not a one-clock initialized SHA. We cannot ap-
ply Theorem 5.1 to verify its ADT directly. However, the switching behavior of
LinHSwitch does not depend on the value of the µi’s but only on the ratio of µi

µmin
,

which is always within [1, (1 + h)]. When LinHSwitch is in mode i, all the ratios
remain constant, except µi

µmin
. The ratio µi

µmin
increases monotonically from 1 to

either (1+h) or to (1+h)2, in time 1
ci

ln(1+h) or 2
ci

ln(1+h), respectively. Based
on this observation, we will show that there exists a one-clock initialized automaton
B, which is equivalent to LinHSwitch with respect to ADT.

Consider a graph G = (V, E , w, e0), where:

(1) V ⊂ {1, (1 + h)}m, such that for any v ∈ V , all the m-components are not
equal. We denote the ith component of v ∈ V by v[i].

(2) An edge (u, v) ∈ E if and only if, one of the following conditions hold:
(a) There exists j ∈ {1, . . . ,m}, such that, u[j] 6= v[j] and for all i ∈ {1, . . . ,m},
i 6= j, u[i] = v[i]. The cost of the edge w(u, v) := 1

cj
ln(1 + h) and we define

ζ(u, v) := j.
(b) There exists j ∈ {1, . . . ,m} such that u[j] = 1, v[j] = (1 + h) and for all
i ∈ {1, . . . ,m}, i 6= j implies u[i] = (1 + h) and v[i] = 1. The cost of the edge
w(u, v) := 2

cj
ln(1 + h) and we define ζ(u, v) := j. The ith component of the

source (destination) vertex of edge e is denoted by e[1][i] (e[2][i], respectively).
(3) e0 ∈ E , such that e0[1][i0] = (1 + h) and for all i 6= i0, e0[1][i] = 1.

Let G be the graph of Figure 6. Aut(G) is the one-clock initialized automaton
corresponding to LinHSwitch with m = 3. A typical execution α = τ0, a1, τ1, a2, τ2

of LinHSwitch is as follows: τ0 is a point trajectory that maps to the state (mode =
1, [µ1 = (1 + h)C0, µ2 = C0, µ3 = C0]), a1 = switch(1, 3), τ1.dom = [0, 1

c3
ln(1 + h)],

(τ1 ↓ µ3)(t) = C0e
c3t, a2 = switch(3, 2), τ2.dom = [0, 2

c2
ln(1 + h)], (τ2 ↓ µ2)(t) =

C0e
c2t. Note that each edge e of G corresponds to a mode of LinHSwitch; this

correspondence is captured by the ζ function in the definition of G.
We define a relation R on the state spaces on A = LinHSwitch and B = Aut(G).

This relation essentially scales the monitoring signals in LinHSwitch by an appropri-
ate factor and equates them with the variable x of Aut(G). The switching pattern
of LinHSwitch is governed by the multiplicative hysteresis constant h and is inde-
pendent of this scaling. Indeed, the relation R will turn out to be a switching
simulation relation from A to B.

Definition 5.2. For any x ∈ QA and y ∈ QB, x R y if and only if:

(1) ζ(y d mode) = x d mode

(2) For all j ∈ {1, . . . , n},
(a) xdµj

xdµmin
= ecj(ydx), if j = ζ(y d mode),

(b) xdµj

xdµmin
= (y d mode)[k][j], k ∈ {1, 2}.

Part 1 of Definition 5.2 states that if A is in mode j and B is in mode e, then
ζ(e) = j. Part 2 states that for all j 6= ζ(e), the jth component of e[1] and e[2] are
the same, and are equal to µj/µmin, and for j = ζ(e), µj = µminecjx.

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · S. Mitra, D. Liberzon and N. Lynch

Fig. 6: ADT-equivalent graph (m = 3) for LinHSwitch.

Lemma 7.1 states that R is a switching simulation relation from A and B and
from B to A. The proof follows the typical pattern of simulation proofs. We first
show that R is a switching simulation relation from A to B. This we show by a
case analysis that every action and trajectory of automaton A can be simulated by
an execution fragment of B with at least as many extra switches. The complete
proof is given in Appendix A.

Lemma 5.3. R is a switching simulation relation from A to B.

From Corollary 3.5 it follows that LinHSwitch ≤switch Aut(G), and hence, if τa is
an ADT for Aut(G) then it is also an ADT for LinHSwitch. As Aut(G) is one-clock
initialized SHA, from the results in Section 5.1, we know that we can verify whether
τa is an ADT of Aut(G) efficiently by finding the minimum mean cost cycle of G.
If it is, we can conclude that ADT of LinHSwitch is also at least τa.

For LinHSwitch with m = 3, c1 = 2, c2 = 4, and c3 = 5 we compute the minimum
mean-cost cycle. The cost of this cycle, which is also the ADT of this automaton,
is 19

40 log(1 + h). We can also use Theorem 4.9 to get an estimate of the ADT of
LinHSwitch. If we plug in λ = c1 = 2, we get that ADT of this automaton is at
least 1

6 log(1 + h). The discrepancy in the two quantities is because of the fact
that the mean-cost cycle analysis uses exact information about the behavior of the
monitoring signals whereas the Theorem 4.9 is based on upper and lower bounds
given by Equations (8) and (9).
ACM Journal Name, Vol. V, No. N, Month 20YY.

