
Elections in the Presence of Faults

Michael Merritt

A T & T Bell Laborator ies

1. Introduction

The news media often bombards the public with

forecasts of election results. Polls predict, sometimes

years in advance; exit polls are more accurate, and unoffi-

cial tallies tend to be closer to the final results. If close

elections are disputed, it may take the courts weeks to

determine the actual outcome of an election. If the elec-

tion is nearly unanimous, however, a few disputed votes

can have no outcome on the final results. The time at

which the final results may be known with certainty thus

depends upon the accuracy of the forecast (the number of

disputed votes), and the closeness of the election.

In a network of processors, determining the out-

come of an election quickly could have many advantages.

For example, early motivation for agreement problems

was that of several processors reading a single sensor, and

voting on the value read [PSL80]. Under normal condi-

tions, each processor would read the same value, and the

election would be unanimous. Accurate forecasts would

free the processors to act on the election results, even

before the final returns were obtained. Only under

increasingly unlikely conditions of multiple failure would

~Address: AT&T Bell Laboratories, 600 Mountain Ave., Murray
Hill, NJ 07974.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 A C M 0-89791-143-1/84/008/0134 $00.75

there be sustained disagreement about the election results.

This paper explores the problem of forecasting elec-

tion results quickly and accurately in a network of unreli-

able processes. It presents synchronous protocols which

forecast results with known accuracy, under a variety of

failure assumptions. It is really a close examination of

the Interactive Consistency problem [PSLS0], which is

essentially an election, with the new feature of exploring

the amount of partial information available during the

course of the election.

The protocols for restrictive failure models are

similar to known solutions to the Interactive Consistency

problem--for less restrictive (byzantine) failures, the pro-

tocols are original, and introduce the notion of witnesses.

This technique may be of use in the design of other proto-

cols. All the protocols are simple to present and under-

stand, and straightforward proofs of correctness are

presented.

The results presented here raise more questions

than they answer, however. For the less restricted failure

model, lower bounds are conjectured which match the

behavior of the protocols presented, but known techniques

for obtaining lower bounds do not extend directly.

'Finer' techniques for examining the executions of proto-

cols are needed. Even extending the protocols presented

is a hard problem--showing that optimal use has been

made of the witnessing technique would solve a fifteen

year-old graph conjecture, if only in a restricted case!

The remainder of this paper is organized as fol-

lows. The rest of this section introduces the Election

problem more carefully, and discusses its relation to

Interactive Consistency in more detail. In the second sec-

134

tion, protocols for restrictive Stopping-Fault models are

discussed. Authenticated protocols for byzantine failures

are addressed in the third section, and the paper closes

with a brief discussion.

1.1. Network Assumptions

The scenario consists of n processors, a subset of

whom (the voters) each have a local value they wish to

broadcast. Each processor is trying to collect the election

results--a vote for each voter.

We make several assumptions about the communi-

cations network. It is fully connected, so that any proces-

sor may send messages to any other. The network never

loses or alters messages, and reliably identifies the sender

of any message to the receiver. We bound the time it

takes the net to deliver a message, and assume that the

processors are themselves synchronized, so that protocols

can be executed in synchronous rounds. During each

round every processor p will:

a) Send some messages (any number, to any processor),

b) Receive all the messages sent to p this round, and

c) Evaluate a decision function, which returns p's current

best guess at the final election results.

A synchronous election protocol tells each processor what

messages to send each round (on the basis of messages

received previously), and what decision function to use.

Individual processors may fail (in a variety of ways) dur-

ing a protocol execution, but in all cases the following

assumption is made.

k-Fault Assumption

The number of processors which may suffer faults

during a protocol's execution is bounded by a constant k.

We consider protocols which are resistant to three dif-

ferent types of failures: two types of Stopping-Faults, in

which failed processors behave correctly until failure and

then halt permanently, and Byzantine Failures, in which

failed processors may behave arbitrarily, though we

assume a secure authentication (signature) scheme.

