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Abstract

In this paper we introduce the notion of approximate implementations for Probabilistic I/O Automata
(PIOA) and develop methods for proving such relationships. We employ a task structure on the locally
controlled actions and a task scheduler to resolve nondeterminism. The interaction between a scheduler
and an automaton gives rise to a trace distribution—a probability distribution over the set of traces. We
define a PIOA to be a (discounted) approximate implementation of another PIOA if the set of trace dis-
tributions produced by the first is close to that of the latter, where closeness is measured by the (resp.
discounted) uniform metric over trace distributions. We propose simulation functions for proving approxi-
mate implementations corresponding to each of the above types of approximate implementation relations.
Since our notion of similarity of traces is based on a metric on trace distributions, we do not require the
state spaces nor the space of external actions of the automata to be metric spaces. We discuss applications
of approximate implementations to verification of probabilistic safety and termination.

Keywords: Approximate implementation, equivalence, Approximate simulation, Abstraction,
Probabilistic I/O Automata.

1 Introduction
Implementation relations play a fundamental role in the study of complex interact-
ing systems because they allow us to prove that a given concrete system implements
an abstract specification. Formally, an automaton is said to implement another au-
tomaton if the set of traces or the observable behavior of the first is subsumed
by that of the latter. Many different kinds of implementation or abstraction re-
lations and their corresponding proof methods have been developed for timed [1],
hybrid [17,30,29] and probabilistic automata [19,20,5,2,28,4].

These traditional notions of implementation rely on equality of traces. That
is, every trace of the concrete system must be exactly equal to some trace of the
abstract specification. It is well known from [16,10,15] that such strict equality based
implementation relations are not robust. Small perturbations to the parameters of
the system produces traces with slightly different numbers (representing say, timing
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or probability information), and thus breaks the equality between traces. One
way to overcome this problem is to relax the notion of implementation by taking
into consideration the “similarity” of traces that are not exactly equal. In [16]
Jou and Smolka formalized “similarity” of traces using a metric and developed
the corresponding notion of approximate equivalence for probabilistic automata.
Based on similar ideas, there is now a growing body of work on developing robust
notions of approximate implementations; in Section 1.1, we briefly describe previous
contributions in this area that are related to our work. Apart from providing robust
implementation relations, notions of approximate implementation also enable us to
create abstract models without introducing extra nondeterminism.

In this paper we introduce the notion of approximate implementations for the
Probabilistic Input/Output Automaton (PIOA) [27,6] and develop simulation based
methods for proving such relationships. A PIOA is a nondeterministic automaton
with a countable state space. Transitions are labelled by actions. Many transitions
may be possible from a given state. Each transition gives a discrete probability dis-
tribution over the state space. We use a task structure [5]—an equivalence relation
on the set of locally controlled actions—as a means for restricting the nondetermin-
ism in a PIOA. The resulting automaton model is called task-PIOA. A task-PIOA
interacts with a task scheduler to give rise to a probability distribution over its
executions. For every such distribution there exists a corresponding distribution
over its set of traces, which is called a trace distribution. Visible behavior of a
task-PIOA is the set of trace distributions that it can produce. A task-PIOA is said
to (exactly) implement another task-PIOA if the set of trace distributions of the
first is a subset of the trace distributions of the latter. Implementations, simulation
relations for proving implementations, and compositionality results for task-PIOAs
are presented in [5]. A special kind of approximate implementation relation that
tolerates small differences in the probability of occurrence of a particular action is
used in [6] to verify a security protocol. In contrast, the notions of approximation
introduced here are more general because they are based on metrics on trace dis-
tributions. We define two kinds of approximate implementations of task-PIOAs:
(1) uniform approximate implementation is based on the uniform metric of trace
distributions [23], and (2) discounted approximate implementation is based on the
discounted uniform metric.

A PIOA A is a δ-approximate implementation of another PIOA B, for a positive
δ, if the for any trace distribution of A, there exists a trace distribution of B such
that their discrepancy over any measurable set of traces is at most δ. We present
Expanded Approximate Simulations (EAS) for proving uniform approximate imple-
mentations. EAS is a natural generalization of the simulation relation presented
in [6]. Let µ1 and µ2 be probability distributions over executions of task-PIOAs A
and B. An EAS from A to B is a function φ mapping each µ1, µ2 pair to a non-
negative real. The number φ(µ1, µ2), is a measure of how similar µ1 and µ2 are in
terms of producing similar trace distributions. Informally, if φ(µ1, µ2) ≤ ε, for some
ε ≥ 0, then it is possible to closely (with respect to the uniform metric on trace
distributions) simulate from µ2 anything that can happen from µ1, and further, the
resulting distributions, say µ′1 and µ′2, are also close in the following sense. There
exists a joint distribution ψ supported on the set {(η1, η2) | φ(η1, η2) ≤ ε} such that
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the marginals of ψ have means µ′1 and µ′2, respectively. Informally, this means that
µ′1 and µ′2 can be decomposed into a set of measures that are close in the sense of φ.

Uniform approximate implementations are useful for deducing probabilistic safety
properties. However, since they gives absolute bounds on the discrepancy over any
set of traces, they do not give us useful information when the probability of the
set itself is smaller than the approximation factor δ. To get useful bounds on the
discrepancies over a sequence of sets of traces that have monotonically decreasing
probabilities, we have to employ different approximation factors for each set. We
address this problem by introducing a sequence {δk}k∈N of discount factors, and
defining PTIOA A to be a δk-discounted approximate implementation of B, if the
for any trace distribution of A, there exists a trace distribution of B such that their
discrepancy over any trace of length k is at most δk. We define Discounted Approx-
imate Simulations (DAS) in a similar way as we defined EAS and prove that they
are sound for proving discounted approximate implementations. We demonstrate
the utility of discounted approximate implementations and DASs by proving that
the probability of termination of an ideal randomized consensus protocol (after a
certain number of rounds) is close to the same probability for a protocol that uses
biased coins.

1.1 Related Work

As we mentioned, Jou and Smolka [16] first introduced the idea of formalizing sim-
ilarity of traces by using metrics. Approximation metrics for probabilistic systems
in the context of Labelled Markov Processes (LMP) have been extensively inves-
tigated and many fundamental results have been obtained by Desharnais, Gupta,
Jagadeesan and Panangaden [10,8,9] and by van Breugel, Mislove, Ouaknine, and
Worrell [35,32,33,21,22]. The first set of authors introduced a Kantorovich-like met-
ric for LMPs and presented the logical characterization of this metric. Van Breugel
et al. have presented intrinsic characterizations of the topological space induced by
the above metric. This characterization is based on a final coalgebra for a functor
on the category of metric spaces and nonexpansive maps. Another interesting facet
of this body of work is the polynomial time algorithm for computing the metric pre-
sented by van Breugel and Worrell in [34]. For Generalized Semi-Markov Processes
(GSMP) [15], Gupta, Jagadeesan and Panangaden have developed pseudo-metric
analogues of bisimulation and have shown that certain observable quantitative prop-
erties are continuous with respect to the introduced metric. Kwiatkowska and Nor-
man have developed the denotational semantics for a divergence-free probabilistic
process algebra based on a metric on probability distribution over executions [18].

In the non-probabilistic setting, Girard and Pappas [13,12] have developed the
theory of approximate implementations for Metric Transition Systems (MTS). The
state space and the space of external actions of an MTS are metric spaces. Based
on these metrics, the authors develop a hierarchy of approximation pseudo-metrics
between MTSs measuring distance between reachable sets, sets of traces and bisim-
ulations. The authors have also developed algorithms for exactly and approximately
computing these metrics.

Our work differs from all of the above in at least one of the following ways: (a)
the task-PIOA model allows both nondeterministic and probabilistic choices, and
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(b) the implementation relation in our framework is based on trace distributions and
not bisimilarity of states. Approximate implementation is derived from a metric over
trace distributions, and thus, we do not require the state spaces of the underlying
automata nor the common space of external actions to be metric spaces. Metrics
on trace distributions of PIOAs are used by Cheung in [7]to show that sets of trace
distributions form closed sets in a certain metric space. This result is then used to
show that finite tests are sufficient to distinguish between a members of a certain
class of PIOAs. The metric used in the above work is related to our uniform metric
but it is defined on the set [0, 1]Traces whereas our uniform metric is exclusively
defined on the set of trace distributions.

