
A METHODOLOGY FOR SOFTWARE IMPLEMENTED TRANSIENT ERROR
RECOVERY IN SPACECRAFT COMPUTATION

by

EVERETT NORCROS S Y;CKA Y
"I

SUBMITTED TO THE DEPARTMENT OF
ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREES OF

BACHELOR OF SCIENCE IN ELECTRICAL ENGINEERING

and

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
January 18, 1985

~ Everett Norcross McKay, 1985

The author hereby grants to M.I.T. and Hughes Aircraft Company permission
to reproduce and distribute copies of this thesis document in whole or in
part.

Signature of Author •••••••••••••••••••••• , - ------ .- ,. ,. ... -,. _ .. -~l

Certified

Department of EEl

bY··································~·····j~·T:·Y~~~~~~~
Thesis Supervisor

Hughes Aircraft Company

Certified by ••••••••••••••••••••••••••••
Pr~essor Nancy Lynch

Thesis Supervisor

Accepted b~,. ___ e""' ~ •• J~"., ••••• ; .'-";;'. ~r ••• (•••••••••••••••••••••

Professor Arthur C. Smith, Chairman
Departmental Graduate Committee

ARCHIV ES Department of EECS
MASSACHUSEllS iN5ilTUTE

OF TECHNOLOGY

APR 0 11985
l\BRA~~IES I

A METHODOLOGY FOR SOFTWARE IMPLEMENTED TRANSIENT ERROR
RECOVERY IN SPACECRAFT COMPUTATION

by

EVERETT NORCROSS MCKAY

Submitted to the Department of Electrical Engineering
and Computer Science on January 18, 1985 in partial fulfillment

of the requirements for the combined Degrees of Bachelor of
Science and Master of Science in Electrical Engineering

ABSTRACT

Software Implemented Transient Error Recovery in spacecraft computation
is the ability of a spacecraft to recover from transient errors using
software techniques alone. Transient errors, typically caused by
high-energy cosmic radiation, are the primary source of error in
spacecraft computation.

The objective of this paper is to present a specific methodology for
employing the Software Implemented Transient Error Recovery techniques.
The methodology has three objectives: to limit the propagation of errors
by performing computations on temporary objects, to detect errors by
providing redundant information, and to correct errors by determining the
appropriate recovery action by interpreting redundant information.

The methodology is an improvement of the approach used on the Intelsat VI
attitude control sub-system, and was derived with the assistance of a
computer simulation of a processor experiencing single and mUltiple bit
upsets. Various performance metrics are discussed. The metric used to
develop the methodology is the least probability of first-order
catastrophe. A probabalistic analysis of systems using the methodology
is performed. In the analysis, the conditional probability of
catastrophe given the occurrence of an upset and the mean time to
catastrophe are calculated with parameters from the Intelsat VI attitude
control sub-system and with parameters from a possible future spacecraft
control sub-system, both with and without Software Implemented Transient
Error Recovery.

The proposed methodology provides several advantages over previous
approaches. The most important of these advantages are that it is a
structured, standardized approach, capable of recovering from mUltiple
bit upsets and under most circumstances, it can recover from transient
errors without re-initialization or restarting.

Thesis Supervisor: Prof. Nancy Lynch

Title: Associate Professor of Electrical Engineering
and Computer Science

II

ACKNOWLEDGEMENT

This project was inspired by a presentation on software error

recovery for the Intelsat VI attitude control system made by Ron Obert in

the Summer of 1983.

I would like to thank Jim Yonemoto for his guidance and support

throughout the project. His careful attention to detail was most helpful.

I would like to thank George Hrycenko for his support and concern. I am

especially grateful to all the people who took the time to review the

many drafts of the thesis, including Jim Yonemoto, Ron Obert, and

Prof. Lynch. Lastly, I would like to thank Hughes Aircraft Company and

the Engineering Internship Program at M.I.T. for making the opportunity

possible.

III

TABLE OF CONTENTS

ABSTRACT •••

page

II

III

IV

VII

VII

ACKNOWLEDGEMENT ..•••.••.••.•.•••••.•••••••••••••••••.•••••••••••.••

TABLE OF CONTENTS ••

LIST OF FIGU'RES

LIST OF TABLES •••••••••••••.•••••••••••.•..••••••••.••••.••••••••.•

1.

2.

INTRODUCTION •••••••••••••••••••••••••••••.•••••••.••••••••••• 1

2

3

3

5

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Autonomous Spacecraft Maintenance ••••••••••••••••••••••

Fault-Tolerance ••

Need for Transient Error Recovery ••••••••••••••••••••••

Previous Work ••

Advantages of New Approach •••••••••••••••••••••••••••••

Type of System Assumed •••••••••••••••••••••••••••••••••

Overview of Thesis •••••••••••••••••••••.••••••••••••••••

12

14

14

PROPOSED METHODOLOGy ••• 16

16

16

2.1

2.2

2.3

2.4

2.5

Introduction •••

Discussion of General Techniques •••••••••••••••••••••••

2.2.1 Error Propagation Control........................... 16

2.2.2 Error Detection..................................... 18

Discussion of Recovery Method •••••••••••••••••••••••••• 20

2.3.1 Computation Blocks and Idempotent Sections.......... 20

2.3.2 Additional Considerations........................... 22

Recovery Software Format ••••••••••••••••••••••••••••••• 22

2.4.1 Computation Block Format............................ 23

2.4.2 Recovery Block Format............................... 26

Extending Technique to Real Computations ••••••••••••••• 29

IV

3.

4.

SIMULATION ANALySIS •.•.••••••••••••••••••••.••••••••••••••••• 33

33

36

3.1

3.2

Introduction •••

The System Models ••••••••••••••••••••••••••••••••••••••

3.2.1 The Multiple Bit Upset Model........................ 36

3.2.2 The Upset Mapping Model............................. 36

3.2.3 The High-Level Language/Machine Language Model...... 40

3.2.4 The Structure/Content Model......................... 42

3.3 Performance Metrics for Recovery Evaluation •••••••••••• 44

3.3.1 Coverage and Recovery Profile....................... 45

3.3.2 Catastrophes.. 48

3.3.3 Time and Space...................................... 48

3.4 Discussion of Results •••••••••••••••••••••••••••••••••• 49

PROBABALISTIC ANALySIS ••••••••••••••••••••••••••••••••••••••• 51

51

52

4.1

4.2

Introduction •••

Detailed Probabilistic Analysis ••••••••••••••••••••••••

4.3

4.4

4.5

4.2.1 Definitions... 52

4.2.2 Failure Classifications............................. 54

4.2.3 General Detailed Probabilistic Analysis............. 56

4.2.4 Intelsat VI ACE Example............................. 61

4.2.5 Future Spacecraft Example........................... 65

Register Method •• 69

4.3.1 Register Method Procedure........................... 70

4.3.2 The Worst Case Methodology.......................... 73

4.3.3 The Intelsat VI ACE Methodology..................... 74

4.3.4 The Proposed Methodology............................ 75

4.3.5 The Best Case Methodology........................... 76

Summary of Results •••••••••••••••••••••••••••••••••••••

Discussion of Results ••••••••••••••••••••••••••••••••••

v

77

78

5. CONCLUSION •••••••.•.••••••••••••••••••••••••.••••••••••••.•••

APPENDIX

ADDITIONAL CONSIDERATIONS FOR TRANSIENT ERROR RECOVERy •••••••

THE SIMULATION PROGRAM DESCRIPTION •••••••••••••••••••••••••••

THE SIMULATION PROGRAM LISTING •••••••••••••••••••••••••••••••

GLOS SARY •••

BIBLIOGRAPHy •••••••••••••••••••••••••••••••••••••••.••••..••••.••••

VI

80

81

87

92

123

136

LIST OF FIGURES

page

Sample Computation Block in Error Recovery Format.................. 24

Sample Error Recovery Block.. 28

Simulation System Parameters....................................... 88

Outline of Simulation Program...................................... 91

LIST OF TABLES

page

Inte1sat VI ACE Memory Parameters.................................. 72

Future Spacecraft Sub-system Memory Parameters..................... 72

Worst Case Methodology Coverage.................................... 73

Inte1sat VI ACE Methodology Coverage............................... 74

Proposed Methodology Coverage...................................... 75

Best Case Methodology Coverage..................................... 76

Probability Of Catastrophe Inte1sat VI ACE Configuration ••••••••• 77

Probability Of Catastrophe - Future Spacecraft Configuration....... 77

Mean Time To Catastrophe Inte1sat VI ACE Configuration ••••••••••• 78

Mean Time To Catastrophe - Future Spacecraft Configuration......... 78

VII

INTRODUCTION

Software Implemented Transient Error Recovery in spacecraft

computation is the ability of a spacecraft to recover from transient

errors using software techniques alone. Transient errors, typically

caused by high-energy cosmic radiation, are the primary source of error

in spacecraft computation.

The objective of this paper is to present a specific methodology

for employing the Software Implemented Transient Error Recovery

techniques. The methodology has three objectives: to limit the

propagation of errors by performing computations on temporary objects, to

detect errors by providing redundant information, and to correct errors

by determining the appropriate recovery action by interpreting

redundant information. It will be assumed throughout this paper that the

methodology will be applied to real-time spacecraft control software.

Control software lends itself well to the structuring required by the

methodology.

The methodology is an improvement of the approach used on the

Intelsat VI attitude control sub-system [14], and was derived with the

assistance of a computer simulation of a processor experiencing single

and mUltiple bit upsets. Various performance metrics are discussed. The

metric used to develop the methodology is the least probability of first

order catastrophe. A probabalistic analysis of systems using the

methodology is performed. In the analysis, the conditional probability

of catastrophe given the occurrence of an upset and the mean time to

catastrophe are calculated with parameters from the Intelsat VI attitude

control sub-system and with parameters from a possible future spacecraft

control sub-system, both with and without Software Implemented Transient

Error Recovery.

1

The proposed methodology provides several advantages over previous

approaches. The most important of these advantages are that it is a

structured, standardized approach, capable of recovering from mUltiple

bit upsets and under most circumstances, it can recover from transient

errors without re-initialization or restarting.

1.1 Autonomous Spacecraft Maintenance

Software Implemented Transient Error Recovery is part of an overall

system goal of autonomous spacecraft maintenance (ASM). ASM is an

attribute of a spacecraft system which allows continuous operation

without external control, and performance of its specified mission at an

established level for a specified period of time, even in the event of

failure of one or more of its components. The scope of ASM includes

spacecraft hardware maint~nance, navigation and stationkeeping, and

mission sequencing. ASM has applications in military and commercial

satellites, as well as deep-space probes.

In military applications, ASM removes the vulnerability of

telemetry and command communication links by the elimination of their

continuous dependence upon ground stations for maintenance and control.

ASM is useful in extending the availability of commercial

satellites. ASM reduces the operational cost of commercial satellites by

minimizing the manpower and support equipment requirements. ASM can be

used to correct problems in the critical elements of a spacecraft, such

as attitude control and power.

Deep space probes have critical periods (during planet fly-by, for

example) during which a system error could result in mission failure.

Ground support is not helpful due to the long transmission delays between

the ground station and the spacecraft. ASM increases the probability of

2

mission success.

1.2 Fault-Tolerance

Autonomous spacecraft hardware maintenance requires that a

spacecraft must continue to operate in the presence of hardware faults.

Fault-tolerance is defined as the ability of a system to perform

correctly in the presence of faults. Although there are techniques for

providing fault-tolerance capabilities on terrestrial computer systems

through redundant hardware, these methods require too much weight, power,

and space for practical usage in most current spacecraft applications.

Present spacecraft provide computer hardware redundancy at the

sub-system level. For example, if a memory unit on an attitude control

computer were to fail, the entire attitude control computer system would

be replaced with a spare. Although this method allows only as many

failures as spares, very few satellite failures have been attributed to

on-board computer failures. However, present satellites have very

limited on-board computing power. Future satellites, many of which may

do on-board signal processing of received signals, will require much more

computing power, which could lead to more computer failures.

1.3 Need for Transient Error Recovery

Autonomous spacecraft hardware maintenance also requires that a

spacecraft must continue to operate in the presence of transient errors.

Although errors caused by transient sources are usually less serious than

errors caused by permanent sources, their greater frequency make them as

important. On present spacecraft, the mean time to permanent failure is

on the order of years, whereas the mean time to transient error is on the

3

order of days.

I do not intend to suggest that transient error recovery is more

important than fault-tolerance or should be done in lieu of fault

tolerance. Autonomous spacecraft maintenance requires both techniques,

and future systems may try to integrate both approaches. However, given

the state-of-the-art in fault-tolerant computing, and given current

spacecraft reliability requirements, I believe that it is more cost

effective to address transient error recovery.

The known causes of transient error in spacecraft computation are:

1) Single Event Upsets

Single event upsets are caused by high-energy cosmic particles

resulting in an ionized track approximately one micrometer in

diameter for approximately one nanosecond. Because of their small

size, cosmic particles can result in at most one bit flip per

particle.

2) Electrostatic Discharge

Electrostatic discharge is caused by the discharging of large

potential differences generated during a spacecraft eclipse in a

magnetic substorm. Such magnetic disturbances can cause a

spacecraft in geosynchronous orbit to charge up differentially to

a 20-kilovolt range [20]. This problem is capable of causing

permanent as well as transient errors. These transient errors can

result in mUltiple bit flips.

3) Thermal Noise

Thermal noise has the most effect on corrupting analog voltage of

spacecraft sensors, resulting in mUltiple bit errors.

4

4) Intermittent Hardware Failures

Although errors caused by intermittent hardware failures can be

masked using software techniques, they cannot be repaired using

software techniques alone. Consequently, intermittent hardware

failures are not addressed in this paper.

Several studies have tried to determine the single event upset rate

for various components [3,11]. The most common figure used is 1 e -4

upsets/(bit-day). At this rate, a spacecraft sub-system such as the

Intelsat VI ACE with 13 K bits of main memory will experience over one

upset per day on average. No such upset rate data exists for

electrostatic discharge and thermal noise.

1.4 Previous Work

Most of the previous work in fault-tolerant computing has not

addressed transient error recovery [2,4,5,10,17,18,19]. Some authors

have addressed transient errors in the form of intermittent hardware

failures [16,21,22]. Intermittent hardware failures are not addressed in

this paper, since they cannot be corrected using software techniques

alone.

The principle recovery scheme used in this paper is essentially a

simplified variation of the program rollback recovery schemes often used

in database management operating systems [1,6,15]. However, rollback

recovery is used in database management to undo correctly performed

actions in order to eliminate deadlock, which is not a concern in

transient error recovery. In transient error recovery, program rollback

occurs when the correctness of the initial execution of a program segment

is doubtful, which is not a concern in database systems. Consequently,

5

many of the ideas used in database recovery schemes are not relevant to

transient error recovery.

All of the error detection schemes used in this paper can be found

in other sources [6,13,14,16]. Many of these ideas are currently being

employed on the Intelsat VI attitude control sub-system developed by Ron

Obert at Hughes Aircraft Company [14], which is described below.

Summary of the Intelsat VI ACE Transient Error Protection

The goal of Intelsat VI ACE transient error protection is to make

the ACE operation immune to single event upsets. The ACE hardware is

assumed fixed, so only software solutions are considered.

The main idea to the Intelsat VI ACE approach to transient error

protection is to take advantage of fact that 1) the attitude control

system is greatly oversampled, resulting in a natural immunity to error

and 2) the majority of processing time is spent in a wait loop, which can

easily be made immune to most upsets.

The important recovery techniques used in the Intelsat VI ACE are:

Jump return to wait loop:

Jump return to wait loop is a method for detecting and

recovering from sequencing errors which occur during the

execution of the wait loop. The control program of the ACE

sub-system will spend the majority of its run-time in a wait

loop. Since wait loops are short, the number of mutations of

the wait loop instructions that a single bit flip could cause is

small. Here is an example of what could be done:

6

; program fragment
104 add rl, r2
105 jmp 107
106 jmp 200
107 continue •••

; wait loop
200 ei
201 jmp 200
202 jmp 200

Suppose an SEU changed line 200 from enable interrupt to jmp 106.

Under normal operation, it is impossible for the program to

execute line 106, since it is intentionally by-passed by line

105. Consequently, embedding a jump return to the wait loop

instruction would recover from such an upset.

Since the amount of time spent in the wait loop is large, this

method is very effective in recovering from SEUs, but is

ineffective in recovering from larger upsets since mutations of

only one bit are considered.

Sequence control codes (SCC):

The testing of sequence control codes is used as a method of

sequence error detection. A variable is set to a known value

before a section is entered. This variable is then checked at

the end of the section. If there is a discrepancy, entry into

the section must have been at some point other than the proper

entry point of that section. If such a sequence error is

detected, the computation is aborted, and the program jumps to

the wait-loop. No method is used to prevent error propagation.

Consequently, the SCC tests had to be used with a high density

to be effective.

7

Error-Correction Mode Algorithm (ECM):

The Error-Correction Mode is an alternate mode of operation

which goes into effect when the difference between the actual

output and the estimated output is greater than some margin.

With ECM enabled, the ACE will use the average of past outputs

for 10 seconds while the system re-initializes.

Protected program sections:

By placing important calculations which must be performed with

each real-time interrupt at the beginning of the control loop,

the protected program sections have an increased probability of

successful execution.

Redundant storage and voting of critical parameters:

Redundant storage protects critical parameters from memory

upsets.

Hamming error-correction codes with periodic update:

Error correction codes prevent bit flip errors in main memory.

Periodic register updating reduces the probability that two

upsets occur in the same word.

A simulation analysis was conducted to measure the effectiveness of

the transient error protection. The actual flight code was executed on a

2901 and 2910 simulator, which is capable of arbitrarily flipping

individual bits. The simulation model contained a total of 243

flip-flops, 223 in the 2901 and 2910, and 20 in the remaining hardware.

Each bit was flipped twice at a random time within a 2 second processing

interval. The 486 bit flips correspond to several missions' worth of

SEUs in the processor. Main memory upsets were not considered, since

8

error correction codes provide sufficient protection against single

event upsets. The criterion for system failure in the simulation was

observing an output error of greater than 0.003 degrees.

The results of simulation analysis were 1) The placement of SCC

tests within the flight code had little effect in results, 2) Without the

ECM, an average of 6.33 pointing errors of greater than 0.003 degrees

were observed from 486 trials, giving 1.3 % probability of failure,

3) With the ECM, an average of 2 pointing errors greater than 0.003

degrees were observed from 486 trials, giving 0.41 % probability of

failure, 4) Only active processing time was simulated. Results should be

factored by (1 - time_in_wait_loop) to take wait-loop immunity into

account, and 5) The probability of system failure by upset is dominated

by three unprotected flip-flops.

Another system which uses many of the error detection schemes used

in this paper is the DC-9-80 Digital Flight Guidance System developed by

Sperry Flight Systems [16]. The major difference between the proposed

system (as well as the Intelsat VI ACE) and the DC-9-80 is that the

DC-9-80 system uses both hardware redundancy and software self-monitoring

techniques to detect transient errors and hardware failures, whereas the

proposed system uses only software techniques to recover from transient

errors.

Summary of the DC-9-80 Digital Flight Guidance System

Transient Error Detection

The principle concepts in the DC-9-80 approach to transient error

detection are : 1) use a series of error detecting "screens" to monitor

the correctness of program execution. The screens are redundant in the

9

types of errors they monitor, so if one screen fails to perform correctly

for any reason, the remaining screens can insure correct execution.

2) create a hardware and software structure that simulates two separate

computers while using only one processor. These "virtual" computers

execute the same software, but use different memory blocks, different

sets of data, and different sensor inputs.

The important error detection techniques used in the DC-9-80 Digital

Flight Guidance System are:

Redundant Storage:

Dual storage of critical parameters is maintained in separate

memory banks. Estimates of "correct" values are made by

averaging the two values, except when the discrepancy between

the values exceeds specified criteria.

Processor Self-Monitoring Program (BITE):

This program executes the entire processor repertoire each

iteration of the flight-program. It tests the processor's

instruction set using a full range of test numbers, tests all

cases of the branching instructions, and uses the internal bus

structure and associated registers at their maximum data rates.

Redundant Computation:

The main function of redundant computations is to guard against

transient errors. All critical computations are performed twice,

using different sets of data stored in entirely different

sections of RAM. Estimates of "correct" values are made by

averaging the two values, except when the discrepancy between

the values exceeds specified criteria. If a transient error

were to occur during the performance of one of the calculations,

10

it would be detected unless a similar transient error occurred

during the performance of the other calculation.

Reasonableness Checking:

When a variable is known to have some range of correct values,

then the actual value of the variable can be compared to this

range to check the reasonableness of the value. If a

discrepancy is found, an error has occurred.

External Hardware Monitor:

The external hardware monitor is similar to the watch-dog timer

used on the Intelsat VI ACE. At the end of each control loop, a

signal to the external monitor is pulsed, which results in a

steady stream of pulses during normal operation. An

interruption in these pulses indicates computer malfunction.

The external monitor itself is tested by the computer during

power-up initialization.

Hardware Monitoring:

Redundant sensors are used, in addition to sensor reasonableness

checking. The rate-of-change of sensor readings is compared to

a predicted maximum rate-of-change.