Verifying Average Dwell Time of Hybrid Systems · 25

5.3 Initialized SHA

In this section we study ADT properties of initialized SHA. Recall that every action
a ∈ A of an initialized SHA A is associated with two sets of states, an initialization
set Ra and a precondition Prea, such that x a→ x′ is a (mode switching) discrete
transition if and only if x ∈ Prea and x′ ∈ Ra.

Our next theorem implies that for an initialized SHA A, it is necessary and
sufficient to solve OPT(τa) over the space of the cyclic fragments of A instead of
the larger space of all execution fragments.

Theorem 5.4. Given τa > 0 and initialized SHA A, OPT(τa) is bounded if and
only if A does not have any cycles with extra switches with respect to τa.

Proof. For simplicity we assume that all discrete transitions of the automaton
A are mode switches and that for any pair of modes i, j, there exists at most one
action which can bring about a mode switch from i to j. Existence of a reachable
cycle α with extra switches with respect to τa is sufficient to show that τa is not an
ADT for A. This is because by concatenating a sequence of α’s, we can construct an
execution fragment α_ α_ α . . . with an arbitrarily large number of extra switches.

We prove by contradiction that existence of a cycle with extra switches is neces-
sary for making OPT(τa) unbounded. We assume that OPT(τa) is unbounded for
A and that A does not have any cycles with extra switches. By the definition of
OPT, for any constant N0 there exists an execution that has more than N0 extra
switches with respect to τa. Let us choose N0 > |P|3. Of all the executions that
have more than N0 extra switches, let α = τ0a1τ1 . . . τn be a closed execution that
has the smallest number of mode switches. From α, we construct β = τ∗0 a1τ

∗
1 . . . τ∗n,

using the following two rules:

(1) Each τi of α is replaced by:

τ∗i = arg min{τ.ltime | τ.fstate ∈ Rai , τ.lstate ∈ Preai+1}.

(2) If there exists i, j ∈ {1, . . . , m}, such that ai = aj and ai+1 = aj+1, then we make
τ∗i = τ∗j .

Claim 5.5. The sequence β is an execution fragment of A and Sτa
(β) > |P|3.

Proof of claim: We prove the first part of the claim by showing that each application
of the above rules to an execution fragment of A results in another execution
fragment. Consider Rule (1) and fix i. Since τ∗i .fstate ∈ Rai and τi−1.lstate ∈
Preai

, τi−1.lstate
ai→ τ∗i .fstate. And, since τ∗i .lstate ∈ Preai+1 and τi+1.fstate ∈

Rai+1 , we know that τ∗i .lstate
ai+1→ τi+1.fstate. Now for Rule (2), we assume there

exist i and j such that the hypothesis of the rule holds and suppose τ∗j = τ∗i = τi.
We know that even if τ∗j 6= τj , the first states of both are in Raj

and the last states
are in Preaj+1 . Therefore, aj matches up the states of τj−1 and τ∗j and likewise
aj+1 matches the states of τ∗j and τj+1.

The second part of the claim follows from the fact that each trajectory τi is
replaced by the shortest trajectory τ∗i from the initialization set of the previ-
ous transition Rai

to the guard set of the next transition Preai+1 . That is, for
each i, 0 < i < n, τ∗i .ltime ≤ τi.ltime and therefore β.ltime ≤ α.ltime and
Sτa

(β) > N0 > |P|3.
ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · S. Mitra, D. Liberzon and N. Lynch

Since N(β) > |P|3, there must be a sequence of 3 consecutive modes that ap-
pear multiple times in β. That is, there exist i, j ∈ {1, . . . ,m}, and p, q, r ∈ P, such
that τ∗i .fstate d mode = τ∗j .fstate d mode = p, τ∗i+1.fstate d mode = τ∗j+1.fstate d
mode = q, and τ∗i+2.fstate d mode = τ∗j+2.fstate d mode = r. Then, from Rule (2)
we know that τ∗i+1 = τ∗j+1. In particular, τ∗i+1.fstate = τ∗j+1.fstate, that is, we can
write β = βp

_ γ _ βs, where γ is a cycle. Then we have the following:

N(βp) + N(γ) + N(βs) > N0 + βp.ltime/τa + γ.ltime/τa + βs.ltime/τa

N(βp) + N(βs) + Sτa(γ) > N0 + βp.ltime/τa + βs.ltime/τa

N(βp
_ βs) > N0 + βp

_ βs.ltime/τa [βp.lstate = βs.fstate]

The last step follows from the assumption that Sτa(γ) ≤ 0. Therefore, we have
Sτa

(βp
_βs) > N0 which contradicts our assumption that β has the smallest number

of mode switches among all the executions that have more than N0 extra switches
with respect to τa.

The following corollary allows us to limit the search for cycles with extra switches
to cycles with at most |P|3 mode switches. It is proved by showing that any cycle
with extra switches that has more than |P|3 mode switches can be decomposed into
two smaller cycles, one of which must also have extra switches.

Corollary 5.6. If initialized SHA A has a cycle with extra switches, then it has a
cycle with extra switches that has fewer than |P|3 mode switches.

Proof. Follows from the last part of the proof of Theorem 5.4.

Theorem 5.7. Suppose A is an initialized SHA with state models indexed by P.
For any τa > 0, τa is an ADT for A if an only if all cycles of length at most |P|
are free of extra switches.

Proof. Follows from Corollary 5.6 and the definition of the optimization prob-
lem OPT(τa).

