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ABSTRACT 

This paper presents two distributed algorithms for 
detecting and resolving deadlocks. By insuring that only 
one of the deadlock processes will detect it, the problem of 
resolving the deadlock is simplified. That process could 
simply abort itself. In one version of the algorithm, an 
arbitrary process detects deadlock; and in a second version, 
the process with the lowest priority detects deadlock. 

1. Introduction 

A system of processes is deadlocked when a cycle forms in its 
wait-for graph. One method of dealing with this problem is to allow 
deadlocks to form but to detect them quickly and abort a process to 
break the cycle. If the system is l~.al to a single site, a central 
resource-management process can accomplish this. All other processes 
request resources from the manager which maintains a representation 
of tile wait-for graph and watches for cycle formation. 

There are two problems with this approach. Ftrst, the whole sys- 
tem is vulnerable to the failure of the management process; and 
second, message passing to and from the manager is expensive. If the 
system is distributed over many sites, these two problems are much 
more severe. Although message passing is becoming cheaper, the 
issue of fault tolerance will certainly remain. 

A number of distributed algorithms for deadlock detection have 
been published, and they. seem to fall into two categories. Those in 
the first category pass information about process demands in an 
attempt to maintain relevant parts of the global wait-for graph on each 
site ~IF_NASCE79, GLIGOR80, OBEtLMARCK82]. 

The second category of algodthrm was inspired by work on 
parallel graph algorithms [DUKSIRA~, CHANC~2]. In this category 
simpler messages are passed from process to process[CHANDY82, BRA. 
O-IA83]. The global wait-for graph is not explicitly built up; however, a 
cycle in the graph will ultimately cause messages to return to their ini- 
tiators thus alerting them to the existence of deadlock. 

The algorithms presented in this paper fall into this second 
category. An important advantage of these algorithms over earlier 
work is that only one process in a cycle will detect the deadlock, 
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simplifying the problem of resolving the deadlock. A second advantage 
rests in their simplicity. Indeed, one author implemented the first algo- 
rithm in a local database system in under an hour. They are just as 
simple to analyse. Even in the face of lost messages and process 
failures, the correctness proofs are trivial. 

2. The System Model 
The system can be described by the wait-for graph, a directed graph in 
which each node represents a process, and an edge indicates that one 
process is waiting on a resource held exclusively by another. Assuming 
each process waits on one resource at a time, the maximum outdegree 
of the wait-for graph will be one. The direction of the edges are from 
the waiting process to the process holding the desired resource. 

Each node is given two labels. The first (indicated by an index 
in the lower half of the node) is a private label that is unique to the 
node thought not necessarily constant. The second label (indicated by 
an index in the upper half of the node) is public. It represents a 
number that can be read by other processes, and the same value may 
appear in other nodes. 

The edges and labels define the state of the system at any 
moment. 

3. Simple Deadlock Detection 

STATE BEFORE STATE AFTER 

outdegree = 0 . . . . . .  " 

Activate 0 ~0 0 0 
Transmit C)u<v~O 0 ~0 

© D 
Figure 1 

Figure 1 shows the four types of nondeterministie state transi- 
tions that define this algorithm. The function "inc(x,y)", means a 
value larger than both x and y that is unique to that node. Label 
values which neither are a precondition for a transition nor change as a 
result of a transition have been left blank. Each process begins with 
its private label equal to its public label. 

The private label of each node is always unique to that node, and 
non-decreasing over time. These two properties can be easily realized 
by keeping the low-order bits of the label constant and unique while 
increasing the high-order bits when desired. 

The Block step occurs when a process begins to wait on some 
resource held by another, creating an edge in the wait-for graph. One 
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of the crucial features of this algorithm is the label change that occurs 
then. Both the punic and private labels of the waiting process 
increase to a value greater than their previous values and greater than 
the public label of the process being waited on. The private and public 
labels of the node are changed to the same new value. 

The Activate step means that an edge disappeared because a pro- 
cess got a resource, or timed out and gave up waiting, or failed. This 
step also occurs if the owner of a resource changes. When the waiting 
process notices that, it must Activate and then Block again if it is to 
continue waiting for that resource. 

The Transmit step occurs when the waiting process reads the pub- 
lic label of the process it is waiting on and discovers that it is larger 
than its own. In that case, the waiting process replaces its own public 
label with the one it just read. One effect of this is that larger labels 
tend to migrate (in the opposite direction) along the edges of the wait- 
for graph. 

The Detect step means that a process sees its own public label 
come back and knows that it is part of a cycle. A cycle of N processes 
will be detected after N - I  Transmit steps. Only oneprocess in a cycle 
will detect deadlock which simplifies the problem of resolution. The 
process could simply abort (or at least, release its resources) to break 
the deadlock, or it could initiate some other deadlock resolution 
scheme. 