The AID and DIA converters are tested by applying the DIA to a

test word, and then applying the AID to the results. Transient

AID errors are detected the same way as sensor errors.

Ticket Checking:

Ticket checking is used as a method of sequence error detection.

A "ticket" is a word which contains information indicating the

order the subroutines must be executed. Ticket checking is

11

similar to the sequence control code technique used on the

Intelsat VI ACE.

The strength in the DC-9-80 system is its ability to detect both

permanent and transient errors. An error would have to by-pass several

screens before resulting in a system error. The DC-9-80 system's main

shortcoming is that little emphasis is placed upon error recovery. If

an error is detected, the sub-system is simply shut down and replaced by

a spare. Also, no method is used to prevent error propagation.

1.5 Advantages of New Approach

The approach used by the Intelsat VI ACE addresses single event

upsets on a specific system, and takes advantage of specific system

characteristics. Consequently, this approach cannot be easily applied to

other spacecraft systems. Furthermore, it is largely ineffective in

recovering from transient errors other than single event upsets and it is

capable is good performance only in small systems (small programs, few

critical modules and variables).

The approach used by the DC-9-80 avoids most of the problems of the

Intelsat VI ACE recovery technique. However, the DC-9-80 does not have

robust recovery procedures. If an error cannot be corrected by redundant

computation or redundant storage, the only course for recovery is

shutting down. Clearly, this approach cannot be used effectively in

autonomous spacecraft applications.

The methodology presented in this paper avoids these problems by

requiring a specific structure of the flight software and it uses the

attributes of this structure for error recovery. This structure can be

applied to a general class of control programs used in spacecraft

12

computing (see the next section for details.) Furthermore, most of the

techniques used in recovery are effective on mUltiple bit upsets. Some

additional advantages of the methodology are 1) it offers a standardized

approach to transient error recovery for control programs, 2) it does not

require re-initialization to recover from errors in most cases, 3) it has

safeguards to limit error propagation, and 4) it establishes objective

criteria for evaluating the performance of error recovery.

The proposed methodology borrows many error detection methods from

the Intelsat VI ACE error recovery approach. Where the two techniques

differ most is in error propagation control and error recovery strategy.

The error recovery concept for the Intelsat VI ACE could be described as:

"if in doubt, jump to the wait loop". The error recovery concept in the

proposed approach is: "if in doubt, re-execute". The advantages of this

error recovery technique are 1) the program will always make progress,

or at least never lose ground, in a burst of upsets, and

2) reinitialization is usually not required for recovery. The Intelsat

VI ACE does not address error propagation control.

It should be emphasised that this is a thesis on a methodology for

employing software implemented transient error recovery techniques

effectively on a class of real systems, and not a thesis on the

techniques themselves. Although most of the recovery techniques used in

this paper are well known, any methodology used to employ them in an real

system is either non-existent or vague. For example, McCluskey [13]

describes redundant computation by stating "Execute a program a second

time and compare results." How does one do this on a real system? What

about the outputs, the side-effects of the program on the program state,

etc? How does one compare the results? Although McCluskey is certainly

not attempting to describe a methodology for error detection through

13

redundant computation, this description is typical in the extent to which

any sort of methodology is described.

1.6 Type of System Assumed

It will be assumed throughout this presentation that the

methodology will be applied to an interrupt driven, real-time spacecraft

control sub-system. Control software lends itself well to the

structuring required by the methodology. Additional system

characteristics which are helpful but not essential are : 1) constrained

program execution flow (to facilitate program sequence monitoring),

2) idempotent outputs (to facilitate error recovery), and 3) a large

amount of available execution time (to allow for transient error recovery

execution overhead).

1.7 Overview of Thesis

There are four chapters in this presentation. The first chapter

describes the specific methodology proposed. It includes a discussion

on the approach, the specific techniques used, and the practical

application of the techniques. The second chapter describes the

simulation analysis made on a program written using the proposed

methodology. This chapter includes a discussion on the simulation models

and assumptions, the simulation performance metrics, and a discussion of

the results. The third chapter is a probabalistic analysis of the

results of the simulation. In this chapter, the probability of failing

to recover from transient errors is computed for both present and future

spacecraft configurations.

results.

The final chapter is a summary of the

14

Many terms used in this presentation were originated by the author.

Consequently, a glossary is included to assist the reader in

understanding this document.

15

PROPOSED METHODOLOGY

2.1 Introduction

There are three main aspects of Software Implemented Transient

Error Recovery: limiting the propagation of errors, detecting errors,

and taking appropriate recovery action upon error detection.

Error propagation control is achieved by performing complicated

calculations on temporary variables. Once a calculation is complete, an

error detection process is performed to verify that the calculation is

correct. The calculation is then committed, either by changing the

program state or performing an output. Error detection is achieved by

imbedding redundant information in the program state. Inconsistent

states imply the existence of errors. Error recovery is achieved by

structuring the program so that the redundant information can be used to

determine the appropriate place to resume program execution. By

requiring idempotent program sections, the error recovery routine can

re-execute a section whose proper execution is doubtful.

This methodology is designed to recover in the presence of single

and multiple bit upsets per word. This methodology is also designed to

recover in bursts of upsets. The recovery procedure attempts to make

progress in program execution during a burst of upsets, and will restart

only as a last resort.

2.2 Discussion of General Techniques

2.2.1 Error Propagation Control

Error propagation control is an important problem in transient

error recovery. If a value which has been upset is used in a calculation,

all values which depend upon the upset value will be incorrect.

16

Consequently, one upset value may result in several incorrect values, all

of which must be corrected to successfully perform recovery.

A process experiencing transient errors can be considered to be two

processes, the actual process and the transient error process. The main

objective of error propagation control is to make all actual process

transactions appear atomic with respect to the permanent program state.

Atomic actions are traditionally used in data base concurrency

control [9]. The objective of atomic actions is to make actions appear

indivisible, that is, all other actions appear to have occurred either

before or after an atomic transaction. Furthermore, atomic actions

appear to have completely happened (commit) or have never happened

(abort). By using atomic actions in transient error recovery, it is

possible to insure that all transient errors occur either before or after

an action but not during.

To limit error propagation, all intermediate and final results of a

computation are stored in temporary variables. This technique insures

that all errors that occur during a computation have no effect on the

permanent program state. Once a computation has completed, its

results are checked by various error detection techniques. If the

results pass the error checking, they are committed by an atomic action

either by assigning a variable which is part of the permanent program

state (known as a critical variable) or by performing an output action.

Thus, the atomic action is essentially a boundary which errors cannot

penetrate. If the results fail the error checking, they are thrown away

and the calculation is repeated until the results pass the error checking.

17

2.2.2 Error Detection

The main concept in error detection is to create redundant

information in the program state and check for inconsistencies. If an

inconsistency is found, an error has occurred. The error detection

techniques used are:

1) Redundant computation:

A single processor experiencing only transient errors can

verify its computations by repeating a computation until an

agreement is reached. This is a very powerful technique since

the majority of active processing time is spent performing

computations.

2) Redundant storage:

Replicated storage of important values (critical variables).

Voting is used to determine the correct values.

3) Memory coding:

Error-correcting codes to correct single bit errors in RAM

storage.

4) Reasonableness checking:

Reasonableness checking is a method of data error detection.

When a variable is known to have some range of correct values,

then the actual value of the variable can be compared to this

range to check the reasonableness of the value. If a

discrepancy is found, an error has occurred. Reasonableness

checking is extremely powerful when the range of correct values

is small compared to the range of possible values.

18

This technique is especially useful for testing program control

variables. For example, suppose we have the following code:

index := 0;
while index < 4 do

begin
index := index + 1;
{ etc. }

end;

We know that at the end of this block, index must have the value

4. We also know that during the execution of this block, index

cannot have a value of less than 0 or greater than 4. Although

this is obvious, this example shows that the implementation of

reasonableness checking can be made very precise.

Reasonableness checking is similar to a process used in program

correctness verification called "assertion checking" [12].

5) Sequence control codes (seC):

The testing of sequence control codes is used as a method of

sequence error detection. A variable is set to a known value

before a section is entered. This variable is then checked at

the end of the section. If there is a discrepancy, entry into

the section must have been at some point other than the proper

entry point of that section.

6) Jump return to wait loop:

Jump return to wait loop is a method for detecting and

recovering from sequencing errors which occur during the

execution of the wait loop. The control program of a typical

spacecraft sUb-system will spend the majority of its run-time in

a wait loop. Since wait loops are short, the number of

mutations of the wait loop instructions that a single bit flip

19

could cause are small. Code is imbedded to cause all jumps out

of the loop resulting from a mutated instruction to be followed

by a return to the wait-loop.

2.3 Discussion of Recovery Method

Once an error has been detected, appropriate recovery action must

be performed. The key idea to error recovery is to structure the code

into re-executable sections and provide redundant information to

determine where to continue program execution.

2.3.1 Computation Blocks and Idempotent Sections

To apply the transient error recovery technique to a control

program, the control program must first be divided into computation

blocks, which are similar to procedures. Each block is associated with

either a critical variable(s) or an output operation or both. The

assignment of the critical variables or the output operation is to

be done as an atomic action.

Critical variables are program variables which have a direct effect

upon some output of the system. Non-critical variables have effect on

the output of the system, but only through their effect upon critical

variables. Another way of looking at this distinction is that if there

were only a single copy of a critical variable, and if that copy were

upset, the only possible course for recovery is re-initialization and

restart. If a non-critical variable is upset, recovery can be achieved

through re-execution of a section(s), so complete restart is not

necessary. Since critical variables are actually stored in triplicate,

recovery can be performed by voting on their value. Examples of critical

20

variables in the Intelsat VI ACE are offset pointing values, system

modes, and gains. Examples of non-critical variables are counters, flags,

and loop variables.

Each computation block is divided into three sections. The

initialization section performs any initialization required to execute

the block. At the very minimum, each of the critical variables, which

are stored in triplicate, must be voted upon and temporary variables must

be initialized. The computation section performs the computation. The

computation is performed using temporary variables. The computation is

performed at least twice, until two results in a row agree. The action

section assigns the calculated temporary variables to the critical

variables or performs an output operation using an atomic action.

The intention of the computation block/critical variable relationship

is to protect critical variables and outputs from upsets and to allow

simple recovery through re-execution of idempotent sections. The

protection from error propagation arises from the fact that the

initialization section and the computation section do not modify the

permanent program state, since both sections modify temporary variables.

The voting process performed on critical variables by the initialization

section does not change the value of critical variables, it simply

removes errors. Consequently, if an error detection mechanism were to

find an inconsistency in the initialization section or the computation

section, recovery simply involves re-executing the correct section.

There is no need to undo a previous action. The action section does

modify the permanent program state. However, since the run-time length

of atomic actions is very short compared to the run-time length of a

computation block, the probability of mishap during the execution of an

atomic action is small.

21

A section is idempotent if the result of mUltiple applications is

the same as the result of one application. Consequently, a simple

recovery rule that can be used on idempotent sections is: "if in doubt,

re-execute". The initialization block and the calculation block are

always idempotent, since their execution does not modify the permanent

program state. Unfortunately, not all output action sections are

idempotent. The only solution to this problem is to require that

spacecraft output be in absolute instead of relative terms. For example,

"move the platform to 135 degrees" is an idempotent instruction. The

instruction "increment platform position + 15 degrees" is not idempotent.

2.3.2 Additional Considerations

A summary of additional programming rules, many of which are

unrelated to the methodology but are important to minimizing the effects

of transient errors, is given in the appendix.

2.4 Recovery Software Format

In this section, the specific structure for both the computation

block and the recovery block are presented. The code structure presented

is the actual code structure determined from the simulation program. The

computation block structure embodies the error recovery concepts

presented above. The most important observation to make is how the error

detection techniques are used to interface the initialization,

computation, and action sections. For the methodology to achieve full

effectiveness, these section interfaces, with the corresponding recovery

block, must be implemented exactly as presented, since the coverage of

the error detection mechanism is a primary factor in determining the

22

system's ability to recover from errors.

2.4.1 Computation Block Format

Figure 1 shows the computation block recovery format developed for

Software Implemented Transient Error Recovery. This code segment

represents one computation block. The block is divided into an

initialization section, a computation section, and an action section.

Each section is joined by a sequence control check, where the old

sequence control code is verified and the new sequence control code is

set. The initialization section simply votes on the critical variables

and initializes the local variables. The computation section performs

its calculation using temporary variables until two results in a row

agree. The result is then checked for reasonableness. The critical

variables used in the calculation are rechecked to insure that the result

was computed from correct data.

The action section in this example updates several critical

variables. The control variables and temporary computation variables are

then checked for reasonableness. Since updating variables is an

idempotent action, the action section meets the idempotent requirement.

The atomicity requirement is also met, but in a subtle manner. The

recovery block will re-execute the action section until both the

reasonableness check and the SCC check pass. Continuing program

execution to the next computation block is the atomic action which

commits the action.

Additional recovery measures, such as Jump Return to Wait Loop

error detection and NOP buffering to prevent mis-interpretation of

machine code (see Appendix) would have to be implemented last. Memory

error correction codes are standard equipment in spacecraft hardware.

23

Sample Computation Block in Error Recovery Format

procedure sample-procedure;

{ note : sc = sequence check

begin

rc = reasonableness check
scc = sequence control code }

{section 1 - initialization}
if scc = {last scc} then

begin
scc := {scc I}

end
else

begin
error_recovery (sc, scc, block_number, section 1);

end;

{vote on critical variables}
variable_number := 0;
while variable_number < number_of_critical_variables do

begin
variable_number := variable_number + 1;
{ vote on critical variables }

end;

{initialize other variables }

{section 2 - perform calculation}
if scc = {scc I} then

begin
scc := {scc 2};

end
else

begin
error_recovery (sc, scc, block_number, section 2);

end;

repeat

{perform computation on temporary variables }

until { two consecutive results agree }

{check reasonableness}
if {temp result is not within a reasonable range of results } or

{if critical variables no longer agree} then
begin

error_recovery (rc, scc, block_number, section 2);
end;

24

{section 3 - assign critical variables}
if scc = {scc 2} then

begin
scc := {scc 3}

end
else

begin
error_recovery (sc, scc, block_number, section 3);

end;

{update critical variables}
variable_number := 0;
while variable_number < number_of_critical_variables do

begin
variable_number := variable number + 1;
copy_number := 0;
whi Ie copy_number < number_of_copies do

begin

end;

copy_number := copy_number + 1;

critical_variable {variable_number} [copy_number]
:= temp_result [variable_number, 1]

end;

{ reasonableness check }
if (variable_number <> number_of_critical_variables) or

(copy_number <> number_of_copies) then
begin

error_recovery
end;

{ reasonableness
if (temp_result [0]

begin
error_recovery

end;

{ sec check }
if sec <> {sec 3}

then
begin

(rc, scc, block_number, section 3) ;

check }
<> temp_result [1]) then

(rc, scc, block_number, section 4);

error_recovery (sc, sec, block_number, section 4);
end;

end;

Figure 1

25

2.4.2 Recovery Block Format

Once an error has been detected by a reasonableness check or a

sequence control check, recovery action is performed by the recovery

block. The redundant computation, redundant storage, memory coding, and

jump return to wait loop error detection techniques all recover from

errors in the detection process. Figure 2 shows the recovery software

format.

Although the recovery block could simply reset the system, there is

usually enough information to determine the location of the error and

redo the appropriate section. The trick is to perform a reasonableness

check on the sequence control code. If the sequence control code is a

reasonable number, then there is a very high probability that it is

correct. Since the sections are idempotent, the program can continue

execution at the section which assigned that SCC.

The recovery procedure is divided into seven cases

case 1 : sec check failed and sec is reasonable

case 2

case 3

case 4

RECOVERY ACTION - sequence was upset, continue from old scc.

sec check failed and sec is not reasonable

RECOVERY ACTION - sec register was upset, reset sec and continue.

reasonableness check failed at end of computation block and
sec is reasonable

RECOVERY ACTION - reset sec to scc of last block, section 3.
redo current block.

reasonableness check failed at end of computation block and
sec is not reasonable

RECOVERY ACTION - re-initialize and restart at block 1,
section 1.

26

case 5

case 6

case 7

reasonableness check failed at end of action block and scc is
reasonable

RECOVERY ACTION - local variable upset, redo action section.

reasonableness check failed at end of action block and scc is
reasonable

RECOVERY ACTION - temp variable upset, redo current block.

reasonableness check failed at end of action block and scc is
not reasonable

RECOVERY ACTION - re-initialize and restart at block 1,
section 1.

If the SCC value is not reasonable (cases 2,4,7), the recovery

action depends upon whether the error is found by a reasonableness check

or an SCC check. If the error was found by a reasonableness check, then

the section has performed incorrectly, and there is no redundant

information (a correct SCC) to determine where to continue program

execution. Consequently, a complete restart is necessary.

If the error was found by an SCC check, it is safe to assume that

the SCC register itself was upset and that program execution up to the

error detection was correct. This is true because the SCC checks

follow reasonableness checks in sections 2 and 3. Consequently, if

program execution was incorrect, it would have been detected by the

preceeding reasonableness check.

27

Sample Error Recovery Block

procedure sample_error_recovery (type : sc or rc ; current_sec,
current_block, current_section: integer);

{ note : sc = sequence check

begin

rc = reasonableness check
sec = sequence control code }

if {type = sc} then

{ sequence upset detected }

begin
if reasonable_sec (current_sec) then

{sequence upset - continue from the old sec}

begin { case 1 }
goto {beginning of current_block, current_section};

end
else

{ sec upset - reset sec and continue at sec }

begin { case 2 }
sec := { sec of current_block, current_section }
goto { end of current_block, current_section }

end;

end;

if {type = rc and section = 2} then

{ reasonableness check at end of computation section }

begin
if reasonable_sec (current_sec) then

{continue from current block, section I}

begin { case 3 }
sec := {sec of previous block, section 3}
goto {beginning of current_block, section I}

end
else

end;

{catastrophe}

begin { case 4 }
{re-initialize and restart }

end;

28

if {type = rc and section = 3} then

{ reasonableness check at end of action section}

begin
if reasonable_scc (current_scc) then

{redo action section}

begin { case 5 }
goto {beginning of current_block, section 3}

end
else

end;

{catastrophe}

begin { case 7 }
{re-initialize and restart }

end;

if {type = rc and section = 4} then

end;

{ reasonableness check at end of action section}

begin
if reasonable_scc (current_scc) then

{redo block}

begin { case 6 }
scc := {scc of previous block, section 3}
goto {beginning of current_block, section I}

end
else

end;

{catastrophe}

begin { case 7 }
{re-initialize and restart }

end;

Figure 2

2.5 Extending Technique to Real Computation

The test program for which the error recovery methodology was

developed bears little resemblance to actual flight code. Here are some

29

additional details that should be addressed concerning the application of

the methodology to real spacecraft computations.

Structure of Software

As stated previously, it has been assumed throughout the discussion

that the methodology would be applied to real-time, interrupt driven

spacecraft control sub-system. It is not clear if the methodology can be

applied to arbitrary program structures. For example, it is assumed that

an interrupt driven system has inherent protection from infinite loops,

in that as long as interrupts are enabled, there can be no infinite loops.

For another example, it is assumed that program flow is deterministic, so

the previous sequence control code is always known. This assumption is

not true for arbitrary program structures.

The Idempotence Requirement

It has also been assumed that all output actions can be made

idempotent, that is, the result of mUltiple applications of an output is

the same as the result of one application. What is the impact if this

requirement cannot be achieved?

The problem is that it is impossible to perform recovery on

non-idempotent action sections. However, action sections compose only a

small percentage of the total run-time (this is the major reason for

using atomic actions), so the probability of needing to recover during

the execution of an action section is low. Consequently, Software

Implemented Transient Error Recovery still works, but at slightly

degraded performance. The amount of performance degradation depends upon

the run-time duration of the non-idempotent action sections.

30

Space Considerations

Although the recovery format is rather large, the size of a block

is invariant with the actual computation code. The same basic recovery

format can be used with any computation. Consequently, the memory

requirement for code using Software Implemented Transient Error Recovery

should be comparable to the memory requirement for code not using any

error recovery.

Time Considerations

The real execution time of code using Software Implemented

Transient Error Recovery should be about twice the execution time for

code without any error recovery in the absence of upsets. In the

presence of upsets, the execution time increases even more. Since most

spacecraft control programs spend the majority of their execution time in

a wait loop, the additional time requirement should not be important.

Real-Time Considerations

It is difficult to perform redundant computation error detection

on time varying computations, since the correct results change with time.

To apply the redundant computation error detection technique to time

variant computations, the difference between computations would have to

be compared to some predetermined margin. For example, it may be

reasonable to say that the results of two consecutive time-varying

calculations should agree within a 5% margin. Even in a time-varying

environment, redundant computation is still a very powerful error

detection technique. To see why, lets examine the possible outcomes:

31

1) Two correct calculations agree

2) Two correct calculations disagree

3) One correct calculation and one incorrect calculation agree

4) One correct calculation and one incorrect calculation disagree

5) Two incorrect calculations agree

6) Two incorrect calculations disagree

Case 2, although not desirable, is not a problem assuming that

further correct calculations will agree within the margin. Case 3 is

also not a problem for control applications, since the result is

correct (within the margin). The only case that is a problem is case 5.