1.2 Organization

In the next Section, we give the basic definitions and results from the task-PIOA
framework. We refer the reader to [14] for a detailed treatment and for all the
proofs. In Section 3 we introduce uniform approximate implementations for closed
task-PIOAs and we propose expanded approximate simulations as a sound method
for proving uniform implementations. In Section 4, we discuss the need for discount-
ing when measuring discrepancies in trace distributions. This leads to the notion
of discounted approximate implementations and we propose a second type of sim-
ulations for proving such implementation relationships. Finally, in Section 5 we
outline how our results extend to general (not necessarily closed) task-PIOAs and
conclude with a discussion on future research directions. Proofs of auxiliary lemmas
and formal statements of some relevant results from [5] appear in the Appendices.

2 Task-PIOA Framework

Given a set X, we denote a σ-algebra over X by FX , the set of discrete (sub-)
probability measures on X by Disc(X) (resp. SubDisc(X)). If µ is a discrete proba-
bility or sub-probability measure on X, the support of µ, written as supp(µ), is the
set of elements of X that have non-zero measure. The task-PIOA model used in
this paper is slightly more general than the one in [5] because we allow the starting
configuration of an automaton to be any distribution over states and not just a
Dirac mass.

Definition 2.1. A task-structured Probabilistic I/O Automaton A is a 7-tuple
(Q, ν̄, I, O,H,D,R) where:

(i) Q is a countable set of states;

(ii) ν̄ ∈ Disc(Q) is the starting distribution on states;

(iii) I, O and H are countable and pairwise disjoint sets of actions, referred to as
input, output and internal actions, respectively. The set A := I∪O∪H is called
the set of actions of A. If I = Ø, then A is closed. The set of external actions
of A is E := I ∪O and the set of locally controlled actions is L := O ∪H.

(iv) D ⊆ (Q × A × Disc(Q)) is a transition relation. An action a is enabled in a
state q if (q, a, µ) ∈ D for some µ.

(v) R is an equivalence relation on the locally controlled actions. The equivalence
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classes of R are called tasks. A task T is enabled in a state q if some action
a ∈ T is enabled in q.

In addition, A satisfies:

• Input enabling: For every q ∈ Q and a ∈ I, a is enabled in q.
• Transition determinism: For every q ∈ Q and a ∈ A, there is at most one
µ ∈ Disc(Q) such that (q, a, µ) ∈ D.

• Action determinism: For every q ∈ Q and T ∈ R, at most one a ∈ T is enabled
in q.

An execution fragment of A is a finite or infinite sequence α = q0 a1 q1 a2 . . .

of alternating states and actions, such that (i) if α is finite, then it ends with a
state; and (ii) for every non-final i, there is a transition (qi, ai+1, µ) ∈ D with
qi+1 ∈ supp(µ). We write α.fstate for q0, and, if α is finite, we write α.lstate for its
last state. We use FragsA (resp., Frags∗A) to denote the set of all (resp., all finite)
execution fragments of A. An execution of A is an execution fragment beginning
from some state in supp(ν̄). ExecsA (resp., Execs∗A) denotes the set of all (resp.,
finite) executions of A. The trace of an execution fragment α, written trace(α), is
the restriction of α to the set of external actions of A. We say that β is a trace of A
if there is an execution α of A with trace(α) = β. TracesA (resp., Traces∗A) denotes
the set of all (resp., finite) traces of A.

Nondeterministic choices in A are resolved using a scheduler, which is a function
σ : Frags∗A −→ SubDisc(D) such that (q, a, µ) ∈ supp(σ(α)) implies q = α.lstate.
Thus, σ decides (probabilistically) which transition (if any) to take after each finite
execution fragment α. Since this decision is a discrete sub-probability measure,
it may be the case that σ chooses to halt after α with non-zero probability: 1 −
σ(α)(D) > 0. A scheduler σ and a finite execution fragment α generate a measure
µσ,α on the σ-field FExecsA generated by cones of execution fragments, where each
cone Cα′ is the set of execution fragments that have α′ as a prefix. The theory
of probabilistic executions of task-PIOAs with a general class of history dependent
schedulers has been developed in [5].

In this paper we restrict our attention to static (or oblivious), schedulers that
do not depend on dynamic information generated during execution. Although re-
strictive this class of schedulers arise naturally in many applications, including in
analysis of security protocols [6]. A task schedule for A is any finite or infinite
sequence σ = T1T2 . . . of tasks in R. A task schedule can be used to generate a
unique probabilistic execution of the task-PIOA A. One can do this by repeatedly
scheduling tasks, each of which determines at most one transition of A. Formally,
we define an operation that “applies” a task schedule to a task-PIOA:

Definition 2.2. Let A be an action-deterministic task-PIOA. Given µ ∈ Disc(Frags∗A)
and a task schedule σ, apply(µ, σ) is the probability measure on FragsA defined re-
cursively by:

(i) apply(µ, λ) := µ. (λ denotes the empty sequence.)

(ii) For T ∈ R, apply(µ, T ) is defined as follows. For every α ∈ Frags∗A, apply(µ, T )(α) :=
p1 + p2, where:
• p1 = µ(α′)η(q) if α is of the form α′aq, where a ∈ T and (α′.lstate, a, η) ∈ D;
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p1 = 0 otherwise.
• p2 = µ(α) if T is not enabled in α.lstate; p2 = 0 otherwise.

(iii) For σ of the form σ′ T , T ∈ R, apply(µ, σ) := apply(apply(µ, σ′), T ).

(iv) For σ infinite, apply(µ, σ) := limi→∞(apply(µ, σi)), where σi denotes the length-
i prefix of σ.

In Case (ii) above, p1 represents the probability that α is executed when applying
task T at the end of α′. Because of transition-determinism and action-determinism,
the transition (α′.lstate, a, η) is unique, and so p1 is well-defined. The term p2 repre-
sents the original probability µ(α), which is relevant if T is not enabled after α. It is
routine to check that the limit in Case (iv) is well-defined. The other two cases are
straightforward. Given any task schedule σ, apply(ν̄, σ) is a probability distribution
over ExecA. Several useful properties of the apply(, ) function relating sequences of
probability distributions on executions and traces are given in Appendix A.

We note that the trace function is a measurable function from FExecsA to the
σ-field generated by cones of traces. Thus, given a probability measure µ on
FExecsA we define the trace distribution of µ, denoted tdist(µ), to be the image
measure of µ under the trace function. We extend the tdist() notation to arbi-
trary measures on execution fragments of A. We write tdist(µ, σ) as shorthand
for tdist(apply(µ, σ)), the trace distribution obtained by applying task schedule
σ starting from the measure µ on execution fragments. We write tdist(σ) for
tdist(apply(ν̄, σ)). A trace distribution of A is any tdist(σ). We use tdists(A) to
denote the set {tdist(σ) : σ is a task schedule forA} of all trace distributions of A.

Composition of a pair of PIOAs is defined as follows:

Definition 2.3. Two PIOAs Ai = (Qi, ν̄i, Ii, Oi,Hi, Di), i ∈ {1, 2}, are said to be
compatible if Ai ∩Hj = Oi ∩Oj = Ø whenever i 6= j. In that case, we define their
composition A1||A2 to be the PIOA (Q1 ×Q2, (ν̄1, ν̄2), (I1 ∪ I2) \ (O1 ∪O2), O1 ∪
O2, H1 ∪H2, D), where D is the set of triples ((q1, q2), a, µ1 × µ2) such that

(i) a is enabled in some qi, and

(ii) for every i, if a ∈ Ai then (qi, a, µi) ∈ Di, otherwise µi = δqi.

2.1 Exact implementations and Simulations

Two task-PIOAs A1 and A2 are comparable if they have the same set of external
actions. Given comparable closed task-PIOAs A1 and A2, A1 is said to implement
A2 if tdists(A1) ⊆ tdists(A2). If A1 and A2 implement each other then they are
said to be equivalent . In [5] a simulation relation for closed, task-PIOAs is defined
and it is shown to be sound for proving the above implementation relation. This
definition is based on three operations involving probability measures: flattening,
lifting, and expansion.