Theorem 5.7 gives us a method for verifying ADT of initialized SHAs by max-
imizing OPT(τa) over all cycles of length at most |P|. In other words, for verify
ADT of initialized hybrid systems it suffices to solve the optimization problem over
a much smaller set of executions than we set out with at the beginning of Section 5.
For non-initialized SHA A, the first part of Theorem 5.4 holds. That is, solving
OPT(τa) over all cycles of length at most |P|, if a cycle with extra switches is found,
it follows that τa is not an ADT for A. Solving OPT(τa) relies on formulating it as
a mathematical program such that standard mathematical programming tools can
be used. This is the topic of the next section.

It is worth noting that this method can be combined with the invariant-based
method of Section 4 for finding the ADT of a given SHA. We start with some
candidate value of τa > 0 and search for a counterexample execution fragment
for it using the optimization-based approach. If such an execution fragment is
found, then we decrease τa (say, by a factor of 2) and try again. If eventually
the optimization approach fails to find a counterexample execution fragment for a
particular value of τa, then we use the invariant approach to try to prove that this
value of τa is an ADT for the given system.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Verifying Average Dwell Time of Hybrid Systems · 27

5.4 MILP formulation of OPT(τa)

An SHA is rectangular if the differential equations in the state models have constant
right hand sides. In this section, we assume in addition that that precondition
and the initialization predicates (restricted to the set of continuous variables) are
polyhedral. We show how the OPT(τa) can be formulated as a Mixed Integer Linear
Program (MILP) for verifying ADTs of rectangular initialized SHAs. MILP-based
techniques have been previously used to verify safety properties of hybrid systems
(see, for example, [Bemporad and Morari 1999]).

Figure 7 shows the specification of a generic initialized rectangular SHA A. The
automaton A has a single discrete variable called mode which takes values in the
index set P = {1, . . . , N}, and a continuous variable vector x ∈ Rn. For any
i, j ∈ P, the action that changes the mode from i to j is called switch(i, j). The
precondition and the initialization predicates of this action are given by sets of
linear inequalities on the continuous variables, represented by: G[i, j]x ≤ g[i, j]
and R[i, j]x ≤ r[i, j], respectively, where G[i, j] and R[i, j] are constant matrices
with N columns and g[i, j], r[i, j] are constant vectors.

automaton Rectangular(P, G, A, R, q, a, r, c)

2 variables
mode ∈ P, initially p

4 x ∈ Rn, initially x0

6 actions

switch(p, q), p,q ∈ P

9transitions
switch(p,q)

11pre mode = p ∧G[p,q]x ≤ g[p, q]

effect mode ← q
13x ← x′ such that R[p,q]x′ ≤ r[p, q]

15trajectories

trajdef mode(p)

17invariant A[p]x ≤ a[p]
evolve d(x) = c[p]

Fig. 7: Generic rectangular initialized SHA with parameters P, G, A, R, q, a, r, c.

For each mode i ∈ P, the invariant is stated in terms of linear inequalities of the
continuous variables A[i]x ≤ a[i], where A[i] is a constant matrix with n columns
and a[i] is a constant vector. The evolve clause is given by a single differential
equation d(x) = c[i], where c[i] is a constant vector.

We describe a MILP formulation MOPT(K, τa) for finding a cyclic execution with
K mode switches that maximizes the number of extra switches with respect to τa.
If the optimal value is positive, then the optimal solution represents a cycle with
extra switches with respect to τa and we conclude from Corollary 5.6 that τa is not
an ADT for A. On the other hand, if the optimal value is not positive, then we
conclude that there are no cycles with extra switches of length K. To verify ADT
of A, we solve a sequence of MOPT(K, τa)’s with K = 2, . . . , |P|3. If the optimal
values are not positive for any of these, then we conclude that τa is an ADT for A.
By adding extra variables and constraints we are able to formulate a single MILP
that maximizes the extra switches over all cycles with K or less mode switches,
but for simplicity of presentation we discuss MOPT(K, τa) instead of this latter
formulation. The following are the decision variables for MOPT(K, τa).

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · S. Mitra, D. Liberzon and N. Lynch

xu ∈ Rn, u ∈ {0 . . . , K}, value of continuous variables

tu ∈ R, u ∈ {0, 2, 4, . . . , K}, length of uth trajectory

muj =

{
1, if mode over uth trajectory is j
0, otherwise. for each u ∈ {0, 2, . . . , K}, j ∈ {1, . . . , N}

pujk =

{
1, if mode over (u− 1)st trajectory is j and over (u + 1)st trajectory is k
0, otherwise. for each u ∈ {0, 2, 4, . . . , K}, j, k ∈ {1, . . . , N}

The objective function and the constraints are shown in Figure 8. In MOPT(K, τa),
an execution fragment with K mode switches is represented as a sequence x0,x1, . . . ,xK

of K valuations for the continuous variables. For each even u, xu goes to xu+1 by
a trajectory of length tu. If this trajectory is in mode j, for some j ∈ {1, . . . , N},
then muj = 1, else muj = 0. For each odd u, xu goes to xu+1 by a discrete transi-
tion. If this transition is from mode j to mode k, for some j, k ∈ {1, . . . , N}, then
pujk = 1, else pujk = 0. These constraints are specified by Equation (12) in Fig-
ure 8. For each odd u, Constraints (14) and (15) ensure that (xu, switch(j, k),xu+1)

Objective function: Sτa :
K

2
− 1

τa

K∑
u=0,2,...