We are interested in protocols which take few

rounds in the worst case; we would also like certain

'well-behaved' properties to hold. Typically, this will

mean that wrong forecasts can occur only for a failed

processor's vote, and that the number of disputed votes is

small.

1.2. Elections and the Interactive Consistency Problem

If we were not concerned about forecasting results,

the Election problem we have described reduces to the

Interactive Consistency problem [PSL80]. By allowing

processors to commit outcomes early, accurate forecasting

of election results may be important to specific applica-

tions, especially those in which close elections are rare

and time is important.

Another reason for examining the Election problem

is the light it sheds (or shade it produces) on the question

of lower bounds on the time needed to reach agreement.

A series of results have established ever stronger lower

bounds for Byzantine Agreement and for the Interactive

Consistency problem ([DLM82], [DS82], [FL82], [LF84]).

These results depend upon a particular technique which

does not extend to the Election problem. Whether or not

the lower bounds conjectured here are correct, new tech-

niques will be required to obtain lower bounds for the

Election problems considered here.

2. Stopping-Fault Elections

Stopping-Fault describes processors with well-

behaved failure characteristics. Stopping-Fault processors

behave correctly until failure, after which they do noth-

ing. The system failure characteristics depend upon the

atomic actions of the processors--the indivisible steps dur-

ing which no failure can occur. For example, if broad-

casting is an atomic action, it is trivial to design an elec-

tion protocol producing exact returns after only a single

round. We consider the sending of a single message to a

single recipient an atomic act. Depending upon a

processor's control over the message-sending mechanism,

there may still be different types of system behavior. In

particular, we consider two cases, one in which each pro-

cessor can determine the order in which messages are to

135

be sent each round, and another in which this order is not

determined. These alternatives are referred to as

Sequenced or Unsequenced Stopping-Fault processors,

respectively. The difference affects the inferences about

failure that processors can make--if Alice fails to receive

a scheduled message from Bob, she knows he has failed.

In the sequenced case, she knows that anyone scheduled

to receive a message from Bob after her will not receive

it, but in the unsequenced case everyone else may receive

a message from Bob that round.

The next section presents a simple election proto-

col, and shows that it permits accurate forecasting as the

election progresses.

2.1. The Stopping-Fault Election

Messages sent in this protocol have the form (p,v),

where p is a processor name and v is a vote. The rounds

of execution are numbered from 0 on, so that round j is

actually the j + l'st round of execution. The protocol fol-

lows.

Stopping-Fault Election

Round 0

Every voter p broadcasts (p,v),

where v is p's vote.

Round j, l<-j<-k

Every processor broadcasts

any new messages received

during the previous round.

Decision Procedure

Each processor p does the following,

for every processor q;

If a message of the form (q,v)

has been received, choose v as q's vote.

Choose error otherwise.

Because processors are Stopping-Fault, the decision pro-

eedure will always be uniquely determined (there cannot

be two messages of the form (p,v) and (p,u) sent during

the same protocol execution).

Theorem 1

For Stopping-Fault (Sequenced or Unsequenced)

processors, executions of the Notarized protocol satisfy

the following properties:

i) If p does not fail, every correct processor

will choose p's value every round.

ii) After round k, all correct processors

have chosen the same values.

iii) After round j , 0 < j < k , values chosen

for at most k - j different processors

are different from those eventually chosen.

Proof

Property (i) is clearly true. To see that (ii) and (iii)

are true, note that there can only be disagreement on a

value for a processor that fails during round 0. Note also

that every processor receives the same messages during

any round in which noone fails (all transmissions are

broadcasts). More importantly, everyone has seen the

same set of messages after such a round, and noone will

later change any value. Then (ii) follows immediately.

For any value to change after round j , there must there-

fore have been at least one failure each round through

round j. This means at most k - j processors could have

failed during round 0, since there are at most k failures in

all. []

For Unsequenced Stopping-Faults, Theorem 1 is as strong

as possible; there are executions in which there is

disagreement on as many as k - j values after round j. It

was conjectured for a time that this was a general lower

bound for Unsequenced Stopping-Faults. As with all the

failure models considered here, showing that there may

be k disagreements after the first round is trivial, and

k + l rounds are necessary for total agreement, by the

136

known bound on Interactive Consistency [FL84]. Cynthia

Dwork has shown, however, that agreement on at least

k - 2 values is possible after round 1, when k>2 [D84].