Let X and Y be a sets. If η ∈ Disc(Disc(X)), then the flattening of η, denoted
by flatten(η) ∈ Disc(X), is defined by flatten(η) =

∑
µ∈Disc(X) η(µ)µ. The lifting

operation takes a relation R⊆ X × Y and “lifts” it to a relation L(R)⊆ Disc(X)×
Disc(Y ) defined by: µ1 L(R) µ2 iff there exists a weighting function w : X × Y →
R≥0 such that: (i) for each x ∈ X and y ∈ Y , w(x, y) > 0 implies x R y, (ii) for each
x ∈ X,

∑
y w(x, y) = µ1(x), and (ii) for each y ∈ Y ,

∑
xw(x, y) = µ2(y). Finally,
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the expansion operation takes a R⊆ Disc(X) × Disc(Y ), and returns a relation
E(R)⊆ Disc(X)×Disc(Y ) such that µ1 E(R) µ2 whenever they can be decomposed
into two L(R)-related measures. Formally, E(R), is defined by: µ1 E(R) µ2 iff there
exist two discrete measures η1 and η2 on Disc(X) and Disc(Y ), respectively, such
that µ1 = flatten(η1), µ2 = flatten(η2), and η1 L(R) η2.

The next definition expresses consistency between a probability measure over
finite executions and a task schedule. This condition is used to avoid useless proof
obligations in the definition of both exact and approximate simulations.

Definition 2.4. Suppose A is a closed, task-PIOA and σ is a finite task schedule
for T . µ ∈ Disc(Frags∗A) is consistent with σ if supp(µ) ⊆ supp(apply(ν̄, σ)).

Suppose we have a mapping c that, given a finite task schedule σ and a task T
of a task-PIOA A1, yields a task schedule of another task-PIOA A2. The idea is
that c(σ, T ) describes how A2 matches task T , given that it has already matched
the task schedule σ. Using c, we define a new function full(c) that, given a task
schedule σ, iterates c on all the elements of σ, thus producing a “full” task schedule
of A2 that matches all of σ.

Definition 2.5. Let A1,A2 be task-PIOAs, and let c : (R1
∗ × R1) → R2

∗ be a
function that assigns a finite task schedule of A2 to each finite task schedule of
A1 and task of A1. The function full(c) : R1

∗ → R2
∗ is recursively defined as:

full(c)(λ) := λ, and full(c)(σT ) := full(c)(σ)_c(σ, T ) (the concatenation of full(c)(σ)
and c(σ, T )).

Now we give the definition of exact simulation relation for task-PIOAs. Note that
the simulation relations do not just relate states to states, but rather, probability
measures on executions to probability measures on executions. The use of measures
on executions here rather than just executions is motivated by certain cases that
arise in proofs where related random choices are made at different points in the
low-level and high-level models (see, e.g., proof of OT protocol in [6]).

Definition 2.6. Let A1 and A2 be two comparable closed task-PIOAs. A relation
R from Disc(Execs∗(A1)) to Disc(Execs∗(A2)) is a simulation from A1 to A2 if there
exists c : (R1

∗ ×R1) → R2
∗ such that following properties hold:

(i) Start condition: ν̄1 R ν̄2.

(ii) Step condition: If µ1 R µ2, σ ∈ R1
∗, µ1 is consistent with σ, µ2 is consistent

with full(c)(σ), and T ∈ R1, then µ′1 E(R) µ′2 where µ′1 = apply(µ1, T ) and
µ′2 = apply(µ2, c(σ, T )).

(iii) Trace condition: If µ1 R µ2, then tdist(µ1) = tdist(µ2).

We close this section with the statement of the soundness theorem for the above
simulation relation which has been proved in [5].

Theorem 2.7. Let A1 and A2 be comparable closed action-deterministic task-
PIOAs. If there exists a simulation relation from A1 to A2, then tdists(A1) ⊆
tdists(A2).
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3 Uniform Approximate Implementation
In this section we define approximate implementations for task-PIOAs based on the
uniform metric on trace distributions and propose Expanded Approximate Simula-
tions (EAS) as a sound method for proving uniform implementations. Informally, a
task-PIOA A1 uniformly approximately implements a task-PIOA A2, if every trace
distribution of A1 is “close” to some trace distribution of A2, where “closeness” is
defined by the uniform metric on trace distributions.

Definition 3.1. Let A be a closed task-PIOA. The uniform metric (pseudo-metric)
over trace distributions of A is the function du : Disc(TracesA) × Disc(TracesA) →
R≥0 defined by:

du(µ1, µ2) := sup
C∈FTracesA

|µ1(C)− µ2(C)| .

In general, the above definition makes du a pseudo-metric over trace distributions;
some abuse of terminology we will refer to du as a metric. We define A1 to be
an δ-implementation of A2 if the one-sided Hausdorff distance from tdists(A1) to
tdists(A2) is at most δ.

Proposition 3.2. Suppose A1 and A2 are closed task-PIOAs. For i ∈ {1, 2}, let
{µij}j∈J be a chain of discrete probability distributions on the traces of Ai and let
limj→∞ µij = µi. Then limj→∞ du(µ1j , µ2j) = du(µ1, µ2).

Proof. We have to show that for every ε > 0, there exists N ∈ N, such that for
all k > N , du(µ1k, µ2k) − du(µ1, µ2) < ε. From triangle inequality, we get that for
any k, du(µ1k, µ2k) ≤ du(µ1k, µ1) + du(µ1, µ2) + du(µ2, µ2k). Therefore, it suffices
to show that exists N ∈ N, such that for all k > N , du(µ1k, µ1) + du(µ2, µ2k) ≤ ε.
Now since limj→∞ µ1j = µ1, limj→∞ µ2j = µ2, we know that there exists N ′ ∈ N,
such that for all k > N ′, for every C ∈ FTracesAi

, |µij(C)−µi(C)| ≤ ε
2 . If we choose

N = N ′, we have for all k > N , du(µ1k, µ1) + du(µ2, µ2k) ≤ ε, are required.

Definition 3.3. Suppose A1 and A2 are comparable, closed task-PIOAs. For δ > 0,
A1 is said to δ-implement A2, written as A1 ≤δ A2, if for every µ1 ∈ tdists(A1)
there exists µ2 ∈ tdists(A2) such that du(µ1, µ2) ≤ δ. Closed task-PIOAs A1 and
A2 are said to be δ-equivalent, written as A1

∼=δ A2, if A1 ≤δ A2 and A2 ≤δ A1.

Metrics over probability distributions have been a subject of intense research
in probability theory (see, for example, the books [26] and [11]). Because of their
applicability to probabilistic safety and termination proofs, in this paper we use the
uniform metric and the discounted version of the uniform metric (see Section 4), to
define approximate implementations for task-PIOAs. As we shall see in the next
section, the soundness of expanded approximate simulations rely only weakly on
the choice of the metric. In fact, with the appropriate changes in the definition
of EAS, it is sound for proving approximate implementations with respect to any
metric satisfying Proposition 3.2.

3.1 Expanded Approximate Simulations

Our definition of EAS relies on an expansion operation on real valued functions.
This operation generalizes the notion of expansion of a relation used in Defini-
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tion 2.6.

Definition 3.4. Let x be an element of the set X and {λi}i∈I be a countable se-
quence of numbers such that

∑
i∈I λi = 1. If there exists a sequence {xi} in X

such that x =
∑

i∈I λixi, then x is a convex combination of the {xi}′s. A function
φ : X → R≥0 ∪ {∞} is convex if for every x =

∑
i∈I λixi, φ(x) ≤

∑
i∈I λiφ(xi). If

equality holds then the function is said to be distributive.