However, the probability of two incorrect results being within 5% of

each other is very slight if the cause of incorrectness is transient

errors. All other cases perform correctly.

32

SIMULATION ANALYSIS

3.1 Introduction

This chapter is an overview of the simulation program used to help

develop the methodology for Software Implemented Transient Error Recovery.

This chapter describes the models used, the performance metrics used, and

the simulation results. For a detailed description of the simulation

program implementation, see the appendix.

Objective of Simulation

The original objective of the simulation was to perform an efficacy

and trade-off analysis of the various recovery techniques. The concept

was that a programming methodology could be developed by considering each

recovery technique individually, without strong consideration of the

relationship between the methods. There seemed to be potential overlap

between their recovery capabilities, and using all the techniques in a

haphazard manner would be wasteful.

However, three important observations were made during the design

and development of the simulation:

1) All of the techniques under consideration are needed, and each,

when properly used, provides information required for error

recovery.

2) To say that the non-redundant information provided by a specific

technique is unnecessary requires detailed knowledge of the

system's behavior, which is not known in general.

33

3) Trade-off metrics are difficult to measure and are often

misleading, making it difficult to draw conclusions from numeric

simulation results.

Experience with the simulation has shown that the error recovery

techniques are best used as a system. Modifying the usage of one

technique may have important consequences in the usage of another.

Therefore, the trade-off study that was initially desired is

inappropriate.

However, a simulation analysis is still very important. The most

important benefit is the capability to immediately evaluate the

performance of a recovery structure. The emphasis has shifted from a

quasi-quantitative trade-off analysis to a qualitative analysis. The

qualitative analysis allows system performance to be evaluated in terms

of specific failure events. It will be shown that with the exception of

these specific failure events, called "catastrophes", the system will

always recover.

The new objectives of the simulation analysis are to 1) provide

"real-time" experience with a transient error environment, 2) demonstrate

the methodology and evaluate its performance, 3) provide a tractable

framework for the problem through system modeling, and 4) to establish

suitable metrics for transient error recovery performance.

What to Simulate

It is important to realize that all outcomes of all possible upsets

cannot be accurately simulated. The objective of this simulation, or any

simulation, is to perform an analysis on models which are abstractions of

the real world that capture the essence, but not all the detail, of the

real world [7].

34

The proposed transient error recovery methodology is capable of

detecting high-level errors. More precisely, if an error cannot be

detected by a high-level language, it cannot be corrected by the

methodology. An example of a high-level error is an upset to the

processor program counter. An upset to the processor program counter can

be detected by testing a sequence control code. Another example of a

high-level error is an upset to an internal ALU register. An ALU upset

can be detected by redundant computations. An example of a low-level

error is an upset to the system reset flip-flop_ Such an upset destroys

the program state, and cannot be detected by a high-level language.

Consequently, if we simply assume that recovery will fail with all

low-level errors, then there is no motivation to do a detailed simulation

of the processor hardware and the specific flight code in order to

simulate the outcome of low-level errors.

The Multiple Bit Upset Model, the Upset Mapping Model, the High

Level Language/Machine Language Model, and the Structure/Content Model,

strive to simplify the system to capture the essence of most high-level

errors. These models work together to simplify the system by abstracting

various aspects of the system. The Multiple Bit Upset Model is an

abstraction of the transient error environment, the Upset Mapping Model

is an abstraction of the system hardware, the High-Level Language/

Machine Language Model is an abstraction of the hardware/software

interface, and the Structure/Content Model is an abstraction of the

spacecraft software. The simulation program applies these models to a

specific "benchmark" computation block written in the recovery format.

35

3.2 The System Models

3.2.1 The Multiple Bit Upset (MBU) Model

Definition: The Multiple Bit Upset Model abstracts transient errors

as events in which one or more bits per word may be upset

simultaneously.

The MBU Model is an abstraction of the transient error processes

which spacecraft experience. The MBU model is a generalization of the

known causes of transient errors: single event upsets, electro-static

discharges, and thermal noise. Intermittent hardware errors are not

modeled.

3.2.2 The Upset Mapping Model

Definition: The Upset Mapping Model abstracts the outcome of

multiple bit upsets as either main memory errors, processor memory

errors, or processor sequence errors. Any upset outcome not

modeled directly by the above outcomes can either be modeled

indirectly as a combination of the above errors, or must be

considered individually.

Definition: Main memory refers to the main bank of volatile RAM

memory.

Definition: Processor memory is the volatile memory used by the

processor, whether internal or external to the physical processor.

In the context of the simulation program, a "processor memory error"

refers to a processor memory error which can be observed by

inspecting the processor registers.

36

To determine the reasonableness of this model, it is first

necessary to enumerate the locations of volatile memory in spacecraft

hardware. Here is a list of volatile memory in a typical spacecraft

sub-system:

1) Main RAM memory

2) Addressable processor registers

3) Internal processor registers

4) The program counter

5) The stack pointer

6) The memory control hardware
Hamming encoder/decoder, MMU, DMA

7) Misc. processor hardware
- interrupt enable register, etc.

8) Misc. sub-system hardware
- I/O chips, clocks, control flip-flops, etc.

It is clear that upsets to the main memory and the program counter

are modeled well by main memory errors and processor sequence errors,

respectively. Upsets to the stack pointer, memory control hardware, and

miscellaneous processor and sub-system hardware are not modeled by the

upset mapping model, but are addressed in the probabilistic analysis.

These memory cells are not modeled because it is very difficult to

model the outcome of, say, an upset to a system clock flip-flop.

The outcome of an upset to an addressable processor register or an

internal processor register must be examined more closely. Some possible

outcomes from a processor register upset are:

1) an incorrect memory address is read.

2) an incorrect memory address is written to.

3) a correct memory address is read, but the data is incorrect.

4) a correct memory address is written to with incorrect data.

37

5) an incorrect program sequence is executed.

6) an incorrect program instruction is executed.

Reading the wrong main memory location and reading incorrect data

are both modeled by processor memory upsets. Writing to the wrong main

memory location and writing incorrect data to the correct address are

both modeled by main memory upsets. An incorrect program instruction

execution is not modeled by any of the above outcomes. An incorrect

program sequence execution is modeled directly by a sequence upset. It

will shown that an incorrect program instruction execution can be modeled

as a combination of sequence and memory errors.

To understand the effect of executing an incorrect program

instruction, it is necessary to categorize the various types of processor

instructions. Processor instructions can be divided into the following

categories: 1) data movement, 2) arithmetic operations, 3) program

control, and 4) status control. Any instruction transformation caused by

an upset can be modeled as a combination of sequence and memory errors.

The following transformations examples provide an illustration:

Example 1

MBU(data movement) -> incorrect data movement

e.g. MBU(mov r1,ADDRl) -> mov ADDR2,r6

= MBU(ADDR1) and MBU(r6)

- processor memory error and main memory error

Example 2

MBU(data movement) -> incorrect arithmetic operation

e.g. MBU(mov r1,r2) -) add r1,r2

= MBU(r2)

- processor memory error

38

Example 3

MBU(data movement) -> incorrect program control

e.g. MBU(mov rl,r2) -> jmp label

= MBU(r2) and MBU(program counter)

- processor memory error and sequence error

Example 4

MBU(arithmetic operation) -> incorrect data movement

e.g. MBU(add rl,r2) -> mov rl,r6

= MBU(r2) and MBU(r6)

- two processor memory errors

Example 5

MBU(arithmetic operation) -> incorrect arithmetic operation

e.g. MBU(add rl,r2) -) mul rl,r6

= MBU(r2) and MBU(r6)

- two processor memory errors

Example 6

MBU(arithmetic operation) -> incorrect sequence control

e.g. MBU(add rl,r2) -) jmp label

= MBU(r2) and MBU(program counter)

- processor memory error and sequence error

Example 7

MBU(sequence control) -> incorrect data movement

e.g. MBU(jmp label) -) mov rl,ADDRl

= MBU(ADDRI) and MBU(program counter)

- main memory error and sequence error

39

Example 8

MBU(sequence control) -> incorrect arithmetic operation

e.g. MBU(jmp label) -> add rl,r2

= MBU(r2) and MBU(program counter)

- processor memory error and sequence error

Example 9

MBU(sequence control) -> incorrect sequence control

e.g. MBU(jmp labell) -> jmp labe12

= MBU(program counter)

- sequence error

Example 10

MBU(status control) -> any other operation

= potential sequence error and result of incorrect operation

A distinction is made between processor memory errors and main

memory errors. The reason for making this distinction is that processor

memory errors can occur only to data currently being used in a

computation and the probability of a particular variable being upset is

independent how many copies are stored in main memory. For example,

critical variables, which are stored in triplicate, are three times more

likely of being upset in main memory that other variables. In processor

memory, critical variables are as likely of being upset as other

variables currently being processed.

3.2.3 The High-Level Language/Machine Language Model

Definition: The High-Level Language/Machine Language Model

abstracts errors from the Upset Mapping Model on bit level code

(machine language) and data as bit upsets on high-level language

40

and data.

The Upset Mapping Model is based on the observation that all

results of the Upset Mapping Model can be produced using a high-level

language and that Software Implemented Transient Error Recovery is only

capable of recovering from errors that can be detected from a high-level.

Assuming the Upset Mapping Model is reasonable, then the High-Level

Language/Machine Language Model is a natural consequence.

The High-Level Language/Machine Language Model is an imperfect

abstraction. It suffers four problems 1) arbitrary machine-level

sequence errors are impossible, 2) machine code mis-interpretation is not

modeled, 3) upsets are atomic with respect to high-level language

statements, and 4) run-time checking prevents arbitrary data upsets.

A high-level language is simply not capable of jumping to any

equivalent individual machine language step. Using the GOTO statement

in high-level language allows one to jump to any line of high-level code.

The problem is that a line of high-level code may compile into possibly

several lines of machine language, making it impossible to make arbitrary

jumps on the machine instruction level

Machine code mis-interpretation is caused from the ambiguity of

stored programs, since machine language is context sensitive. For

example, the machine code 10110001 may be interpreted as the instruction

"inc R1", or as the data B1 hex. Consequently, if a sequence error

occurs, the code intended to detect this error may be misinterpreted.

Clearly, this process cannot be modeled with a high-level language.

However, as noted in the appendix, this problem is easily solved with a

process called "NOP buffering".

A high-level language is not capable of injecting an upset in the

middle of a high-level statement. The real upset process is atomic with

41

respect to machine instructions, that is, all upsets can be considered to

occur either before or after an machine instruction, but not during. The

modeled process is atomic with respect to high-level instructions. All

errors occur either before or after a high-level statement, but not

during.

High-level language run-time checking interferes with a high-level

languages' ability to model upsets to various control variables. For

example, an array subscript cannot be set to an arbitrary value without

causing a run-time error. The result of this constraint is that it

forces many unlikely recovery failures to become more likely, since many

control variables will always be upset to reasonable values in the

simulation.

The importance of these shortcomings is not clear. There is no

reason to believe any of these problems are serious. However, this model

is very important, for it, in conjunction with the Structure/Content Model

allow an abstract study of the upset process without having to consider

the implications of the specific flight software or the specific hardware

system.

3.2.4 The Structure/Content Model

Definition: The Structure/Content Model abstracts software as

having a recovery structure without computational content.

The Structure/Content Model embodies the idea that the ability of a

system to recover from transient errors does not depend upon what

computation is being performed, but on how it is being performed. It is

the structure of a computation, and not its content per se, which

dictates the performance of Software Implemented Transient Error Recovery.

42

More specifically, the ability to perform error propagation control,

error detection, and error recovery upon the initialization, computation,

and action sections is independent of the specific action performed in

each section as long as the requirements, such as the idempotence and

atomic action requirements, are met.

A common exception to this model is a non-idempotent action section.

The fact that an action is non-idempotent does not give the recovery

routine the liberty to retry an action if an error is found. However,

any section which is idempotent, which includes all initialization and

computation sections, and most action sections, can be repeated if

necessary, so consequently, the specific content of the section is

irrelevant to recovery.

Although specific content of a section does not modify the ability

to recover, it does modify the outcome of upsets. Specifically, the

run-time characteristics of a program determine the result of a processor

memory upset. This fact is accounted for in the simulation by specifying

the run-time length of the program sections in the absence of errors.

The simulation upset rate is then modified in each section so that the

simulated run-time error density is equivalent to the specified run-time

error density.

The result of the Structure/Content Model is that any "benchmark"

block of code can be used in the simulation, rather than the actual

flight code. A good benchmark is one which allows a simple evaluation

of recovery. Specifically, the values of the critical variables should

be deterministic and conform to some pattern.

43

3.3 Performance Metrics for Recovery Evaluation

It order to evaluate the effectiveness of Software Implemented

Transient Error Recovery, it is necessary to develop appropriate

performance measures for error recovery. This is not a simple task. I

propose the use of three metrics: coverage, recovery profile, and

probability of catastrophe. Since it is difficult to precisely define

the meaning of coverage and since recovery profile only applies to error

detection performance, I use the probability of catastrophe as the

principle metric of recovery.

First, some definitions:

Coverage:

Coverage is defined in reliability theory [8] as the conditional

probability that a failure of a unit will be detected and

appropriate recovery action will be performed given the occurrence

of a fault and sufficient resources for recovery. Since the

addressed phenomenon are transient in nature, no resources are

required for transient error recovery. For transient errors,

coverage is an aggregate measure of performance for error

propagation control, error detection, and error recovery.

Recovery Profile:

The recovery profile is a histogram of the number of detected

errors for each error detection technique. It is not capable of

measuring the effectiveness of error propagation control or error

recovery. The intention of the recovery profile is to determine

the relative value of error detection techniques.

44

Catastrophes:

A catastrophe is an event which is the result of an upset, from

which a transient error recovery technique may not recover without

re-initialization and restart, if at all. In terms of ASM, a

catastrophic upset implies that autonomy may be compromised. In

terms of mission success, the result of a catastrophic upset is

undefined. The probability of catastrophe indicates recovery

performance in terms of the probability of events which a system

cannot recover. The probability of catastrophe is an aggregate

measure of performance for error propagation control, error

detection, and error recovery.

3.3.1 Coverage and Recovery Profile

Problems with Coverage

There are two problems with calculating coverage: single events

can result in mUltiple consequences, and the meaning of "appropriate

recovery action" is not well defined.

Multiplicity of effects - need for both coverage and recovery profile

One upset can result in several errors (error propagation), each of

which must be individually detected and corrected. Also, several errors

can be corrected by one action. Furthermore, some errors need no

correction at all.

It is difficult to decide what constitutes "appropriate recovery

action". There are two possible approaches to defining recovery. The

first is to consider recovery as an individual condition with respect to

upsets. That is, if an upset propagates into several errors, the system

45

cannot be considered to have recovered unless all the errors caused by

that upset have been corrected. The problem with this approach is that

it is impossible to determine which error detection technique is

responsible for recovery, since many different techniques may share the

credit for detection.

The second approach to defining recovery is to consider recovery as

an individual condition with respect to errors. Whenever an error is

corrected, the system is said to recover. The problem with this approach

is that there may be more recoveries than upsets, so a ratio of

recoveries to upsets would be misleading as a metric of recovery. The

number of errors resulting from an upset is usually not known, so a ratio

of recoveries to errors cannot be computed.

The solution to this problem is to use both performance measures,

and give each a distinct meaning. The first performance measure is

called "coverage", which measures the effectiveness of recovery once

an upset has occurred. The second performance measure is called the

"recovery profile", which is a histogram of the error detection

techniques responsible for recovery. There is only a weak relationship

between the two measures. If error propagation occurs, then there is no

function which can determine the coverage from the recovery profile.

Meaning of Recovery

Another problem with defining "appropriate recovery action" is that

some errors do not have to be corrected at all. For example, if an upset

occurs to a memory register not in use, and this error is not corrected,

has the system failed to recover? Certainly not. A distinction must be

made between "critical" and "non-critical" variables. As defined in the

methodology chapter, critical variables are variables whose value has a

46

direct effect upon some output of the system. Non-critical variables

have effect on the output of the system, but only through their effect

upon critical variables. If all relevant critical variables are correct

at the time of any output, then that output is correct, regardless of the

state of the non-critical variables.

Definition: For a system to "recover" from any number of upsets,

at least two out of three copies of the relevant (pertaining to the

current output) critical variables must have the correct value at

the time of any output action.

Definition: A "correct" value is the value that would be

determined by a computation in the absence of upsets (assuming time

invariant computations).

Meaning of Coverage

With a specific definition of recovery, it is possible to have a

specific definition of coverage. The definition should have the form:

(Number of recovered units) / (Total units executed)

The only thing left is to define the unit of execution. The two

possibilities are blocks and control loops. Either could be used.

As defined, it is difficult to understand coverage values in an

absolute sense. The value of coverage depends as much on the unit of

execution used and the number of critical variables as the recovery

technique used. Also, most software systems do not have critical

variables or computation blocks, so any definition of coverage may have

meaning to only a small subset of systems. Consequently, it is difficult

to precisely define coverage, or even understand its meaning in absolute

47

terms for all systems.

3.3.2 Catastrophes

Problem with Probability of Catastrophe

The major problem with using the probability of catastrophe as a

figure of merit is that it is impossible to calculate when the number of

catastrophes is large. However, when the number of catastrophes is small,

it is an objective measure of recovery performance.

Although using the probability of catastrophe as a metric also

requires a precise definition of recovery (since catastrophes are defined

in terms of recovery), it does not have the numeric ambiguity that

coverage does. It should be pointed out that coverage and the

probability of catastrophe measure essentially the same thing; that is,

P(catastrophe I upset) = 1 - P(coverage I upset), except that coverage is

more difficult to define precisely. Since the number of catastrophes

detected by the simulation is small, the probability of catastrophe is

the best metric to measure recovery performance.

3.3.3 Time and Space

Additional execution time required for recovery and additional

memory required for recovery software are also important performance

metrics.

Additional execution time is used by error recovery for redundant

computations, redundant critical variable storage, and aborted

computations. It is clear that a real-time control program cannot spend

an arbitrary amount of time correcting errors, so the timeliness of

recovery is an important factor. The proposed methodology tries to

48

minimize the additional execution time needed for recovery by reducing

the number of aborted computations through the "if in doubt, re-execute"

recovery strategy.

The additional memory requirement for more complicated flight

software is also important, but difficult to estimate for real flight

code.

3.4 Discussion of Results

Here is a list of the catastrophes detected by the simulation

program:

1) a critical control variable is upset, and the result
is reasonable

2) a sequence upset jumps to an see assignment

3) a sequence upset jumps to a non-idempotent action section

4) both see and reasonableness checks fail within the computation
or action sections.

5) two or three copies of a critical variable are upset

6) two incorrect calculations agree and are reasonable

7) both temporary copies of the calculation block are upset
to the same incorrect value

8) sequence control register is upset, and a sequence error
occurs.

Performance in Bursts of Upsets

The proposed recovery methodology is designed to recover from

bursts of upsets. The error recovery concept used is: "if in doubt,

re-execute". The advantages to this error recovery technique are :

1) the program will always make progress, or at least never lose ground,

in a burst of upsets, and 2) re-initialization is not required for

49

recovery unless a catastrophe occurs.

The simulation program was run at a very high upset rate. With the

exception of the occurrence of catastrophes, the simulated system

recovered from bursts of upsets. With the error rate very high

(approximately one error per 10 lines of high-level code), catastrophe 4,

which requires restart, occurred often enough that the simulated control

loop could not terminate.

The simulation program does not simulate upsets during execution of

the recovery block. The problem of recovering during recovery, which is

a key factor for determining recovery performance during a burst of

upsets, is not addressed in this paper.

50

PROBABILISTIC ANALYSIS

4.1 Introduction

The objective of the probabilistic analysis is to evaluate the

performance of the proposed transient error recovery methodology in

comparison to alternative transient error methodologies in light of

future spacecraft autonomy requirements.

This performance analysis is accomplished by estimating the

conditional probability of catastrophe given an upset, and the mean time

to catastrophe (MTTC). The conditional probability of catastrophe given

an upset is used in lieu of the probability of catastrophe because the

probability of upset is determined by the hardware, and cannot be

modified by software techniques. It is the conditional probability of

catastrophe given an upset which Software Implemented Transient Error

Recovery has direct influence.

The first performance analysis performed is a detailed

probabilistic analysis based upon the simulation results. In this

analysis, the conditional probability of catastrophe given the occurrence

of an upset and the mean time to catastrophe are calculated with

parameters from the Intelsat VI ACE and with parameters from a possible

future spacecraft configuration, for both SEU and MBU cases.

The results of the first analysis suggests that an alternative form

of analysis gives reasonable results. This method approximates the

probability of catastrophe given an upset by simply determining which

flip-flops and registers in the sub-system are not covered by the

recovery methodology, and dividing by the total number of flip-flops in

the sub-system. Although the latter approach is certainly less accurate

than the former, it offers an advantage in that it can be applied to any

51

system. In this analysis, the conditional probability of catastrophe

given the occurrence of an upset and the mean time to catastrophe are

calculated for four methodologies: a worst cases methodology, the

Intelsat VI ACE methodology, the proposed methodology, and the best case

methodology. Each case examines present and future spacecraft

sub-system configurations, for both SEU and MBU cases.