Protocols achieving this small additional agreement are

fairly complex, and it is not known if the techniques used

can be extended to provide further early agreement.

As we are about to see, the simple Stopping-Fault

protocol allows earlier agreement in the Sequenced

Stopping-Fault model.

2.2. Sequenced Stopping-Fault Processors

If processors can schedule the order in which mes-

sages are sent during a given round, the Stopping-Fault

Election can actually guarantee earlier agreement on more

votes, although k+ 1 rounds are still required in the worst

case (by a simple extension of the lower bound for

Interactive Consistency in the unsequenced case). Exactly

how much better is not known--deciding which schedules

allow the strongest inferences is a difficult problem.

Suppose every round each processor p sends first to

p + k + l (mod n), then to p + k + 2 (rood n) and so on.

Call this scheduling a k-sequencing. We can show the

following.

Theorem 2

Let k~-(r2+3r)/2, and n>(r+l)k . Then after two

rounds of the Stopping-Fault protocol, Sequenced

Stopping-Fault processors using k-sequencing will disagree

on no more than k - r votes.

The proof of this theorem shows that if more than

k - r processors fail in the first round, there will be agree-

ment on more than k - r votes after the second round.

The k-sequencing is crucial to the argument.

3. Authenticated Protocols for Byzantine Elections

In this section we present protocols for systems in

which processors may suffer byzantine failures--failures

which can lead to arbitrary, even malicious behavior.

The only limitation we make is that each processor can

authenticate messages (e.g., using a digital signature

scheme) in an unforgeable way. An authenticated proto-

col is a Byzantine Election protocol if it satisfies conditions

i-iii of Theorem 1, in the face of byzantine failures.

When there is only one voter, these requirements are

those for Byzantine Agreement on the voter's value, with

the restriction that agreement be reached in at most k + l

rounds, and with the addition of 'guesses' at every round.

It is known that no such protocol takes less than k + l

rounds to reach agreement, in the worst case

([DS82],[DLM82]).

3.1. Witnesses

The idea behind both protocols presented below is

that each processor p has an associated set of wimesses:

these witnesses sign and forward messages containing

values signed by p. More importantly, only forwarded

information from appropriate witnesses is used to decide

on a processor's vote. Witnesses are assigned a priori, in

such a way that k liars (faulty processors) cannot simul-

taneously lie about their own values and about the values

of other liars. In the first protocol these witnesses do not

themselves participate in the election; like notary publics,

they participate only as witnesses. In the second protocol,

processors act as both voters and witnesses.

3.2. Notarized Election

As indicated above, the processors in this protocol

are divided into two sets: the voters and the wimesses.

Any processor may suffer from a byzantine failure,

though no processor may forge another's signature. We

require there to be at least 2k witnesses--thus, at least k

witnesses are correct.

Definitions. A value signed by voter i is an i -vote. A

witness's signature of an /-vote is an affadavit for that i-

vote.

If there are 2k witnesses, the following protocol

satisfies the Byzantine Election requirements for any

number of voters.

137

Notarized Election

Round 0:

Each voter signs and broadcasts his vote.

Witnesses send no messages.

Round j , l<-j<--k:

Voters send no messages.

Every witness w does the following:

For every voter i

Any /-vote with j - 1 or more

different affadavits is valid.

Sign any new valid /-votes,

producing new affadavits.

Broadcast every valid /-vote or affadavit

for a valid /-vote that was not

broadcast by w in earlier rounds.

Decision Procedure for Round j,O<--j<--k

If processor p has received exactly one /-vote

with at least j different affadavits

(counting his own, if p is a witness)

then p chooses the value signed as i 's vote.

