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Abstract

Hierarchical clustering is a recursive partitioning of a dataset into clusters at an increas-
ingly finer granularity. Motivated by the fact that most work on hierarchical clustering was
based on providing algorithms, rather than optimizing a specific objective, Dasgupta framed
similarity-based hierarchical clustering as a combinatorial optimization problem, where a ‘good’
hierarchical clustering is one that minimizes a particular cost function [21]. He showed that this
cost function has certain desirable properties: in order to achieve optimal cost, disconnected
components (namely, dissimilar elements) must be separated at higher levels of the hierarchy
and when the similarity between data elements is identical, all clusterings achieve the same
cost.

We take an axiomatic approach to defining ‘good’ objective functions for both similarity
and dissimilarity-based hierarchical clustering. We characterize a set of admissible objective
functions having the property that when the input admits a ‘natural’ ground-truth hierarchical
clustering, the ground-truth clustering has an optimal value. We show that this set includes
the objective function introduced by Dasgupta.

Equipped with a suitable objective function, we analyze the performance of practical al-
gorithms, as well as develop better and faster algorithms for hierarchical clustering. We also
initiate a beyond worst-case analysis of the complexity of the problem, and design algorithms
for this scenario.

1 Introduction

A hierarchical clustering is a recursive partitioning of a dataset into successively smaller clusters.
The input is a weighted graph whose edge weights represent pairwise similarities or dissimilarities
between data points. A hierarchical clustering is represented by a rooted tree where each leaf
represents a data point and each internal node represents a cluster containing its descendant leaves.
Computing a hierarchical clustering is a fundamental problem in data analysis; it is routinely
used to analyze, classify, and pre-process large datasets. A hierarchical clustering provides useful
information about data that can be used, e.g., to divide a digital image into distinct regions of
different granularities, to identify communities in social networks at various societal levels, or to
determine the ancestral tree of life. Developing robust and efficient algorithms for computing
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hierarchical clusterings is of importance in several research areas, such as machine learning, big-
data analysis, and bioinformatics.

Compared to flat partition-based clustering (the problem of dividing the dataset into k parts),
hierarchical clustering has received significantly less attention from a theory perspective. Partition-
based clustering is typically framed as minimizing a well-defined objective such as k-means, k-
medians, etc. and (approximation) algorithms to optimize these objectives have been a focus of
study for at least three decades. On the other hand, hierarchical clustering has been studied at
a more procedural level in terms of algorithms used in practice. Such algorithms can be broadly
classified into two categories, agglomerative heuristics which build the candidate cluster tree bottom
up, e.g., average-linkage, single-linkage, and complete-linkage, and divisive heuristics which build
the tree top-down, e.g., bisection k-means, recursive sparsest-cut etc. Dasgupta [21] identified
the lack of a well-defined objective function as one of the reasons why the theoretical study of
hierarchical clustering has lagged behind that of partition-based clustering.

Our goal is to provide a comprehensive study of algorithmic approaches to hierarchical clustering.
We start by analyzing and defining suitable cost functions, then provide a worst-case analysis of the
standard heuristics, then move beyond the worst-case analysis to design efficient algorithms that
achieve good approximation guarantees.

Defining a Good Objective Function.

What is a ‘good’ output tree for hierarchical clustering? Let us suppose that the edge weights
represent similarities (similar data points are connected by edges of high weight)1. Dasgupta [21]
frames hierarchical clustering as a combinatorial optimization problem, where a good output tree
is a tree that minimizes some cost function; but which function should that be? Each (binary)
tree node is naturally associated to a cut that splits the cluster of its descendant leaves into the
cluster of its left subtree on one side and the cluster of its right subtree on the other, and Dasgupta
defines the objective to be the sum, over all tree nodes, of the total weight of edges crossing the cut
multiplied by the cardinality of the node’s cluster. In what sense is this good? Dasgupta argues
that it has several attractive properties: (1) if the graph is disconnected, i.e., data items in different
connected components have nothing to do with one another, then the hierarchical clustering that
minimizes the objective function, begins by first pulling apart the connected components from one
another; (2) when the input is a (unit-weight) clique then no particular structure is favored and all
binary trees have the same cost; and (3) the cost function also behaves in a desirable manner for
data containing a planted partition. Very recently, Moseley and Wang [36] use the “dual” version of
Dasgupta’s objective in an attempt to explain the behavior of popular heuristics. The dual version
also satisfies the properties of Dasgupta’s cost function, so which cost function should we use and
are there other “interesting” cost functions?

In this paper, we take an axiomatic approach to defining a ‘good’ cost function. We remark
that in many applications, for example in phylogenetics, there exists an unknown ‘ground truth’
hierarchical clustering—the actual ancestral tree of life—from which the similarities are generated
(possibly with noise), and the goal is to infer the underlying ground truth tree from the available
data. In this sense, a cluster tree is good insofar as it is isomorphic to the (unknown) ground-truth
cluster tree, and thus a natural condition for a ‘good’ objective function is one such that for inputs
that admit a ‘natural’ ground-truth cluster tree, the value of the ground-truth tree is optimal. We
provide a formal definition of inputs that admit a ground-truth cluster tree in Section 2.2.

1This entire discussion can equivalently be phrased in terms of dissimilarities without changing the essence.

2



We consider, as potential objective functions, the class of all functions that sum, over all the
nodes of the tree, the total weight of edges crossing the associated cut times some function of
the cardinalities of the left and right clusters (this includes the class of functions considered by
Dasgupta [21]). In Section 3, we characterize the ‘good’ objective functions in this class and call
them admissible objective functions. We prove that for any ground-truth input, the ground-truth
tree has optimal cost (w.r.t to the objective function) if and only if the objective function (1) is
symmetric (independent of the left-right order of children), (2) is increasing in the cardinalities of the
child clusters, and (3) for (unit-weight) cliques, has the same value for all binary trees (Theorem 1).
Both Dasgupta’s and Moseley and Wang’s objective functions are admissible in terms of the criteria
described above.

Algorithmic Results

The objective functions identified in Section 3 allow us to (1) compare quantitatively the perfor-
mances of algorithms used in practice and (2) design better and faster approximation algorithms.
In several applications, such as in those arising in bioinformatics, the data comes as similarity
graphs: the higher the weight of an edge, the higher the similarity between the two elements. In
other cases, such as in image processing, the input is a set of points in a Euclidean space where
two points are similar if they are near each other. One can see this as a dissimilarity graph: the
higher the weight of an edge between two elements (given by e.g., the Euclidean distance), the
higher the dissimilarity. Our approach to defining cost function allows us to define meaningful ob-
jective functions for both types of inputs. From an algorithmic perspective, the approaches differ;
while optimizing these objective functions is NP-hard, 2 the objective functions behave differently
in terms of hardness of approximation. For example, obtaining a constant factor approximation
for Dasgupta’s cost function for dissimilarity graphs is beyond current techniques while we show
that the popular average linkage heuristics achieves a 2/3-approximation for a meaningful objective
function in dissimilarity graphs.

Algorithms for Similarity Graphs

Dasgupta [21] shows that the recursive φ-approximate sparsest cut algorithm, that recursively splits
the input graph using a φ-approximation to the sparsest cut problem, outputs a tree whose cost
is at most O(φ log n · OPT), where OPT is the cost of the optimal tree. Roy and Pokutta [39]
recently gave an O(log n)-approximation by providing a linear programming relaxation for the
problem and providing a clever rounding technique. Charikar and Chatziafratis [17] showed that
the recursive φ-sparsest cut (or approximate balanced cut) algorithm of Dasgupta gives an O(φ)-
approximation. In Section 4.1, we obtain an independent proof showing that the φ-approximate
sparsest cut algorithm is an O(φ)-approximation (Theorem 2)3. Our proof is quite different from
the proof of [17]. Our proof also shows that using an approximation to the minimum balanced cut
would lead to the same result. Combined with the celebrated result of Arora et al. [2], this yields
an O(

√
log n)-approximation. All of the results stated here apply to Dasgupta’s objective function.

2For the objective function proposed in his work, Dasgupta [21] shows that finding a cluster tree that minimizes
the cost function is NP-hard. This directly applies to the admissible objective functions for the dissimilarity setting
as well. Thus, the focus turns to developing approximation algorithms.

3Our analysis shows that the algorithm achieves a 6.75φ-approximation and the analysis of [17] yields a 8φ-
approximation guarantee. This minor difference is of limited impact since the best approximation guarantee for
sparsest-cut is O(

√
logn).
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Algorithms for Dissimilarity Graphs

Many of the algorithms commonly used in practice, e.g., linkage-based methods, assume that the
input is provided in terms of pairwise dissimilarity (e.g., points that lie in a metric space). As
a result, it is of interest to understand how they fare when compared using admissible objective
functions for the dissimilarity setting. When the edge weights of the input graph represent dissim-
ilarities, the picture is considerably different from an approximation perspective. For the analogue
of Dasgupta’s objective function in the dissimilarity setting—which is also admissible, we show that
the average-linkage algorithm (see Algorithm 2) achieves a 2/3-approximation (Theorem 3). This
stands in contrast to other practical heuristic-based algorithms, which may have an approximation
guarantee as bad as Ω(n1/4) (Theorem 18). Thus, using this objective-function based approach,
one can conclude that the average-linkage algorithm is the more robust of the practical algorithms,
perhaps explaining its success in practice. We also provide a new, simple algorithm, the locally-
densest cut algorithm,4 which we show gives a 2/3-approximation (Theorem 5). While dividing
recursively using a random cut also gives a 2/3-approximation, we show that the performance of
standard heuristics such as single-linkage or bisection 2-center could be arbitrarily bad. Thus it
seems that average-linkage and locally-densest cut are more robust approaches.

Structured Inputs and Beyond Worst-Case Analysis

The recent work of Roy and Pokutta [39] and Charikar and Chatziafratis [17] have shown that
obtaining constant approximation guarantees w.r.t. Dasgupta’s cost function for worst-case inputs
is beyond current techniques (see Section 1.1). Thus, to obtain better approximation guarantees
and algorithms that could have a high impact in practice, it is required to go beyond the worst-case
scenario. A natural way to analyze a problem beyond the worst-case is to consider a suitable random
input model. More precisely, we introduce a random graph model and a semi-random graph model
which are based on the notion of a hierarchical stochastic block model which is a natural extension
of the stochastic block model. Even in the case of random graphs, the linkage algorithms may
perform quite poorly, mainly because ties may be broken unfavorably at early stages, when the
clusters are singleton nodes; these choices cannot be easily compensated later on in the algorithm.
We thus introduce the linkage++ algorithm which first uses a seeding step using a standard
SVD approach to build clusters of a significant size. Then, we show that using these clusters as a
starting point, the classic single-linkage approach achieves a (1 + ε)-approximation for the problem
(cf. Theorem 7). We also consider the semi-random hierarchical stochastic block model and show
that by computing recursively an O(1)-approximation to the problem of computing a (roughly)
balanced cut produces an O(1)-approximation to the hierarchical clustering problem. To do so we
harness an algorithm introduced by Makarychev et al. [34] for the Small-Set Expansion problem in
a semi-random version of the stochastic block model (cf. Theorem 9).

1.1 Related Work

The recent paper of Dasgupta [21] served as the starting point of this work. Dasgupta [21] defined an
objective function for hierarchical clustering and thus formulated the question of constructing a clus-
ter tree as a combinatorial optimization problem. Dasgupta also showed that the resulting problem
is NP-hard and that the recursive φ-sparsest-cut algorithm achieves an O(φ log n)-approximation.

4We say that a cut (A,B) is locally dense if moving a vertex from A to B or from B to A does not increase the
density of the cut. One could similarly define locally-sparsest-cut.
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Dasgupta’s results have been improved in two subsequent papers. Roy and Pokutta [39] wrote
an integer program for the hierarchical clustering problem using a combinatorial characterization
of the ultrametrics induced by Dasgupta’s cost function. They also provided an LP relaxation
using spreading metrics and a rounding algorithm based on sphere/region-growing that yields an
O(log n)-approximation. Finally, they show that no polynomial size SDP can achieve a constant
factor approximation for the problem and that under the Small Set Expansion (SSE) hypothesis,
no polynomial-time algorithm can achieve a constant factor approximation.

