
Using Virtual Nodes to Coordinate the Motion of
Mobile Nodes

Nancy Lynch, Sayan Mitra, and Tina Nolte

Abstract— We describe how a virtual node abstraction layer
could be used to coordinate the motion of real mobile nodes
in a region of 2-space. In particular, we consider how nodes
in a mobile ad hoc network can arrange themselves along a
predetermined closed curve in the plane, and can maintain
themselves in such a configuration in the presence of changes
in the underlying mobile ad hoc network, specifically, when
nodes may join or leave the system or may fail. Our strategy
is to allow the mobile nodes to implement a virtual layer con-
sisting of mobile client nodes, stationary virtual nodes (VNs)
at predetermined locations in the plane, and local broadcast
communication. The VNs coordinate among themselves to
distribute the client nodes relatively evenly among the VNs’
regions, and each VN directs its local client nodes to form
themselves into the local portion of the target curve.

Index Terms— Virtual nodes, Motion Coordination,...

I. INTRODUCTION

Review our prior VN work. Cite work on motion coor-
dination, e.g., from Bullo’s [1] Morse’s work [3].

We should also emphasize the modeling. All these sys-
tems should make sense in terms of HIOAs.

II. PHYSICAL SYSTEM

Our physical model of the system consists of a finite
but unknown number of communicating mobile nodes in a
bounded square B in R2. We assume that each node has
a unique identifier from a set I. Formally, our physical
layer model consists of three types of HIOA [4] (Figure
1): (1) automata MN i to model mobile node with identifier
i ∈ I, (2) a “real world” automaton RW to model the
physical location of all the mobile nodes and the real time,
and (3) a LBcast automaton that models the local broadcast
communication service between the mobile nodes.

Figure 2 shows the components of automaton MN i that
are part of the physical layer model; it may have other
arbitrary internal variables and actions that are not specified.
For convenience, we assume that local actions take no time
to complete. At each point each mobile node is either
in active or inactive mode; initially finitely many nodes
are active. The faili action sets the mode to inactive. In
inactive mode, all internal and output actions are disabled,
none of the input actions — except for the recoveri action
which sets the mode to active — affect the internal and
output variables, and the locally controlled variables remain
constant during trajectories. We model the departure of a
node from B as a failure, in which case the node also stops
moving. In other words, our model excludes the possibility
of an inactive node moving. The maximum speed of a
mobile node is bounded by vc.

RW LBcast

MN i MN k

MN l

MN j

. . .

v

realtime
x

send(m)

receive(m)

Fig. 1. Physical layer. MN automata communicate with each other through
an LBcast service and receive time and location updates from RW .

Signature: Transitions:
Input receive(m)i Input faili
Input faili Effect
Input recoveri vi ← 0
Output send(m)i mode ← inactive

all other internal variables
State: set to initial values

Input
xi ∈ B Input recoveri
realtime ∈ R≥0 Effect

Output mode ← active
vi ∈ R2, initially 0

Internal
mode ∈ {active, inactive}
finite set of other variables

Fig. 2. Hybrid I/O Automaton MN i

The RW automaton (see Figure 8) reads the velocity
output vi for each node i ∈ I, and produces the position xi

for the MN i and the LBcast automata. RW also produces
realtime for all other physical layer components.

The mobile nodes communicate using a local broadcast
service, LBcast, which is a generic local broadcast service
parameterized by a radius Rp and a maximum message
delay dp. The LBcast(Rp, dp) service guarantees that when
MN i performs a send(m)i action at some time t, the
message is delivered within the interval [t, t + dp] — by
a receive(m)j action — to every MN j that did not fail
and was within Rp distance of i over the interval [t, t+dp].

RW VLBcast

VNe

h VNg

CNnCNm
VNVN

CN j

o

CN il

kCN

f

CN

CN

Fig. 3. Virtual Node abstraction. VNs and CNs communicate using the
V LBcast service.

III. VIRTUAL SYSTEM

The bounded square B is partitioned into a set of zones
Bh, h ∈ H that is known a priori to all participating mobile
nodes. For simplicity we assume this to be a square grid
with sides of length b. Our virtual layer abstraction consists
of stationary virtual nodes corresponding to each h ∈ H,
mobile client nodes, and a communication service between
virtual and client nodes. Formally, the virtual layer model
consists of four types of HIOA (Figure 3): (1) a VN h

automaton for each h ∈ H, (2) a CN i automaton for each
mobile node with identifier i ∈ I, (3) an automaton RW to
model the physical location of all the client nodes and the
real time, and (4) a virtual LBcast communication service,
VLBcast , for the VNs and the CNs.