tu

Mode: ∀ u ∈ {0, 2, . . . , K},
N∑

j=1

muj = 1 and ∀ u ∈ {1, 3, . . . , K − 1},
N∑

j=1

N∑
k=1

pujk = 1

(12)

Cycle: x0 = xK and ∀ j ∈ {1, . . . , N}, m0j = mKj (13)

Preconds: ∀ u ∈ {1, 3, . . . , K − 1},
N∑

j=1

N∑
k=1

G[j, k].pujk.xu ≤
N∑

j=1

N∑
k=1

pujk.g[j, k] (14)

Initialize: ∀ u ∈ {1, 3, . . . , K − 1},
N∑

j=1

N∑
k=1

R[j, k].pujk.xu+1 ≤
N∑

j=1

N∑
k=1

pujk.r[j, k] (15)

Invariants: ∀ u ∈ {0, 2, . . . , K},
N∑

j=1

A[j].muj .xu ≤
N∑

j=1

muj .a[j] (16)

Evolve: ∀ u ∈ {0, 2 . . . , K}, xu+1 = xu +

N∑
j=1

c[j].muj .tu (17)

Fig. 8: The objective function and the linear and integral constraints for MOPT(K, τa)

is a valid mode switching transition. These constraints simplify to the inequalities
G[j, k]xu ≤ g[j, k] and R[j, k]xu+1 ≤ r[j, k] which correspond to the precondition
and the initialization conditions on the pre and the post-state of the transition.
For each even u, xu evolves to xu+1 through a trajectory in some mode, say j.
Constraint (16) ensures that xu satisfies the invariant of mode j described by the
inequality A[j]xu ≤ a[j]. An identical constraint for xu+1 is written by replacing
xu with xu+1 in (16). Since the differential equations have constant right hand
sides and the invariants describe polyhedra in Rn, the above conditions ensure
ACM Journal Name, Vol. V, No. N, Month 20YY.

Verifying Average Dwell Time of Hybrid Systems · 29

that all the intermediate states in the trajectory satisfy the mode invariant. Equa-
tion (17) ensures that, for each even u, xu evolves to xu+1 in tu time according to
the differential equation d(x) = c[j].

Some of these constrains involve nonlinear terms. Using the “big M” method [Williams
1990] we can linearize these equation and inequalities. For example, mujxu in (16)
is the product of real variable xu and boolean variable muj . We linearize it by
replacing mujxu with yu, and adding the following linear inequalities: yu ≥ mujδ,
yu ≤ muj∆, yu ≤ xu − (1 − muj)δ, and yu ≥ xu − (1 − muj)∆, where δ and ∆
are the lower and upper bounds on the values of xu. This linearization increases
the size of the MILP that we have to solve but does not affect the soundness or the
completeness of the verification method.

5.5 Thermostat

We use the MILP technique together with switching simulation relations to verify
the ADT of a thermostat with nondeterministic switches. The model of the ther-
mostat, SHA Thermostat (see Figure 9 Left), has two modes l0, l1, two continuous
variables x and z, and real parameters h, K, θ1, θ2, θ3, θ4, where 0 < θ1 < θ2 < θ3 <
θ4 < h. In l0 mode the heater is off and the temperature x decreases according to
the differential equation d(x) = −Kx. While the temperature x is between θ2 and
θ1, the on action must occur. As an effect of the on action, the mode changes to l1.
In mode l1, the heater is on and the x rises according to the d(x) = K(h− x), and
while x is between θ3 and θ4, the off action must occur. The continuous variable z
measures the total time spent in mode l1.

SHA Thermostat is neither initialized nor rectangular; however, there is a rectan-
gular initialized SHA Approx, such that Thermostat ≤switch Approx. Consider the
SHA Approx of Figure 9 (Right) with parameters L0 and L1. Automaton Approx
has a clock t and two modes l0 and l1, in each of which t increases at a unit rate.
When t reaches Li in mode li, a switch to the other mode may occur and if it does
then t is set to zero. We define a relation R on the state spaces of Thermostat and
Approx such that with appropriately chosen values of L0 and L1, Approx captures
the fastest switching behavior of Thermostat.

Definition 5.8. For any x ∈ QThermostat and y ∈ QApprox, x R y if and only if:
(1) x d mode = y d mode, and

(2) if x d mode = l0 then y d t ≥ 1
k

ln θ3
xdx else y d t ≥ 1

k
ln
(

h−θ2
h−xdx

)
.

Lemma 5.9. If we set L0 = 1
k ln θ3

θ2
and L1 = 1

k ln h−θ2
h−θ3

, then the relation R is a
switching simulation relation from Thermostat to Approx.

The proof of this lemma is similar to that of Lemma 7.1. We show that every
reachable state of Thermostat is related to some state of Approx and that every
action and trajectory of Thermostat can be emulated by an execution fragment of
Approx with no fewer switches. Lemma 5.9 implies that Thermostat ≤switch Approx,
that is, for any τa > 0 if τa is an ADT for Approx then τa is also an ADT for
Thermostat. Since Approx is rectangular and initialized, we can use the MILP
technique to check any ADT property of Approx.