Charikar and Chatziafratis [17] also gave a proof that the problem is hard to approximate within
any constant factor under the Small Set Expansion hypothesis. They also proved that the recur-
sive φ-sparsest cut algorithm produces a hierarchical clustering with cost at most O(φOPT); their
techniques appear to be significantly different from ours. Additionally, they introduce a spreading
metric SDP relaxation for the hierarchical clustering problem introduced by Dasgupta that has inte-
grality gap O(

√
log n) and a spreading metric LP relaxation that yields an O(log n)-approximation

to the problem. Recently, Moseley and Wang [36] use the “dual” version of Dasgupta’s objective:
Their goal is maximizing a fixed quantity minus Dasgupta’s cost function. While the NP-hardness
of the problem is preserved, hardness of approximation does not hold anymore. Thus, they show
that average linkage ‘naturally’ results in a 1/3-approximation. 5 Very recently, Chatziafratis et
al. [19] studied the problem of hierarchical clustering with constraints. In addition, they also give
two algorithms that achieve a 2/3-approximation for dissimilarity graphs.

Finally, Charikar et al. [18] study average-linkage in the symmetric “dual” version of Dasgupta’s
objective as well as in the original dissimilarity setting. They show that the analysis for average
linkage is tight in both settings (with approximation factors of 1/3 and 2/3, respectively). On the
positive side, they provide two new algorithms based on semi-definite programming with better
approximation factors.

On hierarchical clustering more broadly. There is an extensive literature on hierarchical
clustering and its applications. It would be impossible to discuss most of it here; for some appli-
cations the reader may refer to e.g., [28, 40, 25, 16]. Algorithms for hierarchical clustering have
received a lot of attention from a practical perspective. For a definition and overview of agglom-
erative algorithms (such as average-linkage, complete-linkage, and single-linkage) see e.g., [26] and
for divisive algorithms see e.g., [41].

Most previous theoretical work on hierarchical clustering aimed at evaluating the cluster tree
output by the linkage algorithms using the traditional objective functions for partition-based clus-
tering, e.g., considering k-median or k-means cost of the clusters induced by the top levels of the
tree e.g., [38, 22, 32]. Previous work also proved that average-linkage can be useful to recover an
underlying partition-based clustering when it exists under certain stability conditions [8, 9]. The
approach of this paper is different: we aim at associating a cost or a value to each hierarchical
clustering and finding the best hierarchical clustering with respect to these objective functions.

In Section 3, we take an axiomatic approach toward objective functions. Axiomatic approaches
toward a qualitative analysis of algorithms for clustering have been taken before; for example, the
celebrated result of Kleinberg [29] (see also [42]) showed that there is no algorithm satisfying three
natural axioms simultaneously. This approach was applied to hierarchical clustering algorithms by

5It is fairly easy to see that if n is the total number of nodes in the graph and w(e) is the weight associated
with edge e, the quantity n ·

∑
e∈E w(e) is an upper bound on the total cost of the objective function introduced

by Dasgupta. Moseley and Wong simply consider the problem of maximizing n ·
∑

e∈E w(e)− costD(T ;G), where
costD(T ;G) denote Dasgupta’s cost of a cluster tree T on the graph G.
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Carlsson and Mémoli [15] who showed that in the case of hierarchical clustering one gets a positive
result, unlike the impossibility result of Kleinberg. Their focus was on finding an ultrametric (on
the data points) that is the closest to the metric (in which the data lies) in terms of the Gromov-
Hausdorff distance. Our approach is completely different as we focus on defining objective functions
and use these for quantitative analyses of algorithms.

Our condition for inputs to have a ground-truth cluster tree, and especially their δ-adversarially
perturbed versions, is in the same spirit as that of the stability condition of Bilu and Linial [12]
or Bilu et al. [11]: the input induces a natural clustering to be recovered whose cost is optimal.
It bears some similarities with the “strict separation” condition of Balcan et al. [8], while we do
not require the separation to be strict, we do require some additional hierarchical constraints.
There are a variety of stability conditions that aim at capturing some of the structure that real-
world inputs may exhibit e.g., [4, 7, 8, 37]. Some of them induce a condition under which an
underlying clustering can be mostly recovered (e.g., [12, 6, 7], for deterministic conditions and
e.g., [1, 14, 23, 20, 10] for probabilistic conditions). Imposing other conditions allows one to bypass
hardness-of-approximation results for classical clustering objectives (such as k-means), and design
efficient approximation algorithms e.g., [3, 5, 31]. Eldridge et al. [24] also investigate the question
of understanding hierarchical cluster trees for random graphs generated from graphons. Their goal
is quite different from ours—they consider the “single-linkage tree” obtained using the graphon as
the ground-truth tree and investigate how a cluster tree that has low merge distortion with respect
to this single-linkage tree can be obtained.6 This is quite different from the approach taken in
our work which is primarily focused on understanding performance with respect to admissible cost
functions.

2 Preliminaries

2.1 Notation

An undirected weighted graph G = (V,E,w) is defined by a finite set of vertices V , a set of edges
E ⊆ {{u, v} | u, v ∈ V } and a weight function w : E → R+, where R+ denotes non-negative
real numbers. We will only consider graphs with non-negative weights in this paper. To simplify
notation (and since the graphs are undirected) we let w(u, v) = w(v, u) = w({u, v}). When the
weights on the edges are not pertinent, we simply denote graphs as G = (V,E). When G is clear
from the context, we denote |V | by n and |E| by m. We define G[U ] to be the subgraph induced
by the nodes of U .

A cluster tree or hierarchical clustering T for graph G is a rooted binary tree with exactly |V |
leaves, each of which is labeled by a distinct vertex v ∈ V .7 Given a graph G = (V,E) and a cluster
tree T for G, for nodes u, v ∈ V we denote by LCAT (u, v) the lowest common ancestor (furthest
from the root) of u and v in T .

For any internal node N of T , we denote the subtree of T rooted at N by TN .8 Moreover, for
any node N of T , define V (N) to be the set of leaves of the subtree rooted at N . Additionally, for

6This is a simplistic characterization of their work. However, a more precise characterization would require
introducing a lot of terminology from their paper, which is not required in this paper.

7In general, one can look at trees that are not binary. However, it is common practice to use binary trees in the
context of hierarchical trees. Also, for results presented in this paper nothing is gained by considering trees that are
not binary.

8For any tree T , when we refer to a subtree T ′ (of T ) rooted at a node N , we mean the connected subgraph
containing all the leaves of T that are descendants of N .
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any two trees T1, T2, define the union of T1, T2 to be the tree whose root has two children C1, C2

such that the subtree rooted at C1 is T1 and the subtree rooted at C2 is T2.
Finally, given a weighted graph G = (V,E,w), for any set of vertices A ⊆ V , let w(A) =∑
a,b∈A w(a, b) and for any set of edges E0, let w(E0) =

∑
e∈E0

w(e). Finally, for any sets of
vertices A,B ⊆ V , let w(A,B) =

∑
a∈A,b∈B w(a, b).

2.2 Ultrametrics

Definition 1 (Ultrametric). A metric space (X, d) is an ultrametric if for every x, y, z ∈ X,
d(x, y) ≤ max{d(x, z), d(y, z)}.

Similarity Graphs Generated from Ultrametrics

We say that a weighted graph G = (V,E,w) is a similarity graph generated from an ultrametric,
if there exists an ultrametric (X, d), such that V ⊆ X, and for every x, y ∈ V, x 6= y, e = {x, y}
exists, and w(e) = f(d(x, y)), where f : R+ → R+ is a non-increasing function.9

Dissimilarity Graphs Generated from Ultrametrics

We say that a weighted graph G = (V,E,w) is a dissimilarity graph generated from an ultrametric,
if there exists an ultrametric (X, d), such that V ⊆ X, and for every x, y ∈ V, x 6= y, e = {x, y}
exists, and w(e) = f(d(x, y)), where f : R+ → R+ is a non-decreasing function.

Minimal Generating Ultrametric

For a weighted undirected graph G = (V,E,w) generated from an ultrametric (either similarity or
dissimilarity), in general there may be several ultrametrics and corresponding functions f mapping
distances in the ultrametric to weights on the edges, that generate the same graph. It is useful to
introduce the notion of a minimal ultrametric that generates G. We focus on similarity graphs here;
the notion of minimal generating ultrametric for dissimilarity graphs is easily obtained by suitable
modifications. Let (X, d) be an ultrametric that generates G = (V,E,w) and f the corresponding

function mapping distances to similarities. Then we consider the ultrametric (V, d̃) defined as

follows: (i) d̃(u, u) = 0 and (ii) for u 6= v,

d̃(u, v) = d̃(v, u) = max
u′,v′
{d(u′, v′) | f(d(u′, v′)) = f(d(u, v))} (1)

It remains to be seen that (V, d̃) is indeed an ultrametric. First, notice that by definition, d̃(u, v) ≥
d(u, v) and hence clearly d̃(u, v) = 0 if and only if u = v as d is the distance in an ultrametric.

The fact that d̃ is symmetric is immediate from the definition. The only part remaining to check
is the so called isosceles triangles with longer equal sides conditions—the ultrametric requirement
that for any u, v, w, d(u, v) ≤ max{d(u,w), d(v, w)} implies that all triangles are isosceles and the
two sides that are equal are at least as large as the third side. Let u, v, w ∈ V , and assume without
loss of generality that according to the distance d of (V, d), d(u,w) = d(v, w) ≥ d(u, v). From (1)

it is clear that d̃(u,w) = d̃(v, w) ≥ d(u,w). Also, from (1) and the non-increasing nature of f it

is clear that if d(u, v) ≤ d(u′, v′), then d̃(u, v) ≤ d̃(u′, v′). Thence, (V, d̃) is an ultrametric. The

9In some cases, we will say that e = {x, y} 6∈ E, if w(e) = 0. This is fine as long as f(d(x, y)) = 0.
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(a) Dendrogram on 4 nodes.
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(b) Generating tree equivalent to dendrogram

Figure 1: Dendrogram and equivalent generating tree.

advantage of considering the minimal ultrametric is the following: if D = {d̃(u, v) | u, v ∈ V, u 6= v}
and W = {w(u, v) | u, v ∈ V, u 6= v}, then the restriction of f from D → W is actually a bijection.
This allows the notion of a generating tree to be defined in terms of distances in the ultrametric or
weights, without any ambiguity. Applying an analogous definition and reasoning yields a similar
notion for the dissimilarity case.

Definition 2 (Generating Tree). Let G = (V,E,w) be a graph generated by a minimal ultrametric
(V, d) (either a similarity or dissimilarity graph). Let T be a rooted binary tree with |V | leaves
and |V | − 1 internal nodes; let N denote the internal nodes and L the set of leaves of T and let
σ : L→ V denote a bijection between the leaves of T and nodes of V . We say that T is a generating
tree for G, if there exists a weight function W : N → R+, such that for N1, N2 ∈ N , if N1 appears
on the path from N2 to the root, W (N1) ≤ W (N2) (W (N1) ≥ W (N2) in the dissimilarity case).
Moreover for every x, y ∈ V , w({x, y}) = W (LCAT (σ−1(x), σ−1(y))).

The notion of a generating tree defined above more or less corresponds to what is referred to
as a dendrogram in the machine learning literature e.g., [15]. More formally, a dendrogram is a
rooted tree (not necessarily binary), where the leaves represent the datapoints. Every internal node
in the tree has associated with it a height function h which is the distance between any pairs of
datapoints for which it is the least common ancestor. It is a well-known fact that a set of points
in an ultrametric can be represented using a dendrogram e.g., [15]. A dendrogram can easily be
modified to obtain a generating tree in the sense of Definition 2: an internal node with k children is
replace by an arbitrary binary tree with k leaves and the children of the nodes in the dendrogram
are attached to these k leaves. The height h of this node is used to give the weight W = f(h) to
all the k − 1 internal nodes added when replacing this node. Figure 1 shows this transformation.

Ground-Truth Inputs

Definition 3 (Ground-Truth Input). We say that a graph G is a ground-truth input if it is a
similarity or dissimilarity graph generated from an ultrametric. Equivalently, there exists a tree T
that is generating for G.