Abstractly, a VN h, h ∈ H automaton is a restricted
kind of HIOA. In particular, it has no realtime clock
variable and is an MMT automaton whose enabled locally
controlled actions are guaranteed to occur within d′ time
after becoming enabled. The value of d′ is further discussed
in Section VI. It is located at the center oh of the zone
Bh and communicates with other VNs and CNs using the
VLBcast service through sendh and receiveh actions. A
CN i, i ∈ I automaton has the same external interface as a
VN automaton. In addition, it has input variables realtime
and xi from the RW automaton and an output vector
velocity vi to the RW automaton. For the purpose of this
paper, the VN and CN automata implement a distributed
motion coordination algorithm using several other internal
state variables and actions (see Figures 6 and 4) which will
be discussed in detail in Section V. With respect to failures,
an automaton CN i behaves the same way as MN i. An
automaton VN h is more robust; it fails only when all the
mobile nodes that are in the zone Bh fail or leave and it
recovers as soon as some mobile node enters Bh.

The RW automaton in the virtual layer is the same
as the one described in the physical layer. The VLBcast

service provides the same guarantees as the LBcast service

described in of the physical layer, with parameters Rv =√
5b and dv = 2dp + 1. A V Nh communicates only with

its neighboring VNs and with the CNs that are in Bh.

IV. THE MOTION COORDINATION PROBLEM

In this section we formally state the objective of our mo-
tion coordination algorithms. A differentiable parameterized
curve Γ is a differentiable map P → B, where the domain
set P of parameter values, is an interval in the real line.
The curve Γ is regular if for every p ∈ P , Γ′(p) 6= 0.
For a, b ∈ P , the arc length of a regular curve Γ from a

to b, is given by s(a, b) =
∫ b

a
|Γ′(p)|dp. Γ is said to be

parameterized by arc length if for every p ∈ P |Γ′(p)| = 1.
For a given point x ∈ B, if there exists a p ∈ P such

that Γ(p) = x, then we say that the point x is on the curve
Γ; abusing the notation, we write this as x ∈ Γ. Since Γ
is a simple curve, the inverse function Γ−1 is well defined.
That is, if x ∈ Γ, then p = Γ−1(x) is unique.

Definition 1: A sequence x1, . . . ,xn of points in B are
said to be evenly spaced on a curve Γ if there exists a
sequence of parameter values p1, . . . , pn, such that for each
i, 1 ≤ i ≤ n, Γ(pi) = xi, and for each 1 < i < n pi −
pi−1 = pi+1 − pi.

Consider a simple, regular, and differentiable target curve
Γ parameterized by arc length, and an algorithm A running
on N mobile nodes initially located in B. A is said to solve
the motion coordination problem on Γ, if after finite time
the position of N − c of the mobile nodes are on Γ, where
c is a constant. A is said to solve the problem with even
spacing if in addition, (eventually?) the position of N − c
of the mobile nodes are evenly spaced on Γ.

V. SOLUTION USING VIRTUAL NODE LAYER

We an algorithm that solves the motion coordination
problem for target curve Γ such that most of the partic-
ipating mobile nodes are eventually evenly spaced on Γ.
In our algorithm each virtual node h ∈ H, uses only
local information about the target curve Γ. This is desirable
in many practical settings, for example, where the curve
is dynamically changing, or where the mobile nodes in
Bh, receive periodic updates only about the nature of the
curve in zone Bh from an external source. We could model
this scenario by having the RW automaton communicate
the local nature of Γ to the relevant mobile nodes, and
our motion coordination algorithm would still be correct,
however, for convenience we use a simplified model where
all the mobile nodes have prior knowledge of the complete
curve Γ.

Let Ph = {p ∈ P |Γ(p) ∈ Bh} be the domain of Γ in
zone Bh ⊂ B. We assume that Ph is convex for every zone
Bh ⊆ B; it may be empty for some Bh. The length of the
curve in zone Bh is |Ph|. The local part of the curve Γ in
zone Bh is the restriction Γh : Ph → Bh.

The Virtual Node abstraction is used as a means to
coordinate the movement of client nodes in a zone. A VN
controls the motion of the CNs in its zone by setting and

Signature:
Input receive(m)h

Output send(m)h

State:
Internal

M : I → H× B × R, a partial function mapping client ids to
assigned zone id, current location, last update time, initially ∅.
Accessors: assigned, pos, ts.

M ′, same type as M , initially ∅.
V : H → Z ×R× R, a partial function mapping virtual node ids to

current number, density, last timestamp, initially
{〈g, 〈0, 0, 0〉〉} for all g ∈ N ∪ {h}.
Accessors: num, density, ts.

target : I → H×B, a partial function mapping client ids
to assigned zone id, target location, initially ∅.
Accessors: assigned, pos.

send-buffer, a queue of messages to be sent, initially ∅
logical-time ∈ R, initially 0
next-vn-update ∈ R, initially ∆
next-cn-update ∈ R, initially ∆ + d
seq, a list of 〈P , I〉 pairs sorted by P , initially ∅.

Accessors: pos, id.