Definition 3.5. Given a function φ : X × Y → R≥0 ∪ {∞}, the expansion of φ,
written as φ̂, is a function φ̂ : X × Y → R≥0 ∪ {∞} defined as:

φ̂(x1, y1) := min
ψ∈Disc(X×Y)
x1=

∑
x ψ(x,y)x

y1=
∑

x ψ(x,y)y

[
max

(x,y)∈supp(ψ)
φ(x, y)

]
(1)

The value of φ̂ is defined in terms of a minimization problem over all joint
distributions over Disc(X × Y) that have first and second marginals with means
equal to x1 and y1, respectively. The function that is minimized is the maximum
value of φ over all points in the support of ψ. When stated in this form the definition
of the expansion of φ is indeed reminiscent of the pth Wasserstein metric for p = ∞.
Given a function φ : X × Y → R≥0 ∪ {∞}, an alternative but equivalent way of
defining the expansion φ̂, is as follows:

Definition 3.6. For any ε ≥ 0, φ̂(x1, y1) ≤ ε if and only if there exists a joint
distribution ψ ∈ Disc(X × Y) such that:

max
x,y∈supp(ψ)

φ(x, y) ≤ ε (2)

x1 =
∑

x,y∈supp(ψ)

ψ(x, y)x (3)

y1 =
∑

x,y∈supp(ψ)

ψ(x, y)y (4)

The consistency requirements imposed by Equations (3) and (4) constrain the
choice of ψ to those joint distributions over X × Y, for which the expected values
of x and y coincide with x1 and y1. Given φ, we say that joint distribution ψ is a
feasible for x1 and y1 if it satisfies the consistency requirements. If ε is the smallest
nonnegative real for which there exists a feasible ψ that also satisfies Equation (2),
that is, maxx,y∈supp(ψ) φ(x, y) ≤ ε, then we say that ψ is an optimal distribution
for φ̂(x1, y1) = ε. The next proposition is a straightforward consequence of Defini-
tion 3.6.

Proposition 3.7. For any φ : X × Y → R≥0 ∪ {∞} and ε > 0, if φ(x1, y1) ≤ ε for
some x1 ∈ X , y1 ∈ Y, then φ̂(x1, y1) ≤ ε.

Proof. Suppose φ(x1, y1) = ε1 for some 0 < ε1 ≤ ε. The joint distribution δx1,y1 is
a feasible distribution for x1 and y1. Since φ(x1, y1) = ε1 ≤ ε, φ̂(x1, y1) ≤ ε.

Figure 1 shows a point (x1, y1) outside the set {(x, y) | φ(x, y) ≤ ε}, where φ̂(x1, y1) =
ε. The marginal distributions for the optimal joint distribution ψ are shown on the
x and the y axes.

Our new notion of approximate simulation for task-PIOAs is a function φ :

9



Mitra and Lynch

x1

y1

x

ψ
(x
,y

)

0

φ(x, y) ≤ ε

Z1

y

Z2

φ̂(x1, y1) = ε

Fig. 1. Marginal distributions of the optimal joint distribution ψ for φ̂(x1, y1) = ε. Support of ψ is contained
within the elliptical region. In particular, ψ is concentrated in the regions Z1 and Z2 each carrying half of
the total mass.

Disc(Frags∗A1
)×Disc(Frags∗A2

) → R≥0∪{∞} and the expansion of this function plays
a key role in the definition of simulation. Informally, the simulation function φ gives
a measure of similarity between two distributions over the execution fragments of
two automata. If φ(µ1, µ2) ≤ ε, then, first of all, it is possible to closely simulate
from µ2 anything that can happen from µ1. Here closeness of simulation is measured
with the du metric on the trace distributions. Secondly, if µ′1 and µ′2 are the
distributions obtained by taking a step from µ1 and µ2, then µ′1 and µ′2 are also
close in the sense that φ̂(µ′1, µ

′
2) ≤ ε.

Definition 3.8. Suppose A1 and A2 are two comparable closed task-PIOAs, ε is a
nonnegative constant, and φ is a function Disc(Frags∗A1

) × Disc(Frags∗A2
) → R≥0 ∪

{∞}. The function φ is an (ε, δ)-expanded approximate simulation from A1 to A2

if exists a function c : R∗1 ×R1 → R∗2 such that the following properties hold:

(i) Start condition: φ(ν̄1, ν̄2) ≤ ε.

(ii) Step condition: If φ(µ1, µ2) ≤ ε, T ∈ R1, σ ∈ R∗1 and µ1 is consistent with σ,
and µ2 is consistent with full(c)(σ), then φ̂(µ′1, µ

′
2) ≤ ε, where µ′1 = apply(µ1, T )

and µ′2 = apply(µ2, c(σ, T )).

(iii) Trace condition: There exists δ > 0 such that if φ(µ1, µ2) ≤ ε then
du(tdist(µ1), tdist(µ2)) ≤ δ.

3.2 Soundness of Expanded Approximate Simulations

This section culminates in Theorem 3.11 which states that (ε, δ)-expanded approx-
imate simulations are sound with respect to δ-approximate implementations. First
we prove two key lemmas used in the proof of the theorem.

Lemma 3.9. Suppose φ is a (ε, δ)-expanded approximate simulation from A1 to
A2. For any µ1 ∈ Disc(Frags∗A1

) and µ2 ∈ Disc(Frags∗A2
), if φ̂(µ1, µ2) ≤ ε then

du(tdist(µ1), tdist(µ2)) ≤ δ.

Proof. Since φ̂(µ1, µ2) ≤ ε we know that there exists a joint distribution ψ which is
feasible for µ1, µ2, and for every η1, η2 ∈ supp(ψ), φ(η1, η2) ≤ ε. So, for i ∈ {1, 2},
µi =

∑
η1,η2∈supp(ψ) ψ(η1, η2)ηi and from the trace condition it follows that

10
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tdist(µi) =
∑

η1,η2∈supp(ψ)

ψ(η1, η2) tdist(ηi).

We can then express du(tdist(µ1), tdist(µ2)) as follows:

sup
C∈FTraces∗A

| tdist(µ1)(C)− tdist(µ2)(C)|

= sup
C∈FTraces∗A

|
∑
η1,η2

ψ(η1, η2) tdist(η1)(C)−
∑
η1,η2

ψ(η1, η2) tdist(η2)(C)|

≤ sup
C∈FTraces∗A

∑
η1,η2

ψ(η1, η2)|(tdist(η1)(C)− tdist(η2)(C))|.

For any η1, η2 ∈ supp(ψ), φ(η1, η2) ≤ ε and since φ is an (ε, δ)-expanded approx-
imate simulation, du(tdist(η1), tdist(η2)) ≤ δ. From Definition 3.1, it follows that
| tdist(η1)(C) − tdist(η2)(C)| ≤ δ. Therefore, we have du(tdist(µ1), tdist(µ2)) ≤∑

η1,η2
ψ(η1, η2)δ ≤ δ.

Lemma 3.10. Suppose φ : Disc(X1) × Disc(X2) → R≥0 ∪ {∞} is a function,
µi ∈ Disc(Xi) for i ∈ {1, 2}, φ̂(µ1, µ2) ≤ ε with optimal distribution ψ. Let
fi : Disc(Xi) → Disc(Xi) be distributive functions, for i ∈ {1, 2}. If for each
ρ1, ρ2 ∈ supp(ψ), φ̂(f1(ρ1), f2(ρ2)) ≤ ε, then φ̂(f1(µ1), f2(µ2)) ≤ ε.

Proof: For each ρ1, ρ2 ∈ supp(ψ), let ψρ1ρ2 be the optimal distribution for
φ̂(f1(ρ1), f2(ρ2)) = ε. We define a joint distribution ψ′ on Disc(X1) × Disc(X2) as
follows:

ψ′ :=
∑

(ρ1,ρ2)∈supp(ψ)

ψ(ρ1, ρ2)ψρ1,ρ2 (5)

and show that ψ′ is a feasible distribution for f1(µ1) and f2(µ2) and for any η1, η2 ∈
supp(ψ′), φ(η1, η2) ≤ ε.