We formulated the MOPT(K, τa) for automaton Approx and used the GNU Linear
Programming Kit [GNU] to solve it. Solving for K = 4, L0 = 40, L1 = 15, and τa =

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · S. Mitra, D. Liberzon and N. Lynch

automaton Thermostat(θ1, θ2, θ3, θ4, C, h)

where θ1, θ2, θ3, θ4, C, h ∈ R
variables

mode ∈ {l0, l1}, initially l0
x, z ∈ R, initially x = θ4, z = 0

actions

on, off

transitions

on
pre mode = l0 ∧ x ≤ θ2

effect mode ← l1

off
pre mode = l1 ∧ x ≥ θ3

effect mode ← l0

trajectories

trajdef l0
evolve d(x) = -Cx; d(z) = 0

invariant x ≥ θ1

stop when x = θ1

trajdef l1
evolve d(x) = C(h-x); d(z) = 1

invariant x ≤ θ4

stop when x = θ4

automaton Approx(L0,L1), where l1, l0 ∈ R
variables

mode ∈ {l0, l1}, initially l0
r ∈ R, initially r = L1

actions
switchtoi, i ∈ {0,1}

transitions

switchto1

pre mode = l0 ∧ r ≥ L0

effect mode ← l1, r ← 0

switchto0

pre mode = l1 ∧ r ≥ L1

effect mode ← l0, r ← 0

trajectories

trajdef always
evolve d(r) = 1

Fig. 9: Thermostat SHA and its abstraction Approx rectangular initialized SHA.

25, 27, 28, we get optimal costs −0.4,−4.358E−13(≈ 0) and 0.071, respectively. We
conclude that the ADT of Approx is ≥ 25,≥ 27, and < 28. Since Thermostat ≤ADT

Approx, we conclude that the ADT of the thermostat is no less than 27.
For finding counterexample execution fragments for the proposed ADT proper-

ties, the MILP approach can be applied to non-initialized rectangular SHA as well.
In such applications, the necessity part of Theorem 5.4 does not hold and therefore
from the failure to find a counterexample we cannot conclude that the automaton
satisfies the ADT property in question.

6. CONCLUSIONS

In this paper we have presented two methods for proving ADT properties of hybrid
systems. Stability of a hybrid system is guaranteed if its individual modes are
stable and if it has the appropriate ADT property.

The first method transforms the given automaton by adding history variables,
such that the transformed automaton satisfies an invariant property if and only if
the original automaton has the ADT property. To prove the resulting invariant
properties, we appeal to the large body of tools available for proving invariants
for hybrid systems. This method is applicable to any hybrid system; however,
automatic verification is possible only for those classes of systems for which invariant
properties can be checked automatically. For hybrid systems outside these classes,
ACM Journal Name, Vol. V, No. N, Month 20YY.

Verifying Average Dwell Time of Hybrid Systems · 31

semi-automatic inductive proofs can be carried out with the aid of theorem provers.
The second method relies on solving optimization problems. We have shown that

for the class of initialized hybrid automata, ADT properties can be verified or coun-
terexample executions can be found automatically by solving mixed integer linear
programs. For non-initialized hybrid automata, the solution of the optimization
problem can give executions that serve as counterexamples to the ADT property
in question, but for this class the method is not complete. The two methods can
be combined to find the ADT of a given rectangular hybrid automaton.

We have defined equivalence of hybrid automata with respect to switching speed
and proposed a new kind of simulation relation, namely switching simulation, which
gives a sufficient condition for establishing this equivalence relationship.

There are several research directions to be pursued related to stability verification
of SHAs. One interesting problem is to develop stability verification techniques for
the general class of SHAs that have both stable and unstable state models. Suf-
ficient conditions for stability of such systems already exist in the control theory
literature (see, for example [Zhai et al. 2000]). These conditions take the form of
switching time related properties and are hard to verify, just like the ADT property,
and hence, they call for the development of new verification techniques. Another
direction, is to include input/output variables in the automaton model and explore
verification of input-output and input-to-state stability properties using the results
from [Vu et al. 2006]. Yet another direction of future research is to extend these
techniques to stochastic hybrid systems, by combining the probabilistic timed I/O
automata of [Mitra and Lynch 2007] with ADT-like stability results for stochastic
switched systems from [Chatterjee and Liberzon 2006].

Acknowledgments

We thank Debasish Chatterjee for giving us many useful comments and suggestions
on this paper. We thank Andy Teel for suggesting an alternative to our formulation
of the invariant for uniform stability.

REFERENCES

Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T. A., Ho, P.-H., Nicollin, X.,

Olivero, A., Sifakis, J., and Yovine, S. 1995. The algorithmic analysis of hybrid systems.

Theoretical Computer Science 138, 1, 3–34.

Alur, R., Henzinger, C. C. T. A., and Ho., P. H. 1993. Hybrid automata: an algorithmic

approach to the specification and verification of hybrid systems. In Hybrid Systems, R. L.
Grossman, A. Nerode, A. P. Ravn, and H. Rischel, Eds. LNCS, vol. 736. Springer-Verlag, 209–

229.

Alur, R. and Pappas, G. J., Eds. 2004. Hybrid Systems: Computation and Control, 7th In-
ternational Workshop, HSCC 2004, Philadelphia, PA, USA, March 25-27, Proceedings. LNCS,

vol. 2993. Springer.

Archer, M. 2001. TAME: PVS Strategies for special purpose theorem proving. Annals of

Mathematics and Artificial Intelligence 29, 1/4 (February).

Bayen, A. M., Cruck, E., and Tomlin, C. 2002. Guaranteed overapproximations of unsafe
sets for continuous and hybrid systems: solving the hamilton-jacobi equation using viability

techniques. See Tomlin and Greenstreet [2002], 90–104.