Derived
N = set of ids of neighboring virtual nodes, including h
Y = |{i ∈ id(M) |assigned(M(i)) = h}|
og ∈ B, for each g ∈ H, center of zone Bg

In = { g ∈ N ||Pg | 6= 0 }
Out = N \ In

height(g)
∆

= if h ∈ In then density(V(g)), else num(V(g))
frac(g) ∆

= if h ∈ In then |Pg |, else 1
Low = if h ∈ In then {g ∈ In |height(g) ≤ height(g)},

else {g ∈ Out |height(g) ≤ height(g)},

Transitions:
Input receive(m)h

Effect
if m = 〈client-update, id, assigned, x, sent〉 then

if x ∈ Bh then
if logical-time = 0 ∧ sent > 0 then

next-vn-update ← dsent/∆e ·∆
next-cn-update ← next-vn-update + d

logical-time ← max(logical-time, sent)
if sent ≤ next-cn-update -d then

M ← M ∪ {〈id, 〈assigned, x, sent〉〉}
else M′ ← M′ ∪ {〈id, 〈assigned, x, sent〉〉}

else if m = 〈vn-update, id, n, dens, sent〉 then
if id ∈ N then

if logical-time = 0 ∧ sent > 0 then
next-vn-update ← dsent/∆e ·∆
next-cn-update ← next-vn-update + d

logical-time ← max(logical-time, sent)
V(id) ← 〈n, dens, sent〉

for each i ∈ id(M)
if ts(M(i)) 6= next-cn-update -d then

M ← M / {〈i, M(i)〉}
V(h) ← 〈Y, Y/(|Ph|, logical-time〉
if logical-time > next-vn-update + dv then

send-buffer ← send-buffer ∪
{〈vn-update, h, Y, density(V(h)), logical-time〉}

next-vn-update ← dlogical-time/∆e ·∆
if logical-time > next-cn-update then

M ← assign(M, V)
target ← targetupdate(M, Γh)
send-buffer ← send-buffer ∪ {〈target-update, h, target〉}
for each g ∈ id(V) ∩ N

V(g) ← 〈0, 0, 0〉
M ← M′

M′ ← ∅
next-cn-update ← next-vn-update + d

Output send(m)h

Precondition
nonempty(send-buffer) ∧m = head(send-buffer)

Effect
send-buffer ← tail(send-buffer)

Fig. 4. VNh IOA implementing motion coordination algorithm with
parameters: safety e, update period δ,∆, and update offset d.

Functions:
2function assign(M, V) =

if Y ≤ e then
4return M; continue

if h ∈ Out ∧ In 6= ∅
6if Y > e

for each g ∈ In
8ra← b(Y − e)/|In|c

update M by reassigning ra nodes from h to g
10else

average←
P

g∈Low height(g)/|Low|
12change← ρ2(height(h)− average)

nra← min(bchange · fracc, Y − e)
14sum←

P

g∈Low(height(h)− height(g))frac(g)
if nra > 0

16for each g ∈ Low, g 6= h
if h ∈ In

18ra← min(bnra(height(h) − height(g))frac(g)/sumc,
b 1
4
(height(h) − height(g))frac(g)/frac(h)c)

20else
ra← bnra · (height(h)− height(g))/sumc,

22update M by reassigning ra nodes from h to g
return M

24

function targetupdate(M, Γh) =
26seq← ⊥; target← ∅

for each i ∈ id(M) ∧ assigned(M(i)) = h ∧xi ∈ Γh

28seq ← insertsort(seq, 〈Γ−1

h
(x), i〉)

for each i ∈ id(M)
30if assigned(M(i)) 6= h then

let g = assigned(M(i))
32temp ← 〈g, og〉

else if xi /∈ Γh then
34let x∗ choose {argminy∈Γh

{dist(y, xi)}}
temp ← 〈h, x∗〉

36else let p = Γ−1

h
(x), seq(k) = 〈p, i〉

if k = first(seq) then
38temp ← 〈h, Γh(inf(Ph))〉

else if k = last(seq) then
40temp ← 〈h, Γh(sup(Ph))〉

else
42p′ ← [pos(seq(k− 1)) + pos(seq(k + 1))]/2

temp ← 〈h, Γh(p + ρ1(p′ − p))〉
44target ← target ∪ {〈i, temp〉}

return target

Fig. 5. Control functions of VN h automaton with parameters: damping
ρ1, ρ2, safety e.

broadcasting target waypoints for the CNs: After collecting
information from clients in its zone and exchanging this
information with its neighbors, a V Nh periodically sends
out a target-update message which contains a target point
for each client node “assigned” to zone h. Informally, each
virtual node performs two tasks when setting the target
points: (a) it re-assigns some of the client nodes that are
assigned to itself to neighboring VNs, and (b) it sends a
target position on Γ to each client node that is assigned to
itself. The objective of (a) is to prevent neighboring virtual
nodes from failing and to achieve a distribution of the client
nodes over the zones that is proportional to the length of
Γ in each zone. The objective of (b) is to space the nodes
evenly on Γ in each zone. A client node, in turn, receives
its current position information from RW and continuously

computes the velocity vector that would take it to its latest
target point as indicated in a target-update message.