4.2 Detailed Probabilistic Analysis

The results of the simulation indicate that there is a small class

of upsets from which the system may not recover. This fact makes a

simple, but accurate probabilistic analysis of transient error recovery

possible. The class of upsets from which the system may not recover is

called catastrophes. In this analysis, the conditional probability of

catastrophe given the occurrence of an upset and the mean time to

catastrophe (MTTC) are calculated with parameters from the Intelsat VI

ACE and with parameters from a possible future spacecraft configuration,

for both SEU and MBU cases.

4.2.1 Definitions

Before preceeding with the probabilistic analysis, a few terms

require definition or clarification:

Modified Definition of MBU:

The previous (correct) definition of a mUltiple bit upset was an

event in which one or more bits per word may be upset

simultaneously. Since the probabilistic analysis is simplified

by looking at two cases, the single bit upset case and the mUltiple

52

(> 1) bit upset case, it will be assumed that the term MBU does

not refer to the single bit case within this section.

Definition of Critical Registers:

Critical registers are registers within the processor and its

supporting logic which can result in a catastrophe if upset, and

are not covered by Software Implemented Transient Error Recovery.

Since they are referred to as "registers" (as opposed to

"flip-flopsn), the implication is that they typically hold value

information as opposed to control information, their criticalness

has a low duty-cycle. Thus, an upset during a non-critical period,

such as the execution of a wait loop, is not catastrophic.

Definition of Critical Flip-Flops:

Critical flip-flops are flip-flops within the processor and its

supporting logic which can result in a catastrophe if upset, and

are not covered by Software Implemented Transient Error Recovery.

Since they are referred to as "flip-flops" (as opposed to

"registers"), the implication is that they typically hold control

information as opposed to value information, their criticalness has

a high duty-cycle. Thus, most upsets to critical flip-flops are

catastrophic.

Definition of SEU Upset Rate:

The SEU upset rate refers to the frequency of upsets caused by

cosmic radiation, based upon tests conducted upon actual devices

[3,12]. The upsets are assumed to occur in a constant stream,

which accurately models the real phenomenon. The rate used is

53

0.0001 upsets/(bit-day).

Definition of MBU Upset Rate:

The MBU upset rate refers to the frequency of upsets caused

primarily by the electrostatic discharge problem. There is no

accurate data available on the frequency characteristics of

electrostatic discharges. Since it is known that SEUs are the

dominant source of transient error in present spacecraft systems,

the MBU rate was chosen so that the frequency of catastrophic

upsets caused by MBUs is the same order of magnitude as the

frequency of catastrophic upsets caused by SEUs. The rate used

is 0.000001 upsets/(bit-day).

4.2.2 Failure Classifications

Definition of Catastrophe:

An event which is the result of an upset, which a transient error

recovery technique may not recover without re-initialization and

restart, if at all. In terms of ASM, a catastrophic upset

implies that autonomy may be compromised. In terms of mission

success, the result of a catastrophic upset is undefined.

Catastrophes are divided into two categories, first-order

catastrophes, which result from one upset, and second-order catastrophes,

which result from two upsets. The list of first-order catastrophes is

intended to be comprehensive. The list of second-order catastrophes may

not be comprehensive. However, it will be shown that the probability of

occurrence of a second-order catastrophe is small compared to the

probability of occurrence of first-order catastrophes so they can be

54

ignored.

Catastrophes:

First-Order Catastrophes:

First-Order Catastrophes are events that are either not

covered by any of the recovery techniques, or events that

bypass the recovery techniques.

1) a critical processor register is upset
(from Upset Mapping Model)

2) a critical processor control flip-flop is upset
(from Upset Mapping Model)

3) a critical control variable is upset, and the result
is reasonable

(bypasses reasonableness checking)

4) a sequence upset jumps to an SCC assignment
(bypasses sec checking)

S) a sequence upset jumps to a non-idempotent action section
(from Structure/Content Model)

Second-Order Catastrophes:

All error recovery techniques work by comparing redundant

information. Second-order catastrophes are events which

destroy enough redundant information to require restart or

result in incorrect recovery decisions. It is impossible to

insure that there is enough redundant information for correct

recovery; consequently, it is impossible to eliminate second-

order catastrophes. However, it is possible to make the

probability of second-order catastrophes arbitrarily small by

increasing the amount of redundant information. This might

be a good strategy if one is concerned about bursts of upsets.

SS

6) both SCC and reasonableness checks fail within computation
or action sections.

(requires restart)

7) two or three copies of a critical variable are upset
(incorrect recovery)

8) two incorrect calculations agree and are reasonable
(incorrect recovery)

9) both temporary copies of the calculation block are upset
to the same incorrect value

(incorrect recovery)

10) sequence control register is upset, and a sequence error
occurs.

(incorrect recovery)

4.2.3 General Detailed Probabilistic Analysis

System Constants

1) frequency of upsets to system
(in SEUs/(bit-day))

2) frequency of upsets to system
(in MBUs/(bit-day»

3) probability of main memory upset
given an upset to system

4) probability of processor memory upset
given an upset to system

5) probability of processor sequence upset
given an upset to system

6) size of main memory (in bytes)

7) size of processor memory (in bits)

8) action section size (in instructions)

9) time in the wait loop

10) word size (in bits)

11) address space (in bytes)

12) number of blocks

13) number of sections

:= SEUFREQ

:= MBUFREQ

:= MS

:= PS

:= PSS

:= MMS

:= PMS

:= COM

:= WL

:= WS

:= AS

:= NOB

:= NOS

56

14) number of critical processor registers

15) number of critical control variables
(not including SCC)

16) number of reasonable values
for control variables

17) number of critical processor control
flip-flops (in bits)

18) number of control loops executed
per second

Given that an upset has occurred •••

First-Order Catastrophes:

:= NOCPR

:= NOCV

:= NORV

:= NOFF

:= CLFREQ

1) the probability a critical processor register is upset

= (WS)(NOCPR)(PS)/(PMS)

PS is the probability that any bit in the processor is upset,

given an upset has occurred. Dividing PS by the number of

processor bits PMS, gives the probability any specific bit is

upset. This number is then multiplied by the number of critical

processor register bits (WS)(NOCPR).

2) the probability a critical processor control flip-flop is upset

= (NOFF)(PS)/(PMS)

Same as 1, except NOFF is in terms of flip-flops, consequently

it does not need to be scaled by WS.

3) the probability a control variable is upset, and its results are

reasonable

57

= (MS/MMS + PS/PMS)(NOS)(NOB)/(2**WS)

+ (MS/MMS + PS/PMS)(NOeV)(NORV)/(2**WS)

The first term is the probability that a sequence control

register is upset to a reasonable value, which is equal to the

probability a sequence control register is upset in main memory

(MS/MMS) or a sequence control register is upset in the

processor memory (PS/PMS) multiplied by the number of reasonable

values (NOS*NOB) divided by the total number of values possible

(2**WS).

The second factor is the same as the first, except it is scaled

by the number of critical variables other than the see, and the

number of reasonable values NORV, which is the average number of

reasonable values for all the critical variables.

4) the probability a sequence upset jumps to an see assignment

= (PSS)(NOS)(NOB)/(AS)

PSS is the probability a sequence upset occurs, given an upset

has occurred. Multiplying PSS by the number of sequence

assignments (NOS)(NOB) and dividing by the total number of

possible addresses gives the probability a sequence upset jumps

to an see assignment.

5) the probability a sequence upset jumps to a non-idempotent

action section

= (PSS)(NOB)(eOM)/(AS)

PSS is the probability a sequence upset occurs, given an upset

58

has occurred. Multiplying PSS by the number of action

statements (NOB)(COM) and dividing by the total number of

possible addresses gives the probability a sequence upset jumps

to a action section. This value is an upper bound, since an

erroneous execution of an action section is only a catastrophe

if the section is not idempotent.

Further explanation of calculations 4 and 5:

In calculations 4 and 5, the probability of a sequence catastrophe

is given as the number of bad addresses divided by the address

space. This calculation assumes that the probability of jumping

from any random address to a given bad address is equally likely

for all addresses independent of N, the number of bits flipped by

the upset. I wish to show that for random bad addresses and large

address spaces, the calculation is independent of N.

let

WS = word size

AS = address space

N = upper bound of number of bits flipped

M = number of bad addresses

f(N,M) = number of original addresses which can permute to a
bad address

g(N) = number of N bit permutations

Suppose the word size WS = 8, AS = 256, and N = 4 and I am given

a bad address. The first question is how many original addresses

can map to the bad address with N or less bit flips? Since this

calculation is like a Bernoulli process,

59

N = 0 1 2 3 4 5 6 7 8

number of addresses
mapped by N bit flips = 1 8 28 56 70 56 28 8 1

number of addresses
mapped by N or less
bit flips = f(N,M=l) = 1 9 37 93 163 219 247 255 256

So the probability of being on an address which can map to a bad

address with N = 4 bit flips is f(N,M=l)/AS, or in this case,

163/256. The next question is, given an address which can be

mapped to a bad address, what is the probability that it will be

mapped to a bad address? This calculation is the same Bernoulli

process as above, so this probability is l/g(N) = l/f(N,M=l).

For one bad address, the probability of jumping to that bad address

is

Prob of jumping to a bad address

= (f(N,M=l) / AS) * (1 / g(N» = l/AS

For many bad addresses, the upper bound for f(N,M>l) is M*f(N, M=l).

However, several bad addresses can have the same original address,

so f(N,M) <= M*f(N,M=l) and of course, f(N,M) <= AS. But for large

AS, the probability of overlap is small. Furthermore, if the bad

addresses are random, the overlap of original address should be

negligible. Consequently,

Prob of jumping to a bad address (M)

= M/AS , where M « AS

which is independent of N.

60

4.2.4 Intelsat VI ACE Example

In this analysis, the conditional probability of catastrophe given

the occurrence of an upset and the mean time to catastrophe are

calculated with parameters from the Intelsat VI ACE for both the SEU and

MBU cases. The system constants were taken from Obert [15].

Example 1 Intelsat VI ACE with Software Implemented Transient Error

Recovery

System Constants

1) frequency of upsets to system
(in SEUs/(bit-day» := 0.0001

2) frequency of upsets to system
(in MBUs/(bit-day» := 0.000001

3) probability of main memory upset
given an upset to system := 0.96

4) probability of processor memory upset
given an upset to system := 0.035

5) probability of processor sequence upset
given an upset to system := 0.005

6) size of main memory (in bits) := 13 K

7) size of processor memory (in bits) := 539

8) action section size (in instructions) := 5

9) time in the wait loop := 0.80

10) word size (in bits) := 8

11) address space (in bytes) := 2**16

12) number of blocks := 10

13) number of sections := 3

14) number of critical processor registers := 3

15) number of critical control variables := 3

61

16) number of reasonable values
for control variables

17) number of critical processor control
flip-flops (in bits)

18) number of control loops executed
per second

Given that an upset has occurred •••

First-Order Catastrophes:

:= 10

:= 30

:= 42

1) the probability a critical processor register is upset

= (WS)(NOCPR)(PS)/(PMS) = (8)(3)(0.035)/(539) = 0.00156

2) the probability a critical processor control flip-flop is upset

= (NOFF)(PS)/(PMS) = (30)(0.035)/(539) = 0.00195

3) the probability a control variable is upset, and the results are
reasonable

= (MS/MMS + PS/PMS)(NOS)(NOB)/(2**WS)

+ (MS/MMS + PS/PMS)(NOCV)(NORV)/(2**WS)

= (0.96/13*2**10 + 0.035/539)(3)(10)/(2**8)

+ (0.96/13*2**10 + 0.035/539)(3)(10)/(2**8)

= (0.000137)(60)/(2**8) = 0.0000321

4) the probability a sequence upset jumps to an SCC assignment

= (PSS)(NOS)(NOB)/(AS)

= (0.005)(3)(10)/(2**16)

= 0.00000229

5) the probability a sequence upset jumps to a non-idempotent
action section

= (PSS)(NOB)(COM)/(AS)

= (0.005)(10)(5)/(2**16)

= 0.00000381

62

Second-order Catastrophes:

Since second-order catastrophes require two upsets to occur during

the execution of one control loop, it is first necessary to

calculate the probability of two upsets within one loop, given that

one upset has already occurred.

Active time during one control loop

= T1 = (I - WL) 1 CLFREQ = (1

= 0.00476 sec

Memory size

0.80) 1 42

= MMS + PMS = 13*2**10 + 539 = 13851 bits

Frequency of upsets

= 1e-4 SEus/{bit-day) * 13851 bits * 1 day 1 86400 sec

= 0.0000160 SEUs/sec

Mean time between upsets (MTBU) = 1/0.0000160 = 62378 sec

Probability that another upset occurs within T1

= T1 1 MTBU = 0.00476 1 62378 = 0.0000000763

Since the probability of two upsets occurring during one control

loop is several orders of magnitude less than the probability of a

first-order catastrophe occurring, it is safe to ignore higher

order catastrophes.

TOTAL PROBABILITY OF CATASTROPHE given an upset has occurred

= 0.00156 + 0.00195 + 0.0000321 + 0.00000229

+ 0.00000381

= 0.00354

63

MEAN TIME TO CATASTROPHE

For MBUs,

P = probability of catastrophe given an upset

= 0.00354

MTTC = mean time to catastrophe

= 1 / (MBUFREQ * PMS * P)

= 1 / (1e-6 MBUs/(bit-day) * (13 K + 539) bits *
0.00354 catastrophe/upset)

= 20400 days

For SEUs, all registers, except critical control flip-flops, are

vulnerable only during active processing time. Any other single

event upsets that occur during the execution of the wait loop are

covered.

For SEUs, the TOTAL PROBABILITY OF CATASTROPHE given an upset has

occurred

= 0.00195 + (1 - 0.80)(0.00156 + 0.0000321

+ 0.00000229 + 0.00000381)

= 0.00226

MEAN TIME TO CATASTROPHE

For SEUs,

P = probability of catastrophe given an upset

= 0.00226

MTTC = mean time to catastrophe

= 1 / (SEUFREQ * PMS * P)

64

= 1 / (1e-4 SEUs/(bit-day) * (13 K + 539) bits *
0.00226 catastrophe/upset)

= 318 days

4.2.5 Future Spacecraft Example

In this analysis, the conditional probability of catastrophe given

the occurrence of an upset and the mean time to catastrophe are

calculated with parameters from a hypothetical future spacecraft for both

the SEU and MBU cases.

The system constants used in the future spacecraft example are

intended to give a conservative lower bound in the performance of

Software Implemented Transient Error Recovery. The hypothetical system

has a 16 bit data word and 60 K bits main memory. The processor and

software systems have about four times the complexity of their Intelsat

VI counterparts. The upset rates are assumed to be the same as the

Intelsat VI ACE upset rates.

Example 2 - Hypothetical future spacecraft with Software Implemented

Transient Error Recovery

System Constants

1) frequency of upsets to system
(in SEUs/(bit-day» := 0.0001

2) frequency of upsets to system
(in MBUs/(bit-day» := 0.000001

3) probability of main memory upset
given an upset to system := 0.960

4) probability of processor memory upset
given an upset to system := 0.035

5) probability of processor sequence upset
given an upset to system := 0.005

65

6) size of main memory (in bits) := 60 K

7) size of processor memory (in bits) := 2 K

8) action section size (in instructions) := 10

9) time in the wait loop := 0.50

10) word size (in bits) := 16

11) address space (in bytes) := 2**32

12) number of blocks := 20

13) number of sections := 3

14) number of critical processor registers := 10

15) number of critical control variables

16) number of reasonable values
for control variables

17) number of critical processor control
flip-flops (in bits)

18) number of control loops executed
per second

Given that an upset has occurred •••

First-Order Catastrophes:

:= 10

:= 100

:= 100

:= 50

1) the probability a critical processor register is upset

= (WS)(NOCPR)(PS)/(PMS) = (16)(10)(0.035)/(2*2**10)

= 0.00273

2) the probability a critical processor control f~ip-flop is upset

= (NOFF)(PS)/(PMS) = (100)(0.035)/(2*2**10)

= 0.00170

3) the probability a control variable is upset, and the results are
reasonable

= (MS/MMS + PS/PMS)(NOS)(NOB)/(2**WS)

+ (MS/MMS + PS/PMS)(NOCV)(NORV)/(2**WS)

66

= (0.996/60*2**10 + 0.035/2*2**10)(3)(20)/(2**16)

+ (0.996/60* 2** 1 0 + O. 035/2* 2** 1 0) (10) (100) / (2** 16)

= (0.0000333)(1060)/(2**16) = 0.000000539

4) the probability a sequence upset jumps to an sec assignment

= (PSS)(NOS)(NOB)/(AS)

= (0.005)(3)(20)/(2**32)

= 6.98 e -11

5) the probability a sequence upset jumps to a non-idempotent
action section

= (PSS)(NOB)(COM)/(AS)

= (0.005)(20)(10)/(2**32)

= 2.32 e -10

Second-Drder Catastrophes:

Again, since second-order catastrophes require two upsets to occur

during the execution of one control loop, it is first necessary to

calculate the probability of two upsets within one loop, given that

one upset has occurred.

Active time during one control loop

= TI = (1 - wt) / CLFREQ = (1 0.50) / 50 = 0.01 sec

Memory size

= MMS + PMS = 60 * 2 ** 10 + 2 * 2 ** 10 = 63488 bits

Frequency of upsets

= le-4 SEUs/(bit-day) * 63488 bits * 1 day / 86400 sec

= 0.0000735 SEUs/sec

67

Mean time between upsets (MTBU) = 1/0.0000735 = 13608 sec

Probability that another upset occurs in T1

= T1 / MTBU = 0.01 / 13608 = 0.000000735

Since the probability of two upsets occurring during one control

loop is several orders of magnitude less than the probability of a

first-order catastrophe occurring, it is safe to ignore higher

order catastrophes.

TOTAL PROBABILITY OF CATASTROPHE given an upset has occurred

= 0.00273 + 0.00170 + 0.000000539 + 6.98 e -11

+ 2.32 e -10

= 0.00444

MEAN TIME TO CATASTROPHE

For MBUs,

P = probability of catastrophe given an upset

= 0.00444

MTTC = mean time to catastrophe

= 1 / (MB UFREQ * PMS * P)

= 1 / (le-6 MBUs/(bit-day) * (60 K + 2 K) bits *
0.00444 catastrophe/upset)

= 3540 days

For SEUs, all registers, except processor control flip-flops,

are vulnerable only during active processing time. Any other

single event upsets that occur during the execution of the wait

loop are covered.

68

For N = 1, TOTAL PROBABILITY OF CATASTROPHE given an upset has

occurred

= 0.00170 + (1 - 0.50) (0.00273 + 0.000000539

+ 6.98 e -11 + 2.32 e -10)

= 0.00307

MEAN TIME TO CATASTROPHE

For SEUs,

P = probability of catastrophe given an upset

= 0.00307

MTTe = mean time to catastrophe

= 1 / (SEUFREQ * PMS * P)

= 1 / (le-4 SEUs/(bit-day) * (60 K + 2 K) bits *
0.00307 catastrophe/upset)

= 51.2 days

4.3 Register Method

The results of the detailed probabilistic analysis suggests that an

alternative form of analysis can give reasonable results. Since the

probability of a catastrophic upset in a register which is not covered by

the methodology is far greater than a catastrophic upset to a register

which is covered, a close approximation to the probability of catastrophe

given an upset is the ratio of the number uncovered registers to the

total number of registers. Although this new approach using coverage is

certainly less accurate than the original, it offers an advantage in that

it can be applied to any system using any recovery methodology. In this

analysis, the conditional probability of catastrophe given the occurrence

69

of an upset and the mean time to catastrophe are calculated for four

methodologies: a worst cases methodology, the Intelsat VI ACE methodology,

the proposed methodology, and the best case methodology. Each case

examines present and future spacecraft sub-system configurations, for

both SEU and MBU cases.

As noted in section 3.3, there are problems associated with using

coverage as a performance metric, specifically, coverage is difficult to

define precisely. However, since this technique is used to give a rough

approximation, the difficulty in making a precise definition of coverage

are not important.

Note on accuracy:

It should be noted that it is very difficult to estimate various

key parameters for this analysis, such as the number of critical

flip-flops, and the number of critical registers, as well as the upset

rates. Since the result of any calculation can be no more accurate than

the numbers it uses, more accurate calculations (than presented in this

section) are of little use without more accurate parameters. However,

since the objective of the calculations is to make relative comparisons

between different recovery configurations, rather large errors can be

tolerated.

4.3.1 Register Method Procedure

The procedure to determine the conditional probability of

catastrophe given an upset using the register method is quite simple.

For a given sUb-system and a given recovery methodology, there are four

cases SEU computation case, SEU wait loop case, MBU computation case,

and MBU wait loop case. For each case, one must categorize all the

70

flip-flops in the sub-system as either covered by a methodology, or not

covered by a methodology. As a rule, a flip-flop should be covered at

least 80% of the time to be considered covered by a methodology. For

each case, the probability of catastrophe given an upset is the ratio of

the number of uncovered flip-flops to total number of flip-flops. Then

the computation case and wait loop case are combined as a weighted sum.