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 · S. Mitra, D. Liberzon and N. Lynch

Bemporad, A., Bicchi, A., and Buttazzo, G. C., Eds. 2007. Hybrid Systems: Computation

and Control, 10th International Workshop, HSCC 2007, Pisa, Italy, April 3-5, 2007, Proceed-
ings. LNCS, vol. 4416. Springer.

Bemporad, A. and Morari, M. 1999. Verification of Hybrid Systems via Mathematical Pro-
gramming. Hybrid Systems: Computation and Control 1569, 31–45.

Branicky, M. 1995. Studies in hybrid systems: modeling, analysis, and control. Ph.D. thesis,

MIT, Cambridge, MA.

Branicky, M. 1998. Multiple lyapunov functions and other analysis tools for switched and

hybrid systems. IEEE Transactions on Automatic Control 43, 475–482.

Branicky, M., Borkar, V., and Mitter, S. 1998. A unified framework for hybrid control:

model and optimal control theory. IEEE Transactions on Automatic Control 43, 1, 31–45.

Chatterjee, D. and Liberzon, D. 2006. Stability analysis of deterministic and stochastic

switched systems via a comparison principle and multiple lyapunov functions. SIAM Journal

on Control and Optimization 45, 1 (March), 174–206.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. 1990. Introduction to Algorithms. MIT
Press/McGraw-Hill.

Cruz, R. L. 1991. A calculus for network delay, part i: Network elements in isolation. IEEE
Transactions on Information Theory 37, 1, 114–131.

Floyd, R. 1967. Assigning meanings to programs. In Sympyposium on Applied Mathematics.
Mathematical Aspects of Computer Science. American Mathematical Society, 19–32.

Frehse, G. 2005. Phaver: Algorithmic verification of hybrid systems past hytech. See Morari
and Thiele [2005], 258–273.

GNU. GLPK - GNU linear programming kit. Available from http://www.gnu.org/directory/

libs/glpk.html.

Heitmeyer, C. and Lynch, N. 1994. The generalized railroad crossing: A case study in formal

verification of real-time system. In Proceedings of the 15th IEEE Real-Time Systems Sympo-

sium. IEEE Computer Society Press, San Juan, Puerto Rico.

Henzinger, T. A., Ho, P.-H., and Wong-Toi, H. 1997. Hytech: A model checker for hybrid

systems. In Computer Aided Verification (CAV ’97). LNCS, vol. 1254. 460–483.

Henzinger, T. A. and Kopke, P. W. 1996. State equivalences for rectangular hybrid automata.
In International Conference on Concurrency Theory (CONCUR‘96). 530–545.

Henzinger, T. A., Kopke, P. W., Puri, A., and Varaiya, P. 1995. What’s decidable about
hybrid automata? In ACM Symposium on Theory of Computing. 373–382.

Henzinger, T. A. and Majumdar, R. 2000. Symbolic model checking for rectangular hybrid
systems. In Proceedings of the Sixth International Workshop on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS 2000). LNCS 1785, Springer-Verlag, 142–156.

Hespanha, J., Liberzon, D., and Morse, A. 2003. Hysteresis-based switching algorithms for

supervisory control of uncertain systems. Automatica 39, 263–272.

Hespanha, J. and Morse, A. 1999. Stability of switched systems with average dwell-time. In

Proceedings of 38th IEEE Conference on Decision and Control. 2655–2660.

Hespanha, J. P. and Tiwari, A., Eds. 2006. Hybrid Systems: Computation and Control, 9th

International Workshop, HSCC 2006, Santa Barbara, CA, USA, March 29-31, 2006, Proceed-
ings. LNCS, vol. 3927. Springer.

Khalil, H. K. 2002. Nonlinear Systems, 3rd ed. Prentice Hall, New Jersey.

Kurzhanski, A. B. and Varaiya, P. 2000. Ellipsoidal techniques for reachability analysis. In
HSCC. 202–214.

Lafferriere, G., Pappas, G. J., and Yovine, S. 1999. A new class of decidable hybrid
systems. In HSCC ’99: Proceedings of the Second International Workshop on Hybrid Systems.

Springer-Verlag, London, UK, 137–151.

Liberzon, D. 2003. Switching in Systems and Control. Systems and Control: Foundations and

Applications. Birkhauser, Boston.

ACM Journal Name, Vol. V, No. N, Month 20YY.

http://www.gnu.org/directory/libs/glpk.html
http://www.gnu.org/directory/libs/glpk.html

Verifying Average Dwell Time of Hybrid Systems · 33

Livadas, C., Lygeros, J., and Lynch, N. A. 1999. High-level modeling and analysis of TCAS.

In Proceedings of the 20th IEEE Real-Time Systems Symposium (RTSS’99),Phoenix, Arizona.
115–125.

Lynch, N. 1996. A three-level analysis of a simple acceleration maneuver, with uncertainties. In

Proceedings of the Third AMAST Workshop on Real-Time Systems. World Scientific Publishing

Company, Salt Lake City, Utah, 1–22.

Lynch, N., Segala, R., and Vaandrager, F. 2003. Hybrid I/O automata. Information and

Computation 185, 1 (August), 105–157.

Lynch, N. and Vaandrager, F. 1996. Forward and backward simulations - part II: Timing-

based systems. Information and Computation 128, 1 (July), 1–25.