A. Virtual Node Algorithm
We define the density of virtual node h as (|MA,h|−e)

(|Ph|+ε)
where MA,h is the number of client nodes assigned to zone
h, e > 0 is a parameter representing the minimal number of
mobile nodes considered safe to implement a virtual node,
and ε > 0 is a small positive constant.

In designing the motion coordination algorithm we make
use of synchrony in the system, that is, the common
realtime clock variable that is available to all client nodes.
VNs do not have access to the realtime variable but instead
rely on second-hand clock information from messages to
construct a logical-time clock to determine when enough
time has passed to trigger required actions. Whenever a
VN receives a message with a timestamp of sent, it adopts
max(logical − time, sent) as its current logical − time.

Intuitively, the structure of the VN algorithm (Figure 4)
follows a round structure, where each round is of length ∆.
A round is comprised of an integer number of smaller δ
time periods. Each active CN i synchronously broadcasts
a client-update message every δ time through a send-
vni action. This message contains information about its id,
assigned zone, current location, and the current realtime.
At the beginning of each ∆ round, each VN h HIOA collects
these messages from CNs in its region, aggregating the in-
formation and using the message timestamps to approximate
the realtime clock. Once a VN’s logical − time is larger
than dv after the start of the round, indicating that any CN’s
client-update message broadcast at the beginning of the
round has been received, the V Nh tallies and computes
the current number of nodes assigned to it and its current
density and sends this information via a vn-update message
to all of V Nh’s neighboring zone VNs.

Once V Nh has waited until its logical− time is greater
than d ≥ δ+dv +d′+dv past the beginning of the round, it
knows it has collected all neighboring vn-update messages
that were broadcast for the round: a neighboring VN might
be delayed in sending its vn-update for the round until
the next δ client-update occurs, when it is guaranteed to
receive a newer message timestamp. It can then take an
additional dv time for the message to arrive, d′ time for the
resulting triggered vn-update to be executed, and an extra
dv time for the vn-update to be received at V Nh.

V Nh then uses the node count and density informa-
tion from its neighbors to calculate how many of the
CNs assigned to its zone should be reassigned and to
which neighboring zones (through the assign function,
Figure 5). This information is then used to calculate new
target waypoints for each CN in the zone (through the
targetupdate function, Figure 5). V Nh broadcasts the new
target waypoints through a target-update message to its
zone’s CNS. Any CN in the region receiving this broadcast
looks in the message to determine its new target waypoint
and starts moving towards the new waypoint. Given a speed

of vc for each client mobile node and the maximum distance
from a point in one region to a point in a neighboring
region when following a target waypoint at the center of
the neighboring zone, it will take up to dv +

√
10/9b

vc
time

for any client node reassigned to a new zone to discover
it has been reassigned and to move into that new zone. In
addition, the target zone might not yet have a virtual node.
In this case, the client must restart the virtual node, taking
up to a known dr time (explained further in Section VI).

For simplicity, we assume that the ∆ time period is large
enough for a reassigned client node to arrive in its new
zone and restart the virtual node (if it is empty) before a
new round begins. This introduces the restriction that the
integer number of δ time periods comprising ∆ be at least
dd+dv+(

√
10/9b/vc)+dr

δ e. It would be possible to modify
our algorithm to allow shorter rounds that don’t require
completed relocation of client nodes; instead we could, for
example, have VNs update their neighboring region VNs of
the client nodes that are currently in transit to them.

[[doesn’t match code: VN h may perform a classifiedh

action d time after every vn-update message is sent. This
action computes the reassignment of client nodes that are
assigned to h. A classifiedh action occurs only if the
number of client nodes assigned to h, |MA,h| exceeds
the safety critical number e, which is a parameter of the
algorithm, and one of the following conditions hold: (1)
There exists a set N0

h of VNs in the neighborhood of h,
each of which has fewer than e assigned client nodes. In
this case, some of the extra |MA,h| − e nodes that are
currently assigned to h are reassigned to the VNs in this
set N0

h . (2) None of the neighboring VNs of h have fewer
than e CNs, but there exists a set N−

h of neighboring VNs
that have a much lower client node density than h. In this
case, h lowers its density by a factor of ρ2, by reassigning
(1 − ρ2).|Mh

h | CNs that are currently assigned to itself
(making sure that |Mh

h | does not fall below e). In either
case, the reassignment of the CNs currently assigned to h to
the VN g in N0

h (or in N−
h) is in proportion to |density(g)|

(or |density(h) − density(g)|). The output of classifiedh

is the partial function M that maps CN identifiers to VNs
that they are assigned to.