Four flip-flop categories are used: main memory, internal memory,

critical registers, and critical flip-flops. Main memory is the volatile

RAM, including any RAM used for error correcting purposes. The critical

registers are registers within the processor and its supporting logic

which can result in a catastrophe if upset, and are not covered by

Software Implemented Transient Error Recovery. Since they are referred

to as "registers" (as opposed to "flip-flops"), the implication is that

they typically hold value information as opposed to control information.

Critical flip-flops are flip-flops within the processor and its

supporting logic which can result in a catastrophe if upset, and are not

covered by Software Implemented Transient Error Recovery. Since they are

referred to as uflip-flops" (as opposed to "registers"), the implication

is that they typically hold control information as opposed to value

information. Critical flip-flops cannot be covered by any software

implemented recovery technique. Internal Memory is the remaining

memory in the processor and its supporting logic that is not considered

critical.

The flip-flops for the Intelsat VI ACE configuration and the future

spacecraft configuration break down as follows:

71

Intelsat VI ACE Memory Parameters

Main Memory Size
Internal Memory Size
Critical Register Size
Critical Flip-Flop Size

Table 1

13312
485

24
30

bits
bits
bits
bits

Future Spacecraft Sub-system Memory Parameters

Main Memory Size
Internal Memory Size
Critical Register Size
Critical Flip-Flop Size

Table 2

61440
1788

160
100

bits
bits
bits
bits

This break down is in agreement with the values previously used in the

detailed probabilistic analysis.

The above procedure is applied to the data contained in tables

1 through 6, and is summarized in section 4.4.

72

4.3.2 The Worst Case Methodology

Definition

The worst case methodology provides the minimum coverage. It

uses error-correcting codes to recover from SEUs in main memory.

General Spacecraft Sub-System
Worst Case Methodology Coverage

SEU Case
Main Memory
Internal Registers
Critical Registers
Critical Flip-Flops

MBU Case
Main Memory
Internal Registers
Critical Registers
Critical Flip-Flops

Computation
C
NC
NC
NC

Computation
NC
NC
NC
NC

C Covered by Methodology
NC Not Covered by Methodology

Table 3

Wait Loop
C
NC
NC
NC

Wait Loop
NC
NC
NC
NC

73

4.3.3 The Intelsat VI ACE Methodology

Definition

The Intelsat VI ACE methodology is the approach proposed by

Obert. It protects the main memory from SEUs, and the internal and

critical registers from SEUs while in the wait loop. It provides

very little coverage of internal and critical registers during

computation. It offers very little coverage against MBUs.

General Spacecraft Sub-System
Intelsat VI ACE Methodology Coverage

SEU Case
Main Memory
Internal Registers
Critical Registers
Critical Flip-Flops

MBU Case
Main Memory
Internal Registers
Critical Registers
Critical Flip-Flops

Computation
C
NC
NC
NC

Computation
NC
NC
NC
NC

C Covered by Methodology
NC Not Covered by Methodology

Table 4

Wait Loop
C
C
C
NC

Wait Loop
NC
NC
NC
NC

74

4.3.4 The Proposed Methodology

Definition

The proposed methodology covers all of the processor and control

memory except for the critical registers and flip-flops. Critical

registers are covered during the wait loop for SEUs.

General Spacecraft Sub-System
Proposed Methodology Coverage

SEU Case
Main Memory
Internal Registers
Critical Registers
Critical Flip-Flops

MBU Case
Main Memory
Internal Registers
Critical Registers
Critical Flip-Flops

Computation
C
C
NC
NC

Computation
C
C
NC
NC

C Covered by Methodology
NC Not Covered by Methodology

Table 5

Wait Loop
C
C
C
NC

Wait Loop
C
C
NC
NC

75

4.3.5 The Best Case Methodology

Definition

The best case methodology provides the maximum protection

against SEUs and MBUs possible using software techniques alone.

Only upsets to the critical flip-flips can result in catastrophe.

General Spacecraft Sub-System
Best Case Methodology Coverage

SEU Case
Main Memory
Internal Registers
Critical Registers
Critical Flip-Flops

MBU Case
Main Memory
Internal Registers
Critical Registers
Critical Flip-Flops

Computation
C
C
C
NC

Computation
C
C
C
NC

C Covered by Methodology
NC Not Covered by Methodology

Table 6

Wait Loop
C
C
C
NC

Wait Loop
C
C
C
NC

76

4.4 Summary of Results

PROBABILITY OF CATASTROPHE GIVEN AN UPSET

Intelsat VI ACE Configuration

Worst Case

ACE Methodology

Proposed Methodology

Proposed Methodology
(from detailed analysis)

Best Case

Table 7

SEU

0.0389

0.00952

0.00251

0.00226

0.00217

Future Spacecraft Configuration

Worst Case

ACE Methodology

Proposed Methodology

Proposed Methodology
(from detailed analysis)

Best Case

Table 8

SEU

0.0323

0.0169

0.00284

0.00307

0.00158

MBU (N > 1)

1.0

1.0

0.00390

0.00355

0.00217

MBU (N > 1)

1.00

1.00

0.00410

0.00444

0.00158

77

MEAN TIME TO CATASTROPHE
(in days)

Intelsat VI ACE Configuration

Worst Case

ACE Methodology

Proposed Methodology

Proposed Methodology
(from detailed analysis)

Best Case

Table 9

SEU

18.6

7S.9

287.

318.

333.

Future Spacecraft Configuration

Worst Case

ACE Methodology

Proposed Methodology

Proposed Methodology
(from detailed analysis)

Best Case

SEU

4.88

9.31

5S.6

51.2

100.

Table 10

4.5 Discussion of Results

MBU (N > 1)

72.2

72.2

18S00.

20400.

33300.

MBU (N > 1)

lS.8

15.8

3850.

3540.

10000.

As indicated in the introduction, the primary motivation for

examining the transient error recovery problem is future autonomous

spacecraft maintenance (ASM) requirements. Although transient error

recovery has some impact upon other system requirements such as

reliability, the principle consideration is autonomy. Although

catastrophic upsets can result in spacecraft failure, the most likely

outcome is loss of autonomy.

Autonomy is defined as the attribute of a spacecraft system that

78

allows it to operate without external control, and to perform its

specified mission at an established performance level for a specified

period of time. Typically, the period specified in autonomy requirements

is one month.

By examining figures 1 - 4, it is clear that the transient error

recovery methodology proposed for the Intelsat VI ACE is sufficient for

that system, with a MTTC for SEUs of over 2 months. However, if the same

transient error recovery methodology is applied to the future spacecraft

configuration, the results are unacceptable, with a MITC of only 6 days

for SEUs. The proposed transient error recovery has much better

performance, with a MTTe of over 2 months for SEUs, which should be

acceptable. Although MBUs are not a problem with the Intelsat VI ACE

configuration, they become an important factor with the future spacecraft

configuration, since the Intelsat VI ACE methodology provides almost no

protection from MBUs.

For the present spacecraft configuration, the proposed methodology

offers approximately a factor of 4 improvement over the Intelsat VI ACE

methodology, and a factor of 16 improvement over the worst case. For the

future spacecraft configuration, the proposed methodology offers

approximately a factor of 10 improvement over the Intelsat VI ACE

methodology, and a factor of 12 improvement over the worst case.

The most important observation to be made is that several orders of

magnitude improvement over the worst case methodology is simply not

possible using software techniques alone. The limiting factor is the

inability to recover from upsets to critical control flip-flops using

software techniques. To make a major break-though in transient error

recovery, both hardware and software redundancy techniques must be used.

79

CONCLUSION

As stated in the introduction, the proposed methodology for

Software Implemented Transient Error Recovery has the following

advantages over previous efforts: 1) it offers a structured, standardized

approach to transient error recovery, 2) it has safeguards to limit error

propagation, 3) it is effective on multiple event upsets, and 4) it does

not require re-initialization to recover from upsets in most cases.

The transient error recovery methodology used by on Intelsat VI ACE

has its merits. Specifically, it is relatively simple to implement and

it is very effective in recovering from single event upsets. With

present spacecraft requirements and configurations, this approach is

probably the method of choice, since single event upsets are the

predominant source of transient errors and since the present control

systems are greatly oversampled, giving natural immunity to transient

errors. However, future spacecraft systems and requirements may not have

the tolerance that present systems have. As shown in the probabilistic

analysis, it seems unlikely that the future spacecraft configuration

using the recovery methodology used on the Intelsat VI ACE could achieve

a one month autonomy requirement. It was also shown that the proposed

transient error recovery methodology could make a one month autonomy

requirement.

An important conclusion which must be drawn is that if extremely

lengthy autonomy periods are required, or very complex control systems

are used, then software implemented techniques are not sufficient. Such

systems would have to integrate both hardware and software recovery

techniques. The proposed Software Implemented Transient Error Recovery

methodology is compatible with most hardware oriented fault-tolerant

techniques, and could be used with them.

80

APPENDIX

ADDITIONAL CONSIDERATIONS FOR TRANSIENT ERROR RECOVERY

This is a summary of additional programming rules, many of which

are unrelated to the methodology, but are important to. minimizing the

effects of transient errors.

1) No FOR statements:

A FOR statement which is improperly entered by a sequence upset

will never terminate. A simple solution is to use a WHILE

statement, which will always terminate.

2) Reasonableness checking of loop variables during WHILE loops:

Although WHILE loops will always terminate in the presence of

upsets, it may take a very long time. For example, a WHILE loop

which iterates from one to four, if upset to -10000, will

eventually terminate, but could take a very long time to do so.

3) Computation loop should have an upper bound on the number of

iterations:

If for some reason the computation block never obtains two

equal results, the computation section will never terminate.

The computation section should call a recovery block after the

execution of some maximum number of iterations.

4) Carefully choose sequence control codes:

There are two considerations in choosing sequence control codes:

a) The larger the Hamming distance between codes, the more

effective the error recovery. The error recovery routine checks

sequence control codes for reasonableness. Large Hamming

81

distances between codes will prevent upset codes from appearing

correct.

b) The simpler the codes, the easier it is to check the code for

reasonableness in the recovery block. Use codes which conform

to some pattern which is easy to check.

5) Use specific constants instead of variables when possible:

Variables which influence the permanent program state that are

upset eventually have to be corrected. Constants, which are

stored in program ROM, do not have to be corrected if upset

since their values are re-read during program execution.

6) Clear stack on RTI entry:

Protects against stack pointer upsets.

7) Periodically re-enable interrupts:

To protect against spurious disable interrupt instructions,

re-enable interrupt instructions should be placed throughout

the code.

8) Run-time considerations in calculation of reasonableness checks:

The results of time varying computations cannot be directly

compared, since the correct results change with time. The

difference between time variant computations would have to be

compared to some predetermined margin.

9) Give priority to the most important routines:

Since the first blocks in a control program have a higher

probability of completion than the last blocks, the most

important functions, such as the despin function on the Intelsat

82

VI ACE, should be executed first.

10) Something should be done in hardware to call a error recovery

routine when the processor attempts to address memory outside

the physical address space.

11) Protect against machine code mis-interpretation with NOPs:

Machine code mis-interpretation is caused by the ambiguity of

stored programs, since machine language is context sensitive.

For example, the machine code 10110001 may be interpreted as the

instruction "inc RIff, or as the data Bl hex. Consequently, if a

sequence error occurs, the code intended to detect this error

may be misinterpreted. This problem is solved with a process

called "NOP buffering".

Example:

instead of compiling

x := x + 1;
if scc <> 5 then

goto error_recovery;

as
mov RO, x
inc RO
mov x, RO

mov RO, scc
mov Rl, 5
cmp
jne error_recovery

83

use

mov RO, x
inc RO
mov x, RO
nop
nop
mov RO, sec
mov R1, 5
cmp
jne error_recovery

To see why NOP buffering is a good idea, we have to examine the

machine code. To do this, I will use a hypothetical instruction

set.

With NOPs:

1 -> 1: 10101000 mov RO, x
2: 11110010

2 -> 3: 00010010
4: 11001000 inc RO
5: 10100000 mov x, RO

3 -> 6: 11110010
7: 00010010
8: 00000000 nop

4 -> 9: 00000000 nop
10: 10101000 mov RO, scc
11: 11000101
12: 00101010
13: 10001001 mov R1, 5
14: 00000101
15: 11010101 cmp
16: 10101101 jne error_recovery
17: 01010100
18: 01001001

Assume a sequence error has occurred. The program counter may

be set to any location in the address space. Lets examine how

the machine code is interpreted in the above cases.

Case 1:

Sequence error coincides with the beginning of an instruction.

The machine code is interpreted correctly.

84

Case 2:

Sequence error does not coincide with the beginning of an

instruction. In the worst case, the machine code could be

interpreted as:

3: 00010010 add R2, ADDR1
4: 11001000
5: 10100000
6: 11110010 rot R2
7: 00010010 mul R2, ADDR2
8: 00000000
9: 00000000

10: 10101000 mov RO, scc
11: 11000101
12: 00101010

etc ••

Lines 3 through 9 are mis-interpreted, so they executed

incorrectly. However, correct execution begins on line 10,

so the sequence error is detected by testing the sequence

control code. Had there not been NOPs, the instructions may

have been interpreted as:

3: 00010010 add R2, ADDR1
4: 11001000
5: 10100000
6: 11110010 rot R2
7: 00010010 mul R2, ADDR2

10: 10101000
11: 11000101
12: 00101010 dec R2

etc ••

Without the NOPs, the code intended to detect sequence errors

is completely ineffective, since it is not correctly executed.

Case 3:

Sequence error does not coincide with the beginning of an

instruction. Same outcome as case 2.

85

Case 4:

Sequence error coincides with the beginning of an instruction.

Machine code is interpreted correctly.

As shown in this example, a sequence error which causes machine

code mis-interpretation can make error recovery ineffective.

Inserting extra NOPs before recovery code can correct this

problem.

86

THE SIMULATION PROGRAM DESCRIPTION

The objectives of the simulation program are to provide real-time

experience with a transient error environment, to demonstrate the

methodology, and to evaluate its performance. The Multiple Bit Upset

Model, the Upset Mapping Model, the High-Level Language/Machine Language

Model, and the Structure/Content Model strive to simplify the system

to capture the essence of most high-level errors. These models work

together to simplify the system by abstracting various aspects of the

system. The Multiple Bit Upset Model is an abstraction of the transient

error environment, the Upset Mapping Model is an abstraction of the

system hardware, the High-Level Language/Machine Language Model is an

abstraction of the hardware/software interface, and the Structure/Content

Model is an abstraction of the spacecraft software. The simulation

program applies these models to a specific "benchmark" computation block

written in the recovery format.

The computation block used in the program is a very simple routine

which performs a simple transformation on critical variables. The

routine takes the average of four critical variables and writes the

average back to the four critical variables. The full error recovery

format is implemented for the computation block. However, the simulation

program does not simulate errors during error recovery.

The main functions of the simulation program are to execute the

recovery software, to monitor the software execution, to injected errors

into the program state, and to monitor recovery performance.

The recovery software is written as it would normally be written,

except that each program statement begins with a label (needed to

simulate sequence errors) and ends with a call to an error simulation

routine. In the absence of errors, the error simulation routine simply

87

returns.

There are three types of errors injected: program sequence errors,

main memory errors, and processor memory errors. When the error

simulation routine is called, it first determines from the upset rate

if it is time for an upset to occur. If so, the simulation routine

then determines the type and location of the error from the system

parameters (see figure 3), as defined by the Upset Mapping Model and the

Structure/Content Model. These parameters are determined by hardware and

software specifications.

Simulation System Parameters

1) probability of main memory upset
given an upset to system (Upset Mapping Model)

2) probability of processor memory upset
given an upset to system (Upset Mapping Model)

3) probability of processor sequence upset
given an upset to system (Upset Mapping Model)

4) number of critical variables / total variables
(Upset Mapping Model)

5) initialization section size (in instructions)
(Structure/Content Model)

6) computation section size

7) action section size

8) time in the wait loop

(in instructions)
(Structure/Content Model)

(in instructions)
(Structure/Content Model)

(for jump return to wait loop)
(software dependent)

9) frequency of upsets to system
(hardware dependent)

10) word size (in bits)
(hardware dependent)

11) n (size of upset) (in bits)

Figure 3

88

Memory errors are simulated by simply changing variable values to

random numbers. An exception to this procedure is an error to an array

subscript. Array subscripts must be within a given range, otherwise

program execution is halted. Program sequence errors are simulated by

jumping to a random computation block statement.

The recovery metrics used are: number of catastrophes, coverage,

and recovery profile. The number of catastrophes requires the

classification of recovery failures. Since this task would be very

difficult to automate, it is done manually through various display

options. The display options used are:

1) display program code

2) display program data

3) display errors injected

4) display errors detected

5) display current section

6) display program data at injection

7) display program data at detection

8) display program data at beginning of block

9) display program data at end of block

Miscellaneous Assumptions

Here is a list of miscellaneous assumptions concerning the

implementation of the simulation program.

1) The number of bits upset is irrelevant if greater than one.

This assumption simplifies analysis by breaking the upsets into

two categories: the SEU case (number of bits upset equals one)

and the MBU case (number of bits upset is greater than one).

89

This is not a perfect assumption, since the performance of

reasonableness checking increases as the number of bits upset

increases.

2) Although control programs are always time varying, it is assumed

that the effectiveness of recovery in not influenced by

time variance. Consequently, the simulated control program is

time invariant.

3) The simulation program does not simulate upsets during the

execution of the recovery block. It is assumed that upsets

which occur during recovery are important only during bursts of

upsets. The problem of recovering during recovery is not

addressed.

90

Outline of Simulation Program

A summary of the simulation program is given in Figure 4.

program simulate;

{ initialization procedures }

procedure simulation;

{ initialization procedures }

{ display option procedures }

{ statistics gathering procedures }

procedure recovery_example (block_number integer);

{ manual upset injection procedures }

{ automatic upset injection procedures }

{ error simulation driver }

begin

{ software under test in recovery format
with calls to error injection routine }

{ recovery evaluation }

{ error recovery block }

end;

begin
while true do

begin
initialize;
for block-pumber := 1 to number of blocks do

recovery_example (block_numb;r);
end;

end;

{ main program body }
begin

initia1ize-parameters;
initialize_stats;
simulation;

end.

