
A Distributed Algorithm for Deadlock Detection and Resolution

Don P. Mitchell l"

Michael J. Merritt "~

AT&T Bell Laboratories

ABSTRACT

This paper presents two distributed algorithms for
detecting and resolving deadlocks. By insuring that only
one of the deadlock processes will detect it, the problem of
resolving the deadlock is simplified. That process could
simply abort itself. In one version of the algorithm, an
arbitrary process detects deadlock; and in a second version,
the process with the lowest priority detects deadlock.

1. Introduction

A system of processes is deadlocked when a cycle forms in its
wait-for graph. One method of dealing with this problem is to allow
deadlocks to form but to detect them quickly and abort a process to
break the cycle. If the system is l~.al to a single site, a central
resource-management process can accomplish this. All other processes
request resources from the manager which maintains a representation
of tile wait-for graph and watches for cycle formation.

There are two problems with this approach. Ftrst, the whole sys-
tem is vulnerable to the failure of the management process; and
second, message passing to and from the manager is expensive. If the
system is distributed over many sites, these two problems are much
more severe. Although message passing is becoming cheaper, the
issue of fault tolerance will certainly remain.

A number of distributed algorithms for deadlock detection have
been published, and they. seem to fall into two categories. Those in
the first category pass information about process demands in an
attempt to maintain relevant parts of the global wait-for graph on each
site ~IF_NASCE79, GLIGOR80, OBEtLMARCK82].

The second category of algodthrm was inspired by work on
parallel graph algorithms [DUKSIRA~, CHANC~2]. In this category
simpler messages are passed from process to process[CHANDY82, BRA.
O-IA83]. The global wait-for graph is not explicitly built up; however, a
cycle in the graph will ultimately cause messages to return to their ini-
tiators thus alerting them to the existence of deadlock.

The algorithms presented in this paper fall into this second
category. An important advantage of these algorithms over earlier
work is that only one process in a cycle will detect the deadlock,

t Address: AT&T Bell Laboratories, 6(~0 Mountain Ave., Murray I-El, NJ 07974.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 A C M 0 - 8 9 7 9 1 - 1 4 3 - 1 / 8 4 / 0 0 8 / 0 2 8 2 $00 .75

simplifying the problem of resolving the deadlock. A second advantage
rests in their simplicity. Indeed, one author implemented the first algo-
rithm in a local database system in under an hour. They are just as
simple to analyse. Even in the face of lost messages and process
failures, the correctness proofs are trivial.

2. The System Model
The system can be described by the wait-for graph, a directed graph in
which each node represents a process, and an edge indicates that one
process is waiting on a resource held exclusively by another. Assuming
each process waits on one resource at a time, the maximum outdegree
of the wait-for graph will be one. The direction of the edges are from
the waiting process to the process holding the desired resource.

Each node is given two labels. The first (indicated by an index
in the lower half of the node) is a private label that is unique to the
node thought not necessarily constant. The second label (indicated by
an index in the upper half of the node) is public. It represents a
number that can be read by other processes, and the same value may
appear in other nodes.

The edges and labels define the state of the system at any
moment.

3. Simple Deadlock Detection

STATE BEFORE STATE AFTER

outdegree = 0 "

Activate 0 ~0 0 0
Transmit C)u<v~O 0 ~0

© D
Figure 1

Figure 1 shows the four types of nondeterministie state transi-
tions that define this algorithm. The function "inc(x,y)", means a
value larger than both x and y that is unique to that node. Label
values which neither are a precondition for a transition nor change as a
result of a transition have been left blank. Each process begins with
its private label equal to its public label.

The private label of each node is always unique to that node, and
non-decreasing over time. These two properties can be easily realized
by keeping the low-order bits of the label constant and unique while
increasing the high-order bits when desired.

The Block step occurs when a process begins to wait on some
resource held by another, creating an edge in the wait-for graph. One

282

of the crucial features of this algorithm is the label change that occurs
then. Both the punic and private labels of the waiting process
increase to a value greater than their previous values and greater than
the public label of the process being waited on. The private and public
labels of the node are changed to the same new value.

The Activate step means that an edge disappeared because a pro-
cess got a resource, or timed out and gave up waiting, or failed. This
step also occurs if the owner of a resource changes. When the waiting
process notices that, it must Activate and then Block again if it is to
continue waiting for that resource.

The Transmit step occurs when the waiting process reads the pub-
lic label of the process it is waiting on and discovers that it is larger
than its own. In that case, the waiting process replaces its own public
label with the one it just read. One effect of this is that larger labels
tend to migrate (in the opposite direction) along the edges of the wait-
for graph.

The Detect step means that a process sees its own public label
come back and knows that it is part of a cycle. A cycle of N processes
will be detected after N - I Transmit steps. Only oneprocess in a cycle
will detect deadlock which simplifies the problem of resolution. The
process could simply abort (or at least, release its resources) to break
the deadlock, or it could initiate some other deadlock resolution
scheme.

4. A Proof of Correctness

Lemma 1:

As in the figure above, if there is an edge between
two nodes and u > w then u = v.

Proof."
The definition of the Block step guarantees that this will be true when
an edge first forms. The only way the label u will change during the
lifetime of that edge is if a Transmit step is executed, and that will not
happen as long as u > w, and w is nondecreasing over time. o

Lemma 2:
At the instant a cycle forms, the public labels of the nodes in it do not all
have the same value.