The classifiedh action triggers the set-targeth action,
which assigns to every client node a target point in B to
move to. This action first computes seq, a sequence of
pairs of type (Ph, I). For every CN node i in Mh, if i
is assigned to h and xi is on the curve Γh, i.e., Γh(p) = xi

for some p ∈ Ph, then a pair (p, i) is inserted in seq. The
list seq is sorted on p. The target point for CN i is computed
as follows: If i is not assigned to h then its target is the
center of the VN it is assigned to; if it is not on the curve
Γh then it is directed to the nearest point on the curve
(nondeterministically choosing amongst the set of nearest
points); if xi is already on the curve and is one of the end
points of Γh, then it is not moved; if xi is on the curve but
is not an end point, then it is moved to the mid-point of the

Signature:
Input receive(m)i

Output send(m)i

Internal send-vni

State:
Input

xi ∈ B
realtime ∈ R≥0

Internal
x∗ ∈ B, target point, initially same as x

next-update ∈ R, initially drealtime/δe · δ
send-buffer, queue of messages, initially ∅
assigned ∈ H, initially h ∈ H such that xi ∈ Bh

Output
vi ∈ R2 , velocity vector, initially null

Transitions:
Internal send-vni

Precondition
realtime = next-update

Effect
send-buffer ← send-buffer ∪
{〈client-update, i, assigned, xi, realtime〉}

next-update ← next-update + δ

Output send(m)i

Precondition
nonempty(send-buffer)
m = head(send-buffer)

Effect
send-buffer ← tail(send-buffer)

Input
receive(m)i

Effect
if m = 〈target-update, h, target〉 then

if assigned = h then
assigned ← assigned(target(i))
x∗ ← pos(target(i))

Trajectories:
Evolve

if xi = x∗ then vi = 0

else if xi /∈ Γ or x∗ /∈ Γ then
vi = vc.(x∗ − xi)/||x∗ − x||

else let xi = Γ(p),x∗ = Γ(p∗)
if p < p∗ then vi = vc.Γ′(p)
else vi = −vc.Γ′(p)

Stop when
next-update = realtime

Fig. 6. CN i automaton with update parameter δ

preceding and the succeeding CNs on the curve. For this
last computation the sorted list seq is used.]]

B. Client Node Algorithm
Here we describe the client node CN HIOA (Figure 6)

with parameter δ. The CN automaton periodically (every δ
time) sends a client-update message to update the VN it
is located in, informing it of its id, current location in B,
assigned VN, and current realtime value. It processes only
one type of message, namely the target-update messages
sent by the VN to which it is currently assigned. The
contents of this message determine the new target location

x
∗
i for CNi, and possibly, an assignment to a different VN.

Client node i computes its velocity vector vi, based on its
current position xi and its target position x

∗
i , as follows: If

either xi or x
∗
i are not on Γ, then it moves in a straight line

with constant velocity towards x
∗
i ; otherwise, it moves along

Γ with constant speed, its velocity vector being determined
by the tangent on Γ at xi.

C. Correctness and Performance
As described before, our motion coordination algorithm

has two control “processes” implemented by the two func-
tions assign and targetupdate of each VN . The first
process (1) moves all except e CN s from the virtual nodes
in Out, to the virtual nodes in In, and (2) moves the CN s
that are already in the VN s in In, to achieve a distribution
of CN s that is proportion to the length of Γ in each VN .
This process of the algorithm is said to converge in round t
if (1) the set of CN s in each virtual nodes in h ∈ In,
id(Mh(t)), remain constant at every round after t. The
second process of the algorithm is executed only by the
VN s in In, and it moves the CN s within each VN to
position them evenly along the portion of the curve Γ in
Bh. This process converges in round t if the position of all
CN s remain unchanged in all successive rounds.

The convergence of the first process is necessary for
the convergence of the second. In our analysis, we show
that if there are no failures or recoveries in the system
after a certain round, then the first process converges in a
finite number of rounds, and the second process converges
eventually, after the first process has converged. For the
convergence of the first process, we assume that a virtual
node may be assigned a fraction of a client node and there-
fore ignore the b·c operators in the pseudocode of Figure 5.
This simplifies the analysis as well as the presentation.
With the integrality constrains in place, convergence is still
guaranteed, although with a slightly different criterion. The
details of this will be presented in a full version of this
paper. We define the following quantities at round t,

In(t)
∆

= {h ∈ H | |Ph| > 0}
Out(t)

∆

= H \ In(t)

Border(t)
∆

= {h ∈ Out(t) | ∃g ∈ Nh, g ∈ In(t)}
Cin(t)

∆

= {i ∈ I | i ∈ id(Mh(t)), h ∈ In(t)}
Cout(t)

∆

= {i ∈ I | i ∈ id(Mh(t)), h ∈ Out(t)}
C(t)

∆

= Cin(t) ∪ Cout(t)

P (t)
∆

= {Ph | h ∈ In(t)}
peak(t)

∆

= MAXh∈In(t)density(h)(t),

peaksize(t)
∆

= {Ph | density(h) = max(t)}

In, Out, and Border, are the sets of VN s that are alive
(have some mobile node in their respective zones) at round
t. Cin (resp. Cout) is the set of CN s that are alive at round
t and are assigned to some VN in In (resp. Out). P (t) is
the length of the curve Γ that goes through zones of live

VN s at round t. peak is the maximum density of any VN

in In, and peaksize is the length of Γ in peak zones.