(i) For feasibility of ψ′ we have to show that for i ∈ {1, 2}, fi(µi) equals:∑
η1∈Disc(X1),η2∈Disc(X2)

ψ′(η1, η2)ηi

=
∑

η1∈Disc(X1),η2∈Disc(X2)

 ∑
(ρ1,ρ2)∈supp(ψ)

ψ(ρ1, ρ2)ψρ1,ρ2(η1, η2)

 ηi
=

∑
(ρ1,ρ2)∈supp(ψ)

ψ(ρ1, ρ2)

 ∑
η1∈Disc(X1),η2∈Disc(X2)

ψρ1,ρ2(η1, η2)ηi


=

∑
(ρ1,ρ2)∈supp(ψ)

ψ(ρ1, ρ2)fi(ρi) [from feasibility of ψρ1,ρ2 ]

= fi

 ∑
(ρ1,ρ2)∈supp(ψ)

ψ(ρ1, ρ2)ρi

 [from distributivity of fi]

= fi(µi) [from feasibility of ψ].

(ii) For optimality of ψ′ it suffices to show that for all η1, η2 ∈ supp(ψ′), φ(η1, η2) ≤
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ε. If ψ′(η1, η2) > 0 then from Equation (5) it follows that there exists ρ1, ρ2 ∈
supp(ψ) such that ψρ1,ρ2(η1, η2) > 0. Since ψρ1,ρ2 is a optimal distribution
for φ̂(f1(ρ1), f2(ρ2)) = ε, from its optimality we know that for any ν1, ν2 ∈
supp(ψρ1,ρ2), φ(ν1, ν2) ≤ ε. In particular, η1, η2 ∈ supp(ψρ1,ρ2) and so we have
φ(η1, η2) ≤ ε.

Theorem 3.11. Let A1 and A2 be two closed comparable task-PIOAs. If there exists
a (ε, δ)-expanded approximate simulation function from A1 to A2 then A1 ≤δ A2.

Proof. Let φ be the assumed (ε, δ)-expanded approximate simulation function from
A1 to A2. Let µ1 be the probabilistic execution of A1 generated by the starting
distribution ν̄1 and a (finite or infinite) task schedule T1, T2, . . .. For each i >

0, we define σi to be c(T1 . . . Ti−1, Ti). Let µ2 be the probabilistic execution of
A2 generated by ν̄2 and the concatenation σ1, σ2, . . .. It suffices to show that:
du(tdist(µ1), tdist(µ2)) ≤ δ.

For each j ≥ 0, let us define µ1,j := apply(ν̄1, T1, . . . , Tj) and µ2,j := apply(ν̄2, σ1, . . . , σj).
For i ∈ {1, 2} and for each j ≥ 0, µi,j ≤ µi,j+1 and limj→∞ µi,j = µi. (the above uses
Lemma A.7 of Appendix A). Observe that for every j ≥ 0, µ1,j+1 = apply(µ1,j , Tj+1)
and also that µ2,j+1 = apply(µ2,j , σj+1).
Step 1a. We prove by induction that for all j ≥ 0, φ̂(µ1,j , µ2,j) ≤ ε. For j =
0, µ1,0 = ν̄1 and µ2,0 = ν̄2. By the start condition of the simulation function,
φ(µ1,0, µ2,0) ≤ ε and therefore by Proposition 3.7 φ̂(µ1,0, µ2,0) ≤ ε.
Step 1b. For the inductive step, we assume that φ̂(µ1,j , µ1,j) ≤ ε and show
that φ̂(µ1,j+1, µ1,j+1) ≤ ε. First of all, note that µ1,j+1 = apply(µ1,j , Tj+1) and
µ2,j+1 = apply(µ2,j , c(σjTj+1)). For i ∈ {1, 2}, let us define fi : Disc(Frags∗Ai

) →
Disc(Frags∗Ai

) as f1(η) := apply(η, Tj+1) and f2(η) := apply(η, c(σjTj+1)). If we can
apply Lemma 3.10, to the functions f1 and f2 then it follows that φ̂(f1(µ1,j), f2(µ2,j)) ≤
ε as required.
Step 1c. It remains to check that these two functions satisfy all the conditions
in the hypothesis of Lemma 3.10. Distributivity of f1 and f2 follow from Propo-
sition B.2 (see Appendix B). Suppose φ̂(µ1,j , µ1,j) ≤ ε with optimal distribution
ψ, and suppose η1, η2 ∈ supp(ψ), we have to show that φ̂(f1(η1), f2(η2)) ≤ ε.
Since η1, η2 ∈ supp(ψ), from optimality of ψ, we know that φ(η1, η2) ≤ ε. Ob-
serve that for i ∈ {1, 2}, supp(ηi) ⊆ supp(µi,j), and thus η1 is consistent with
Tj+1 and η2 is consistent with c(σjTj+1). Therefore, by the step condition on
φ, φ̂(apply(η1, Tj+1), apply(η2, c(σjTj+1))) ≤ ε. Since f1(η1) = apply(η1, Tj+1) and
f2(η2) = apply(η2, c(σjTj+1)), we have φ̂(f1(µ1,j), f2(µ2,j)) ≤ ε, as required in the
hypothesis of Lemma 3.10.
Step 2. From Lemma 3.9, for each j ≥ 0, du(tdistµ1,j , tdistµ2,j) ≤ δ. From
Lemma A.5 of Appendix A we know that for i ∈ {1, 2}, limj→∞ tdist(µi,j) =
tdist(µi). From Proposition 3.2 we conclude that du(tdist(µ1), tdist(µ2)) =
limj→∞ du(tdist(µ1,j), tdist(µ2,j)) ≤ δ.

3.3 Need for Expansion

In the step condition in the definition of EAS (Definition 3.8) it is required that
if φ(µ1, µ2) ≤ ε then φ̂(µ′1, µ

′
2) ≤ ε. Indeed, if we replace this condition with the

weaker condition—if φ(µ1, µ2) ≤ ε then φ(µ′1, µ
′
2) ≤ ε—the resulting approximate
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simulation functions that we would obtain would be sound for proving approximate
implementations. However, such non-expanded approximate simulation functions
are be considerably less powerful than EASs. The key motivation for generalizing
simulation relations to their current expanded form, first came from the verification
of the Oblivious transfer protocol in [6]. In this section, we present a version of this
example adapted to our setting of approximate implementations.
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Fig. 2. Left: Rand and Trapdoor automata. Right: Witnessing joing distribution.

Example 1(Trapdoor and Rand) Consider an abstract automaton Rand that ran-
domly chooses a number z between 0 and n and outputs it. We assume that n is
odd. Trapdoor , on the other hand, first chooses a random number y with slightly
different probabilities. The first n−1

2 numbers are chosen with probability 1
n+1 − ε

and the remaining are chosen with probability 1
n+1 + ε) Trapdoor then applies a

known permutation (e.g., z = (y+1) mod n) to the chosen number, and outputs
the result. The Rand and the Trapdoor for n = 3 automata are shown in Figure 2.
Suppose the out actions producing the final value of z are external actions. Then,
we would like these actions (tasks) to correspond which means that the choose step
of Trapdoor should map to no step of Rand . We present an approximate simula-
tion function that “ought to work” for this example. Instead of using a simulation
function on distributions of finite execution fragments, we use a simpler φ that is a
function on distribution of states.

φ(µ1, µ2) :=


maxs,u[µ1(s) + µ2(u)] ∀ s ∈ supp(µ1), u ∈ supp(µ2), s.z 6= u.z

0 ∀ s ∈ supp(µ1), u ∈ supp(µ2), s.z = s.y = ⊥

maxs | 1
n+1 − µ1(s)| otherwise.

Informally, states corresponding to different values to z produce completely dif-
ferent outputs, and thus they should be relatively unrelated. The first condition
in the definition of φ assigns a large value (maxs,uµ1(s) + µ2(u)) to distributions
that contain such mismatched states. The second condition is satisfied only for
the Dirac masses δr0 and δt0 , and therefore φ is 0. Finally, the third condition is
satisfied for distributions supported on states that have the same value of z, and
where the variable y has been assigned a value in the Trapdoor automaton.