Proof:
When the cycle forms, the last edge (like all edges) is created by a
node executing the Block step. That node will have a new public label
different from any other public label because the inc function gen-
erates unique values, o

Lemma 3:
The maximum public label value in a cycle is equal to the private label of
one and only one node in the cycle.

Proof:
By Lemma 2 when a cycle forms, all the public labels cannot have the
maximum value. At least one node with maximum public label value
must precede a node with a different, lower public label. Thus by
Lemma 1, the private label of the preceding node must equal the max-
imum label value. Since no Block operations can be performed by
nodes in a cycle, this will remain true throughout its lifetime. Private
labels are unique, so only one node can obey this condition, t~

Theorem 1:
l f a cycle of N nodes forms and persists long enough, exactly one node in
it will execute the Detect step of the algorithm. This will happen after
N - 1 consecutive Transmit steps.

Proof."
If a cycle forms and does not break on its own, N - 1 Transmit steps
will carry the largest public label value all the way around the cycle.
By Lemma 3, this means one and only one node will eventually exe-
cute the Detect step. []

5. Aborting Low-Priority Transactions

The algorithm just presented suffers from a significant drawback
if the detecting process aborts to break deadiock. Since older
processes tend to have larger label numbers, they are more likely to
become the detecting process in a cycle. A designer may wish to
assign a unique priority, p~, to each process i, on the basis of age,
number of locks held, or other criteria, and select the process with the
lowest priority in the cycle to be aborted. This is exactly the function
provided by the following algorithm.

SLATE]]EF(3RE SLATE AFTER

outdegree=O

/t.glivat¢

Transmit

(u<v) or (u=v,p>q)

Hl~ure 2

7hls algorithm is an extension of the last algorithm; unique pub-
lic and private priority nombers have been added. In the figure above,
public labels and priority numbers appear as the top left and right
values in a node, and the private labels and priority numbers are the
bottom left and right values, respe~vely. Initi',dly, each ~'ocess pos*.s
its unique private label and priority number. Nodes with equal public
labels post the lower priority number (the Transmit step) and a node
aborts ~hen it sees its own private priority number together in a node
with its own public label (the Detect step).

This algorithm aborts the lcavest-priority process in any cycle that
doesn't break on its own. Since the process with the highest public
label may be waiting for a lock held by the lowest-priority process, the
low-priority number may not start propagating around the cycle until
after the public label h ~ gone fuli-circle. Thus, this algorithm can
take up to twice as long to detect deadlock as the first algorithm.

Theorem 2:
I f a cycle of N nodes forms and persists long enough, the lowest priority
process in the cycle will execute the Detect step after at least N - 1 and at
most 2 N - 2 consecutive Transndt steps.

The proof of this theorem is similar to that of Theorem 1.

6. Discu~ion
In these algorithms, only one deadlocked process detects

deadlock. This dears up the Froblem of deciding which process should
initiate deadlock resolution. The detecting process could simply abort
to break deadlock. In the first algorithm, an arbitrary process detects
deadlock; and in the second, the process with lowest priority in the
cycle will detect.

These algorithms do not use synchronized message passing.
When one process posts a value in its public label, there is no guaran-
tee that another process (executing the Transmit step) will read it
before it is replaced by a new wdue. It is assumed that successive
reads of a label will yield successive values; never out of order.

283

Process failures (in which all resources held are released) will
not cause deadlocks to persist, but they may lead to false deadlock
detection. This happens when the cycle has already been broken (by a
lime-out or failure) when the deadlcrak is detected. Indeed, an actual
cycle may never have existed in any single system state. If this is a
problem in some applications, the deadlock-detecting process could ini-
tiate some type of cycle checking. Passing another set of messages
around the cycle could at least guarantee that a real cycle existed at
some point in lime.

This paper assttmes a system in which no central management of
resources exists, but in which resources can be locked. Such a system
has many advantages, but is open to livelock conditions.

The first algorithm has been implemented in an experimental
database system and has performed well.

R~erences

[BRACHAS3]

[CV_ANDY82]

[O~ANG82]

[DIJKSTRAS0]

[GLIGORSO]

[MENASCE79]

[OB~MARCK82]

Bracha, Cyabfiel, Sam Toueg, "A Distributed
Algorithm For Generalized Deadlock Detection,"
TR 83-558, June 1983, Department of Computer
Science, Cornell University.

Oaandy, K. M., J. Misra, "A Distributed Algo-
rithm for Detecting Resource Deadlocks in Distri-
buted Systems," ACM SIGACT-SIGOPS Sympo-
sium on Principles of Distributed Computing,
August 1982, Ottawa, Canada.

(~ange, Ernest J. I-I., "Echo Algorithms: Depth
Parallel Operations on General Graphs," IEFE
Transactions on Software Engineering, Vol. SE-8,
No. 4, July 1982.

DilXstra, Edsger W., C. S. Scholten, "Termination
Detection for Diffusing Computations," Informa-
tion Processing Letters, Vol. 11, No. 1, August
1980.

Gligor, V'trgi] and Susan I4_. flaattuck, "On
Deadlock Detection in Distributed Systems," IEEE
Transactions on Software Engineering, Vol. SE-6,
No. 5, September 1980.

M_enasce, Daniel and Richard Muntz, "Locking
and Deadlock Deteelion in Distributed Data
Bases," IEEE Transactions on Software Engineer-
/ng, Vol. SE-5, No. 3, May 1979.

Obermarck, Ron, "Distributed Deadlock Detec.
lion Algorithm," ACM Transactions on Database
Systems, VoL 7, No. 2, June 1982.

284