Figure 4

91

TIlE SUIULATION PROGRAM LISTING

program simulate;

type

{ invariant - the probability of all outcomes should add to one }

mapping =
record

memory real;

{ used by parameters }

the probability that a MBU affects a processor

sequence : real;

end;

display_options =
record

lines
data
errors_detected
errors_injected
section
data_at_injection
data_at_detection
data_at_start
data_at_end

end;

{

parameter invariants

memory location
the probability
sequence

boolean;
boolean;
boolean;
boolean;
booleanj
boolean;
boolean;
boolean;
boolean;

-

}

processor_sus + memory_sus 1
section1 size > 0 -
section2 _size > 0
section3 size > 0
0 <= critca1 variables <= 1
0 <= wait _loop <= 1
word_ size > 0
0 <= n <= word_ size
error-period > 1 }

}
that a MBU affects a program

{ note : an error period of 133 is approximately one upset per
block}

parameters =
record

processor_sus
memory_sus
neu_map
section1_size

real;
real;
mapping;

{ the susceptibility of the processor to MBU's }
{ the susceptibility of the memory to MBU's }

integer;
{ the mapping of MBU's outcomes}
{ the size of a typical initialization section}

{ in number of instructions executed }
section2_size : integer; the size of a typical computation section}

section3_size

critical_var
wait_loop
n
word_size
error-period
test_mode
display
factor1
factor2
factor3

{ in number of instructions executed }
integer; the size of a typical action section}

{ in number of instructions executed }
real; { the percentage of critical variables }
real; { the percentage of time in the wait loop}
integer; {number of bits upset}
integer; {the word size of the processor }
integer32j { the mean period, in instructions, between MBU's }
boolean; {enables change in display options }
display_options;
integer; {rate of upset in initia1izaton section}
integer; {rate of upset in computation section}
integer; {rate of upset in action section}

92

end;

{ recovery profile }
profile =

record
redundant_comp
redundant_storage
memory_coding
scc
wait_loop
reasonableness_check

end;

upset_type
record

wait_loop
sequence
processor_memory
memory

end;

stats =

integer32;
integer32;
integer32;
integer32;
integer32;
integer32;

integer32;
integer32;
integer32;
integer32;

record
total_errors
total errors_corrected:
total_coverage
recovery

integer32; { the total number of errors injected}
integer32;

var

upset
end;

p : parameter s;
s : stats;
seed, seedl : integer;

real; { the coverage of the whole system}
profile;
upset_type;

{ the parameters of the simulation }
{ the recovery data }
{ used to detirmine location and type of error }

procedure init_factors (var p : parameters);

{ this procedure calculates the local upset rate as specified by the
form/content model }

const

var

{ these numbers are the number of lines executed per section
init_size a 30;
calc_size = 30;
commit_size = 54;

temp_factorl, temp_factor2, temp_factor3 , average real;

begin

with p do

end;

begin
temp_factorl := init_size / sectionl_size;
temp_factor2 1= calc_size / section2_size;
temp_factor3 .= commit_size / section3_size;

average .= temp_factorl*init_size + temp_factor2*calc_size +
temp_factor3*commit_size;

average .= average/(init_size + calc_size + commit_size);

factorl := trunc(temp_factorl * error-period / average);
factor2 := trunc(temp_factor2 * error-period / average);
factor3 .= trunc(temp_factor3 * error-period / average);

end;

93

procedure initialize-parameters (var p
label

100;
var

ch
begin

char;

parameter s);

{ assingn default values to parameters }

p.processor_sus := 0.0;
p.memory_sus := 1.0;
p.neu_map.memory := 0.5;
p.neu_map.sequence := 0.5;
p.section1_size ,= 30;
p.section2_size := 30;
p.section3_size := 54;
p.critical_var := 0.5;
p.wait_loop -= 0.0;
p.word_size := 16;
p.n := 4;
p.error-period := 20;
p.test_mode := true;
seed := 5;
seed1 := 10;

{ verify resulting parameters }

writeln('here are the default paramet~rs: ');
writeln('processor susceptibility p.processor_sus:4:4);
writeln('memory susceptibility: p.memory_sus:4:4);
writeln('NEU -) memory mapping: p.neu_map.memory:4:4);
writeln('NEU -) sequence mapping , p.neu_map.sequence:4:4);
writeln('initialization section size p.section1_size);
writeln('computation section size: p.section2_size);
writeln('action section size : p.section3_size);
writeln('percentage of critical variables " pocritical_var:4:4);
writeln('percentage of time in the wait loop: " p.wait_loop:4:4);
writeln('word size: ' p.word_size);
writeln('n (size of upset) : p.n);
writeln('mean period between upsets

p. error-period);
writeln('test mode : p.test~ode);

{ make changes to default parameters }

write('change parameters? (y/n) ');
readln(ch) ;
if ch = 'y' then

repeat
write('change processor susceptibility? (y/n/q) ');
readln(ch) ;
if ch = 'q' then

goto 100;
if ch = 'y' then

begin
repeat

write('processor susceptibility (real: 0 - 1) : ');
readln(p. processor_sus);

until (p.processor_sus)= 0) and (p.processor_sus <= 1);
p.memory_sus ,= 1 - poprocessor_sus;

end;

write('change memory susceptibility?
readln(ch) ;
if ch = 'q' then

goto 100;

(y/n/q) ');

94

if ch = 'y' then
begin

repeat
write('memory susceptibility (real: 0 - 1) : ');
readln(p.memory_sus);

until (p.memory_sus >= 0) and (p.memory_sus <= 1);
p.processor_sus .= 1 - p.memory_sus;

end;

write('change NEU outcome mapping 7 (y/n/q) ');
readln(ch) ;
if ch = ' q' then

goto 100;
if ch = 'y' then

repeat
writeln('probabilities must add to 1');
repeat

write('memory upset probability (real: 0 - 1) : ');
readln(p.neu_map.memory);

until (p.neu_map.memory >= 0) and (p.neu_map.memory <= 1);
repeat

write('sequence upset probability (real: 0 - 1) : ');
readln(p.neu_map.sequence);

until (p.neu_map.sequence >= 0) and (p.neu_map.sequence <= 1);
until (poneu_map.memory + p.neu_maposequence) = 1;

write('change initialization section size?
readln(ch) ;
if ch = 'q' then

goto 100;
if ch = 'y' then

repeat

(y/n/q) ');

write('initialization section size in executed instructions (integer> 0)
readln(posection1_size);

until posection1_size > 0;

write('change computation section size? (y/n/q) ');
readln(ch) ;
if ch = 'q' then

goto 100;
if ch = 'y' then

repeat
write('computation section size in executed instructions (integer> 0) ');
readln(posection2_size);

until posection2_size > 0;

write('change action section size?
readln(ch) ;
if ch .. 'q' then

goto 100;
if ch .. 'y' then

repeat

(y/n/q) ');

write('action section size in instructions (integer >= 1) ');
readln(p.section3_size);

until posection3_size > 0;

write('change percentage of critical variables? (y/n/q) ');
readln(ch);
if ch = ' q' then

goto 100;
if ch ". 'y' then

repeat
write('percentage of critical variables (real : 0 - 1) ');
readln(p.critical_var);

until (p.critical_var >= 0) and (pocritical_var <= 1);

write('change wait loop time?
readln(ch) ;

(y/n/q) ');

95

100:

if ch = 'q' then
goto 100;

if ch = 'y' then
repeat

write('percentage of time in wait loop (real: a - 1) ');
readln(p.wait_loop);

until (p.wait_loop >= 0) and (p.wait_loop <a 1);

write('change word size?
readln(ch) ;
if ch ... ' q' then

goto 100;
if ch ... 'y' then

repeat
write('word size (integer> 0) ');
readln(p.word_size);

until p.word_size > 0;

write{'change n (size of upset)
readln(ch) ;
if ch = 'q' then

goto 100;
if ch = 'y' then

repeat
write('n (integer : 1 <= n <= word size)
readln(p.n);

until (p.n >= 1) and (p.n <= p.word_size);

write('change error period 1
readln(ch) ;
if ch = ' q , then

goto 100;
if ch = 'y' then

repeat

(y/n/q) ');

(y/n/q) ');

');

(y/n/q) ');

write('error period in instructions
readln(p.error-period);

(integer »1) ');

until p.error-period > 1;

write('change test mode
readln(ch) ;
if ch ... 'q' then

goto 100;
if ch = 'y' then

begin
write('test mode (boolean)
readln(p.test_mode);

end;

{ verify resulting parameters }

');

writeln('here are the resulting parameters: ');
writeln('processor susceptibility
writeln('memory susceptibility :
writeln('NEU -> memory mapping :

(y/n/q) ');

p.processor_sus:4:4);
p.memory_sus:4:4);
p.neu_map.memory:4:4);

, p.neu_map.sequence:4:4);
" p.section1_size);

p.section2_size);
p.section3_size);

writeln('NEU -> sequence mapping I

writeln('initialization section size
writeln('computation section size :
writeln('action section size :
writeln('percentage of critical variables
write1n('percentage of time in the wait loop :
writeln('word size : '
write1n('n (size of upset) :
writeln('mean period between upsets

p.error-period);
writeln('test mode :

" p.critical_var:4:4);
" p.wait_loop:4:4);

p.word_size);
p.n) ;

p. test_mode);

write('are these the desired parameters 1 (y/n) ');
readln(ch) ;

96

until not (ch 'n') ;

init_factors(p);

if p.test_mode then
begin

p.display.lines
p.display.data
p.display.errors_detected
p.display.errors_injected
p.display.section
p.display.data_at_injection
p.display.data_at_detection
p.display.data_at_start
p.display.data_at_end

end
else

end;

begin
p.display.lines
p.display.data
p.display.errors_detected
p.display.errors_injected
p.display.section
p.display.data_at_injection
p.display.data_at_detection
p.display.data_at_start
p.display.data_at_end

end;

.=

.=
,=
.=
.=
.=
.=
:=
.=

....

.=

.=
·c

.=

.=

.=

.=

.=

procedure initialize_stats (var s
begin

stats) ;

with s do

end;

begin
total_errors
total_errors_corrected

recovery.redundant_comp
recovery.redundant_storage
recovery.memory_coding
recovery.scc
recovery.wait_loop
recovery.reasonableness_check

end;

true;
false;
true;
true;
false;
true;
true;
true;
true;

false;
false;
false;
false;
false;
false;
false;
false;
false;

.=

.=
:=
.=
.=
,=

0;
O· ,

O· ,
0;
0;
0;
0;
0;

procedure simulation{var p parameters ;var s stats) ;

type
control

record
{simulation control data}

free_run : boolean;
line_break : boolean;
break-point_line : integer;
error : boolean;

{
{
{
{

free run mode }
break point mode }
break point line number }
has an error been detected ? }
sequence error to another block}
skip to line number }

skip_block : boolean;
skip_to_line : integer;
error_message : string;
number_of_computations :
recovery_line : integer;

{
{
{

integer; {
{

the cause of the last discovered error}
the actual number of computations }
the line number where error was detected}

end;

values - the domain and range of average
e.g. average(values) -> values

97

two copies of values are needed to allow atomic actions
three copies of the above are kept for redundant storage

temp - the extra copy of temp is used for repeating computions
block_number, value_number, copy_number

- the variables for iteration
temp_version

- toggles the temp variables
number_of_computations

the cumulative number of computations
scc - sequence control code }

const

var

number_of_blocks a 10;
number_of_lines 54;
number_of_values 4;
number_of_copies = 3;

values: array [O •• l,l •• number_of_copies,
l •• number_of_values,l •• number_of_blocks] of integer;

temp: array [0 •• 9] of integer;
block_number, value_number, copy_number, scc : integer;
number_of_computations, temp_version: integer;
sim_data : control;
il,i2,i3,i4 : integer;

procedure init;
begin

{ initialize program data }
sec := 003;
value_number := 0;
copy_number := 0;

{ initialize values [0] to block number*lOO }
for i2 := 1 to number_of_copies do

for i3 := 1 to number_of_values do
for i4 := 1 to number_of_blocks do

begin
values [1,i2,i3,i4] om i4 * 100;
values [0,i2,i3,i4] 0= 0;

end;
for il := 0 to 9 do

temp [i1J := 0;
number_of_computations := 0;
temp_version := 0;

{ initialize control data }
with sim_data do

end;

begin
free_run := false;
line_break := false;
break-point_line := 100 + number_of_lines;
error := false;
skip_block := false;
error_message := ";
number_of_computations := 0;
recovery_line 0= 0;

end;

function random(var seed: integer) real;
begin

random := seed/65535 + 0.5;
seed := (25173 * seed + 13849) mod 65536;

end;

98

function random_offset(var seed: integer; amplitude: integer) : integer;
{ if the amplitude is less than 0, both positive and negative

offsets are allowed. If the amplitude is greater than 0,
only positive offsets are allowed. }

begin
if amplitude < a then

begin

end

random offset := trunc«seed/65535)*2*amplitude);
seed .~ (25173 * seed + 13849) mod 65536;

else

end;

begin

end

random_offset := trunc«seed/65535 + 0.5)*amplitude);
seed := (25173 * seed + 13849) mod 65536;

function reasonable_line_number (line_number: integer) : boolean;
{ this boolean function tests the reasonableness of a given line_number

for manual control input }
begin

if «line number mod 100))= 1) and «line number mod 100) <= number of lines) and
«line=number div 100))= 1) and «line=number div 100) <= number=of=blocks) then

reasonable_line_number .= true
else

reasonable_line_number .= false;
end;

procedure display_section(block_number, line_number: integer);
{ this procedure displays the section currently being executed }

begin
case line_number of

1: begin
writeln;
writeln;
writeln('block number is " block_number);
writeln;
writeln('*******************************');
writeln(' section 1');
writeln('*******************************');
writeln;

end;
22: begin

writeln;
writeln;
writeln('block number is " block_number);
writeln;
writeln('*******************************')j
writeln(' section 2');
writeln('*******************************');
writeln;

end;

41: begin
writeln;
writeln;
writeln('block number is " block_number);
writeln;
writeln('*******************************');
writeln(' section 3');
writeln('*******************************');

99

end;
end;

writeln;
end;
{case}

procedure display_computation(block_number, line_number : integer);
{ this procedure displays the PASCAL program line currently being executed }
var

temp, tempI: integer;

begin
writeln;
writeln;
writeln('block number is '
writeln('line number is
writeln;
case line_number of

block_number) ;
line_number) ;

1: writeln(' {initialize} ');
2: begin

temp := (block_number - 1)*100 + 3;
writeln(' if scc = ',temp,' then');

end;
3: begin

temp := block_number*100 + 1;
writeln(' scc:= ',temp,';');

end;
4: begin

writeln('else');
writeln(' goto 100;');

end;
5: begin

writeln(' {vote on values}');
writeln('value_number ,= 0;');

end;
6: begin

writeln('while value number < number_of_values do');
writeln(' begin');

end;
7: writeln('
8: begin

value_number := value_number + 1;');

write(' if
writeln('values
writeln('
writeln('

end;
9: begin

values [l,copy l,value_number]
[l,copy 2, value_number] ');
then');

begin') ;

:s ');

write{' values [O,copy 1,value_numberl ,= ');
writeln{'values [l,copy 1,value_number];');

end;
10: begin

write(' values [O,copy 2,value_number] ,= ');
writeln('values [l,copy l,value_numberl;');

end;
11: begin

write(' values [O,copy 3,value_number] ,= ');
writeln('values [l,copy l,value_numberl;');
writeln(' next;');
writeln('end;');

end;
12: begin

write(' if values [l,copy 2,value_number] = ');
writeln('values [l,copy 3,value_number]');
writeln(' then ');
writeln(' begin');

end;
13: begin

100

write(' values [O,copy l,value_number] .= ');
writeln('values [l,copy 2,value_number];');

end;
14: begin

write(' values [O,copy 2,value_number] := ');
writeln('values [1,copy 2,value_number];');

end;
15: begin

16:

write(' values [O,copy 3,value_number] .= ');
writeln('values [1,copy 2,value_number];');
writeln(' next;');
writeln(' end;');

end;
begin

write(' if
wri teln('values
writeln('
writeln('

values [1,copy l,value_numberl a');
[1,copy 3,value_numberl ');
then');

begin');
end;

17: begin
write(' values [O,copy l,value_numberl .= ');
writeln('values [l,copy l,value_numberl;');

end;
18: begin

write(' values [O,copy 2,value_numberl .= ');
writeln('values [1,copy 1,value_number];');

end;
19: begin

write(' values [O,copy 3,value_number] .= ');
writeln('values [l,copy l,value_number];');
writeln(' next;');
writeln(' end;');
writeln('end;');

end;
20: writeln(' temp_version:= 0;');
21: writeln(' number_of_computations·= 0;');
22: begin

writeln(' {calculate values}');
temp := block_number*100 + 1;
writeln('if scc := ',temp,' then');

end;
23: begin

temp := block_number*lOO + 2;
writeln('scc .= ',temp,';');

end;
24: begin

writeln('else');
writeln(' goto 100');

end;
25: writeln(' repeat');
26: begin

temp := (temp_version + 1) mod 2;
write1n(' temp_version:= ',temp,'; ');

temp [temp_version] 1= 0;'); 27:
28:
29:
30:
31 :

end;
writeln('
writeln('
writeln('
writeln('
begin

number_of_computations := number_of_computations + 1;');
value_number := 0;');

writeln('
writeln('

end;
32: begin

while value_number < number_of_values do');

begin');
value_number := value_number + 1;');

write(' temp [temp_version] := temp [temp_version] ');
writeln('+ values [O,copy I,value_number];');
writeIn('end;');

end;
33: begin

101

write(' temp [temp_version] := temp [temp_version] ');
writeln('div number_of_values;');

end;
34: writeln(' temp [temp_version] := temp [temp_version] - 10;');
35: writeln(' temp [temp_version] .= temp [temp_version] - 5;');
36: write1n(' temp [temp_version] .= temp [temp_version] + block_number;');
37: writeln(' temp [temp_version] ·a temp [temp_version] + 15;');
38: begin

write(' until (number_of_computations > 1) and ');
write('(temp [0] = temp [1]);');

end;
39: begin

temp := block_number * 101 - 5;
tempI := block_number * 101 + 5;
writeln(' {check resonableness} ');
write('if (temp [temp_version] < ',temp,') or ');
writeln('(temp [temp_version] > ',tempI,') then ');

end;
40: writeln(' goto 100;');
41: begin

writeln(' {assign values} ');
temp := block_number*100 + 2;
writeln('if scc = " temp, , then');

end;
42: begin;

temp := block_number*100 + 3;
writeln('scc .= ',temp,';');

end;
43: begin

44:
45:

46:
47:
48:

writeln('else');
writeln(' goto 100;');

end;
writeln('
begin

writeln('
writeln('

end;
writeln('
writeln('
begin

writeln('
writeln('

end;

value_number := 0;');

while value number < number_of_values do');
begin ');

value number := value number + 1;');
copy_~umber := 0; ');-

while copy_number < number_of_copies do ');
begin ');

49: writeln(' copy_number:= copy_number + 1;');
50: begin

writeln(' values [l,copy_number,value_numberl .= temp [1];');
writeln(' end;');
writeln('end;');

end;
51: begin

writeln(' {scc check}');
temp := block_number*lOO + 3;
writeln('(if scc <> ',temp,') then');

end;
52: writeln(' goto 100; ');
53: begin

writeln(' {reasonableness check }');
write('if (value number <> number of values) or ');
writeln('(copy_n~ber <> number_of_c~pies) or ');
writeln('(temp [0] <> temp [1]) then');

end;
54: writeln(' goto 100; ');

otherwise writeln('ERROR : unhandled case, display computation');
end; {case}

writeln;
writeln;

end; {display computation}

102

procedure display_data;
{ this procedure displays all the data values of the simulated

recovery block }
begin

writeln;
writeln;
for i3 := 1 to number_of_values do

for i2 := 1 to number_of_copies do
for il := 0 to 1 do

writeln('values [',il:2,', , ,i2:2,', , ,i3:2,'] =
values [il,i2,i3,block_numberJ);

writeln('temp [OJ ' temp [0]);
writeln('temp [1] temp [11);
writeln('scc = scc);
writeln('number_of_computations number_of_computations);
writeln('temp_version = temp_version);
writeln('block number = block number);
writeln('value-number = value-number);
writeln('copy_~umber = copy_;umber);

end;

procedure change_data;
{ this procedure allows the user to manually change any data used by the

recovery block }
label

var
200;

ch : char;
temp_value integer;

begin
write('change values? (y/n/q) ');
readln(ch);
if ch = 'q' then

goto 200;
if ch = 'y' then

for i3 := 1 to number_of_values do
for i2 := 1 to number_af_copies do

for il := 0 to 1 do
begin

write('change values [',iI,', , ,i2,', , ,i3,'] ? (y/n/q) ');
readln(ch) ;
if ch = 'q' then

gata 200;
if ch = 'y' then

end;

begin
write('values [',iI,', ',i2,', ',i3,'1 = ');
readln(temp_value);
values [il,i2,i3,block_number] .= temp_value;

end;

write('change temp [0] ? (y/n/q) ');
readln(ch) ;
if ch = 'q' then

goto 200;
if ch = 'y' then

begin
write('temp [01 = ');
readln(temp_value);
temp [01 := temp_value;

end;

write('change temp [1] ? (y/n/q) ');

103

read1n(ch) ;
if ch '" 'q' then

goto 200;
if ch = 'y' then

begin
write('temp [1] '" ');
read1n(temp_value);
temp [1] .= temp_value;

end;

write('change scc ? (y/n/q) ');
read1n(ch);
if ch = 'q' then

goto 200;
if ch .. 'y' then

begin
write('scc '" ');
readln(scc);

end;

write('change number_of_computations ? (y/n/q) ');
readln(ch);
if ch = 'q' then

goto 200;
if ch '" 'y' then

begin
write ('number_of_computations ');
readln(number_of_computations);

end;

write('change temp_version? (y/n/q) ');
read1n(ch) ;
if ch '" 'q' then

goto 200;
if ch = 'y' then

begin
write ('temp_version ');
readln(temp_version);

end;

write('change block_number 1 (y/n/q) ');
read1n(ch);
if cll =- 'q' then

goto 200;
if ch = 'y' then

begin
write('b1ock_number = ');
read1n(b1ock_number);

end;

write('change value_number 1 (y/n/q) ');
readln(ch);
if ch ::0 ' q' then

goto 200;
if ch = 'y' then

begin
write('value number = ');
readln(value=number);

end;

write('change copy_number? (y/n/q) ');
read1n(ch) ;
if ch '" 'q' then

goto 200;
if ch '" 'y' then

begin
write('copy_number '" ');
read1n(copy_number);

104

end;
200:

end;

procedure change_display_options;
{ this procedure allows the user to change the display options }
label

200;
var

ch

begin

char;

write('display lines? (y/n/q) ');
readln (ch) ;
if ch = 'q' then

goto 200;
if ch = 'y' then

p.display.lines -c true
else

p.display.lines -= false;

write('display data (y/n/q) ');
readln(ch) ;
if ch = 'q' then

goto 200;
if ch = 'y' then

p.display.data -= true
else

p.display.data .= false;

write('display errors detected (y/n/q) ');
readln(ch);
if ch = 'q' then

goto 200;
if ch = 'y' then

p.display.errors_detected .= true
else

p.display.errors_detected -= false;

write('display errors injected? (y/n/q) ');
readln(ch);
if ch = 'q' then

goto 200;
if ch = 'y' then

p.display.errors_injected -= true
else

p.display.errors_injected -= false;

write('display section? (y/n/q) ');
readln(ch) ;
if ch = 'q' then

goto 200;
if ch = 'y' then

p.display.section := true
else

p.display.section -a false;

write('display data after upset injection? (y/n/q) ');
readln(ch) ;
if ch = 'q' then

goto 200;
if ch = 'y' then

p.display.data_at_injection -= true
else

p.display.data_at_injection -= false;