Otherwise p chooses error as i's vote.

Lemma 1

In any execution of the Notarized Election, if any

processor q receives an affadavit with p ' s signature for

some /-vote v by the end of round j , 1 <-j<k, then one of

the following is true:

i) p is. faulty, or

ii) every processor receives k

different affadavits for v

by the end of round j + 1.

Proof

If p is not faulty, then the affadavit received by q

was originally broadcast by p, along with the /-vote and

at least i - 1 other affadavits, during some round i, i<_j.

There must be at least k correct witnesses, each of whom

receive this broadcast, and for whom v is thus valid dur-

ing round i + I . Thus (ii) is true. []

Lemma 2

In any execution of the Notarized Election, if any

correct processor p changes its guess for some processor i

after round j , O<-j<k, then at least j witnesses are faulty.

Proof

The lemma is trivial for j = 0 . Suppose j > 0 , and

some correct processor p chooses a value for i after round

j that is different from some value chosen at a later

round. Then p has chosen a value v or error, and later

changes the value to another. There are three cases;

Case 1: Processor p chooses v after round j , and later

agrees on a different value u. Since (ii) of Lemma 1 is

false, the j signers of the affadavits for v are faulty.

Case 2: Processor p chooses v after round j , and during r

agrees on error. Possibly p never receives more than j

affadavits for v or any other /-vote, and chooses error for

this reason. Then the j signers of the affadavits he now

holds are faulty, by Lemma 1. The other possibility is

that p later receives more than j affadavits for at least

two /-votes, one of which contains a value u different

from v. Either all of the witnesses signing these affadav-

its are faulty or choose the first correct processor q to

sign u. This must happen after round j , so q has at least

j affadavits from faulty processors.

Case 3: Processor p chooses error after round j , and

later chooses a value v. Suppose p chooses error because

he has no adequately witnessed /-votes. Later p has more

than j affadavits for v. The witnesses for these affadavits

are either all faulty, or some correct witness first signs v

after round j , so that at least j of the affadavits seen by

this witness are signed by faulty processors. The other'

138

possibility is that p chooses error after round j because of

having at least two adequately witnessed /-votes. Since p

later has only one adequately witnessed /-vote, by Lemma

1 the witnesses for at least one of the two are faulty. []

Theorem 3

If there are at least 2k witnesses, the Notarized

Election is a Byzantine Election protocol.

Proof

First we must show that there is never any

disagreement on correct processor's votes. Each correct

processor i broadcasts an /-vote containing his value dur-

ing round 0, and signs no other values at all during the

protocol. Thus there can be at most one valid /-vote

received by any processor in any round. Since at least k

of the witnesses are not faulty, they will each receive this

/-vote during round 0, and rebroadcast it with their affa-

davit during round 1. Thereafter, every processor will

have received at least k different affadavits for that i-

vote, so the appropriate value will be chosen as i's vote

each round through round k.

Next, we show that all correct processors have

reached byzantine agreement on every vote after round k.

Suppose two processors r and s disagree on i's vote.

Then one, say r, must have chosen a value v, while s has

chosen error or a different value, u. In any case, one of

the two has received some /-vote with k affadavits and

the other has not. Then all k of the witnesses signing the

affadavits are faulty--otherwise, they would have for-

warded the /-vote and affadavits to both r and s, not just

one of the two. But i must be faulty, too, since there is

never disagreement on a correct processor's value. This

is a total of k4-1 faults, contradicting the k-fault

hypothesis.

Finally, we show that after round j , for O<-j<k,

final agreement is reached on max(O,]voters[+j-k)

values. If any value at all is changed after round j , there

are j faulty witnesses, by Lemma 2. Thus there are at

most k - j faulty voters. Since values for correct proces-

sors are never changed, the result follows. []

3.3. Mutually Verified Election

The Notarized protocol required the presence of 2k

processors who act only as witnesses. This may be incon-

venient or expensive for many applications. What if

every processor ~ s h e s to participate in the election? The

following presents a Byzantine Election protocol for

n>k(k+ 1) processors, in which all processors vote.