Motivation. We briefly describe the motivation for defining graphs generated from an ultrametric
as ground-truth inputs. We will focus the discussion on similarity graphs, though essentially the
same logic holds for dissimilarity graphs. As described earlier, there is a natural notion of a
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Figure 2: (a) Caterpillar tree on 5 nodes with unit-weight edges used to define a tree metric on
nodes A,B,C,D,E. (b) A hierarchical clustering tree for A,B,C,D,E.

generating tree associated with graphs generated from ultrametrics. This tree itself can be viewed
as a cluster tree. The clusters obtained using the generating tree have the property that any
two nodes in the same cluster are at least as similar to each other as they are to points outside
this cluster; and this holds at every level of granularity. Furthermore, as observed by Carlsson and
Mémoli [15], many practical hierarchical clustering algorithms such as the linkage based algorithms,
actually output a dendrogram equipped with a height function, that corresponds to an ultrametric
embedding of the data. While their work focuses on algorithms that find embeddings in ultrametrics,
our work focuses on finding cluster trees. We remark that these problems are related but also quite
different.

Furthermore, our results show that the linkage algorithms (and some other practical algorithms),
recover a generating tree when given as input graphs that are generated from an ultrametric.
Finally, we remark that relaxing the notion further leads to instances where it is hard to define a
‘natural’ ground-truth tree. Consider a similarity graph generated by a tree-metric rather than an
ultrametric, where the tree is the caterpillar graph on 5 nodes (see Fig. 2(a)). Then, it is hard to
argue that the tree shown in Fig. 2(b) is not a more suitable cluster tree. For instance, D and E
are more similar to each other than D is to B or A. In fact, it is not hard to show that by choosing
a suitable function f mapping distances from this tree metric to similarities, Dasgupta’s objective
function is minimized by the tree shown in Fig. 2(b), rather than the ‘generating’ tree in Fig. 2(a).

3 Quantifying Output Value: An Axiomatic Approach

3.1 Admissible Cost Functions

Let us focus on the similarity case; in this case we use cost and objective interchangeably. Let
G = (V,E,w) be an undirected weighted graph and let T be a cluster tree for graph G. We consider
cost functions for cluster trees that capture the quality of the hierarchical clustering produced by
T .

The Axiom. A natural property we would like the cost function to satisfy is that a cluster tree
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T has minimum cost if and only if T is a generating tree for G. Indeed, the objective function
can then be used to indicate whether a given tree is generating and so, whether it is an underlying
ground-truth hierarchical clustering. Hence, the objective function acts as a “guide” for finding the
correct hierarchical classification. Note that there may be multiple trees that are generating for
the same graph. For example, if G = (V,E,w) is a clique with every edge having the same weight
then every tree is a generating tree. In these cases, all generating trees are valid ground-truth
hierarchical clusterings.

Following the recent work of Dasgupta [21], we adopt an approach in which a cost is assigned
to each internal node of the tree T that corresponds to the quality of the split at that node, and
restrict the search space for such cost functions. For an internal node N in a clustering tree T , let
A,B ⊆ V be the leaves of the subtrees rooted at the left and right child of N respectively. We
define the cost Γ of the tree T as the sum of the cost at every internal node N in the tree, and at
an individual node N we consider cost functions γ of the form

Γ(T ) =
∑
N

γ(N), (2)

γ(N) =

 ∑
x∈A,y∈B

w(x, y)

 · g(|A|, |B|) (3)

We remark that Dasgupta [21] defined g(a, b) = a+ b.

Definition 4 (Admissible Cost Function). We say that a cost function γ of the form (2,3) is
admissible if it satisfies the condition that for all similarity graphs G = (V,E,w) generated from a
minimal ultrametric (V, d), a cluster tree T for G achieves the minimum cost if and only if it is a
generating tree for G.

Remark 1. Analogously, for the dissimilarity setting we define admissible value functions to be
the functions of the form (2,3) that satisfy: for all dissimilarity graph G generated from a minimal
ultrametric (V, d), a cluster tree T for G achieves the maximum value if and only if it is a generating
tree for G.

Remark 2. The RHS of (3) has linear dependence on the weight of the cut (A,B) in the subgraph
of G induced by the vertex set A∪B as well as on an arbitrary function of the number of leaves in
the subtrees of the left and right child of the internal node creating the cut (A,B). For the purpose
of hierarchical clustering this form is fairly natural and indeed includes the specific cost function
introduced by Dasgupta [21]. We could define the notion of admissibility for other forms of the cost
function similarly and it would be of interest to understand whether they have properties that are
desirable from the point of view of hierarchical clustering.

3.2 Characterizing Admissible Cost Functions

In this section, we give an almost complete characterization of admissible cost functions of the
form (3). The following theorem shows that cost functions of this form are admissible if and only
if they satisfy three conditions: all cliques have the same cost, symmetry and monotonicity.

Theorem 1. Let γ be a cost function of the form (3) and let g be the corresponding function used
to define γ. Then γ is admissible if and only if it satisfies the following three conditions.
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1. Let G = (V,E,w) be a clique, i.e., for every x, y ∈ V , e = {x, y} ∈ E and w(e) = 1 for every
e ∈ E. Then the cost Γ(T ) for every cluster tree T of G is identical.

2. For every n1, n2 ∈ N, g(n1, n2) = g(n2, n1).

3. For every n1, n2 ∈ N, g(n1 + 1, n2) > g(n1, n2).

Proof. We first prove the only if part and then the if part.

Only If Part: Suppose that γ is indeed an admissible cost function. We prove that all three condi-
tions must be satisfied by γ.

1. All cliques have same cost. We observe that a clique G = (V,E,w) can be generated from an
ultrametric. Indeed, let X = V and let d(u, v) = d(v, u) = 1 for every u, v ∈ X such that u 6= v
and d(u, u) = 0. Clearly, for f : R+ → R+ that is non-increasing and satisfying f(1) = 1, (V, d) is
a minimal ultrametric generating G.

Let T be any binary rooted tree with leaves labeled by V , i.e., a cluster tree for graph G. For
any internal node N of T define W (N) = 1 as the weight function. This satisfies the definition of
generating tree (Defn. 2). Thus, every cluster tree T for G is generating and hence, by the definition
of admissibility all of them must be optimal, i.e., they all must have exactly the same cost.

2. g(n1, n2) = g(n2, n1). This part follows more or less directly from the previous part. Let G
be a clique on n1 + n2 nodes. Let T be any cluster tree for G, with subtrees T1 and T2 rooted at
the left and right child of the root respectively, such that T1 contains n1 leaves and T2 contains n2

leaves. The number of edges, and hence the total weight of the edges, crossing the cut induced by
the root node of T is n1 · n2. Let T̃ be a tree obtained by making T2 be rooted at the left child of
the root and T1 at the right child. Clearly T̃ is also a cluster tree for G and induces the same cut
at the root node, hence using the property that all cliques have the same cost, Γ(T ) = Γ(T̃ ). But

Γ(T ) = n1 · n2 · g(n1, n2) + Γ(T1) + Γ(T2) and Γ(T̃ ) = n1 · n2 · g(n2, n1) + Γ(T1) + Γ(T2). Thence,
g(n1, n2) = g(n2, n1).

3. g(n1 +1, n2) > g(n1, n2). Consider a graph on n1 +n2 +1 nodes generated from an ultrametric as
follows. Let V1 = {v1, . . . , vn1}, V2 = {v′1, . . . , v′n2

} and consider the ultrametric (V1 ∪ V2 ∪ {v∗}, d)
defined by d(x, y) = 1 if x 6= y and x, y ∈ V1 or x, y ∈ V2, d(x, y) = 2 if x 6= y and x ∈ V1, y ∈ V2 or
x ∈ V2, y ∈ V1, d(v∗, x) = d(x, v∗) = 3 for x ∈ V1∪V2, and d(u, u) = 0 for u ∈ V1∪V2∪{v∗}. It can
be checked easily by enumeration that this is indeed an ultrametric. Furthermore, if f : R+ → R+

is non-increasing and satisfies f(1) = 2, f(2) = 1 and f(3) = 0, i.e., w({u, v}) = 2 if u and v
are both either in V1 or V2, w({u, v}) = 1 if u ∈ V1 and v ∈ V2 or the other way around, and
w({v∗, u}) = 0 for u ∈ V1 ∪ V2, then (V1 ∪ V2, {v∗}, d) is a minimal ultrametric generating G.

Now consider two possible cluster trees defined as follows: Let T1 be an arbitrary tree on nodes
V1, T2 and arbitrary tree on nodes V2. T is obtained by first joining T1 and T2 using internal node
N and making this the left subtree of the root node ρ and the right subtree of the root node is just
the singleton node v∗. T ′ is obtained by first creating a tree by joining T1 and the singleton node
v∗ using internal node N ′, this is the left subtree of the root node ρ′ and T2 is the right subtree of
the root node. (See Figures 3a and 3b.)

Now it can be checked that T is generating by defining the following weight function. For every
internal node M of T1, let W (M) = 1, similarly for every internal node M of T2, let W (M) = 1,
define W (N) = 2 and W (ρ) = 3. Now, we claim that T ′ cannot be a generating tree. This
follows from the fact that for a node u ∈ V1, v ∈ V2, the root node ρ′ = LCAT ′(u, v), but it is also
the case that ρ′ = LCAT ′(v

∗, v) (recall that LCAT ′(u, v) denotes the lowest common ancestor of
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ρ

N

v∗

T1 T2

(a) Tree T

ρ′

N ′

T1

v∗
T2

(b) Tree T ′

Figure 3: Trees T and T ′ used to show monotonicity of g.

u, v in T ′, as defined in Section 2). Thus, it cannot possibly be the case that W (ρ) = w({u, v})
and W (ρ) = w({v∗, v}) as w({u, v}) 6= w({v∗, v}). By definition of admissibility, it follows that
Γ(T ) < Γ(T ′), but Γ(T ) = Γ(T1) + Γ(T2) + n1 · n2 · g(n1, n2). The last term arises from the cut at
node N ; the root makes no contribution as the cut at the root node ρ has weight 0. On the other
hand Γ(T ′) = Γ(T1) + Γ(T2) + n1 · n2 · g(n1 + 1, n2). There is no cost at the node N ′, since the cut
has size 0; however, at the root node the cost is now n1 · n2 · g(n1 + 1, n2) as the left subtree at the
root contains n1 + 1 nodes. It follows that g(n1 + 1, n2) > g(n1, n2).

If Part: For the other direction, we first use the following observation. By condition 1 in the
statement of the theorem, every clique on n nodes has the same cost irrespective of the tree used
for hierarchical clustering; let κ(n) denote said cost. Let n1, n2 ≥ 1, then we have,

n1 · n2 · g(n1, n2) = κ(n1 + n2)− κ(n1)− κ(n2) (4)

We will complete the proof by induction on |V |. The minimum number of nodes required to
have a cluster tree with at least one internal node is 2. Suppose |V | = 2, then there is a unique
(up to interchanging left and right children) cluster tree; this tree is also generating and hence by
definition any cost function is admissible. Thus, the base case is covered rather easily.

Now, consider a graph G = (V,E,w) with |V | = n > 2. Let T ∗ be a tree that is generating.
Suppose that T is any other tree. Let ρ∗ and ρ be the root nodes of the trees respectively. Let V ∗L
and V ∗R be the nodes on the left subtree and right subtree of ρ∗; similarly VL and VR in the case of
ρ. Let A = V ∗L ∩ VL, B = V ∗L ∩ VR, C = V ∗R ∩ VL, D = V ∗R ∩ VR. Let a, b, c and d denote the sizes
of A, B, C and D respectively.

We will consider the case when all of a, b, c, d > 0; the proof is similar and simpler in case some
of them are 0. Let T̃ be a tree with root ρ̃ that has the following structure: Both children of the
root are internal nodes, all of A appears as leaves in the left subtree of the left child of the root, B
as leaves in the right subtree of the left child of the root, C as leaves in the left subtree of the right
child of the root and D as leaves in the right subtree of the right child of the root. We assume that
all four subtrees for the sets A, B, C, D are generating and hence by induction optimal. We claim
that the cost of T̃ is at least as much as the cost of T ∗. To see this note that V ∗L = A ∪ B. Thus,
the left subtree of ρ∗ is optimal for the set V ∗L (by induction), whereas that of ρ̃ may or may not
be. Similarly for all the nodes in V ∗R. The only other thing left to account for is the cost at the
root. But since ρ∗ and ρ̃ induce exactly the same cut on V , the cost at the root is the same. Thus,
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Γ(T̃ ) ≥ Γ(T ∗). Furthermore, equality holds if and only if T̃ is also generating for G.
Let W ∗ denote the weight function for the generating tree T ∗ such that for all u, v ∈ V ,

W ∗(LCAT∗(u, v)) = w({u, v}). Let ρ∗L and ρ∗R denote the left and right children of the root ρ∗ of
T ∗. For all ua ∈ A, ub ∈ B, w({ua, ub}) ≥W ∗(ρ∗L). Let

x =
1

ab

∑
ua∈A,ub∈B

w({ua, ub})

denote the average weight of the edges going between A and B; it follows that x ≥ W ∗(ρ∗L).
Similarly for all uc ∈ C, ud ∈ D, w({uc, ud}) ≥W ∗(ρ∗R). Let

y =
1

cd

∑
uc∈C,ud∈D

w({uc, ud})

denote the average weight of the edges going between C and D; it follows that y ≥W ∗(ρ∗R). Finally
for every u ∈ A ∪ B, u′ ∈ C ∪ D, w({u, u′}) = W ∗(ρ∗); denote this common value by z. By the
definition of generating tree, we know that x ≥ z and y ≥ z.