Let µ11 = apply(δt0 , choose) and µ21 = apply(δr0 , λ) = δr0 . Then, for all s ∈
supp(µ11), s.z = r0.z = ⊥, and hence by the third condition in the definition of
φ, φ(µ11, µ21) = ε. Next, let µ12 = apply(µ11, comp) and µ21 = apply(µ22, comp).
Then, there exists s ∈ supp(µ21) and u ∈ supp(µ22), such that s.z 6= u.z, and by
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the first condition, φ(µ12, µ22) ≥ 2
n+1 , which is much larger than ε. Therefore, we

cannot use φ as an approximate simulation function to prove that Trapdoor is a
good approximate implementation for Rand .

We show that φ can be used as an approximate simulation function if we use φ
as an EAS. It suffices to prove that φ̂(µ12, µ22) ≤ 2ε, and we will use the witnessing
joint distribution shown in the table of Figure 2. Indeed, the marginal distributions
of ψ match with µ21 and µ22. Further, for any η, ν in the support of ψ, η and ν have
the following properties: (1) either they are Dirac masses at states that have the
same value of z, in which case φ(η, ν) = ε from the third condition in the definition
of φ, otherwise (2) for any s ∈ X1 and u ∈ X2, η(s) ≤ ε and ν(u) ≤ ε, and therefore
by the first condition φ(η, ν) ≤ 2ε. From the above it follows that φ̂(µ12, µ21) ≤ 2ε,
which is what we set out to prove.

3.4 Probabilistic Safety

SupposeA1 andA2 are comparable closed task-PIOAs such thatA2 ≤δ A1. Suppose
further that A1 violates some safety property S with probability at most p then we
can conclude that A2 violates S with probability at most p + δ. We first prove
the following more general result. Let (Traces,FTraces) be the measurable space of
traces containing the traces of both A1 and A2. Let (X,FX) be another measurable
space. A random variable is a measurable function X : (Traces,FTraces) → (X,FX).
We use the standard notation µ[X = x] := µ({β ∈ Traces | X(β) = x}, for x ∈ X.

Proposition 3.12. Let X be random variable on (Traces,FTraces). Suppose A2 ≤δ
A1 and there exists 0 ≤ p ≤ 1 such that for all µ1 ∈ tdists(A1), µ1([X = x]) ≤ p.
Then, for all µ2 ∈ tdist(A2), µ2[X = x] ≤ δ + p.

Proof. Fix µ2 ∈ tdistsA2. Since A2 ≤δ A1 from Definition 3.3 there exists µ1 ∈
tdists(A1), such that du(µ1, µ2) ≤ δ. We know that supC |µ2(C) − µ1(C)| ≤ δ.
In particular, |µ2([X = x]) − µ1([X = x])| ≤ δ. As µ1([X = x]) ≤ p, we have
µ2([X = x]) ≤ p+ δ as required.

We denote the common set of external actions of A1 and A2 by E. Let us assume
that violation of some safety property S is indicated by the occurrence of one of the
external actions from the set U ⊆ E. We define the function XU : Traces → {0, 1}
as XU (β) := 1 if some action from U occurs in the trace β, otherwise XU (β) := 0.
It can be easily checked that XU is a measurable function and therefore is a boolean
valued random variable. Then, the event [XU = 1] corresponds to the set of traces
in which S is violated. Now, if we know that in any trace distribution of A1

the probability of any U occurring is at most p and that A2 ≤δ A1, then from
Proposition 3.12 we can conclude that in any trace distribution of A2 the probability
of occurrence of U is at most δ + p.

4 Discounted Uniform Metric

In the preceding section we defined uniform approximate implementation for PIOAs
and proved that EASs are sound for proving this implementation relationship. We
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also demonstrated that uniform approximate implementations are suitable for rea-
soning about certain classes of properties, like safety properties, where it is sufficient
to quantify the absolute discrepancy in the trace distributions over all sets of traces.
For certain other classes of properties the uniform metric is not suitable, because
the worst case discrepancy over all sets of traces does not convey useful information.
We illustrate this with the following example.
Example 2. (Randomized Consensus) The Ben-Or consensus protocol [3] is a
randomized algorithm for n fault-prone processors to agree on a valid value by com-
municating over an asynchronous network. The algorithm proceeds in a sequence
of stages in each of which nonfaulty processes send and receive messages based on
coin-flips and comparison of values. If the processes have access to perfectly random
coins, then with probability 1

2n , a stage ends successfully and all nonfaulty processes
agree on a value, and after one communication round of a successful stage the con-
sensus value is disseminated. An unsuccessful stage is followed by the beginning of
the next stage.

The automaton in Figure 3 captures the termination behavior of the algorithm.
The protocol starts is state s10, the starting state for each of the successive stages
are the states s20, s30, . . .. The successful completion of the ith stage is represented
by state si1. The action a models the computation and communication within a
stage. From stage si0, with probability p it leads to s(i+1)0, the next stage, and with
probability 1−p it leads to si1. The action d marks the termination of the protocol
and it takes si1 to si2 with probability 1.

1−pa
p
a

1−pa
p
a

d

1−pa
p
a

d

1−pa
p
a

dd

s31

s10 s20 s30

s21s11

s12 s22 s32

s40

s41

s42

Fig. 3. Automata representing Ben-Or consensus protocol.

Suppose PIOA A1 is an instance of the automaton in Figure 3 with perfect
random coins, that is, p = 1 − 1

2n and 1 − p = 1
2n . And let A2 be a PTIOA

instance of the same automaton with slightly biased coins. We model the transition
probabilities for A2 by p + ε and 1 − p − ε, for a small positive ε. We would like
to compare the probabilities of termination of A1 and A2 after a certain number of
rounds, say k. With the uniform approximate implementation, we can show that the
difference in the probabilities is less than δ, for a fixed δ > 0, however if individual
probabilities of termination are themselves less than δ then this δ-approximation is
too coarse and does not give us any useful information. In the remainder of this
section, we show how a discounted version of the uniform metric can be used to
make more fine grained comparison of probabilities of traces.
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4.1 Discounted Approximate Simulations

Definition 4.1. A probability distribution µ on execution fragments of A is said to
be finite if Frags∗A is a support for µ. A trace distribution µ of A is finite if Traces∗A
is a support for µ.

Since any set of finite execution fragments is measurable, any finite probability
distribution on execution fragments of A can also be viewed as a discrete probability
measure on Frags∗A. Likewise, a finite trace distribution can be viewed as a discrete
distribution over Traces∗A. In this section, we consider task-PIOAs with finite (trace)
distributions and will treat these distributions as discrete distributions on execution
fragments or traces.

Definition 4.2. For any k ∈ N, the kth uniform metric is a function dk : Disc(TracesA)×
Disc(TracesA) → R≥0 defined as:

dk(µ1, µ2) := max
β∈E∗,|β|=n

|µ1(β)− µ2(β)|.

Definition 4.3. Suppose A1 and A2 are comparable, closed task-PIOAs and {δk}k∈N
is a collection of positive real numbers, called discount factors. If for every trace
distribution µ1 in tdist(A1) there exists a trace distribution µ2 ∈ tdist(A2) such that
for every k ∈ N, dk(µ1, µ2) ≤ δk, then we say that A1 δk-implements A2 and write
this as A1 ≤δk A2. A1 and A2 are said to be δk-equivalent, written as A1

∼=δk A2,
if A1 ≤δk A2 and A2 ≤δk A1.

Proposition 4.4. For all k ∈ N, dk is a pseudometric.

Proof. The symmetry property is easy to check. We prove that dk satisfies the trian-
gle inequality. Let µ1, µ2, µ3 be distributions on E∗. dk(µ1, µ3) = maxβ∈E∗,|β|=k |µ1(β)−
µ3(β)|. Suppose β3 is a trace that realizes the supremum.

|µ1(β3)− µ3(β3)| ≤ |µ1(β3)− µ2(β3)|+ |µ2(β3)− µ3(β3)|
dk(µ1, µ3)≤ max

β,|β|=k
|µ1(β)− µ2(β)|+ max

β,|β|=k
|µ2(β)− µ3(β)|,

≤dk(µ1, µ2) + dk(µ2, µ3).

We define a new kind of approximate simulation called Discounted Approximate
Simulation (DAS) for proving discounted approximate implementations for task-
PIOAs. Given a distribution µ over executions (or traces) we denote the longest
execution (respectively trace) in the support of µ by L(µ). We extend this notation
to a pair of distributions by defining L(µ1, µ2) = max(L(µ1), L(µ2)).