Lemma 1: If there are no failures after round t, then for
all t′ ≥ t, In(t) ⊆ In(t′), Out(t) ⊆ Out(t′), Cin(t′) ≥
Cin(t), Cout(t

′) ≤ Cout(t
′), and Yh(t) ≥ e for some h ∈

H, implies Yh(t′) ≥ e.

Lemma 2: If client node i is in some virtual node h ∈
In(t) at round t, then in all successive round t′ ≥ t, i ∈
id(Mg

g (t′)) for some virtual node in g ∈ In(t′).

Lemma 3: At any round t, peak(t) = Cin(t)/|P (t)| iff
peaksize(t) = P (t).

Proof: Part(a): Let peak(t) = Cin(t)/|P (t)|. Sup-
pose, for the sake of contradiction, that peaksize(t) ⊂
P (t). There is a non-zero subset of intervals, low(t) =
P (t) \ peaksize(t), such that for every Pg ∈ low(t),
density(g)(t) < max(t). Then, peak(t) · |peaksize(t)| +∑

Pg∈low(t) density(g)(t) · |Pg | = Cin(t). LHS is strictly
less than peak(t)(|peaksize(t)| + ∑ |Pg |), which leads to
a contradiction. The other direction is trivial.

Lemma 4: If there are no failures after round t, then there
exists a round T ≥ t, such that for all t′ ≥ T , and for all
h ∈ In, Mh

h (t′) = Mh
h (T).

Proof: We claim that the above result follows if
we show that there exists a round T such that in every
successive round t′, for every h ∈ In(t′), the number
of client nodes assigned to h, Yh(t) remains unchanged
. From lines 12–13 we see that the number of CN s
reassigned by VN h depends only on the density of the
VN s with strictly lower density, in the neighborhood of h.
The densities remain constant because by our assumption Y
remains constant. Therefore, the same number of CN s are
reassigned by each VN in all successive rounds. Suppose
some VN in In reassigns non-zero client nodes. As there
cannot be a cycle in the density ordering of the VN s
and CN s (from Lemma 2) cannot leave the set of VN s
in In, the density of someVN in In must be increasing,
which contradicts our previous assumption. So, the number
of reassignments in every successive round by every VN

in In, must be zero. Which implies that the set of CN s
assigned to each VN remains unchanged.

Now we show that indeed there exists a round T such that
in every successive round t′, for every h ∈ In(t′), Yh(t)
remains unchanged. First, we consider the energy func-
tion at round t, E(t) = (Cout(t), peak(t), peaksize(t)).
Observe that if there are no failures, then in any round
t, E(t) is at least E0(t) = (e|Out(t)|, (|C(t)| −
e|Out(t)|)/|P (t)|, |P (t)|). If there are no failures after
round t0, then in any round t ≥ t0, the minimum value
E0(t) is bounded from below by (e|Out(t0)|, (|C(t0)| −
e|Out(t0)|)/|P |, |P |). If this minimum value E0(t) is
achieved in some round t, then P (t) = P and every VN

h in In(t) has density(h)(t) = peak(t) = Cin(t). That is,
in every successive round Yh(t) remains unchanged. We
show that at any round t, if every E(t) > E0(t), then

iCN

TOBcast

RW LBcast

VNE i,g

VNE i,h

VNE i,f

MN i

i

...

Fig. 7. MNi’s subautomata: A mobile node runs several programs,
including VNE and TOBcast automata as well as a CN automaton.

E(t + 1) < E(t).
By Lemma 1, Cout(t + 1) ≤ Cout(t). If Cout(t +

1) = Cout(t), then Cin(t + 1) = Cin(t). We claim that
peak(t + 1) ≤ peak(t). If this is not true, then there exists
a VN h ∈ In(t), such that density(h)(t+1) > peak(t). If
must be that density(h)(t) < peak(t), otherwise h would
not have been assigned any CN s by its neighbors (see
line 12) in round t. density(h)(t + 1) − density(h)(t) ≤
4ρ2(peak(t) − density(h)(t)).

3(a).

Claim 1: If there exists a round Tin such that for every
t ≥ Tin, Mh

h (t) = Mh
h (Tin) and there are no failures, then

the locations of the CNs in Bh are eventually evenly spaced
on Γh.