Now consider the tree T . Let TL and TR denote the left and right subtrees of ρ. By induction,
it must be that TL splits A and C as the first cut (or at least that’s one possible tree, if multiple

cuts exist), similarly TR first cuts B and D. Both, T and T̃ have subtrees containing only nodes
from A, B, C and D. The costs for these subtrees are identical in both cases (by induction). Thus,
we have

Γ(T )− Γ(T̃ ) = zac · g(a, c) + zbd · g(b, d) + (xab+ ycd+ z(ad+ bc)) · g(a+ c, b+ d)

− xab · g(a, b) + y · cdg(c, d)− z(a+ b)(c+ d) · g(a+ b, c+ d)

= (x− z)ab(g(a+ c, b+ d)− g(a, b)) + (y − z)cd(g(a+ c, b+ d)− g(c, d))

+ z((a+ c)(b+ d) · g(a+ c, b+ d) + ac · g(a, c) + bd · g(b, d))

− z((a+ b)(c+ d) · g(a+ b, c+ d) + ab · g(a, b) + cd · g(c, d))

Using (4), we get that the last two expressions above both evaluate to z(κ(a+ b+ c+ d)− κ(a)−
κ(b)− κ(c)− κ(d)), but have opposite signs. Thus, we get

Γ(T )− Γ(T̃ ) = (x− z)ab(g(a+ c, b+ d)− g(a, b)) + (y − z)cd(g(a+ c, b+ d)− g(c, d))

It is clear that the above expression is always non-negative and is 0 if and only if x = z and y = z.
If it is the latter case and it is also the case that Γ(T̃ ) = Γ(T ∗), then it must actually be the case
that T is a generating tree.

3.2.1 Characterizing g that satisfy conditions of Theorem 1

Theorem 1 give necessary and sufficient conditions on g for cost functions of the form (3) to be
admissible. However, it leaves open the question of the existence of functions satisfying the criteria
and also characterizing the functions g themselves. The fact that such functions exist already follows
from the work of Dasgupta [21], who showed that if g(n1, n2) = n1 + n2, then all cliques have the
same cost. Clearly, g is monotone and symmetric and thus satisfies the condition of Theorem 1.
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Figure 4: The caterpillar cluster tree for a clique with 4 nodes.

In order to give a more complete characterization, we define g as follows: Suppose g(·, ·) is
symmetric, we define g(n, 1) for all n ≥ 1 so that g(n, 1)/(n+ 1) is non-decreasing.10 We consider a
particular cluster tree for a clique that is defined using a caterpillar graph, i.e., a cluster tree where
the right child of any internal node is a leaf labeled by one of the nodes of G and the left child is
another internal node, except at the very bottom. Figure 4 shows a caterpillar cluster tree for a
clique on 4 nodes. The cost of the clique on n nodes, say κ(n), using this cluster tree is given by

κ(n) =

n−1∑
i=0

i · g(i, 1)

Now, we enforce the condition that all cliques have the same cost by defining g(n1, n2) for n1, n2 > 1
suitably, in particular,

g(n1, n2) =
κ(n1 + n2)− κ(n1)− κ(n2)

n1 · n2
(5)

Thus it only remains to be shown that g is strictly increasing. We show that for n2 ≤ n1, g(n1 +
1, n2) > g(n1, n2). In order to show this it suffices to show that,

n1(κ(n1 + n2 + 1)− κ(n1 + 1)− κ(n2))− (n1 + 1)(κ(n1 + n2)− κ(n1)− κ(n2)) > 0

Thus, consider

n1(κ(n1 + n2 + 1)− κ(n1 + 1)− κ(n2))− (n1 + 1)(κ(n1 + n2)− κ(n1)− κ(n2))

= n1(κ(n1 + n2 + 1)− κ(n1 + n2)− κ(1)− κ(n1 + 1) + κ(n1) + κ(1))− (κ(n1 + n2)− κ(n1)− κ(n2))

= n1(n1 + n2)g(n1 + n2, 1)− n2
1g(n1, 1)− (κ(n1 + n2)− κ(n1)− κ(n2))

≥ n1(n1 + n2)g(n1 + n2, 1)− n2
1g(n1, 1)−

n1+n2−1∑
i=n1

i · g(i, 1)

≥ g(n1 + n2, 1)

n1 + n2 + 1
·

(
n1(n1 + n2)(n1 + n2 + 1)− n2

1(n1 + 1)−
n1+n2−1∑
i=n1

i(i+ 1)

)
> 0

10The function proposed by Dasgupta [21] is g(n, 1) = n+ 1, so this ratio is always 1.
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Above we used the fact that g(n, 1)/(n+ 1) is non-decreasing in n and some elementary calcu-
lations. This shows that the objective function proposed by Dasgupta [21] is by no means unique.
Only in the last step, do we get an inequality where we use the condition that g(n, 1)/(n + 1) is
increasing. Whether this requirement can be relaxed further is also an interesting direction.

3.2.2 Characterizing Objective Functions for Dissimilarity Graphs

When the weights of the edges represent dissimilarities instead of similarities, one can consider
objective functions of the same form as (3). As mentioned in Remark 1, the difference in this case
is that the goal is to maximize the objective function and hence the definition of admissibility now
requires that generating trees have a value of the objective that is strictly larger than any tree that
is not generating.

The characterization of admissible objective functions as given in Theorem 1 for the similarity
case continues to hold in the case of dissimilarities. The proof follows in the same manner by
appropriately switching the direction of the inequalities when required.

4 Worst-Case

We now provide approximation algorithms for Dasgupta’s objective function for the similarity
setting (Section 4.1) and its analogue for the dissimilarity setting (Section 4.2), i.e. we treat each
edge weight as a measure of dissimilarity and consider the problem of maximizing the cost defined
by Dasgupta. Note that Dasgupta showed that the problem of finding an optimal solution w.r.t.
to his cost function for both the similarity and dissimilarity setting is NP-Hard [21]. In addition,
Charikar and Chatziafratis [17] and Roy and Pokutta [39] showed that the similarity version of the
problem does not admit an O(1)-approximation algorithm assuming the SSE-hypothesis.

4.1 Similarity-Based Inputs: Approximation Algorithms

4.1.1 Analysis of the recursive sparsest-cut algorithm w.r.t. Dasgupta’s cost function

In this section, we analyze the recursive φ-sparsest-cut algorithm (see Algorithm 1) that was de-
scribed previously in [21]. Recall the cost function introduced by Dasgupta [21]: the cost of tree
T is cost(T ) =

∑
N∈T cost(N) where for each node N of T with children N1, N2, cost(N) =

w(V (N1), V (N2)) · V (N). The goal is to find a tree T ∗ minimizing cost(T ∗). We show that the
φ-sparsest-cut algorithm achieves a 6.75φ-approximation. Charikar and Chatziafratis [17] proved
an 8φ approximation for Dasgupta’s function.

The φ-sparsest-cut algorithm (Algorithm 1) constructs a binary tree top-down by recursively
finding cuts using a φ-approximate sparsest cut algorithm, where the sparsest-cut problem asks for
a set A minimizing the sparsity w(A, V \A)/(|A||V \A|) of the cut (A, V \A).

Theorem 2. For any graph G = (V,E), and weight function w : E → R+, the φ-sparsest-cut
algorithm (Algorithm 1) outputs a solution of cost at most 27

4 φOPT.

Proof. Let G = (V,E) be the input graph and n denote the total number of vertices of G. Let
T denote the tree output by the algorithm and T ∗ be any arbitrary tree. We will prove that
cost(T ) ≤ 27

4 φcost(T ∗).
Recall that for an arbitrary tree T0 and node N of T0, the vertex corresponding to the leaves

of the subtree rooted at N is denoted by V (N). Consider the node N0 of T ∗ that is the first node
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Algorithm 1 Recursive φ-Sparsest-Cut Algorithm for Hierarchical Clustering

1: Input: An edge weighted graph G = (V,E,w).
2: {A, V \A} ← cut with sparsity ≤ φ · min

S⊂V
w(S, V \ S)/(|S||V \ S|)

3: Recurse on G[A] and on G[V \A] to obtain trees TA and TV \A
4:

5: return The tree whose root has two children, TA and TV \A.

reached by the walk from the root that always goes to the child tree with the higher number of
leaves, stopping when the subtree of T ∗ rooted at N0 contains fewer than 2n/3 leaves. The balanced
cut (BC) of T ∗ is the cut (V (N0), V − V (N0)). For a given node N with children N1, N2, we say
that the cut induced by N is the sum of the weights of the edges that have one extremity in V (N1)
and the other in V (N2).

Let (A ∪C,B ∪D) be the cut induced by the root node u of T , where A,B,C,D are such that
(A ∪B,C ∪D) is the balanced cut of T ∗. Since (A ∪ C,B ∪D) is a φ-approximate sparsest cut:

w(A ∪ C,B ∪D)

|A ∪ C| · |B ∪D|
≤ φw(A ∪B,C ∪D)

|A ∪B| · |C ∪D|
.

By definition of N0, A∪B and C ∪D both have size in [n/3, 2n/3], so the product of their sizes
is at least (n/3)(2n/3) = 2n2/9; developing w(A ∪B,C ∪D) into four terms, we obtain

w(A ∪ C,B ∪D) ≤ φ 9

2n2
|A ∪ C||B ∪D|(w(A,C) + w(A,D) + w(B,C) + w(B,D))

≤ φ9

2
[
|B ∪D|

n
w(A,C) + w(A,D) + w(B,C) +

|A ∪ C|
n

w(B,D)],

and so the cost induced by node u of T ∗ satisfies

n · w(A ∪ C,B ∪D) ≤ 9

2
φ|B ∪D|w(A,C) +

9

2
φ|A ∪ C|w(B,D) +

9

2
φn(w(A,D) + w(B,C)).

To account for the cost induced by u, we thus assign a charge of (9/2)φ|B ∪D|w(e) to each edge e
of (A,C), a charge of (9/2)φ|A ∪ C|w(e) to each edge e of (B,D), and a charge of (9/2)φnw(e) to
each edge e of (A,D) or (B,C).

When we do this for every node u of T , how much does each edge get charged?

Lemma 1. Let G = (V,E) be a graph on n nodes. We consider the above charging scheme for T and
T ∗. Then, an edge (v1, v2) ∈ E gets charged at most (9/2)φmin((3/2)|V (LCAT∗(v1, v2))|, n)w(e)
overall, where LCAT∗(v1, v2) denotes the lowest common ancestor of v1 and v2 in T ∗.

We temporarily defer the proof and first see how Lemma 1 implies the theorem. Observe (as
in [21]) that cost(T ∗) =

∑
{u,v}∈E |V (LCAT∗(u, v))|w(u, v). Using Lemma 1, the sum of charges

assigned is

cost(T ) ≤ 9

2
φ

∑
{v1,v2}∈E

3

2
|V (LCAT∗(v1, v2))|w(v1, v2) =

27

4
φcost(T ∗).
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Proof of Lemma 1. The lemma is proved by induction on the number of nodes of the graph. The
base case follows immediately and we proceed with the inductive step. For the inductive step,
consider the cut (A ∪ C,B ∪D) induced by the root node u of T .

• Consider the edges that cross the cut. First, observe that edges of (A,B) or of (C,D) never get
charged at all. Second, an edge e = {v1, v2} of (A,D) or of (B,C) gets charged (9/2)φnw(e)
when considering the cost induced by node u, and does not get charged when considering any
other node of T . In T ∗, edge e is separated by the cut (A ∪B,C ∪D) induced by N0, so the
least common ancestor of v1 and v2 is the parent node of N0 (or above), and by definition of
N0 we have |V (LCAT∗(v1, v2))| ≥ 2n/3, hence the lemma holds for e.