Definitions. Numbering the processors from 1 to n, for

n >k(k + 1), we designate the processors

i+1 i+k+j(mod n) as j-wimesses for processor i.

As before, an /-vote is a value signed by i. A

j-affadavit for an /-vote is the signature by a j-witness of

that /-vote. For each j from 1 to k, construct Gi, the

digraph with n nodes and k+j arcs from each node to it's

j-witn esses.

Mutually Verified Election

Round 0:

Each processor signs and broadcasts his vote.

Round j , l <-j<_k:

Every processor w does the following.

For every processor i:

A n y / - v o t e or more different

j-affadavits is valid.

Sign any valid /-vote that was not valid

in previous rounds.

If there are no valid /-votes, or w is not

a j-witness for i, send nothing.

Else broadcast all of the / -vo tes

and their j-affadavits that have

not been broadcast by w in earlier rounds.

139

Decision Procedure for Round j,O<-j<--k

If processor p has received exactly one

/-vote with j or more different j-affadavits

(counting his own, if p is a j-witness for i)

then p chooses the value signed as i's vote.

Otherwise, p chooses error as i's vote.

Lemma 3

The shortest cycle in G 1 has length greater than

k - j+ 1.

Proof

Picture the nodes of G 1 on a circle--each node con-

nected to the next k+j in the clockwise direction. Start-

ing at any node, the farthest around the circle one can get

following a single edge is k+j nodes. Any cycle must go

completely around the circle, so the number of nodes in

the cycle, times this maximum 'distance' covered by a sin-

gle edge, must be at least n. Since n>k(k4-1), the result

follows.

Lemma 4

Among any subset S of k processors, at most k - j

have j or more j-witnesses in S, for l<-j<-k.

Proof

The lemma follows if any k-node subdigraph of Gj

has at most k - j nodes with outdegree j or more. Sup-

pose that k - j + 1 nodes in some k-node subdigraph G' of

G 1 have outdegree at least j . Then there is a cycle of

length at most k - j + 1 in G', and so in Gj, contradicting

Lemma 3.

terBma 5

In any execution of the Mutually Verified Election,

if any correct processor p changes its guess for some pro-

cessor i after round j, O<-j<k, then at least j of the j-

witnesses for i are faulty.

Proof

By a case analysis similar to that in Lemma 2.

Theorem 4

If n > k(k+l) , the Mutually Verified Election is a

Byzantine Election protocol.

Proof

Every correct processor signs and broadcasts a sin-

gle value during round 0; furthermore, each correct pro-

cessor has at least j correct j-witnesses. Thus, there will

never be any disagreement on correct processors' values.

Now we argue that Byzantine Agreement is

reached on every vote at the end of round k. Two proces-

sors r and s can disagree on some value for i only if one,

say r, has received an /-vote with k k-affadavits that s has

not received. Then each of these k k-witnesses must be

faulty, along with i itself, contradicting the k-fault

hypothesis.

Finally, we must show that after round j , for

O<-j<-k, final agreement is reached on at least n + j - k

values. Suppose this is not the case; that after round j of

some execution, for each processor i among some set S of

k - j + l processors there is a correct processor who will

later choose a different value for i than the one currently

chosen. Since the values chosen for correct processors

never change, each processor in S is faulty. By Lemma 3,

the subdigraph of G 1 generated by S has no cycles. Thus

there must be a processor i in S such that every j-witness

for i is not in S. By Lemma 4, i has at least j faulty j-

witnesses; the j faulty witnesses for i, together with the

k - j + l members of S, contradict the k-fault assumption.

[]

3.4. Other Byzantine Election Protocols

Neither the Notarized Election nor the Mutually

Verified Election will work for general networks of

processors--the one requires 2k witnesses, the other

requires that there be more than k(k+l) voters. While

one can trade-off witnesses against the total number of

voters by-combining tricks from both protocols, this will

not produce a completely general algorithm. It is possible

that an execution-dependent choice of witnesses (replacing

the fixed k-witnesses of the Mutually Verified protocol)

might produce a completely general protocol--this possi-

140

bility is under investigation.