Proof: (Sketch) Let t be the time when the assign-
ments “stabilize”. Then, within

√
2b

vc
+ O(δ) time units

after t, every CN in Bh is assigned to VN h, and every
CN that is assigned to VN h is in Bh. Within another
2
√

2b
vc

+O(δ) time units, every CN is on Γ and the endpoints
are fixed at Γ(inf(Ph)) and Γ(sup(Ph)). At this point
suppose seqh = 〈p0, i(0)〉, . . . , 〈pn+1, i(n+1)〉. We can show
that (if nodes do not fail and if no new nodes enter Bh) then
eventually the p′s in seq are equidistant.

VI. IMPLEMENTING THE VIRTUAL NODE LAYER

In this section we present a sketch of our implementation
of the virtual layer. Our implementation is an adaptation of
techniques from [2] to emulate a virtual mobile node. The
only substantive changes made in our current implementa-
tion are in (1) the changing of virtual node locations to be
stationary, (2) the replacement of a periodic location update
with a continuous real-time location update, and (3) the
restart of a virtual node as soon as a client node discovers
it is in a failed virtual node’s zone.

In addition to its client CNi, a real mobile node i in
zone Bh runs a TOBcast i service and a VNE i,h algorithm
(Figure 7) to help implement each virtual node V Nh

and the VLBcast service of the virtual layer. We use a
standard replicated state machine approach to implement

robust virtual nodes that takes advantage of the TOBcast

service to ensure that all VNEs in a region receive the same
messages in the same order. Using the LBcast service of
the real nodes and common knowledge about realtime, a
totally ordered broadcast service, TOBcast for each Bh can
be implemented as follows: At the time of sending each
message is tagged with a timestamp which is the current
value of realtime and the sender’s identifier. Assuming
that a real node does not make multiple broadcasts at the
same point in time, the tags define a total order on the sent
messages. Before delivering a message a node waits until
dp + 1 time has elapsed since it was sent, ensuring that all
earlier messages were received.

Each VNE i,h independently maintains the state of V Nh

and simulates performing actions of the VN on that state. In
order to keep the state replication consistent across different
VNEs running on different mobile nodes in the same zone,
when VNE i,h wants to simulate an action of the VN,
it broadcasts a suggestion to perform the action to the
other VNEs of the region using the TOBcast service. This
includes broadcasting suggestions to receive messages on
behalf of the VN that were actually received by VNE i,h.
When an action suggestion is received by VNE i,h, it is
saved in a pending − action queue. Actions are removed
from a pending − action queue in order by VNE i,h and
simulated on VNE i,h’s local version of the VN state. A
completed action is then moved into a completed−action
queue. This queue is referenced by VNE i,h to prevent
reprocessing of completed actions. The TOBcast necessary
for each simulated action introduces the requirement that
d′ ≥ dp + 1, meaning that enabled actions of an emulated
VN will occur after the time necessary for the transmission
of the action to be completed. Given that mobile node
actions are assumed to take no time, we can guarantee that
d′ = dp + 1.

When a mobile node enters a zone, it executes a join
protocol to get the state of the zone’s VN. The join protocol
begins by using TOBcast to send a join-req message.
Whenever a node receives its own join-req message, it starts
saving messages to process in its pending−action queue. If
a node that has already joined receives the join-req, it uses
TOBcast to send a join-ack containing a copy of its version
of the VN state. When the joining node receives the join-
ack, it copies the included VN state and starts processing
the actions in its pending − action queue. If no mobile
nodes are in a region to emulate the VN, the VN fails. If
a real node enters a failed region its join-req will not be
answered in 2dp + 3 time, and the real node will reset the
VN by using TOBcast to send a reset message. When a
node receives a reset message dp + 1 time later, it restarts
the VN state at its initial state, clears the pending−action
queue, and starts simulating the VN as before. This total
time of 3dp +4 time required for a joining node to succeed
in restarting a VN is the constant dr.

VII. PUTTING THE PIECES TOGETHER

[[Nancy: Say something about what it all looks like
when it’s combined. What actually runs on each PN.
A piece representing the client node and a piece doing
the emulation. Does it all fit together right? It’s kind of
mind-boggling.]]

VIII. CONCLUSIONS

What have we done? What have we learned?
Future work/extensions: We can consider a problem ex-

tension where the curve is moving. The curve (or point,
even) could be moving targets being tracked. In this case,
the coordination of nodes we talked about here is important
for two big reasons: (1) maintaining alive VNs to detect
targets and (2) guiding mobile nodes to the moving targets.
The fact that we employed a local solution here for curve
discovery should adapt well to this more dynamic problem.

Probabilistic guarantees for VN survival: Given a proba-
bility of mobile node failure p in a span of ∆ time, we can
say with high probability that a zone’s VN remains alive;
would be based on an expression for the number e of mobile
nodes considered the minimum for safe VN replication.

REFERENCES

[1] Jorge Cortes, Sonia Martinez, Timur Karatas, and Francesco Bullo.
Coverage control for mobile sensing networks. IEEE Transactions on
Robotics and Automation, 20(2):243–255, 2004.