• An edge e = {v1, v2} of G[A]∪G[C] does not get charged when considering the cut induced by
node u. Apply Lemma 1 to G[A ∪C] for the tree T ∗A∪C defined as the subtree of T ∗ induced
by the vertices of A ∪ C11. By induction, the overall charge to e due to the recursive calls
for G[A∪C] is at most (9/2)φmin((3/2)|V (LCAT∗A∪C

(v1, v2))|, |A∪C|)w(e). By definition of
T ∗A∪C , we have |V (LCAT∗A∪C

(v1, v2))| ≤ |V (LCAT∗(v1, v2))|, and |A ∪ C| ≤ n, so the lemma
holds for e.

• An edge {v1, v2} of (A,C) gets a charge of (9/2)φ|B∪D|w(e) plus the total charge to e coming
from the recursive calls for G[A ∪ C] and the tree T ∗A∪C . By induction the latter is at most

(9/2)φmin((3/2)|V (LCAT∗A∪C
(v1, v2))|, |A ∪ C|)w(e) ≤ (9/2)φ|A ∪ C|w(e).

Overall the charge to e is at most (9/2)φnw(e). Since the cut induced by node u0 of T ∗

separates v1 from v2, we have |V (LCAT∗(v1, v2))| ≥ 2n/3, hence the lemma holds for e. For
edges of (B,D) or of G[B] ∪G[D], a symmetric argument applies.

We complete our study of classical algorithms for hierarchical clustering by showing that the
standard agglomerative heuristics can perform poorly when measured using Dasgupta’s cost func-
tion (see Theorems 16, 17). Thus, the recursive sparsest-cut based approach seems to be more
reliable in the worst-case for inputs given as a similarity graph. To understand better the success
of the agglomerative heuristics, we restrict our attention random graphs (Section 5), and to inputs
given as dissimilarity graphs and show that in these contexts agglomerative heuristics are efficient.

4.2 Dissimilarity-Based Inputs: Approximation Algorithms

In this section, we consider inputs given as dissimilarity graphs and focus on the problem of max-
imizing the analogue of Dasgupta’s function: Find T maximizing the value function: val(T ) =∑
N∈T val(N) where for each node N of T with children N1, N2, val(N) = w(V (N1), V (N2)) ·V (N).

This optimization problem is NP-Hard [21], hence we focus on approximation algorithms.
We show (Theorem 3) that average-linkage achieves a 2/3 approximation for the problem. We

then introduce a simple algorithm based on locally-densest cuts and show (Theorem 5) that it also
achieves a 2/3− ε approximation for the problem.

Chatziafratis, Nizadeh and Charikar [19] showed that the divisive heuristic that recursively splits
the graph randomly into two parts also yields a 2/3-approximation. Thus our results regarding the

11Note that T ∗A∪C is not necessarily the optimal tree for G[A ∪ C], which is why the lemma was stated in terms
of every tree T ∗, not just on the optimal tree.
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performance of average-linkage and locally-densest cut should be viewed in contrast to that of other
popular heuristics; we show that single-linkage and bisection 2-means could perform quite poorly
and do not achieve a constant factor approximation. Thus, the outcome of this section is that
average-linkage and locally-densest cut are simple popular heuristics that seem to be more reliable
than single-linkage or bisection 2-means in the worst-case setting.

We start with the following elementary upper bound on OPT.

Fact 1. For any graph G = (V,E), and weight function w : E → R+, we have OPT ≤ n·
∑
e∈E w(e).

4.2.1 Average-Linkage for the Dissimilarity Setting

We show that average-linkage yields a 2/3-approximation in the dissimilarity setting.

Theorem 3. For any graph G = (V,E), and weight function w : E → R+, the average-linkage
algorithm (Algorithm 2) outputs a solution of value at least 2

3n
∑
e∈E w(e) ≥ 2

3OPT.

Algorithm 2 Average-Linkage Algorithm for Hierarchical Clustering (dissimilarity setting)

1: Input: Graph G = (V,E) with edge weights w : E 7→ R+

2: Create n singleton trees.
3: while there are at least two trees do
4: Take trees with roots N1 and N2 minimizing

∑
x∈V (N1),y∈V (N2)

w(x, y)/(|V (N1)||V (N2)|)

5: Create a new tree with root N and children N1 and N2

6: return the resulting binary tree T

We recall the definitions of the previous section: When two trees are chosen at Step 4 of
Algorithm 2, we say that they are merged. We say that all the trees considered at the beginning of
an iteration of the while loop are the trees that are candidates for the merge or simply the candidate
trees.

We first show the following lemma and then prove the theorem.

Lemma 2. Let T be the output tree and A,B be the two children of the root. Then, the following
holds:

|V (A)|w(V (A), V (B)) ≥ 2|V (B)|w(V (A)).

Proof. First, observe that if |V (A)| = 1, then w(V (A)) = 0 and the statement holds trivially.
Assume that |V (A)| > 1 and let a = |V (A)|(|V (A)| − 1)/2.

For any node N0 of T , let child1(N0) and child2(N0) be the two children of N0. We first consider
the subtree TA of T rooted at A. We have

• w(V (A)) =
∑
A0∈TA w(V (child1(A0)), V (child2(A0))),

• a =
∑
A0∈TA |V (child1(A0))| · |V (child2(A0))|.

By using an averaging argument, there exists A′ ∈ TA with children A1, A2 such that

w(V (A1), V (A2))

|V (A1)| · |V (A2)|
≥ w(V (A))

a
. (6)
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We now consider the iteration of the while loop at which the algorithm merged the trees A1 and
A2. Let A1, A2, . . . , Ak and B1, B2, . . . , B` be the trees that were candidate for the merge at that
iteration, and such that V (Ai) ∩ V (B) = ∅ and V (Bi) ∩ V (A) = ∅. Observe that the sets of leaves
of those trees form a partition of the sets V (A) and V (B), so we have

w(V (A), V (B)) =
∑
i,j

w(V (Ai), V (Bj)),

|V (A)| · |V (B)| =
∑
i,j

|V (Ai)| · |V (Bj)|.

By an averaging argument again, there exists Ai, Bj such that

w(V (Ai), V (Bj))

|V (Ai)| · |V (Bj)|
≤ w(V (A), V (B))

|V (A)| · |V (B)|
. (7)

Now, since the algorithm merged A1, A2 rather than Ai, Bj , by combining Equations 6 and 7, we
have

w(V (A))

a
≤ w(V (A1), V (A2))

|V (A1)| · |V (A2)|
≤ w(V (Ai), V (Bj))

|V (Ai)| · |V (Bj)|
≤ w(V (A), V (B))

|V (A)| · |V (B)|
.

Substituting the value of a completes the proof.

Proof of Theorem 3. We proceed by induction on the number of the nodes n in the graph. For any
n < 3, the tree is unique and so the output optimal. Let A,B be the children of the root of the
output tree T . By induction,

val(T ) ≥ (|V (A)|+ |V (B)|) · w(V (A), V (B)) + 2
|V (A)|

3
w(V (A)) + 2

|V (B)|
3

w(V (B)). (8)

Applying Lemma 2 to A and B implies

(|V (A)|+ |V (B)|) · w(V (A), V (B)) ≥ 2(|V (B)|w(V (A)) + |V (A)|w(V (B))).

Dividing both sides by 3 and plugging it into (8) yields

val(T ) ≥ 2
|V (A)|+ |V (B)|

3
w(V (A), V (B)) + 2

|V (A)|+ |V (B)|
3

(w(V (A)) + w(V (B))).

Observing that n = |V (A)| + |V (B)| and combining
∑
e∈E w(e) = w(V (A), V (B)) + w(V (A)) +

w(V (B)) with Fact 1 completes the proof.

4.2.2 A Simple Local-Search Based Approximation Algorithm for Worst-Case Inputs

In this section, we introduce a very simple algorithm (Algorithm 4) that achieves a similar approx-
imation guarantee. The algorithm follows a divisive approach by recursively computing locally-
densest cuts using a local search heuristic (see Algorithm 3). This approach is similar to the
recursive-sparsest-cut algorithm of Section 4.1. Here, instead of trying to solve the densest cut
problem (and so being forced to use approximation algorithms), we solve the simpler problem of
computing a locally-densest cut. This yields both a very simple local-search-based algorithm that
has a good approximation guarantee.
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We use the notation A⊕x to denote the set obtained by adding x to A if x /∈ A, and by removing
x from A if x ∈ A. We say that a cut (A,B) is an ε/n-locally-densest cut if for any x,

w(A⊕ x,B ⊕ x)

|A⊕ x| · |B ⊕ x|
≤
(

1 +
ε

n

) w(A,B)

|A||B|
.

The following local search algorithm computes an ε/n-locally-densest cut.

Algorithm 3 Local Search for Densest Cut

1: Input: Graph G = (V,E) with edge weights w : E 7→ R+

2: Let (u, v) be an edge of maximum weight
3: A← {v}, B ← V \ {v}
4: while ∃x: w(A⊕x,B⊕x)

|A⊕x|·|B⊕x| > (1 + ε/n)w(A,B)
|A||B| do

5: A← A⊕ x, B ← B ⊕ x
6: return the cut (A,B)

Theorem 4. Algorithm 3 computes an ε/n-locally-densest cut in time Õ(n(n+m)/ε).

Proof. The proof is straightforward and given for completeness. By definition, the algorithm com-
putes an ε/n-locally densest cut so we only need to argue about the running time. The weight of
the cut is initially at least wmax, the weight of the maximum edge weight, and in the end at most
mwmax. Since the weight of the cut increases by a factor of (1 + ε/n) at each iteration, the total

number of iterations of the while loop is at most log1+ε/n(mwmax/wmax) = Õ(n/ε). Each iteration

takes time O(m+ n), so the running time of the algorithm is Õ(n(m+ n)/ε).

Algorithm 4 Recursive Locally-Densest-Cut for Hierarchical Clustering

1: Input: Graph G = (V,E), with edge weights w : E 7→ R+, ε > 0
2: Compute an ε/n-locally-densest cut (A,B) using Algorithm 3
3: Recurse on G[A] and G[B] to obtain rooted trees TA and TB .
4: return the tree T whose root node has two children with subtrees TA and TB .

Theorem 5. Algorithm 4 returns a tree of value at least

2n

3
(1− ε)

∑
e

w(e) ≥ 2

3
(1− ε)OPT,

in time Õ(n2(n+m)/ε).

The proof relies on the following lemma.

Lemma 3. Let (A,B) be an ε/n-locally-densest cut. Then,

(|A|+ |B|)w(A,B) ≥ 2(1− ε)(|B|w(A) + |A|w(B)).
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Proof. First, assume |A| > 1 and let v ∈ A. By definition of the algorithm,

(1 + ε/n)
w(A,B)

|A||B|
≥ w(A \ {v}, B ∪ {v})

(|A| − 1)(|B|+ 1)
.

Rearranging,

(|A| − 1)(|B|+ 1)

|A||B|
(1 + ε/n)w(A,B) ≥ w(A \ {v}, B ∪ {v}) = w(A,B) + w(v,A)− w(v,B)

Summing over all vertices of A, we obtain

|A| (|A| − 1)(|B|+ 1)

|A||B|
(1 + ε/n)w(A,B) ≥ |A|w(A,B) + 2w(A)− w(A,B).

Rearranging and simplifying,

(|A| − 1)(|B|+ 1)
ε

n
w(A,B) + (|A| − 1)(1 + ε/n)w(A,B) ≥ 2|B|w(A).

Since |B|+ 1 ≤ n, this gives

|A|w(A,B) ≥ 2(1− ε)|B|w(A).

Notice that if |A| = 1, the above inequality can be obtained trivially as w(A) = 0.
Proceeding similarly with B and summing the two inequalities yields the lemma.

Proof of Theorem 5. We first show the approximation guarantee. We proceed by induction on the
number of vertices. The base case is trivial. By inductive hypothesis,

val(T ) ≥ nw(A,B) +
2

3
· (1− ε)(|A|w(A) + |B|w(B)),

where n = |A|+ |B|. Lemma 3 implies

nw(A,B) = (|A|+ |B|)w(A,B) ≥ 2(1− ε)(|B|w(A) + |A|W (B)).