Definition 4.5. Suppose A1 and A2 are two comparable closed task-PIOAs, and
{φk}k∈N is a collection of functions, where each φk : Disc(Frags∗A1

)×Disc(Frags∗A2
) →

R≥0 ∪{∞}. Given a collection of real number pairs {εk, δk}k∈N, the collection {φk}
is an (εk, δk)-discounted approximate simulation from A1 to A2 if there exists a
function c : R∗1 ×R1 → R∗2 such that the following properties hold:

(i) Start condition: φ0(ν̄1, ν̄2) ≤ ε0.

(ii) Step condition: If for all k ≤ L(µ1, µ2), φk(µ1, µ2) ≤ εk, T ∈ R1, σ ∈ R∗1,
µ1 is consistent with σ, and µ2 is consistent with full(c)(σ), then for all k ≤
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L(µ′1, µ
′
2), φk(µ

′
1, µ

′
2) ≤ εk, where µ′1 = apply(µ1, T ) and µ′2 = apply(µ2, c(σ, T )).

(iii) Trace condition: If for all k ≤ L(µ1, µ2), φk(µ1, µ2) ≤ εk then for all k ≤
L(tdist(µ1), tdist(µ2)) dk(tdist(µ1), tdist(µ2)) ≤ δk.

We prove Theorem 4.6 which states that (εk, δk)- approximate simulations are
sound with respect to δk-approximate implementations.

Theorem 4.6. Let A1 and A2 be two closed isomorphic comparable task-PIOAs.
If there exists a (εk, δk)-discounted approximate simulation function from A1 to A2

then A1 ≤δk A2.

Proof. Let φ be the assumed (εk, δk)-discounted approximate simulation function
from A1 to A2. Let µ1 be the probabilistic execution of A1 generated by the starting
distribution ν̄1 and a finite task schedule T1, T2, . . . , Tn. For each i > 0, we define σi
to be c(T1 . . . Ti−1, Ti). Let µ2 be the probabilistic execution of A2 generated by ν̄2

and the concatenation σ1, σ2, . . . , σn. It suffices to show that dw(tdist(µ1), tdist(µ2)) ≤ δ.
For each j ≥ 0, let us define µ1,j := apply(ν̄1, T1, . . . , Tj) and µ2,j := apply(ν̄2, σ1, . . . , σj).

For i ∈ {1, 2} and for each j ≥ 0, µi,j ≤ µi,j+1 and µi,n = µi. Observe that for
every j ≥ 0, µ1,j+1 = apply(µ1,j , Tj+1) and µ2,j+1 = apply(µ2,j , σj+1).

We prove by induction that for all j ≥ 0, for all k ≤ L(µ1,j , µ2,j), φk(µ1,j , µ2,j) ≤
εk. For j = 0, µ1,0 = ν̄1 and µ2,0 = ν̄2. By the start condition of the simulation
function, φ0(µ1,0, µ2,0) ≤ ε. For the inductive step, we assume that for all k ≤
L(µ1,j , µ2,j), φk(µ1,j , µ2,j) ≤ εk. Then, from Part (ii) of Definition 3.8 it follows
that for all k ≤ L(µ1,j+1, µ2,j+1), φk(µ1,j+1, µ2,j+1) ≤ εk. In particular, for all
k ≤ L(µ1, µ2), φk(µ1, µ2) ≤ εk, from which, using condition (iii) it follows that for
all k ≤ L(tdist(µ1), tdist(µ2)), dk(tdist(µ1), tdist(µ2)) ≤ δk.

Example 2.(Continued) Let εk = δk = (p + ε)k − pk, for each k ∈ N. We will
show that A1 and A2 are δk-equivalent using the following discounted approximate
simulation:

for each k, φk(µ1, µ2) = maxα,anum(α)=k|µ1(α)− µ2(α)|, (6)

where µ1 ∈ Disc(Execs∗A1
), µ2 ∈ Disc(Execs∗A2

), and anum(α) is the number of
occurrence of the action a in the execution α.

Proposition 4.7. The collection of functions {φk} defined above is an (εk, δk)-
discounted approximate simulation from A1 to A2.

Proof sketch. We check that the collection {φk} satisfies the three conditions in
Definition 4.5.

(i) Start condition: ν1 = ν2 = δs10 , and therefore φ0(ν1, ν2) = 0.

(ii) Step condition: We define the task correspondence function in the obvious
way, c(σ, T ) := T , where σ is a task schedule and T is a task for A1. Thus
for any µ1 ∈ Disc(Execs∗A1

) and µ2Disc(Execs∗A2
) that are obtained from ν1

and ν2 by applying a sequence of tasks, L(µ1, µ2) = L(µ1) = L(µ2). Consider
any µ1 ∈ Disc(Execs∗A1

),µ2 ∈ Disc(Execs∗A2
), and suppose µ1 = apply(ν1, σ)

and µ2 = apply(ν2, full(c)(σ)). Let us denote µ′1 = apply(µ1, T ), and µ′2 =
apply(µ2, c(σ, T )) = apply(µ2, T ). Then, it suffices to show that for all k ≤
L(µ1, µ2), φk(µ′1, µ

′
2) ≤ (p+ε)k−εk. This part of the proof is by a case analysis
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on the types of tasks, T = {a}, {d} and the types of executions.
The interesting cases are for T = {a} and executions of the form α = α′ask0

or α = α′as(k−1)1, for some k ≤ L(µ1). For the first case, µ′1(α) = µ1(α′)p
and µ′2(α) = µ2(α′)(p + ε), and therefore φk+1(µ′1, µ

′
2) = p|µ2(α′) − µ1(α′)| +

εµ2(α′). From the inductive hypothesis, |µ2(α′)−µ1(α′)| ≤ εk. It follows that,
φk+1(µ′1, µ

′
2) ≤ p|(p+ ε)k − pk|+ ε(p+ ε)k ≤ εk+1. Likewise in the second case,

µ′1(α) = µ1(α′)(1− p) and µ′2(α) = µ2(α′)(1− p− ε), and performing a similar
calculation as above, we can show that φk+1(µ′1, µ

′
2) ≤ εk.

(iii) Trace condition: First of all, for any µ1 ∈ Disc(Execs∗A1
) that are obtained

from ν1 by applying a sequence of tasks, L(µ1) = L(tdist(µ1)). If β is a trace
of the form akd, for some k ≥ 0. Then, for i ∈ {1, 2}, tdist(µi)(β) = µi(α),
where α = s10as20 . . . sk0ask1dsk2. From which it follows that | tdist(µ1)(β) −
tdist(µ2)(β)| = |µ1(α) − µ2(α)| ≤ φk+1(µ1, µ2) ≤ εk+1. On the other hand,
if β is a trace of the form ak+1, for some k ≥ 0. Then, for i ∈ {1, 2},
tdist(µi)(β) = µi(α1)+µi(α2), where α1 = s10as20 . . . s(k+1)0as(k+1)1 and where
α2 = s10as20 . . . s(k+2)0. Thus, | tdist(µ1)(β)−tdist(µ2)(β)| = |µ1(α1)+µ1(α2)−
µ1(α1) − µ2(α1)| = |µ1(α) − µ1(α)|, where α = s10as20 . . . s(k+1)0. Therefore,
| tdist(µ1)(β)− tdist(µ2)(β)| ≤ φk+1(µ1, µ2) ≤ εk+1 as required.

5 Approximations for Task-PIOAs

In this section, we discuss how the notion of uniform approximate implementations
and the soundness of EASs extendeds to general (not necessarily closed) task-PIOAs.
In an analogous manner, discounted approximate implementation and DAS can also
be extended.

The basic idea is to define a new notion of implementation following the approach
of [5]. We formulate the external behavior of a A as a mapping from possible “en-
vironments” for A to sets of trace distributions that can arise when A is composed
with the given environment.

Definition 5.1. An environment for task-PIOA A is a task-PIOA E such that the
composition of A and E is closed.