4. A Proof of Correctness 

Lemma 1: 

As in the figure above, if there is an edge between 
two nodes and u > w then u = v. 

Proof." 
The definition of the Block step guarantees that this will be true when 
an edge first forms. The only way the label u will change during the 
lifetime of that edge is if a Transmit step is executed, and that will not 
happen as long as u > w, and w is nondecreasing over time. o 

Lemma 2: 
At the instant a cycle forms, the public labels of the nodes in it do not all 
have the same value. 

Proof: 
When the cycle forms, the last edge (like all edges) is created by a 
node executing the Block step. That node will have a new public label 
different from any other public label because the inc function gen- 
erates unique values, o 

Lemma 3: 
The maximum public label value in a cycle is equal to the private label of 
one and only one node in the cycle. 

Proof: 
By Lemma 2 when a cycle forms, all the public labels cannot have the 
maximum value. At least one node with maximum public label value 
must precede a node with a different, lower public label. Thus by 
Lemma 1, the private label of the preceding node must equal the max- 
imum label value. Since no Block operations can be performed by 
nodes in a cycle, this will remain true throughout its lifetime. Private 
labels are unique, so only one node can obey this condition, t~ 

Theorem 1: 
l f  a cycle of N nodes forms and persists long enough, exactly one node in 
it will execute the Detect step of the algorithm. This will happen after 
N -  1 consecutive Transmit steps. 

Proof." 
If a cycle forms and does not break on its own, N - 1  Transmit steps 
will carry the largest public label value all the way around the cycle. 
By Lemma 3, this means one and only one node will eventually exe- 
cute the Detect step. [] 

5. Aborting Low-Priority Transactions 

The algorithm just presented suffers from a significant drawback 
if the detecting process aborts to break deadiock. Since older 
processes tend to have larger label numbers, they are more likely to 
become the detecting process in a cycle. A designer may wish to 
assign a unique priority, p~, to each process i, on the basis of age, 
number of locks held, or other criteria, and select the process with the 
lowest priority in the cycle to be aborted. This is exactly the function 
provided by the following algorithm. 

SLATE ]]EF(3RE SLATE AFTER 

outdegree=O 

/t.glivat¢ 

Transmit 

(u<v) or (u=v,p>q) 

Hl~ure 2 

7hls algorithm is an extension of the last algorithm; unique pub- 
lic and private priority nombers have been added. In the figure above, 
public labels and priority numbers appear as the top left and right 
values in a node, and the private labels and priority numbers are the 
bottom left and right values, respe~vely. Initi',dly, each ~'ocess pos*.s 
its unique private label and priority number. Nodes with equal public 
labels post the lower priority number (the Transmit step) and a node 
aborts ~hen it sees its own private priority number together in a node 
with its own public label (the Detect step). 

This algorithm aborts the lcavest-priority process in any cycle that 
doesn't break on its own. Since the process with the highest public 
label may be waiting for a lock held by the lowest-priority process, the 
low-priority number may not start propagating around the cycle until 
after the public label h ~  gone fuli-circle. Thus, this algorithm can 
take up to twice as long to detect deadlock as the first algorithm. 

Theorem 2: 
I f  a cycle of N nodes forms and persists long enough, the lowest priority 
process in the cycle will execute the Detect step after at least N -  1 and at 
most 2 N - 2  consecutive Transndt steps. 

The proof of this theorem is similar to that of Theorem 1. 

6. Discu~ion 
In these algorithms, only one deadlocked process detects 

deadlock. This dears up the Froblem of deciding which process should 
initiate deadlock resolution. The detecting process could simply abort 
to break deadlock. In the first algorithm, an arbitrary process detects 
deadlock; and in the second, the process with lowest priority in the 
cycle will detect. 

These algorithms do not use synchronized message passing. 
When one process posts a value in its public label, there is no guaran- 
tee that another process (executing the Transmit step) will read it 
before it is replaced by a new wdue. It is assumed that successive 
reads of a label will yield successive values; never out of order. 
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Process failures (in which all resources held are released) will 
not cause deadlocks to persist, but they may lead to false deadlock 
detection. This happens when the cycle has already been broken (by a 
lime-out or failure) when the deadlcrak is detected. Indeed, an actual 
cycle may never have existed in any single system state. If this is a 
problem in some applications, the deadlock-detecting process could ini- 
tiate some type of cycle checking. Passing another set of messages 
around the cycle could at least guarantee that a real cycle existed at 
some point in lime. 

This paper assttmes a system in which no central management of 
resources exists, but in which resources can be locked. Such a system 
has many advantages, but is open to livelock conditions. 

The first algorithm has been implemented in an experimental 
database system and has performed well. 
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