Hence,
|A|+ |B|

3
w(A,B) ≥ 2

3
(1− ε)(|B|w(A) + |A|w(B)).

Therefore,

val(T ) ≥ 2n

3
(1− ε)(w(A,B) + w(A) + w(B)) = (1− ε)2n

3

∑
e

w(e).

To analyze the running time, observe that by Theorem 4, a recursive call on a graphG′ = (V ′, E′)

takes time Õ(|V ′|(|V ′|+ |E′|)/ε) and that the number of recursive calls is O(n).

Remark 3. In Appendix B, we show that other commonly used algorithms, single-linkage, or
bisection 2-Center, can perform arbitrarily poorly (see Theorem 18). Hence, average-linkage is
more robust for dissimilarity inputs.
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5 A General Hierarchical Stochastic Block Model

Lyzinski et al. [33] studied a Hierarchical Stochastic Block Model (HSBM) and gave an algorithm
that recovers the “ground-truth” hierarchical clustering when the hidden clusters have linear size
and the ratio between the minimum edge probability and the maximum edge probability is O(1).
Krishamurthy et al. [30] provide active learning algorithms that guarantee exact recovery of the
ground-truth tree under certain conditions.

We introduce a generalization of HSBM and give a (1 + o(1))-approximation algorithm to re-
cover a near-optimal hierarchical clustering under a more general setting. Our algorithm is very
similar to the widely-used linkage approach and remains easy to implement and parallelize. The
take-home message is that, on “structured inputs” the linkage (agglomerative) heuristics perform
provably well, taking a step towards explaining their success in practice.

The graphs generated from our model are a noisy version of a “ground-truth hierarchical clustering
tree” (see Definition 6). For a motivating example, the tree of life has a natural associated hierar-
chical clustering, but because of extinct species, the input is imperfect and noisy. Our definition
uses the notion of a generating tree (Definition 2) which can be associated to an ultrametric (and
therefore to a “natural” hierarchical clustering). Each edge of the graph thus generated has a cer-
tain probability of being present, which only depends on the underlying ground-truth tree and the
least common ancestor two endpoints.

Definition 5 (Hierarchical Stochastic Model (HSM)). Let T̃ be a generating tree for an n-vertex
graph Ḡ, called the expected graph, such that all weights are in [0, 1]. A hierarchical stochastic
model is a random graph G such that for every two vertices u and v, the edge {u, v} is present
independently with probability w({u, v}) = W (LCAT (σ−1(u), σ−1(v))), where w and W are the

weights functions associated with T̃ as per Definition 2. In words, the probability of an edge being
present is given by the weight of the lowest common ancestor of the corresponding vertices in T̃ .

Definition 6 (Hierarchical Stochastic Block Model (HSBM)). A hierarchical stochastic model is
a k-hierarchical stochastic block model (k-HSBM) if T contains k disjoint subtrees, spanning all
leaves, such that W is constant inside each of the k subtrees.

We let pmin denote the weight of the root node of T̃ for both HSM and HSBM. T̃ is called a
ground-truth tree (see Figure 5 for an illustration). For any tree T , whenever there is a possibility
of ambiguity, we use cost(T ;G) and cost(T ; Ḡ) to denote the the costs of the cluster tree T for
graphs G and for Ḡ respectively: observe that cost(T ; Ḡ) = E [ cost(G;T ) ], where the expectation
is taken with respect to the randomness over the edges in G.

5.1 Objective Functions and Ground-Truth Tree

In this section we show that the cost of the ground truth tree (which is optimal for the expected
graph Ḡ) is near-optimal for the realized graph. All results in this section assume that the cost
function is the one introduced by Dasgupta [21]; under some smoothness assumption on the cost
functions the results can be generalized to other cost functions with (possibly) slightly worse con-
stant factors.

In Proposition 2 we show that the tree T minimizing the expected cost for a graph G generated
from an HSM is minimized for a ground-truth tree (note that the ground-truth tree might not
be unique, but they are all of the same cost). Furthermore, we show in Theorem 6 that, under
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Figure 5: An illustration of an HSBM. Nodes represent authors on arXiv.org and there is an edge
between two nodes if the two authors have a joint publication. Typically, authors of the same
community have more edges within their community and sub-communties. This is reflected by the
increase of the connection probability of a from the root towards the leaves.
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mild assumptions, even in the realized graph, the cost induced by the ground-truth tree is within
a (1 + o(1)) factor of the cost of the optimal tree.

For the proof of Proposition 2 we will make use of a slightly generalized version of the Hoeffding
bound (see [27]).

Proposition 1 ([27]). Let X =
∑m
i=1Xi be a sum of m independent random variables with ai ≤

Xi ≤ bi for all i. Then for any t > 0:

P [ |X − E [X ] | ≥ t ] ≤ exp

(
− 2t2∑m

i=1(bi − ai)2

)
. (9)

Proposition 2. Let G be a graph generated according to an HSM (See Definition. 5). Then a tree
T is a ground truth tree for G if and only if

E [ cost(T ) ] = min
T ′

E [ cost(T ′) ].

Proof. Let Ḡ be the expected graph. By linearity of expectation, for any tree T (not necessarily
the ground-truth one) E [ cost(T ;G) ] = cost(T ; Ḡ). By the definition of admissibility, cost(T ; Ḡ) =
minT ′ cost(T ′; Ḡ) if an only if T is generating (see Definition 4).

The following shows that the ground-truth tree is a (1 + o(1))-approximation of the optimal
solution.

Theorem 6. Let T̃ be a ground-truth tree for a graph G generated from an HSM (see Definition. 5).
If pmin = ω(

√
log n/n) then, with high probability,

cost(T̃ ;G) ≤ (1 + o(1)) min
T ′

cost(T ′;G) = (1 + o(1))OPT.

Proof. It suffices to show that with high probability, the following holds : for every binary tree T
with n leaves labeled by the vertices of G,

|cost(T ;G)− E [ cost(T ;G) ]| ≤ o(E [ cost(T ) ]). (10)

Indeed, if (10) holds then cost(T̃ ;G) ≤ (1 + o(1))E
[

cost(T̃ ;G)
]
; we know from Proposition 2

that E
[

cost(T̃ ;G)
]

= minT ′ E [ cost(T ′;G) ]; and by (10) again for any tree T ′, E [ cost(T ′;G) ] ≤
(1 + o(1))cost(T ′;G).

To prove (10), we observe that the number of possible cluster trees (including labelings of the
leaves to vertices of G) is bounded by 2c·n logn , for some constant c. Fix a cluster tree T ′. It suffices
to prove that for any fixed c > 0,

P [ |cost(T ′;G)− E [ cost(T ′;G) ]| ≥ o(E [ cost(T ′;G) ]) ] ≤ exp (−2cn log n) .

We can write

cost(T ′;G) =
∑
N∈T ′

(|V (child1(N))|+ |V (child2(N))|)
∑

i∈V (child1(N))
j∈V (child2(N))

1(i,j)∈E =
∑

1≤i<j≤n

Zi,j ,
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where Zi,j = |V (LCAT ′(i, j))| · 1(i,j)∈E . Observe that the random variables Zi,j are independent.

We apply Proposition 1 with t = E [ cost(T ′;G) ] ·
√

6c
√

logn
n /pmin = o(E [ cost(T ′;G) ]) and derive:

P

 |cost(T ′;G)− E [ cost(T ′;G) ]| ≥ E [ cost(T ′) ] ·

√
6c ·

√
logn
n

pmin

 ≤ exp

−
2

(
E [ cost(T ′;G) ] ·

√
6c·
√

logn
n

pmin

)2

∑
i<j |V (LCAT ′(i, j))|2


Now, assume that the following claim holds.

Claim 1. Let κ(n) denote the cost of a unit weight clique. Then:

1. E [ cost(T ′;G) ] ≥ κ(n) · pmin

2.
∑
i<j |V (LCAT ′(i, j))|2 ≤ n · κ(n)

Using Claim 1 and the fact that κ(n) ≥ n3/6:

exp

−
2

(
E [ cost(T ′;G) ] ·

√
6c·
√

logn
n

pmin

)2

∑
i<j |V (LCAT ′(i, j))|2

 ≤ exp

(
−2 · κ(n) · 6c · log n

n2

)
≤ exp (−2c · n log n) ,

Note that the assumption on pmin is necessary for our proof technique, which relies on taking
Union bound over all possible generating trees. It remains an interesting open question whether
this assumption is necessary. Furthermore, this proof is the ‘bottleneck’ for the choice of pmin.

We now turn to the proof of Claim 1.

Proof of Claim 1. Let Ḡ denote the expected graph. E [ cost(T ′;G) ] is equal to cost(T ′; Ḡ), which
is a linear function of the edge weights of Ḡ. On the other hand, the clique has the same cost for
every tree, so consider its cost for tree T ′. The minimum edge weights is pmin for Ḡ, the edge weight
is 1 for every edge of the clique, hence the first statement.

For the second statement we write∑
i<j

|V (LCAT ′(i, j))|2 ≤ n
∑
i<j

|V (LCAT ′(i, j))| = nκ(n).

5.2 Algorithm Linkage++, a (1 + ε)-Approximation Algorithm in the
HSBM

We start with some useful notation for a k-HSBM: n1, n2, . . . , nk, the sizes of the k bottom-level
clusters, p1, p2, . . . , pk, the value of W inside each cluster pmax = maxi pi, and nmin, the size of the
smallest of the k bottom-level clusters. We extend σ to be the correspondence between clusters and
the roots of the k subtrees.
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For a graph G, we denote by u the adjacency vector of vertex u, i.e., the column of the adjacency
matrix corresponding to the vertex u. Given a graph generated from a k-HSBM (or from the planted
partition model) with k bottom-level clusters, we say that is satisfies the separation condition if
there exists a universal constant c such that for each pair of vertices u, v belonging to different
bottom-level clusters (or simply clusters in the planted partition), they satisfy

‖E [ u ]− E [ v ] ‖22 ≥ c · k ·
(
(pmax + ω(log6 n/n)) · n/nmin + log(n)

)
(11)

where E [ u ] is the entry-wise expectation. We establish the following theorem.

Theorem 7. Let G be a graph generated from a k-HSBM (see Definition 6). If G satisfies the sepa-

ration condition (11), pmin = ω(
√

log n/n), and nmin ≥ n1/4 · log1/4 n. Then, with high probability,
Algorithm 5 outputs a tree T that satisfies cost(T ;G) = (1 + o(1))OPT.

We consider a simple algorithm, called linkage++, which works in two phases (see Alg. 5)

1. Perform a singular value decomposition on the adjacency matrix to embed nodes in Euclidean
space. Then apply single-linkage using the Euclidean distance until we obtain k clusters.

2. Consider these as bottom-level clusters and apply single-linkage using the edge density between
these clusters in the input graph G to finish building the hierarchical clustering tree.

Algorithm 5 Linkage++

1: Input: Unweighted graph G = (V,E) on n vertices.
2: Parameter: An integer k.
3: Output: A Hierarchical Clustering Tree of G.
4: Let ζ(1), . . . , ζ(n) denote the n points corresponding to vertices of V , spanning a k-dimensional

subspace of Rn, that are obtained by applying Theorem 8 with parameters G, k.
5: Run the single-linkage algorithm on points {ζ(1), . . . , ζ(n)}, using Euclidean distance, until

there are exactly k clusters Cζ1 , . . . , C
ζ
k .

6: Define similarity between clusters by sim(Cζi , C
ζ
j ) = w(Cζi , C

ζ
j )/(|Cζi ||C

ζ
j |), where w(Cζi , C

ζ
j ) is

the number of edges of G between the corresponding vertices.
7: while there is more than one cluster do
8: Let A,B denote the two clusters maximizing sim(A,B).
9: Define cluster D = A∪B and let sim(D,E) = max(sim(A,E), sim(B,E)) for all clusters E.

10: Add D to and remove A and B from the set of clusters.
11: The sequence of merges in the while-loop (Steps 7 to 10) induces a hierarchical clustering

tree T ′k with k leaves {Cζ1 , . . . , C
ζ
k}. For an internal node N of T ′k created by merging A,B ⊆

{Cζ1 , . . . , C
ζ
k}, define the weight, W ′(N) = sim(A,B) = maxCζi ∈A,C

ζ
j ∈B

sim(Cζi , C
ζ
j ). Replace

each leaf of T ′k by an arbitrary binary tree on |Cζk | leaves labeled according to the corresponding
vertices of V to obtain a hierarchical tree T .