105

write('display data after upset detection? (y/n/q) ');
readln(ch);
if ch = 'q' then

goto 200;
if ch ... 'y' then

p.display.data_at_detection .= true
else

p.display.data_at_detection .= false;

write('display data at start of block? (y/n/q) ');
readln(ch) ;
if ch ... 'q' then

goto 200;
if ch :II 'y' then

p.display.data_at_start .= true
else

p.display.data_at_start ,= false;

write('display data at end of block 7 (y/n/q) ');
readln(ch) ;
if ch = ' q' then

goto 200;
if ch = 'y' then

p.display.data_at_end := true
else

p.display.data_at_end := false;

200:
end;

procedure free_run;
{ this procedure allows the user to specify a free run (otherwise,

the program is halted after each instruction). There are two
free run modes : break on line and break on error }

var
ch : char;

begin
sim data. free run := true;
write('break ;n line? (y/n) ');
readln(ch);
if ch == 'y' then

begin
si~data.line_break := true;
writeln('sequence numbers have the form ');
writeln(' (block number) * 100 + line number');
write1n('for example, to jump to line number 5 in block 5,');
write1n('use sequence number 505');
write1n;
repeat

write('break at which sequence number? ');
write('(integer: sequence number> 101) : ');
readln(si~data.break-point_1ine);

until reasonable_line_number(si~data.break-point_line);
end

else

end;

begin
write('break on error? (y/n) ');
readln(ch) ;
if ch = 'y' then

si~data.line_break := false;
end;

106

procedure display_error (var sim_data : control);
{ this procedure displays the recovery profile }
begin

with s.recovery do
begin

end;

{display error}
writeln;
writeln;
writeln(sim_data.error_message);

{display profile}
writeln;
writeln;
writeln('
writeln('
writeln('
writeln('
writeln('
writeln('
writeln('

end;

error recovery
redundant computation
redundant storage :
memory coding :
sequence control codes
wait loop check :
reasonableness check :

profile ');
',redundant_comp);
',redundant_storage);
" memory_coding);

scc);
wai t_loop) ;
reasonableness_check);

procedure recovery-profile (var s : stats;var sim_data : control; line : integer);
{ this procedure maintains the recovery profile statistics, and displays errors

detected, if opted }
begin

sim_data.error := false;
with s.recovery do

case line of
4: begin

sim_data.error := true;
sim_data.error_message :=

'sequence error, found on line 4, by sequence control codes';
sec .= scc + 1;

end;

8: if values [1,3,value_number,block_numberl <>
values [1,I,value_number,block_numberl then

begin
sim_data.error := true;
sim_data.error_message :=

'data error, found on line 8, by redundant storage';
redundant_storage .~ redundant_storage + 1;

end;

12: if values [1,I,value_number,block_number] <>
values [1,2,value_number,block_number] then

begin
sim_data.error := true;
sim_data.error_message :=

'data error, found on line 12, by redundant storage';
redundant_storage .= redundant_storage + 1;

end;

16: if values [1,I,value_number,block_number] <>
values [1,2,value_number,block_number] then

begin
sim_data.error := true;
sim_data.error_message :=

'data error, found on line 16, by redundant storage';
redundant_storage .= redundant_storage + 1;

end;

24: begin

107

sim_data.error := true;
sim_data.error_message :=

'sequence error, found on line 24, by sequence control codes';
scc ·a scc + 1;

end;

38: if sim_data.number_of_computations > 2 then
begin

sim_data.error := true;
sim_data.error_message :=

'data error, found on line 38, by redundant computations';
redundant_comp := redundant_comp +

(sim_data.number_of_computations -1) div 2;
end;

40: begin
si~data.error := true;
sim_data.error_message :=

'data error, found on line 40, by reasonableness checks';
reasonableness_check .• reasonableness_check + 1;

end;

43: begin
sim_data.error := true;
sim_data.error_message :=

'sequence error, found on line 43, by sequence control codes';
scc .= scc + 1;

end;

52: begin
sim_data.error := true;
sim_data.error_message :=

'sequence error, found on line 52, by sequence control codes';
scc .= scc + 1;

end;

54: begin
si~data.error := true;
sim_data.error_message :=

'data error, found on line 54, by reasonableness checks';
reasonableness_check .• reasonableness_check + 1;

end;

end; {case}

if sim_data.error then
sim_data.recovery_line :- line;

if sim_data.error and p.disp1ay.errors_detected then
display_error(si~data);

if sim_data.error and p.display.data_at_detection then
display_data;

end;

procedure recovery_example(var block_number integer);

label
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,
21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,
38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,99,100;

108

const
sccl ::::0 4;
scc2 ... 24;
scc3 ... 43;
scc4 ... 52;
real == 40;
rea2 "" 54;

procedure jump (jump_to: integer);
{ this procedure allows PASCAL to make arbitrary program jumps. Note that

x := 5;
goto x;

is illegal }

begin
case jump_to of

1: go to 1;
2: goto 2;
3: goto 3;
4: goto 4;
5: goto 5;
6: goto 6;
7: goto 7;
8: goto 8;
9: goto 9;
10: goto 10;
11: goto 11;
12: goto 12;
13: goto 13;
14: goto 14;
15: goto 15;
16: goto 16;
17: goto 17;
18: goto 18;
19: goto 19;
20: go to 20;
21: go to 21;
22: goto 22;
23: goto 23;
24: goto 24;
25: goto 25;
26: goto 26;
27: goto 27;
28: goto 28;
29: goto 29;
30: goto 30;
31: goto 31;
32: goto 32;
33: goto 33;
34: goto 34;
35: goto 35;
36: goto 36;
37: goto 37;
38: goto 38;
39: goto 39;
40: goto 40;
41: goto 41;
42: goto 42;
43: goto 43;
44: goto 44;
45: goto 45;
46: goto 46;
47: goto 47;
48: goto 48;
49: goto 49;
50: goto 50;
51: goto 51;

109

52: goto 52;
53: goto 53;
54: goto 54;
99: goto 99;
end;

writeln('ERROR illegal jump ');
end;

procedure processor_memory_upset;
{ this procedure is used to automatically inject processor memory errors }

var
offset_amplitude integer;
upset_version, upset_copy, upset_value integer;

begin
{ processor memory upset}

if p.display.errors_injected then
begin

writeln;
writeln;
writeln('*******************************');
writeln(' processor memory upset');
writeln('*******************************');
sim_data.error .= true;
writeln;
writeln;

end;

s.upset.processor_memory := s.upset.processor_memory + 1;

case trunc(random(seed)*9 + 1) of

1 begin
{ values upset}

offset_amplitude := -10000;
upset_version := random_offset(seedl,I);
upset_copy := random_offset(seedl,number_of_copies) + 1;
upset_value := random_offset(seedl,number_of_values) + 1;
values (upset_version,upset_copy ,upset_value, block_numb er} :=
values [upset_version,upset_copy,upset_value,block_numbe r} +
random_offset(seedl,offset_amplitude);
if p.display.errors_injected then

writeln(' values[',upset_version,',',upset_copy,',',
upset_value,'] Q "

values [upset_version,upset_copy ,upset_value, block_numbe r});
end;

2 begin
{ values upset}

offset_amplitude := -10000;
upset_version := random_of£set(seedl,I);
upset_copy := random_o£fset(seedl,number_of_copies) + 1;
upset_value := random_o£fset(seedl,number_of_values) + 1;
values [upset_version,upset_copy,upset_value,block_numb er} :=
values [upset_version, upset_copy ,upset_value , block_numb er) +
random_o£fset(seedl,offset_amplitude);
if p.display.errors_injected then

writeln(' values[',upset_version,',',upset_copy,',',
upset_value,'} = "
values [upset_version,upset_copy ,upset_value, block_numbe r]);

end;

{ upset non-critical variable }

110

3 begin
offset_amplitude := -10000;
temp[O] := temp[O] + random_offset(seed1,offset_amplitude);
if p.display.errors_injected then

writeln(' temp[O] = " temp[O]);
end;

4 begin
offset_amplitude := -10000;
temp[l] := temp[l] + random_offset(seedl,offset_amplitude);
if p.display.errors_injected then

end;
5 begin

writeln(' temp[l] ~ " temp[1]);

value_number := random_offset(seed1,number_of_values) + 1;
if p.display.errors_injected then

end;
6 begin

writeln(' value_number = " value_number);

copy_number := random_offset(seedl,number_of_copies) + 1;
if p.disp1ay.errors_injected then

writeln(' copy_number - " copy_number);
end;

7 begin
offset_amplitude := -10000;
scc := scc + random_offset(seed1,offset_amplitude);
if p.display.errors_injected then

end;
8 begin

write1n(' scc = " scc);

offset_amplitude := -10000;
number_of_computations := number_of_computations

+ random_offset(seedl,offset_amplitude);
if p.disp1ay.errors_injected then

writeln('number_of_computations - ',number_of_computations);
end;

9 begin
temp_version := random_offset(seed1,number_of_blocks);
if p.display.errors_injected then

writeln('temp_version = ',temp_version);
end;

otherwise writeln('ERROR : illegal non-critical variable upset');
end; {case}

if p.display.data_at_injection then
display_data;

end;

procedure sequence_upset;
{ this procedure is used to automatically inject sequence upsets }
var

upset_block, upset_line : integer;

begin
{sequence error}

if p.display.errors_injected then
begin

writeln;
write1n;
writeln('*******************************');
writeln(' sequence upset upset');
writeln('*******************************');
sim_data.error ". true;
write1n;
write1n;

III

end;

s.upset.sequence := s.upset.sequence + 1;
upset_block := random_offset(seed1,number_of_b1ocks) + 1;
upset_line := random_offset(seed1,number_of_lines) + 1;
sim_data.skip_to_line := 100*upset_block + upset_line;

if p.display.errors_injected then
writeln{' sequence skiped to line ',sim_data.skip_to_line);

if upset_block <> block_number then
begin

end

sim_data.skip_block 0. true;
goto 99;

else
jump(upset_line);

end;

procedure memory_upset;
{ this procedure is used to automatically inject main memory upsets }
var

offset_amplitude, upset_block: integer;
upset_version, upset_copy, upset_value: integer;

begin
{memory error}

if p.display.errors_injected then
begin

writeln;
writeln;
writeln('*******************************');
writeln(' memory upset');
writeln('*******************************');
sim_data.error 0= true;
writeln;
writeln;

end;

s.upset.memory 0= s.upset.memory + 1;
if random(seed) < p.critical_var then

begin
{ upset critical variable }
{ chose upset block }

upset_block := random_offset(seed1,number_of_blocks) + 1;

{ values upset}
offset_amplitude := -10000;
upset_version := random_offset(seed1,2);
upset_copy := random_offset(seedl,number_of_copies) + 1;
upset_value := random_offset(seed1,number_of_values) + 1;
values [upset_version,upset_copy,upset_value,upset_bloc k] :=

values [upset_verslon,upset_copy,upset_value,upset_bloc k] +
random_offset(seed1,offset_amplitude);

if p.display.errors_injected then
writeln(' values[',upset_version,' ,',upset_copy,',',

upset_value,',',upset_block,'] = "
values [upset_version,upset_copy,upset_value,upset_bloc k]);

end
else

begin
{ upset non-critical variable }

case trunc(random(seed)*7 + 1) of
1: begin

offset_amplitude := -10000;
temp[O] := temp[O] + random_offset(seed1,offset_amplitude);

112

if p.display.errors_injected then
writeln(' temp[O] = " temp[O]);

end;
2: begin

offset_amplitude := -10000;
temp[l] := temp[1] + random_offset(seedl,offset_amplitude);
if p.display.errors_injected then

end;
3: begin

writeln(' temp[l] 2 " temp[l]);

value number := random offset(seed1,number of values) + 1;
if p.display.errors_injected then - -

end;
4: begin

writeln(' value_number ~ " value_number);

copy_number := random_offset(seed1,number_of_copies) + 1;
if p.display.errors_injected then

writeln(' copy_number ~ " copy_number);
end;

5: begin
offset_amplitude := -10000;
scc := scc + rando~offset(seed1,offset_amplitude);
if p.display.errors_injected then

end;
6: begin

writeln(' scc = " scc);

offset_amplitude := -10000;
number_of_computations := number_of_computations

+ random_offset(eeed1,offset_amplitude);
if p.display.errors_injected then

writeln('number_of_computations - ',number_of_computations);
end;

7: begin
temp_version := random_offset(seed1,number_of_blocks);
if p.display.errors_injected then

writeln('temp_version = ',temp_version);
end;

otherwise writeln('ERROR : illegal non-critical variable upset');
end; {case}

end;

if p.display.data_at_injection then
display_data;

end;

procedure upset(var p : parameters);

given that an upset has occurred, this procedure detirmines where
it has occurred }

begin
{inject error}

if (p.n = 1) and (random(seed) < p.wait_loop) then
begin

{upset in wait loop}
s.upset.wait_loop .= s.upset.wait_loop +1;

end
else

if random(seed) < p.processor_sus then
begin

{ processor error }
if random(seed) < p.neu_map.memory then

processor_memory_upset
else

sequence_upset;
end

113

end;

else
memory_upset;

procedure inject_upset(var p : parameters; line: integer);

{ this procedure detirmines when an upset occurs, using the
different upset rates }

const
start_of_init = 1;
end_of_init = 21;
start_of_calc = 22;
end of calc = 38;
start_of_commit = 39;
end_of_commit = 54;

begin
if (line >= start_of_init) and (line <= end_of_init) then

begin

end

if trunc(random(seed) * p.factor1) = 1 then
upset(p);

else
if (line >= start_of_calc) and (line <= end_of_calc) then

begin
if trunc(random(seed) * p.factor2) = 1 then

upset(p);
end

else

end;

if (line >= start_of_commit) and (line <= end_of_commit) then
begin

end

if trunc(random(seed) * p.factor3) = 1 then
upset(p);

procedure free_run_mode(line integer);
begin

inject_upset(p,line);
if sim_data.line_break then

begin

end
else

if block_number * 100 + line
sim_data.break-point_line then

begin
sim_data.line_break := false;
sim_data.free_run .= false

end;

if sim data. error then
begIn

sim_data.free_run := false;
sim_data.error ,= false;

end;

if p.display.section then
display_section(block_number, line);

if p.display.lines then
display_computation(block_number, line);

end;

114

procedure change_sequence;
begin

write1n('sequence numnber have the form ');
write1n(' (block number) * 100 + line number');
write1n('for example, to jump to line number 5 in block 5,');
write1n('use sequence number 505');
writeln;
write('input next sequence number (integer) : ');
read1n(sim_data.skip_to_line);
if (sim_data.skip_to_line div 100) <> block_number then

begin

end

sim_data.skip_block .= true;
goto 99;

else

end;

begin
jump(si~data.skip_to_line mod 100);

end;

procedure recovery_evaluation;
var

b,v : integer;

begin
{ the test - at least 2 out of 3 critical values must be correct }

b := block_number;
v := block_number * 101;
if
«(va1ues[1,1,1,b]

(values [l,2,1, b]
«va1ues[1,1,1,b]

(values [l,3,1, b]
«values[1,2,1,b]

(va1ues[I,3,1,b]
and

«(va1ues[1,1,2,b]
(values[1,2,2,b]

«va1ues[1,1,2,b]
(values[1,3,2,b]

«values[1,2,2,b]
(va1ues[I,3,2,b]

and
«(values[1,1,3,b]

(values[I,2,3,b]
«va1ues[1,1,3,b]

(values[1,3,3,b]
«values[1,2,3,b]
(va1ues[1,3,3,b]

then
begin

writeln;
write1n;

= v) and
v » or

= v) and
= v » or
= v) and
= v»)

=: v) and
v » or

= v) and
v » or
v) and

os v»)

= v) and
= v » or
= v) and
= v » or
= v) and
=: v»)

writeln('recovery is successful');
end

else

end;

begin
writeln;
write1n;
writeln('recovery has failed');

end;

115

procedure error_sim(line
label

integer) ;

var
200;

ch : char;
automated boolean;

begin
automated := false;
recovery-profile(s,sim_data,line);
if sim_data.skip_block then

begin
if line = 1 then

begin
sim_data.skip_block := false;
jump(si~data.skip_to_line mod 100);

end
else

writeln('ERROR illegal skip_block in procedure error_sim');
end;

if automated then
begin

inject_upset(p,line);
if sim data. error then

display_error(sim_data);
end

else {manual error simulation }
if sim_data.free_run then

free_run_mode(line)
else

begin
if p.display.lines then

display_computation(block_number,line);

if p.display.data then
display_data;

write('examine variables? (y/n/q) ');
readln(ch) ;
if ch = 'q' then

goto 200;
if ch = 'y' then

display_data;

write('change variables? (y/n/q) ');
readln(ch) ;
if ch = 'q' then

goto 200;
if ch = 'y' then

change_data;

write('change sequence? (y/n/q) ');
readln(ch) ;
if ch "" 'q' then

goto 200;
if ch = 'y" then

change_sequence;

write('free run ? (y/n/q) ');
readln(ch) ;
if ch "" 'q' then

goto 200;
if ch = 'y' then

free_run;

if p.test_mode then
begin

write('change display options? (y/n/q) ');

116

1 :
2:

3:

4:

5:
6:

7:
8:

9:

10:

11:

12:

13:

14:

15:

16 :

17:

200:
end

readln(ch) ;
if ch = 'q' then

goto 200;
if ch = 'y' then

change_display_options;
end;

end;

begin

if p.display.data_at_start then
display_data;

{initialize}
if scc = (block_number-l)*100 + 3 then

begin
scc .= block_number*100 + 1;

end
else

begin

goto 100;
end;

{vote on values}
value_number := 0;
while value_number < number_of_va1ues do

begin
value number := value number + 1;
if values [l,l,value_~umber,block_number] =

values [1,2, value_number,block_numberl
then

begin

end;

values [O,l,value_number,block_numberl :=
values [l,l,value_number,block_numberl;

values [O,2,value_number,block_numberJ :=
values [1,1,va1ue_number,block_number);

values [0,3,value_number,block_number) :=
values [1,1,va1ue_number,block_number);

next;

if values [1,2,va1ue_number,block_numberl =
values [1,3,value_number,block_number)

then
begin

end;

values [0,1,va1ue_number,block_number) :=
values [1,2 j value_number,block_numberlJ

values [0,2,value_number,block_number] :=
values [1,2,value_number,block_number];

values [O,3,va1ue_number,block_number] :=
values [1,2,value_number,block_number];

next;

if values [1,1,value_number,block_numberl =
values [1,3,value_number,block_number]

then
begin

values [O,l,value_number,block_number) .=

error_sim(2);
error_sim(3) ;

error_sim(6) ;
error_sim(7);

error_sim(13)

117

18:

19:

20:
21 :

22:

23 :

24:

25:
26:
27:
28:
29:
30:

31:
32:

33:
34:
35:
36:
37 :
38:

39:

40:

41:

42:

43:

44:
45:

end;
end;

values [1,1,va1ue_number,b1ock_number];

values [0,2,va1ue_number,b1ock_number] :=
values [1,1,va1ue_number,block_number];

values [0,3,value_number,block_number] :=
values [l,l,value_number,block_number];

next;

temp_version := 0;
number_of_computations := 0;

{initialization complete}

{calculate values}
if scc = block_number*100 + 1 then

begin
scc .= block_number*IOO + 2;

end
else

begin

go to 100;
end;

repeat
temp_version := (temp_version + 1) mod 2;
temp [temp_version] := 0;
number_of_computations := number_of_computations + 1;
value_number := 0;
while value_number < number_of_values do

begin
value_number := value_number + 1;
temp [temp_version] := temp [temp_version]

+ values [O,I,value_number,block_number];

end;
temp [temp_version] .= temp [temp_version] div number_of_values;
temp [temp_version] .= temp [temp_version] - 10;
temp [temp_version] .= temp [temp_version] - 5;
temp [temp_version] .= temp [temp_version] + block_number;
temp [temp_version] .= temp [temp_version] + 15;

until (number_of_computations > 1) and (temp [0] = temp [1]);

{check resonableness}
if (temp [temp_version] < block number * 101 - 5)

or (temp [temp_version] > block_number * 101 + 5) then
begin

goto 100;
end;

{assign values}
if scc = b1ock_number*100 + 2 then

begin
sec .= block_number*100 + 3;

end
else

begin

goto 100;
end;

value_number := 0;
while value_number < number_of_values do

error sim(20)
error=sim(21)

error_sim(22)
error_sim(23)

error sim(25)
error - sim(26)
error-sim(27)
error:=sim(28)
error_sim(29)

error sim(30)
error:=sim(31)

error sim(33)
error - sim(34)
error-sim(35)
error-sim(36)
error-sim(3n
error:=sim(38)

error_sim(39)
error_sim(40)

error sim(41)
error:=sim(42)

118

46:
47:
48:

49:
50:

51 :

52:

53:

54:

100:

begin
value_number := value_number + 1;
copy_number := 0;
while copy_number < number_of_copies do

begin
copy_number := copy_number + 1;
values [1 ,copy_number,value_number ,block_number]

end;
end;

{ scc check }
if (scc <> block_number*lOO + 3)

then
begin

go to 100;
end;