Definition 5.2. The external behavior of a task-PIOA A, written as extbehA,
is a function that maps each environment task-PIOA E for A to the set of trace
distributions of the composition of A and E.

Approximate implementation for general task-PIOAs can then be defined to be
inclusion of external behavior for all environments.

Definition 5.3. If A1 and A2 are comparable then A1 is said to δ-implement A2,
for some δ ≥ 0, if for every environment task-PIOA E for both A1 and A2, for
every µ1 ∈ extbehA1(E) there exists µ2 ∈ extbehA2(E) such that du(µ1, µ) ≤ δ.

Based on this modified definition of approximate implementation the soundness
of expanded approximate simulations for general task-PIOAs follow as a Corollary
to Theorem 3.11.

Corollary 5.4. Let A1 and A2 be two comparable task-PIOAs. Suppose that for
every environment E for both A1 and A2, there exists a (εE , δ)-approximate simu-
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lation function from the composition of A1 and E to the composition of A2 and E.
Then A1 ≤δ A2.

5.1 Conclusions

In this paper we have introduced approximate implementations for probabilistic
I/O automata. We have employed the task mechanism of [6] to obtain the trace
distributions of a PIOA, and then we have defined two different kinds of approx-
imate implementations, based on the uniform metric and the discounted uniform
metric on trace distributions. We proposed expanded approximate simulations and
discounted approximate simulations for proving, the two proposed implementation
relations, respectively. EAS and DAS can be used to approximately reason about
probabilistic safety and termination properties. PIOAs can be nondeterministic and
our construction does not require the underlying state spaces of the automata or
the space of external actions to be metric spaces.

In our formulation of expanded approximate simulations, a simulation proof re-
duces to finding an optimal joint distribution satisfying certain constrains on the
marginals. This is closely related to the well known Kantorovich optimal trans-
portation problem. For well-behaved classes of simulation functions, therefore, we
would like to explore the possibility of proving approximate simulations by solving
optimization problems.

In the future, we want develop a new kind of Discounted Expanded Approximate
Simulations that combines the features of EAS and DAS. We would also like to
develop simulation based proof techniques where the simulation functions are func-
tions of distributions over states and not functions of distributions over execution
fragments. Finally, we would like to extend the notion approximate implementa-
tions to the Probabilistic Timed I/O Automaton framework [24].
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A Appendix: Limits of Chains of Distributions

All the definitions and lemmas in this Appendix are from [5]. In this Appendix A
will be a task-PIOA. Given a finite execution fragment α ofA, the cone of executions
generated by this fragment Cα is the set of all execution fragments that extend α.
Given a finite trace β of A, Cα is the set of all traces that extend β.

Definition A.1. If µ1, µ2 ∈ Disc(FragsA), such that for every α ∈ Frags∗A, µ1(Cα) ≤
µ2(Cα), then we write µ1 ≤ µ2.

Definition A.2. A chain of probability measures on execution fragments of A is
an infinite sequence µ1, µ2, . . . of probability measures on execution fragments of A
such that µ1 ≤ µ2 . . .. Given a chain, the limit of the chain is defined as a function
µ on the σ-algebra generated by the cones of execution fragments of A, as follows:
for each α ∈ Frags∗A, µ(Cα) := limi→∞ µi(Cα).

Standard measure theoretic arguments guarantee that µ can be extended uniquely
to a probability measure on the σ-field generated by the cones of finite execution
fragments.

Definition A.3. If µ1, µ2 are probability measures on traces of A, such that for
every finite trace β of A µ1(Cβ) ≤ µ2(Cβ), then we write µ1 ≤ µ2.

Definition A.4. A chain of probability measures on traces of A is an infinite se-
quence µ1, µ2, . . . of probability measures on traces of A such that µ1 ≤ µ2 . . .. Given
a chain of probability measure on traces, the limit of the chain is defined as a func-
tion µ on the σ-algebra generated by the cones of traces of A, as follows: for each
finite trace β of A, µ(Cβ) := limi→∞ µi(Cβ).

Again, µ can be extended uniquely to a probability measure on the σ-field gen-
erated by the cones of finite traces.

Lemma A.5 (4 of [5]). Let µ1, µ2, . . . be a chain of measures on FragsA and let
µ = limi→∞ µi, then limi→∞ tdist(µi) = tdist(µ).

Lemma A.6 (11 of [5]). Let µ ∈ Disc(Frags∗A) and σ be a finite task schedule for
A. Then apply(µ, σ) ∈ Disc(Frags∗A).

Lemma A.7 (20 of [5]). Let µ ∈ Disc(Frags∗A) and σ1, σ2, . . . be a finite or infinite
sequence of task schedulers for A. For each i > 0 let ηi = apply(µ, σ1σ2 . . . σi).
Let σ = σ1σ2 . . . be the concatenation of the all the task schedulers, and let η =
apply(µ, σ). Then the ηi’s form a chain and η = limi→∞ ηi.

B Appendix: Lemmas for Approximate Simulations

This Appendix provides proofs of several propositions stated in the paper and also
some auxiliary lemmas used for proving the soundness theorem.

The following is a proof of Proposition 3.2.

Lemma B.1. Let {µi}i∈I be a countable family of discrete probability measures
µi ∈ Disc(Frags∗A) and let µ =

∑
i∈I λiµi be a convex combination of {µi}, where∑

i∈I λi = 1. Let T be task of A. Then apply(µ, T ) =
∑

i∈I λi apply(µi, T ).

Proof. Suppose p1 and p2 are the functions used in the definition of apply(µ, T ),
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and suppose for each i ∈ I, pi1 and pi2 be the functions used in the definition of
apply(µi, T ). Fix a finite execution fragment α. We show that p1(α) =

∑
i λip

i
1(α)

and p2(α) =
∑

i λip
i
2(α), from which it follows that apply(µ, T )(α) = p1(α)+p2(α) =∑

i λi(p
i
1(α) + pi3(α)) =

∑
i λi apply(µi, T ).

To prove that p1(α) =
∑

i λip
i
1(α), we consider two cases. If α = α′aq where α′ ∈

supp(µ), a ∈ T , and (α′.lstate, a, η) ∈ D, then, by Definition 2.2 p1(α) = µ(α′)η(q)
and for each i ∈ I, pi1(α) = µi(α′)η(q). Thus, p1(α) =

∑
i λip

i
1(α). Otherwise,

again by Definition 2.2 p1(α) = 0 and for each i ∈ I, pi1(α) = 0, and the result holds
trivially.

To prove that p2(α) =
∑

i λip
i
2(α), we consider two cases. If T is not enabled in

α.lstate then, by Definition 2.2, p2(α) = µ(α), and for each i ∈ I, pi2(α) = µi(α).
Thus, p2(α) =

∑
i λip

i
2(α). Otherwise, again by Definition 2.2 p2(α) = 0 and for

each i ∈ I, pi2(α) = 0, and the result holds trivially.

Proposition B.2. Let {µi}i∈I be a countable family of discrete probability mea-
sures µi ∈ Disc(Frags∗A) and let µ =

∑
i∈I λiµi be a convex combination of {µi},

where
∑

i∈I λi = 1. Let σ be a finite sequence of tasks. Then apply(µ, σ) =∑
i∈I λi apply(µi, σ).

Proof. The proof is by induction on the length of σ. If σ is the empty sequence,
then for any η ∈ Disc(Frags∗A), apply(η, σ) = η and it follows that µ =

∑
i∈I λiµi =∑

i∈I λi apply(µi, σ). For the induction step, let σ = σ′T . By Definition 2.2,
apply(µ, σ′T ) = apply(apply(µ, σ′), T ). By the induction hypothesis, apply(µ, σ′) =∑

i λi apply(µi, σ′) and thus, apply(µ, σ′T ) = apply(
∑

i λi apply(µi, σ′), T ). For each
i ∈ I, apply(µi, σ′) is a discrete probability measure in Disc(Frags∗A). By Lemma B.1,
apply(

∑
i λi apply(µi, σ′), T ) =

∑
i λi apply(apply(µi, σ′), T ). Using Definition 2.2 it

follows that apply(µ, σ′T ) =
∑

i λi apply(µi, σ′T ) as required.
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