12: Repeat the algorithm 2k log n times and output the tree T that minimizes cost(T ;G).

The idea of using spectral techniques for graph partitioning goes back at least to Bopanna [13].
We use a result of McSherry [35] that considers the planted partition model.
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Theorem 8 ([35], Observation 11 and a simplification of Theorem 12). Let G be a random graph
generated from the planted partition model satisfying the separation condition and where each of the
k clusters contains at least nmin vertices.

Then, the algorithm of [35, Thm. 12] with inputs G, k maps V to points {ζ(1), . . . , ζ(n)} in a
k-dimensional subspace of Rn such that the following holds: with probability at least 1− 1/n3 over
the random graph G and with probability 1/k over the random bits of the algorithm, there exists
η > 0 such that for any two vertices u and v:

1. if u and v are in the same cluster then ‖ζ(u)− ζ(v)‖22 ≤ η and

2. if u and v are in different clusters then ‖ζ(u)− ζ(v)‖22 > 2η.

Our analysis relies on analyzing the probability of occurrence of two events E1 and E2.

Event E1 Fix one of the 2k log n iterations of Lines 4-11 of Algorithm 5. We define event E1 as the
event that after Line 4 of the algorithm, the resulting vectors satisfy the conclusion of Theorem 8,
i.e.,

1. if u and v are in the same cluster then ‖ζ(u)− ζ(v)‖22 ≤ η and

2. if u and v are in different clusters then ‖ζ(u)− ζ(v)‖22 > 2η.

We let ψ(u) ∈ [k] denote the cluster containing vertex u. From the above theorem, we deduce
the following lemma.

Lemma 4. Let G be generated by a k-HSBM. Assume event E1 holds. Then, the k clusters obtained
after Step 5 correspond exactly to the k hidden bottom-level clusters.

Proof. By event E1, any linkage algorithm, e.g., single linkage, performing merges starting from the
set {ζ(1), . . . , ζ(n)} until there are k clusters will merge clusters at a distance of at most η and
hence, the clusters obtained after Step 5 correspond to the assignment ψ.

Let C∗1 , . . . , C
∗
k be the hidden bottom-level clusters, i.e., C∗i = {v | ψ(v) = i}. Let π denote the

permutation π : [k]→ [k] such that Cζj corresponds to C∗π(j). Let V (C∗i ) denote the set of vertices
in the bottom-level clusters.

Event E2 We define E2 as the event that the graph G satisfies that for any pair of bottom-
level clusters Ci, Cj , |w(Ci, Cj) − E(Ci,Cj)| < ε2E(Ci,Cj), where E(Ci,Cj) = |V (Ci)| · |V (Cj)| ·
W (LCAT̃ (Ci, Cj)).

γ-approximate ground-truth tree. We say that a tree T = (N , E) is a γ-approximate ground-

truth tree for G and T̃ if there exists a weight function W ′ : N 7→ R+ such that for any two vertices
u, v, we have that

1. γ−1W ′(LCAT (u, v)) ≤W (LCAT̃ (u, v)) ≤ γW ′(LCAT (u, v)) and

2. for any node N of T and any node N ′ descendant of N in T , W ′(N) ≤W ′(N ′).

Lemma 5. Let G be generated according to a k-HSBM. Assume that event E2 occurs and that the
clusters obtained after Step 5 correspond to the assignment ψ. Then the output tree T of Algorithm 5
is a (1 + ε/3)-approximate ground-truth tree.
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Proof. The hypothesis of lemma assumes that the bottom level clusters are identified correctly as
per the assignment ψ. Let C∗1 , . . . , C

∗
k denote these bottom-level clusters. We focus on the tree T ′k

(cf. Algorithm 5) which has leaves given by bottom level clusters. Let T̃ ′k be the generating tree
which is truncated to have exactly k leaves also given by the k bottom level clusters.

Since E2 occurs, for as sufficiently small ε, we have that for every pair i, j ∈ [k]:

W (LCAT̃ ′(C
∗
i , C

∗
j ))

1 + ε/3
≤ sim(C∗i , C

∗
j ) ≤ (1 + ε/3)W (LCAT̃ ′(C

∗
i , C

∗
j )) (12)

Let N denote the set of all nodes of T (including internal nodes). For any internal node N ∈ N ,
define Λ(N) to denote the set of leaves in the subtree rooted at N . Recall that W ′ is defined as
follows (cf. Algorithm 5)—for every internal node N ∈ N , if NL and NR denote its left and right
children, then:

W ′(N) = max
C∗i ∈Λ(NL),C∗j ∈Λ(NR)

sim(C∗i , C
∗
j ).

Our goal is to show that for every i, j ∈ [k]

W (LCAT̃ ′(C
∗
i , C

∗
j ))/(1 + ε/3) ≤W ′(LCAT ′(C

∗
i , C

∗
j )) ≤ (1 + ε/3)W (LCAT̃ ′(C

∗
i , C

∗
j )). (13)

First, we prove the LHS of Inequality (13).

W ′(LCAT ′(C
∗
i , C

∗
j )) ≥ sim(C∗i , C

∗
j ) ≥W (LCAT̃ ′(C

∗
i , C

∗
j ))/(1 + ε/3).

Thus it only remains to prove the RHS of Inequality (13). Consider an arbitrary pair of bottom-
level clusters C∗i , C

∗
j , and let N = LCAT ′k

(C∗i , C
∗
j ) be the least common ancestor of C∗i and C∗j in

T ′k. Let NL and NR be the left and right child of N in T ′k. Similarly, let Ñ = LCAT̃ ′(C
∗
i , C

∗
j ) be

the least common ancestor of C∗i and C∗j in T̃ ′k, and let ÑL and ÑR be the left and right child of

Ñ in T̃ ′k. We consider the the following two cases:

Case 1: Λ(NL) ⊆ Λ(ÑL) and Λ(NR) ⊆ Λ(ÑR). Observe that in this case the clusters being
merged are A = Λ(NL) and B = Λ(NR) and let C∗l ∈ Λ(NL) and C∗k ∈ Λ(NR) be such that
sim(A,B) = sim(C∗l , C

∗
k). Without loss of generality, we have that C∗i ∈ Λ(NL) and C∗j ∈ Λ(NR)

and as a result, we get,

W ′(N) = sim(A,B) = sim(C∗l , C
∗
k) ≤ (1 + ε/3)W (Ñ),

where the last inequality follows from the fact that LCAT̃ ′(C
∗
l , C

∗
k) = Ñ and as E2 holds.

Case 2: ∃C∗l ∈ Λ(NL), C∗l 6∈ Λ(ÑL) or ∃C∗k ∈ Λ(NR), C∗k 6∈ Λ(ÑR). Without loss of generality,

let C∗i ∈ Λ(NL) and suppose that there exists C∗l ∈ Λ(NL), C∗l 6∈ Λ(ÑL). Then there must exist
a descendant of NL (possibly including NL itself), which for the first time merges sets A and B

satisfying: ∃C∗i′ ∈ A,C∗i′ ∈ Λ(ÑL) and ∃C∗l′ ∈ B,C∗l′ 6∈ Λ(ÑL), such that sim(A,B) = sim(C∗i′ , C
∗
l′).

Then note that by definition, LCAT̃ ′(C
∗
i′ , C

∗
l′) must be an ancestor of Ñ (possibly including Ñ

itself). Thus, we have

W ′(N) ≤ sim(C∗i′ , C
∗
l′) ≤ (1 + ε/3)W (LCAT̃ ′k

(C∗i′ , C
∗
l′)) ≤ (1 + ε/3)W (Ñ)

The proof follows by observing that T is obtained from T ′k by simply replacing the leaves of T ′k by
arbitrary binary subtrees for each of the bottom-level clusters.
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The following lemma allows us to bound the cost of an approximate ground-truth tree.

Lemma 6. Let G be a graph generated according to a k-HSBM. Let T be a γ-approximate ground-
truth tree. Then, cost(T ;G) ≤ γ(1 + o(1))OPT.

Proof. Let T̃ be a ground-truth tree for G. Let Ḡ be the expected graph associated to T̃ and G.
By Theorem 1 the cost of T̃ is optimal for Ḡ. Furthermore, by Theorem 6, we have that the

cost of T̃ on Ḡ and the cost of T̃ are within a factor of (1 + o(1)). We thus need to show that

cost(T ;G) ≤ γ(1 + o(1))cost(T̃ ;G).
Recall that T is the γ-approximate ground truth tree and we define a new graph ḠT which has

the same set of vertices V as Ḡ: For each pair of vertices u, v ∈ V we create an edge in ḠT with
weight wḠT (u, v) = W ′(LCAT (u, v)). By definition of W ′, it follows that T is generating for ḠT ,
and so applying Theorem 1, we obtain that the cost of T for ḠT , denoted by cost(T ; ḠT ), is less

than the cost of T̃ for ḠT , cost(T̃ ; ḠT ).
Now recall that the cost of a given tree T , for a given graph G′ can be rewritten as follows:

cost(T ;G′) =
∑
u,v wG′(u, v) · |V (LCAT (u, v))|, where wG′(u, v) is the weight of the edge u, v in G′.

Thus, since by definition of T , we have γ−1W ′(LCAT (a, b)) ≤W (LCAT̃ (a, b)) ≤ γW ′(LCAT (a, b)).
Hence,

cost(T ; Ḡ) =
∑
u,v

wḠ(u, v) · |V (LCAT (u, v))| ≤
∑
u,v

γ · wḠT (u, v) · |V (LCAT (u, v))|

= γ · cost(T ; ḠT ) ≤ γ · cost(T̃ ; ḠT ).

Similarly one can who that cost(T̃ ; ḠT ) ≤ γ · cost(T̃ ; Ḡ). Combining the two yields the lemma.

Proof of Theorem 7. We first analyze the probability of event E1. By Theorem 8, for one execution
of Line 4 of Algorithm 5, E1 holds with probability at least 1 − 1/n3 over the random graph G
and probability at least 1/k over the random bits of the algorithm. Since Line 12 of Algorithm 5
repeats the execution 10 · k · log n times with independent random bits, the probability that event
E1 holds for at least one of the 10 · k · log n executions is at least 1− e−10 logn − 1/n2.

We next analyze the probability of event E2. Fix two bottom-level clusters. Thanks to our
assumptions on pmin and nmin, the expected number of edges of the cut between those two clusters
is at least n2

minpmin = ω(log n). Applying Chernoff bounds, the value of the cut is concentrated
around its expectation with a probability of at least 1 − 2−4 logn. Taking a union bound over all(
k
2

)
pairs of bottom-level clusters, using that k ≤ n, we get that the probability for E2 to hold for

some choice of ε = o(1) is at least 1− n22−4 logn ≥ 1− 1/n2.
Consider an execution during which events E1 and E2 both occur. Combining Lemmas 4, 5,

and 6 imply the conclusion of Theorem 7.

We note that k might not be known in advance. However, different values of k can be tested
and an O(1)-estimate on k is enough for the proofs to hold. Thus, it is possible to run Algorithm 5
O(log n) times with different “guesses” for k and take the minimum-cost tree of these runs.

6 Semi-Random Models

The notation for random graphs used in this section is described in detail in Section 5.
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6.1 Algorithm for Semi-Random Model using SDP Relaxations

We show that in random and semi-random (defined below) graph models generated according to
an HSM, an SDP-based algorithm can be used to guarantee an O(1)-approximation with high-
probability in a regime beyond that proved in Theorem 7. The proof of the following result follows
using the technique of Makarychev et al. [34] to obtain O(1)-approximations to problems such as
sparsest cut and small-set expansion (SSE) in random and semi-random settings combined with
Theorem 2 that shows that approximations to (roughly) balanced min-cut problems can be used to
obtain an equivalent approximation ratio for the problem of finding a minimum cost hierarchical
cluster tree.

To generate a random graph, G = (V,E), we use an HSM (Defn. 5). The semi-random model
simply considers a random graph generated as above and an adversary is allowed to remove edges
from G, but not add any. Note that in either case the comparison is to the cost of the generating
tree on the graph Ḡ (cf. Defn. 5).

6.2 Algorithm in Semi-Random Model using SDP Relaxations

This section is dedicated to the proof of the following theorem.