Another possiblility is that a better fixed assign-

ment of witnesses might be possible in the Mutually Veri-

fied .protocol. Translated to a graph problem, and res-

tricted to just the second round of the protocol, we need

to know the following; is there a digraph on n<-k(k+l)

vertices, such that each node has outdegree k + l and

there is no cycle of size less than or equal to k? A nega-

tive answer is a restricted case of a fifteen year-old con-

jecture ([BT81])r

Conjecture

If D is a digraph of degree at most dr, such that

every vertex has outdegree r or more, then D contains a

cycle of length at most d.

The best known result is that there is a cycle of length at

most d+ 2500 [CS83]. This is an indication of the diffi-

culties encountered in designing good election protocols,

and in attempting to di~over strong lower bounds to

match.

4. Lower Bounds

This paper has conjectured the optimality of the

two Byzantine Election protocols--that no protocols can

forecast more accurate returns more quickly, in the

byzantine failure model. For the first round, it is obvious

there may be disagreement on as many as k votes, and

after k rounds the bounds for Interactive Consistency

show there is at least one vote of disagreement, in the

worst case. It is interesting to note that the processors

cannot all know on which votes they disagree--for then

they could all pick a default value, and achieve Interac-

tive Consistency too early.

These bounds for the first and kth round also hold

for the Stopping-Fault failure models, but in these cases

more votes can be accurately forecast early in the elec-

tion. How many more votes can be forecast, and how

early? Theorem 2 suggests about Vk more votes can be

forecast after two rounds, but nothing more is known.

This is as far as known results and techniques go.

Lower bounds for Interactive Consistency depend cru-

dally on the requirement that total agreement be reached

among the participating, failure-free processors. Crudely,

this means that one can reason: "If Alice saw X and Bob

saw Y, then if Bob saw Y and Carol saw Z, Carol would

have to choose what Alice chose when she saw X, since

Bob will choose the same values and they must both agree

with him." This reasoning is not valid in our setting, as

both Alice and Carol are free to disagree a little with

Bob, and thence perhaps completely with each other.

Thus a relation which is transitive when everyone must

always agree is no longer transitive, and the known tech-

niques do not extend directly.

Whence from here? The Sequenced Stopping-Fault

model may have useful applications, and should be inves-

tigated further. The problem of choosing an optimal

broadcast sequence for this or other interesting problems

appears hard, however.

Proofs of the lower bounds might provide interest-

ing tools, and constructive disproofs would provide faster

protocols. Both would increase our understanding of

"what we know that he knows that you know that they

know about what we all know!"

5. References

[BT81] Bermond, J.C., and Thomassen, C., "Cycles in

Digraphs--A Survey," Journal of Graph Theory,

Vol. 5 (1981) 1-43.

[CS83] Chvatal, V. and Szemeredi, E., "Short Cycles

in Directed Graphs," Technical Report SOCS-

82.11, 1983.

[DLM82] DeMillo, R., Lynch, N., and Merritt, M.

"Cryptographic Protocols" Proc. 14th ACM

Symposium on the Theory of Computing, 1982.

[DS82] Dolev, D., and Strong, H. R. "Polynomial

Algorithms for Multiple Processor Agreement."

Proc. 14th ACM Symposium on the Theory of

Computing, 1982, pp. 401-407.

[D84] Dwork, C. private communication.

141

[FL82]

[LF84]

[PSLS0]

Fischer, M.J., and Lynch, N.A. "A Lower

Bound on the Time to Assure Interactive Con-

sistency." Information Processing Letters 14, 4

(1982), 183-186.

Larvport, L. and Fischer, M.J. "Byzantine

Generals and Transaction Commit Protocols."

Manuscript.

Pease, M., Shostak, R., and Lamport, L.

"Reaching Agreement in the Presence of

Faults." Journal of the AL"M 27, 2 (1980), 228-

234.

142