{ reasonableness check }

error_sim(45)
error sim(46)
error=sim(47)

error sim(48)
error-sim(49)

,= temp [1]; -
error_sim(50)

error sim(51)
error:=sim(52)

if (value number <> number of values) or (copy_number <> number_of_copies)
or (te;p [0] <> temp [11) then
begin

goto 100;
end;

if p.display,data_at_end then
display_data;

recovery_evaluation;

goto 99;

writeln('error detected, restarting computation');

error sim(53)
error=sim(S4)

if (si~data.recovery_line = secl) or (sim_data.recovery_line
(sim_data.recovery_line = sec3) or (sim_data.recovery_line

{ sequence upset detected }

see2) or
see4) then

begin
if reasonable_line_number(sce) then

begin
{restart at the old sec}

block number := scc div 100
case (scc mod 100) of

1: sim_data.skip_to_line
2: sim_data.skip_to_line
3: sim_data.skip_to_line

end; {case}

,=
,=
,=

sccl + 1 ;
scc2 + 1 ;
scc3 + 1 ;

writeln('**********************************');
writeln(' recovery block 1 - goto ',sim_data.skip_to_line);
writeln(' scc = ',scc);
writeln('**********************************');

jump (sim_data.skip_to_line);
end

else
begin

{ scc upset - reset scc and restart at scc }
if (sim_data.recovery_line sccl) then

begin
scc := (block_number - 1) * 100 + 3;

writeln('**********************************');
writeln(' recovery block 2 - goto ',sccl - 2);

119

end

else

writeln(' sec = ',scc);
writeln('**********************************');

jump (sccl - 2);
end;

if Csim_data.recovery_line = scc2) then
begin

scc := block_number * 100 + 1;

writeln('**********************************');
writeln(' recovery block 3 - goto ',scc2 - 2);
writeln(' scc = ',scc);
writeln('**********************************');

jump (scc2 - 2);
end;

if (sim_data.recovery_line = scc3) then
begin

scc := block_number * 100 + 2;

writeln('**********************************');
writeln(' recovery block 4 - goto ' ,scc3 - 2);
writeln(' scc = ',scc);
writeln('**********************************');

jump (scc3 - 2);
end;

if (sim_data.recovery_line = scc4) then
begin

end;

scc := block_number * 100 + 3;

writeln('**********************************');
writelnC' recovery block 5 - goto ',scc4 - 1);
writeln(' scc = ',scc);
writeln('**********************************');

jump (scc4 - 1);
end;

if (sim_data.recovery_line = real) then
{ reasonableness check }

begin
if reasonable_line_number(scc) then

begin
{restart at the old block, line I}

block_number := scc div 100 ;
sim_data.skip_to_line := sccl + 1;

writeln('**********************************');
writeln(' recovery block 6 - goto ' ,sim_data.skip_to_line);
writelnC' scc = ',scc);
write1n('**********************************');

jump (sim_data.skip_to_line);
end

else
begin

{restart at block 1, line I}
block_number := 0;
initialize_statsCs);

120

end

else

init;

writeln('**********************************');
writeln(' recovery block 7 - restart');
writeln(' sec = ',sec);
writeln('**********************************');

end;

if (sim_data.recovery_line rea2) then
{ reasonableness check }

begin
if reasonable_line_number(scc) then

begin

end

if (temp [0] <> temp [1]) then
begin

{restart at current block, line 1}
sec := (block_number)*100 + 1;

writeln('**********************************');
writeln(' recovery block 8 - goto ' ,scc2 - 4);
writeln(' sec = ',sec);
writeln('**********************************');

jump (see2 - 4);
end

else

end
else

begin

begin
{redo update}

writeln('**********************************');
write1n(' recovery block 9 - goto ',sce3 + 1);
writeln(' sec = ',sec);
writeln('**********************************');

jump (scc3 + 1);
end

{restart at block 1, line I}
block_number := 0;
initialize_statsCs);
init;

writeln('**********************************');
writeln(' recovery block 10 - restart');
writeln(' scc = ',sce);
writeln('**********************************');

end;

else

if reasonable_line_numberCscc) then
begin

{restart at the old sec}
block number := sec div 100
case (sec mod 100) of

1: sim_data.skip_to_line .= scel + 1;
2: sim_data.skip_to_line 0= see2 + 1;
3: sim_data.skip_to_line 0= sec3 + 1;

end; {case}

121

99:

end;

writeln('**********************************');
writeln(' recovery block 11 - goto ',sim_data.akip_to_line);
writeln(' scc = ',acc);
writeln('**********************************');

jump (sim_data.akip_to_line);
end;

{main body - simulation }

begin
while true do

begin
init;

end;

for block_number := 1 to number of blocks do
begin

recovery_example(block_number);
if sim_data.skip_block then

block_number "= (sim_data.akip_to_line div 100) - 1;
end;

end;

{ main program body }
begin

initialize-parameters(p);
initialize_stats(s);
simulation(p, a);

end.

122

GLOSSARY

This is a glossary of words used throughout this document

autonomous spacecraft maintenance (ASM):

The goal of ASM is to provide spacecraft the ability to function

for a specified period of time without ground support. ASM

requires autonomous health and maintenance, navigation and

stationkeeping, mission sequencing, as well as autonomous hardware

fault recovery.

action section:

A section of code where any action is committed and performed.

In this section, critical variables are assigned or output

operations are performed. The objective is to keep the action

section as short as possible in order to minimize the probability

of upset during the execution of this section.

atomic actions:

Atomic actions are traditionally used in data base concurrency

control [9]. The objective of atomic actions is to make actions

appear indivisible, that is, all other actions appear to have

occurred either before or after an atomic transaction. Furthermore,

atomic actions appear to completely happened (commit) or never

happen (abort).

A process experiencing transient errors can be considered to be two

processes, the actual process and the transient error process.

The objective of using atomic actions in transient error recovery

is in insure that all transient errors occur either before or

block:

after an action but not during.

To apply the proposed transient error recovery technique to a

program, it must be divided into blocks, which are similar to a

procedures. Each block is associated with either a critical

variable or an output operation or both. Each block is divided

into three idempotent sections : an initial section, a computation

section, and an action section.

catastrophe:

An event which is the result of an upset, which a transient

error recovery technique may not recover without re-initialization

and restart, if at all. In terms of ASM, a catastrophic upset

implies that autonomy may be compromised. In terms of mission

success, the result of a catastrophic upset is undefined.

Catastrophes are divided into two categories : first-order

catastrophes, which result from one upset and second-order

catastrophes, which result from two upsets.

computation block:

To apply the proposed transient error recovery technique to a

program, it must be divided into blocks, which are similar to a

procedures. Each block is associated with either a critical

variable or an output operation or both. Each block is divided

into three idempotent sections : an initial section, a computation

section, and an action section.

l~

computation section:

The section of code where the actual computation takes place. All

computations are performed using temporary variables to insure the

idempotence of the section and to limit the possibility of error

propagation. The computation is performed at least twice, until

two results in a row agree. For time variant systems, results must

agree within a pre-defined margin.

control variables:

Control variables are program variables used to control data access

and program flow. Control variables include subscripts, counters,

flags, sequence control codes, etc.

coverage:

Coverage is defined in reliability theory [8] as the conditional

probability that a failure of a unit will be detected and

appropriate recovery action will be performed given the occurrence

of a fault and sufficient resources for recovery. Since the

addressed phenomenon are transient in nature, no resources are

required for transient error recovery. For transient errors,

coverage is a metric of a systems' error detection and recovery

action capability.

critical flip-flops:

Critical flip-flops are flip-flops within the processor and its

supporting logic which can result in a catastrophe if upset, and

are not covered by Software Implemented Transient Error Recovery.

Since they are referred to as "flip-flopslf (as opposed to

Ifregisters"), the implication is that they typically hold control

information as opposed to value information, their criticalness has

125

a high duty-cycle. Thus, most upsets to critical flip-flops are

catastrophic.

critical registers:

Critical registers are registers within the processor and its

supporting logic which can result in a catastrophe if upset, and

are not covered by Software Implemented Transient Error Recovery.

Since they are referred to as "registers" (as opposed to

"flip-flopsn), the implication is that they typically hold value

information as opposed to control information, their criticalness

has a low duty-cycle. Thus, an upset during a non-critical period,

such as the execution of a wait loop, is not catastrophic.

critical variables:

Critical variables are program variables which have a direct effect

upon some output of the system. Non-critical variables have effect

on the output of the system, but only through their effect upon

critical variables. Another way of looking at this distinction is

that if there were only a single copy of a critical variable, and

if that copy were upset, the only possible course for recovery is

re-initialization and restart. If a non-critical variable is upset,

recovery can be achieved through re-execution of a section, so

restart is not necessary. Since critical variables are actually

stored in triplicate, recovery can be performed by voting on their

value in the initialization section. Examples of critical

variables in the Intelsat VI ACE are offset pointing values, system

modes, and gains. Examples of non-critical variables are counters,

flags, loop variables, etc.

126

error propagation control:

Error propagation control is an important problem in transient

error recovery. If a value which has been upset is used in a

calculation, all values which depend upon the upset value will be

incorrect. Consequently, one upset value may result in several

incorrect values, all of which must be corrected to successfully

perform recovery.

fault-tolerance:

Fault-tolerance is the ability of a system to perform correctly in

the presence of one or more hardware failures. Fault-tolerance

techniques use some form of hardware redundancy to detect and

replace failed units.

high-level errors:

The proposed transient error recovery methodology is capable of

detecting high-level errors. If an error cannot be detected by

redundancy at the high-level language level, it most likely cannot

be corrected by the methodology. An example of a high-level error

is an upset to a register in an ALU of a processor. Such an upset

can be observed by examining the processor registers. An example

of a low-level error, which the methodology cannot recover, is an

upset to the master reset flip-flop. A high-level language could

not observe such an error, since a master reset destroys all

program state.

High-Level Language/Machine Language Model:

The High-Level Language/Machine Language Model abstracts errors

from the Upset Mapping Model on bit level code (machine language)

and data as bit upsets on high-level language and data. The Upset

127

Mapping Model is based on the observation that all results of the

Upset Mapping Model can be produced using a high-level language and

that Software Implemented Transient Error Recovery is only capable

of recovering from errors that can be detected from a high-level.

idempotence:

A procedure is idempotent if the result of mUltiple applications is

the same as the result of one application. An example of an

idempotent procedure is : move platform to 135 degrees. An example

of a non-idempotent procedure is : increment platform position

+ 15 degrees.

initialization section:

The section of code where the block initialization takes place. At

the very least, critical variables are voted upon and local

variables are initialized.

Intelsat VI ACE:

The Intelsat VI attitude control subsystem. This is the first

major satellite project to address the issue of recovering from

single event upsets by software techniques.

jump return to wait loop:

Jump return to wait loop is a method for detecting and recovering

from sequencing errors which occur during the execution of a wait

loop. The control program of a typical spacecraft sub-system will

spend the majority of its run-time in a wait loop. Since wait

loops are short, the number of mutations of the wait loop

instructions that a single bit flip could cause is small. Here is

an example of what could be done:

128

; program fragment
104 add r1, r2
105 jmp 107
106 jmp 200
107 continue •••

; wait loop
200 ei
201 jmp 200
202 jmp 200

Suppose an SEU changed line 200 from enable interrupt to jmp 106.

Under normal operation, it is impossible for the program to execute

line 106, since it is intentionally by-passed by line 105.

Consequently, embedding a jump return to the wait loop instruction

would recover from such an upset.

Since the amount of time spent in the wait loop is large, this

method is very effective in recovering from SEUs, but is

ineffective in recovering from larger upsets since mutations of

only one bit are considered.

machine code mis-interpretation:

Machine code mis-interpretation is caused from the ambiguity of

stored programs, since machine language is context sensitive. For

example, the machine code 10110001 may be interpreted as the

instruction "inc R1", or as the data B1 hex. Consequently, if a

sequence error occurs, the code intended to detect this error may

be misinterpreted. This problem is solved with a process called

"NOP buffering".

Example: instead of compiling

If scc <> 5 then
goto error_recovery;

as

129

mov R1, scc
mov R1, 5
cmp
jne error_recovery

use

nop
nop
mov R1, scc
mov R1, 5
cmp
jne error_recovery

The extra NOPs with put the program on the right track.

main memory:

Main bank of volatile RAM memory.

mUltiple bit upsets (MBU) :

The Multiple Bit Upset Model abstracts transient errors as events

in which one or more bits per word may be upset simultaneously. A

sub-class of MBUs are single event upsets (SEUs), which occur, by

definition, when only one bit per word is upset.

MBU Upset Rate:

The MBU upset rate refers to the frequency of upsets caused

primarily by the electrostatic discharge problem. There is no

accurate data available on the frequency characteristics of

electrostatic discharges. Since it is known that SEUs are the

dominant source of transient error in present spacecraft systems,

the MBU rate was chosen so that the frequency of catastrophic

upsets caused by MBUs is the same order of magnitude as the

frequency of catastrophic upsets caused by SEUs. The rate used

is 0.000001 upsets/(bit-day).

130

processor memory:

Volatile memory used by the processor, whether internal or external

to the physical processor. In the context of the simulation

program, a "processor memory error" refers to a processor memory

error which can be observed by inspecting processor registers or

the program counter.

reasonableness checking:

Reasonableness checking is a method of error detection. When

a variable is known to have some range of correct values, then the

actual value of the variable can be compared to this range to check

the reasonableness of the value. If a discrepancy is found, an

error has occurred. Reasonableness checking is extremely powerful

when the range of correct values is small compared to the range of

possible values.

This technique is especially useful for testing program control

variables. For example, suppose we have the following code:

index := 0;
while index < 4 do

begin
index := index + 1;
{ etc. }

end;

We know that at the end of this block, index must have the value 4.

We also know that during the execution of this block, index cannot

have a value of less than 0 or greater than 4. Although this is

obvious, this example shows that the implementation of

reasonableness checking can be made very precise. Reasonableness

checking is similar to a process used in program correctness

verification called "assertion checking" [12].

131

recovery block:

Once an error has been detected by a reasonableness check or

a sequence control check, appropriate recovery action is performed

by the recovery block. Although the recovery block could simply

reset the system, there is usually enough information to determine

the cause of the error and redo the appropriate section.

recovery format:

Recovery format refers to the software structure used for transient

error recovery.

recovery profile:

Recovery profile is one metric of recovery used in the simulation

program. The recovery profile is a histogram of the number of

detected errors for each error detection technique. The intention

of the recovery profile is to determine the relative value of error

detection techniques.

sections:

A section is the most basic unit of structure in the proposed

transient error recovery technique. An initialization section,

a computation section, and an action section together form a

computation block.

single event upsets (SEU):

A cause of error in digital electronics in spacecraft resulting

from exposure to high-energy cosmic particles. Because of their

small size, cosmic particles can result in at most one bit flip per

particle.

132

SEU Upset Rate:

The SEU upset rate refers to the frequency of upsets caused by

cosmic radiation, based upon tests conducted upon actual devices

[3,11]. The upsets are assumed to occur in a constant stream,

which accurately models the real phenomenon. The rate used is

0.0001 upsets/(bit-day).

sequence control codes (SCC):

Sequence control codes are a method of sequence error detection.

A variable is set to a known value before a section is entered.

This variable is then checked at the end of the section. If there

is a discrepancy, entry into the section must have been at some

point other than the proper entry point of that section. SCCs are

a sub-class of reasonableness checking.

Structure/Content Model:

The Structure/Content Model abstracts software as having a recovery

structure without computational content. The Structure/Content

Model embodies the idea that the ability of a system to recover

from transient errors does not depend upon what computation is

being performed, but on how it is being performed. It is the

structure of a computation, and not its content per se, which

dictates the performance of Software Implemented Transient Error

Recovery. More specifically, the ability to perform error

propagation control, error detection, and error recovery upon the

initialization, computation, and action sections is independent of

the specific action performed in each section as long as the

idempotence and atomic action requirements are met.

133

An exception to this model is a non-idempotent action section.

The fact that an action is non-idempotent does not give one the

liberty to retry an action if a discrepancy is found. However,

any section which is idempotent, which includes all initialization

and computation sections, and most action sections, can be

repeated if necessary, so consequently, the specific content of the

section is irrelevant to recovery.

temporary variables:

All intermediate and final results of a computation section are

stored in temporary variables. This technique insures that all

computation sections are idempotent.

transient error:

upset:

Transient errors (as used in this paper) are errors that are

caused by phenomenon which are transient in nature, which occur

randomly, and are not caused by hardware failure. The system does

not have to prevent future occurrences of the same transient error

to recover. Consequently, transient hardware failures and

"transient" software failures do not cause transient errors as

defined above, because such errors do not usually occur randomly.

Example sources of transient error in spacecraft computers are

high-energy cosmic particles, electrostatic discharges, and thermal

noise.

A undesired bit flip occurring in volatile memory.

134

Upset Mapping Model:

The Upset Mapping Model abstracts the outcome of mUltiple bit

upsets as either main memory errors, processor memory errors, or

processor sequence errors. Any upset outcome not modeled directly

by the above outcomes can either be modeled indirectly as a

combination of the above errors, or must be considered individually.

An example of a transient error which can be modeled as a

combination of the above events is an upset to an internal register

of the ALU of the processor, which results in either a processor

memory upset or a processor sequence upset. An example of an upset

which cannot be modeled by the above outcomes is an upset to the

master reset flip-flip.

135

BIBLIOGRAPHY

[1] Anderson, T., and Randell, B., Computer Systems Reliability,
Cambridge University Press, Cambridge, 1979

[2] Avizienis, A., "Fault-Tolerance: The Survival Attribute of Digital
Systems", Proceedings of the IEEE, Vol. 66, No.10, October 1978,
pp. 1109-1125

[3] Binder, D., "Status of the Single Event (Cosmic Ray) Problem",
Hughes Aircraft Co., Interdepartmental Correspondence, 1982

[4] Bouricius, W.G. et al., "Reliability Modeling for Fault-Tolerant
Computers", IEEE Transactions on Computers, C-20, 11,
November 1971, pp. 1306 - 1311.

[5] Carter, W., eta al., "Cost Effectiveness of Self Checking Computer
Design", 1977 International Symposium on Fault-Tolerant Computing,
Los Angeles, June 1977, pp. 117-123

[6] Gray, J., "Notes on Data Base Operating Systems", IBM Research
Laboratory, San Jose, February 1978

[7] Gray, P., Student Guide to IFPS, McGraw-Hill, New York, 1983

[8] Hopkins, A.L., "Fault-Tolerant System Design: Broad Brush and Fine
Print", Computer, Vol. 13, No.3, March 1980.

[9] Lampson, B.W., and Sturgis, H.E., "Crash Recovery in a Distributed
Data Storage System", Xerox PARC internal document, June 1979

[10] Lyons, R.E., and Vanderkulk, W., "The Use of Triple-Modular
Redundancy to Improve Computer Reliability", IBM Journal of
Research and Development, April 1962, pp. 200 - 209.

[11] MacPherson, D., "SEU in Spacecraft in Synchronous Earth Orbit",
Hughes Aircraft Co., Interdepartmental Correspondence, 1982

[12] Mahmood, A., et al., "Concurrent Fault Detection Using a Watchdog
Processor and Assertions", Center for Reliable Computing, Stanford
University, November 1983

136

[13] McCluskey, E.J., "Fault Tolerant Systems", Center for Reliable
Computing, Stanford University, April 1982

[14] Obert, R., "Intelsat VI ACE Fault Tolerance", Hughes Aircraft Co.,
View-graph presentation, June 1983

[15] O'Brien, F.J., "Rollback Point Insertion Strategies", 1976
International Symposium on Fault-Tolerant Computing, June 1976,
pp. 138 - 142.

[16] Osder, S., "DC-9-80 Digital Flight Guidance System Monitoring
Techniques", AIAA Journal of Guidance and Control, Vol.4,
No.1, January 1981

[17] Randell, B., "System Structure for Software Fault-Tolerance", IEEE
Transactions on Software Engineering, SE-1, 2, June 1975,
pp. 220 - 232.

[18] Rennels, D.A., "Distributed Fault-Tolerant Computer Systems",
Computer, March 1980, pp. 55 - 65.

[19] Rennels, D.A., "On Implementing Self-Checking Microprocessors",
Mini and Microcomputers in Control and Measurement,
Acta Press, 1981

[20] Rosen, A., "Large Discharges and Arcs on Spacecraft", Astronautics
and Aeronautics, June 1975, pp. 36 - 44.

[21] Spillman, R.J., itA Markov Model of Intermittent Faults in Digital
Systems", Proceedings of FTCS-7, June 1977, pp. 157-161

[22] Stiffler, J.J., "Robust Detection of Intermittent Faults",
Proceedings of FTCS-10, June 1980, pp. 216-218

137

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107
	00000108
	00000109
	00000110
	00000111
	00000112
	00000113
	00000114
	00000115
	00000116
	00000117
	00000118
	00000119
	00000120
	00000121
	00000122
	00000123
	00000124
	00000125
	00000126
	00000127
	00000128
	00000129
	00000130
	00000131
	00000132
	00000133
	00000134
	00000135
	00000136
	00000137
	00000138
	00000139
	00000140
	00000141
	00000142
	00000143
	00000144