[2] Shlomi Dolev, Seth Gilbert, Nancy A. Lynch, Elad Schiller, Alexan-
der A. Shvartsman, and Jennifer L. Welch. Virtual mobile nodes
for mobile ad hoc networks. In 18th International Symposium on
Distributed Computing (DISC), pages 230–244, 2004.

[3] David Kiyoshi Goldenberg, Jie Lin, and A. Stephen Morse. Towards
mobility as a network control primitive. In MobiHoc ’04: Proceedings
of the 5th ACM international symposium on Mobile ad hoc networking
and computing, pages 163–174. ACM Press, 2004.

[4] Nancy Lynch, Roberto Segala, and Frits Vaandrager. Hybrid I/O
automata. Information and Computation, 185(1):105–157, August
2003.

APPENDIX

State:
Input
vi ∈ R2, for each i ∈ I

Output
xi ∈ B, for each i ∈ I, initially arbitrary
realtime ∈ R≥0, initially 0

Trajectories:
Invariant

xi ∈ B, for each i ∈ I
Evolve

d(xi) = vi, for each i ∈ I
d(realtime) = 1

Fig. 8. RW automaton

Signature:
Input receive(m)i, m a client message
Input TOBcast-rcv(m)i, m a TOBcast message
Input reseti
Output send(m)i, m a client message
Output TOBcast(m)i m a TOBcast message
Internal zone-updatei

Internal joini

Internal restarti
Internal init-action(act)i, act ∈ VNh.sig
Internal simulate-action(act)i, act ∈ VNh.sig

State:
Input

xi ∈ B, current location of mobile node
realtime ∈ R≥0

Internal
status ∈ {joining, listening, active}, initially active
h ∈ H ∪ {⊥}, zone id, initially ⊥
val ∈ VNh.states, state of VN h, initially V Nh.start
answered-joins, set of ids of answered join reqs, initially ∅
join-id, a tuple of time and a node id, initially 〈0, i〉
pending-actions, queue of V Nh.actions to be simulated, initially ∅
completed-actions, queue of V Nh.actions simulated, initially ∅
TOBcast-out, queue of outgoing TOBcast msgs, initially ∅
local-out, queue of outgoing client messages, initially ∅

Fig. 9. Signatures and States of VNEi,h algorithm implementing V Nh

Input receive(m)i

Effect:
TOBcast-out ← TOBcast-out ∪ {〈simulate, 〈receive, m〉, ⊥〉}

Output send(m)h,i

Precondition:
m ∈ local-out

Effect:
local-out ← local-out / {m}

Internal init-action(act)h,i

Precondition:
status = active ∧ x ∈ Bh ∧ δ(val, act) 6= ⊥

Effect:
TOBcast-out ← TOBcast-out ∪ {〈simulate, act, 〈realtime, i〉〉}

Internal joini

Precondition:
x ∈ Bh ∧ status = idle

Effect:
join-id ← 〈realtime, i〉; status ← joining
TOBcast-out ← TOBcast-out ∪ {〈join-req, ⊥, join-id〉}

Input reseti
Effect:

TOBcast-out ← TOBcast-out ∪ {〈reset〉}

Internal restarti
Precondition:

status = listening ∧ realtime > join-id.time + 2dp + 2
Effect:

TOBcast-out ← TOBcast-out ∪ {〈reset〉}

Internal zone-updatei

Precondition:
x /∈ Bh

Effect:
h ← id of zone h′ such that x ∈ Bh′

status ← idle; val ← MC.start
pending-actions ← ∅

Internal simulate-action(act)i

Precondition:
status = active ∧x ∈ Bh

head(pending-actions) = 〈simulate, act, oid〉
Effect:

Dequeue(pending-actions)
if (〈simulate, act, oid〉 ∈ completed-actions) then continue;
if (δ(val, act) = ⊥) then continue;
val ← δ(val, act)
completed-actions ← completed-actions ∪ {〈simulate, act, oid〉}
if (act = 〈send, m〉) then local-out ← local-out ∪ {m}

Input TOBcast-rcv(〈optype, param, oid〉)i

Effect:
if (optype = simulate) then

if (status 6= listening or active) then continue;
else Enqueue(pending-actions, 〈simulate, param, oid〉)

else if (optype = join-req) then
if ((status = joining) and (oid = join-id))

then status ← listening
if ((status = active) then

if (oid ∈ answered-joins)) then continue;
else if (x ∈ Bh)

then TOBcast(〈join-ack, 〈val, completed-actions〉, oid〉)
else if (optype = join-ack)

answered-joins ← answered-joins ∪ {oid}
if (status = listening) then

if (oid = join-id)) then
status ← active
〈val, completed-actions〉 ← param

else if (optype = reset) then
status ← active; pending-actions ← ∅

Output TOBcast(m)i

Precondition:
m ∈ TOBcast-out

Effect:
TOBcast-out ← TOBcast-out / {m}

Trajectories:
Stop when any precondition above is satisfied

Fig. 10. Transitions of VNEi,h algorithm