Maler, O. and Pnueli, A., Eds. 2003. Hybrid Systems: Computation and Control, 6th Inter-

national Workshop, HSCC 2003 Prague, Czech Republic, April 3-5, 2003, Proceedings. LNCS,

vol. 2623. Springer.

Mitchell, I. and Tomlin, C. 2000. Level set methods for computation in hybrid systems. In
HSCC. 310–323.

Mitra, S. 2007. A verification framework for hybrid systems. Ph.D. thesis, Massachusetts

Institute of Technology, Cambridge, MA 02139.

Mitra, S. and Archer, M. 2005. PVS strategies for proving abstraction properties of au-
tomata. Electronic Notes in Theoretical Computer Science 125, 2, 45–65.

Mitra, S. and Lynch, N. A. 2007. Trace-based semantics for probabilistic timed i/o au-

tomata. See Bemporad et al. [2007], 718–722. Full version http://theory.lcs.mit.edu/

~mitras/research/PTIOA06-full.pdf.

Mitra, S., Wang, Y., Lynch, N., and Feron, E. 2003. Safety verification of model helicopter
controller using hybrid Input/Output automata. See Maler and Pnueli [2003], 343–358.

Morari, M. and Thiele, L., Eds. 2005. Hybrid Systems: Computation and Control, 8th

International Workshop, HSCC 2005, Zurich, Switzerland, March 9-11, 2005, Proceedings.
LNCS, vol. 3414. Springer.

Morse, A. S. 1996. Supervisory control of families of linear set-point controllers, part 1: exact

matching. IEEE Transactions on Automatic Control 41, 1413–1431.

Owre, S., Rajan, S., Rushby, J., Shankar, N., and Srivas, M. 1996. PVS: Combining
specification, proof checking, and model checking. In Computer-Aided Verification, CAV ’96,

R. Alur and T. A. Henzinger, Eds. Number 1102 in LNCS. Springer-Verlag, New Brunswick,

NJ, 411–414.

Prajna, S. and Jadbabaie, A. 2004. Safety verification of hybrid systems using barrier cer-
tificates. In HSCC. Vol. 2993.

Tomlin, C. and Greenstreet, M. R., Eds. 2002. Hybrid Systems: Computation and Control,

5th International Workshop, HSCC 2002, Stanford, CA, USA, March 25-27, 2002, Proceed-
ings. LNCS, vol. 2289. Springer.

Umeno, S. and Lynch, N. A. 2007. Safety verification of an aircraft landing protocol: A

refinement approach. See Bemporad et al. [2007], 557–572.

van der Schaft, A. and Schumacher, H. 2000. An Introduction to Hybrid Dynamical Sys-

tems. Springer, London.

Vu, L., Chatterjee, D., and Liberzon, D. 2006. Input-to-state stability of switched systems

and switching adaptive control. Automatica.

Weinberg, H. B. and Lynch, N. 1996. Correctness of vehicle control systems – a case study.

In 17th IEEE Real-Time Systems Symposium. Washington, D. C., 62–72.

Weinberg, H. B., Lynch, N., and Delisle, N. 1995. Verification of automated vehicle protec-
tion systems. In Hybrid Systems III: Verification and Control Workshop on Verification and

Control of Hybrid Systems), T. H. R. Alur and E. Sontag, Eds. LNCS, vol. 1066. Springer-
Verlag, 101–113.

Williams, H. 1990. Model building in mathematical programming. J. Wiley, New York. third

edition.

ACM Journal Name, Vol. V, No. N, Month 20YY.

http://theory.lcs.mit.edu/~mitras/research/PTIOA06-full.pdf
http://theory.lcs.mit.edu/~mitras/research/PTIOA06-full.pdf

34 · S. Mitra, D. Liberzon and N. Lynch

Zhai, G., Hu, B., Yasuda, K., and Michel, A. 2000. Stability analysis of switched systems

with stable and unstable subsystems: An average dwell time approach. In Proceedings of the
2000 American Control Conference (2000). chicago,illinois.

7. APPENDIX A

Lemma 7.1. R is a switching simulation relation from A to B.

Proof. We first show that R is a switching simulation relation from A to B. At
a given state x of A, we define i ∈ {1, . . . ,m} to be the unique minimum at x, if
minj{x d µj} is unique and µi = arg minj{x d µj}. A has a unique start state and
it is easy to see that it is related to all the start states of B. Next we show by cases
that given any state x ∈ QA,y ∈ QB, x R y, and an execution fragment α of A
starting from x and consisting of either a single action or a single trajectory, there
exists a corresponding execution fragment β of B, starting from y that satisfies the
conditions required for R to be a switching simulation relation.

(1) α is a (x, switch(i, j),x′) transition of A and i is not the unique minimum at x
and j is not unique minimum at x′ .
We choose β to be (y, switch(e, e′),y′) action of B, where e and e′ are determined
by the following rules:

e[1][i] = 1, e[2][i] = 1 + h,∀k, k 6= i, e[1][k] = e[2][k] = xdµk
xdµmin

(18)

e′[1][j] = 1, e′[2][j] = 1 + h,∀k, k 6= j, e′[1][k] = e′[2][k] = x′dµk
x′dµmin

(19)

We have to show that switch(e, e′) is enabled at y; this involves showing that
the three conjuncts in the precondition of the switch action of B are satisfied
at y. First of all, since x R y we know that ζ(y d mode) = x d mode = i.
Further, i is not a unique minimum at x, so from the definition of the edges of
G it follows that:

(y d mode)[1][i] = 1, (y d mode)[2][i] = i + h,

∀k, k 6= i, (y d mode)[1][k] = (y d mode)[2][k] = xdµk
xdµmin

(20)

Comparing Equations (20) and (18) we conclude that y d mode = e.
Secondly, using the definitions of e, e′ and R it follows that:

e[2][i] = 1 + h =
x d µi

x d µmin
=

x′ d µi

x′ d µmin
= e′[1][i] (21)

The second equality holds because switch(i, j) is enabled at x. The third equal-
ity follows from the fact that the switch(i, j) transition of A does not alter the
value of the µk’s. Likewise, we have:

e[2][j] =
x d µj

x d µmin
=

x′ d µj

x′ d µmin
= 1 = e′[1][j] (22)

∀k, k 6= j, k 6= i, e[2][k] =
x d µk

x d µmin
=

x′ d µk

x′ d µmin
= e′[1][k] (23)

Combining Equations (21),(21) and (23) it follows that e[2] = e′[1].
Finally, from the switching simulation relation R, we know that y d x =
1
ci

ln xdµi

xdµmin
= 1

ci
ln(1+h). And since ζ(e) = i and i is not the unique minimum

ACM Journal Name, Vol. V, No. N, Month 20YY.

Verifying Average Dwell Time of Hybrid Systems · 35

at x, from the definition of the edge costs of G it follows that y d x = w(e).
Thus, we have shown that switch(e, e′) is indeed enabled at y.
Next, we have to show that x′ R y′. First of all, x′ d mode = j and y′ d mode =
e′ from the effect parts of the switch(i, j) and switch(e, e′) actions, respectively.
Also, ζ(e′) = j from Equation (19). It follows that x′ d mode = ζ(y′ d mode).
Secondly, x′dµj

x′dµmin
= xdµj

xdµmin
= 1, from the precondition of switch(i, j). Since

y′ d x = 0 it follows that xdµj

xdµmin
= ecjy

′dx. Finally, for all k 6= j, again from

Equation (19) it follows that x′dµk

x′dµmin
= e′[1][k] = e′[2][k].

(2) α is a closed trajectory τ of A with (τ ↓ mode)(0) = i for some i ∈ P, such
that i is not unique minimum at τ.fstate.
We choose β to be the trajectory τ ′ of B with τ ′.dom = τ.dom determined by the
following rules. Let x = τ.fstate,x′ = τ.lstate,y = τ ′.fstate and y′ = τ ′.lstate.

(y d mode)[1][i] = 1, (y d mode)[2][i] = 1 + h,

∀k, k 6= i, (y d mode)[1][k] = (y d mode)[1][k] = xdµi
xdµmin

,

∀ t ∈ τ ′.dom, (τ ′ ↓ x)(t) = 1
ci

ln xdµi
xdµmin

+ t (24)

We first show that τ ′ is a valid trajectory of B. First of all, it is easy to check
that τ ′ satisfies the constant differential equation d(x) = 1 and that the mode
of B remains constant. Next, we show that τ ′ satisfies the stopping condition
“x = w(mode)”. Suppose there exists t ∈ τ ′.dom such that (τ d x)(t) = w(x d
mode), then t = w(x d mode)− (y d x). Then,

x′ d µi = x d µie
cit

1

ci
ln

x′ d µi

x d µi
= w(x d mode)− (y d x)

=
1

ci
ln(1 + h)− (y d x) [by replacing w(x d mode)]

=
1

ci

[
ln(1 + h)− ln

x d µi

x d µmin

]
[from (24)]

x′ d µi = (1 + h)(x d µmin)

= (1 + h)(x′ d µmin) [i not unique min ⇒ µmin constant over τ ′.]

Last equation implies that x′ satisfies the stopping condition for trajdef mode(i)
for automaton A. Therefore, t = τ.ltime = τ ′.ltime. Thus we have shown that
τ ′ is a valid trajectory of automaton B.
We show that x′ R y′. First, x′ d mode = ζ(y′ d mode) because x′ d mode =
x d mode = ζ(y d mode) = ζ(y′ d mode). Secondly, for all k, k 6= i, x d
µi = x′ d µi and (y d mode)[1][k] = (y′ d mode)[1][k]. Finally, we show that
x′ d µi = (x′ d µmin)eci(y

′dx) by reasoning as follows:

x′ d µi = (x d µi)e
ciτ.ltime

= (x d µmin)eci(ydx+τ.ltime)

= (x′ d µmin)eci(ydx+τ ′.ltime)

The proofs for the remaining cases are similar to those presented above.

ACM Journal Name, Vol. V, No. N, Month 20YY.

	1 Introduction
	1.1 Contributions
	1.2 Organization

	2 Structured Hybrid Automata
	2.1 Comparison of SHA with existing models
	2.2 Variables and trajectories
	2.3 Definition of Structured Hybrid Automata
	2.4 Executions and invariants
	2.5 Linguistic conventions
	2.6 Stability and ADT

	3 Equivalence with respect to ADT: Switching simulations
	4 Verifying ADT: Invariant approach
	4.1 Transformations for ADT verification
	4.2 Proving invariants
	4.3 Leaking gas burner
	4.4 Scale-independent hysteresis switch

	5 Optimization Based Approach
	5.1 One-clock initialized SHA
	5.2 Linear hysteresis switch
	5.3 Initialized SHA
	5.4 MILP formulation of OPT(a)
	5.5 Thermostat

	6 Conclusions
	References
	7 Appendix A