Theorem 9. Let G be a graph generated from the HSM (Defn. 5) with pmin = Ω(log n/n2/3). Then,
there exists a randomized polynomial time algorithm that with probability 1− o(1) outputs a tree T
such that,

cost(T ;G) = O(OPT(Ḡ)), (14)

where OPT(Ḡ) denotes the value of the optimal tree for Ḡ and we note that OPT(Ḡ) = cost(T̃ ; Ḡ),

where T̃ is the generating tree. Furthermore, the above holds even in the semi-random case, i.e.,
when an adversary is allowed to remove any subset of the edges from G.

Similar to Section 5, the assumption on pmin is crucial to our proof techniques; it remains an
interesting open question whether the assumption is necessary. It is worth mentioning, that the
assumption on pmin in Theorem 9 is much weaker than the one in Section 5, where we prove a
(1 + o(1))-approximation.

6.2.1 Background

In this section, we recall the work of Makarychev et al. [34]. Essentially all of this section is directly
cited from this work and we only provide it in this paper for completeness.

While we don’t require to go into details, we define the crude SDP for Small-Set Expansion
(SSE) used by Makarychev et al. [34] below. ū denotes some vector representation corresponding to
vertex u in the SDP. The reader may refer to SDP solutions ϕ occurring in the rest of this section to
mean feasible solutions to the following SDP. Note that solving the SSE problem gives a (roughly)
balanced sparse cut when ρ = Θ(1).
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min
1

2

∑
(u,v)∈E(G)

‖ū− v̄‖2

subject to

for all u ∈ V,
∑
v

〈ū, v̄〉 ≤ ρ|V | (Spreading Constraints)

for all u, v, w ∈ V, ‖ū− v̄‖2 + ‖v̄ − w̄‖2 ≥ ‖ū− v̄‖2 (`22-triangle inequalities)

for all u, v ∈ V, 〈ū, v̄〉 ≥ 0

for all u ∈ V, ‖ū‖2 = 1

Definition 7 (Heavy Set, Hδ,ϕ(M) [34]). Let V be a set of n vertices and M ⊆ N . Consider an
SDP solution ϕ : V → H. We say that a vertex u ∈ M is δ-heavy in M if the `22-ball of radius δ
around ϕ(u) contains at least δ2n vectors from ϕ(M), i.e., |{v ∈M | ϕ(v) ∈ Ball(ϕ(u), δ)}| ≥ δ2n.
We denote the set of all vertices that are δ-heavy in M by Hδ,ϕ(M).

Definition 8 (Geometric Expansion [34]). A graph G = (V,E) satisfies the geometric expansion
property with cut value X at scale δ, if for every SDP solution ϕ : V → H satisfying Hδ,ϕ(V ) = ∅
(recall that Hδ,ϕ(V ) is the set of δ-heavy vertices in V ):∣∣∣{(u, v) ∈ E | ‖ϕ(u)− ϕ(v)‖2 ≤ δ/2}

∣∣∣ ≤ 2δ2X.

A graph G = (V,E) satisfies the geometric expansion property with cut value X up to scale 2−T for
T ∈ N if it satisfies the geometric expansion property for every δ ∈ {2−t | 1 ≤ t ≤ T}.

Theorem 10 (Theorem 3.4 from [34]). Let G = (V,E) be a graph that satisfies the geometric
expansion property with cut value X at scale up to c

√
log |V |. Then, there exists a randomized

polynomial time that with high probability outputs a partition L,R of V such that |cut(L,R)| = O(X)
and |L|, |R| ≥ |V |/3.

6.2.2 Geometric Expansion of HSM

Let Ḡn = (V̄n, Ēn, w) be a graph generated according to an ultrametric, where for each e ∈ Ēn,
w(e) ∈ (0, 1). In this case, we allow w(e) to depend on n—in particular it is possible that w(e)→ 0
as n→∞. Let G = (V,E) be an unweighted random graph with |V | = |V̄n| = n generated from Ḡ
as follows. An edge (u, v) is added to G with probability w((u, v)), for the corresponding vertices
u, v ∈ V̄n. Note that this is simply a hierarchical stochastic models (Defn. 5).

For the rest of this discussion we assume that V = V̄n as a natural bijection exists between the
two vertex sets. Let T̃ be a generating tree for Ḡ. Let U ⊆ V and let T̃ |U be the restriction of T̃ to
leaves in U (removing unnecessary leaves and reducing internal nodes as necessary). Let N(U) be

the root of T̃ |U . Consider the following procedure where the nodes appear as leaves in the left and

right subtrees of the root of T̃ |U . Suppose we follow the convention that the left subtree is never any

smaller than the right subtree in T̃ |U . We say that the canonical node of T̃ |U is the first left node
NL encountered in a top-down traversal starting from N(U) such that 2|U |/3 ≥ V (NL) ≥ |N |/3.
We define UL = V (NL), and UR = U \ UL. We say that (UL, UR) is the canonical cut of U . It is
easy to see that such a cut always exists since the tree is binary and left subtrees are never smaller
than right subtrees. Let Ernd = {(u, v) | u ∈ UL, v ∈ UR}.
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Lemma 7. For a random graph G generated as described in Theorem 9, with probability at least
1 − o(1), for every subset U of size at least n2/3

√
log n, the subgraph (U,Ernd) is geometrically

expanding with cut cost

X = C ·max{w(L,R), |U | ·D · log2D, |U | ·D · log n} (15)

up to scale 1/
√
D. Furthermore, the result also applies in the semi-random setting where an adver-

sary may remove any subset of edges from the random graph G.

Before we give the proof of Lemma 7, we show how it implies Theorem 9.

Proof of Theorem 9. We apply Theorem 2, where it is essentially established that provided one
obtains a φ approximation to the 1/3-balanced min-cut problem (i.e., minimize cut subject to the
constraint that both sides have at least 1/3 of the vertices being cut), the recursive algorithm gives
a O(φ) approximation for minimizing Dasgupta’s cost function.

We observe that cost(T̃ ; Ḡ) = Ω(n3 · pmin) = Ω(n7/3 log n). Thus, we notice that once we obtain
sets U of size n0 = n2/3

√
log n, since there are at most n/n0 of them, even if we use an arbitrary

tree on any such U , together this can only add O( nn0
·n3

0) = O(n7/3 ·log n). Thus, we only need to be

able to obtain suitable approximations during the recursive procedure as long as |U | ≥ n2/3 log n.
This is precisely given by using Lemma 7. Observe that in Eq. (15), w(L,R) = Ω(|U |2 · pmin) =
Ω(n2/3 log2 n), |U |D log2D = o(|U |D log n) and D|U | log n = O(n2/3 log2 n). Thus, the algorithm
of [34] given by Theorem 10 returns a cut that is a constant factor approximation to the 1/3-
balanced min-cut problem on the induced subgraph of Ḡ on the vertex set U . This observation
together with a slight modification of the charging argument in the proof of Theorem 2 to account
for the case where subgraphs have size less than n2/3 log n finishes the proof.

In the following we give the deferred proof of Lemma 7. The proof is essentially identical to
that of Theorem 5.1 in [34]. However, as there are some minor modifications, we are unable to cite
their result directly and hence provide the entire proof here for completeness.

Proof of Lemma 7. Fix some subset U and let UL, UR be the canonical cut of U given by the
generating tree T̃ of Ḡ. Let Eall = {(u, v) | u ∈ UL, v ∈ UR} and let Ernd = Eall ∩ E, where E is
the set of edges in the realized random graph G = (V,E). As the adversary in the semi-random
graph can only remove edges it suffices to show that (U,Ernd) is geometrically expanding with high
probability. We fix the parameter δ = 2−t (where 1 ≤ t ≤ T ), and prove that the graph (U,Ernd)
is geometrically expanding with cut value X at scale δ. The probability that this fails to happen
will be low enough for us to take a simple union bound over all the possible values of δ.

The condition Hδ,ϕ(U) = ∅ implies that,

|{(u, v) ∈ U × U | ‖ϕ(u)− ϕ(v)‖2δ}| ≤ δ2n2.

We need to bound the probability of the bad event, the existence of an SDP solution ϕ : U → H
such that ∣∣{(u, v) ∈ U × U | ‖ϕ(u)− ϕ(v)‖2 ≤ δ

}∣∣ ≤ δ2n2 (16)∣∣∣∣{(u, v) ∈ Ernd | ‖ϕ(u)− ϕ(v)‖2 ≤ δ

2

}∣∣∣∣ ≥ 2δ2X (17)

32



Makarychev et al. [34] show that if ϕ satisfying Eqn. (16) and (17) exists, then provided |Ernd| ≤
2X, there exists ϕ′ : U → Nδ satisfying:∣∣∣∣{(u, v) ∈ U × U | ‖ϕ′(u)− ϕ′(v)‖2 ≤ 3

4
δ

}∣∣∣∣ ≤ 5

4
δ2n2 (18)∣∣∣∣{(u, v) ∈ Ernd | ‖ϕ′(u)− ϕ′(v)‖2 ≤ 3

4
δ

}∣∣∣∣ ≥ 3

4
δ2X. (19)

where Nδ ⊂ H is a set of size exp(O(log2 δ−1)).
The remainder of the proof is showing that the existence of ϕ′ is a very low-probability event.

First, as |Ernd| = w(UL, UR) ≤ X, P [ |Ernd| ≥ 2X ] ≤ e−c0X . Note that if we fix a ϕ′ : U → Nδ,

the probability (over the random choice of Ernd) that Eqns. (18) and (19) hold is at most e−c1δ
2X ,

by using the Chernoff bound. Finally, we note that there are at most |Nδ||U | such ϕ′, thus we can
safely take a union bound provided X/D ≥ c3 · |U | log2D. Finally, there are n|U | subsets of size |U |
and again we can safely apply a union bound provided X/d ≥ c4|U | log n. The choice of X ensures
that this happens.
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A Perfect Ground-Truth Inputs and Beyond

In this section, we focus on ground-truth inputs. We state and (re)prove results that when the
input is a perfect ground-truth input, commonly used algorithms (single linkage, average linkage,
and complete linkage; as well as some divisive algorithms—the bisection 2-Center and sparsest-cut
algorithms) yield a tree of optimal cost, hence (by Definition 4) a ground-truth tree. Several of
these results are folklore (and straightforward when there are no ties), but we have been unable to
pin down a reference, so we include them for completeness (Section A.1). We also introduce a faster
optimal algorithm for “strict” ground-truth inputs (Section A.2). The proofs present no difficulty.
The meat of this section is Section A.3, where we go beyond ground-truth inputs; we introduce
δ-adversarially-perturbed ground-truth inputs and design a simple, more robust algorithm that, for
any admissible objective function, yields a δ-approximation.

A.1 Perfect Ground-Truth Inputs are Easy

In the following, we refer to the tie breaking rule of Algorithm 6 as the rule followed by the algorithm
for deciding which of Ci, Cj or Ck, C` to merge, when maxC1,C2∈C sim(C1, C2) = sim(Ci, Cj) =
sim(Ck, C`).

Theorem 11. 12 Assume that the input is a (dissimilarity or similarity) ground-truth input. Then,
for any admissible objective function, the agglomerative heuristics average-linkage, single-linkage,

12This Theorem may be folklore, at least when there are no ties, but we have been unable to find a reference.
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Algorithm 6 Linkage Algorithm for Hierarchical Clustering (similarity setting)

1: Input: A graph G = (V,E) with edge weights w : E 7→ R+

2: Create n singleton trees. Root labels: C = {{v1}, . . . , {vn}}

3: Define sim : C × C 7→ R+: sim(C1, C2) =


1

|C1||C2|
∑

x∈C1,y∈C2

w((x, y)) Average Linkage

maxx∈C1,y∈C2 w((x, y)) Single Linkage

minx∈C1,y∈C2 w((x, y)) Complete Linkage

.

4: while there are at least two trees do
5: Take the two trees with root labels C1, C2 such that sim(C1, C2) is maximum
6: Create a new tree by making those two tree children of a new root node labeled C1 ∪ C2

7: Remove C1, C2 from C, add C1 ∪ C2 to C, and update sim

8: return the resulting binary tree T

and complete-linkage (see Algorithm 6) return an optimal solution. This holds regardless of the tie
breaking rule used by Algorithm 6.

Proof. We focus on the similarity setting; the proof for the dissimilarity setting is almost identical.
We define the candidate trees after t iterations of the while loop to be sets of trees in C at that
time. The theorem follows from the following statement, which we will prove by induction on t: If
Ct = {C1, . . . , Ck} denotes the set of clusters after t iterations, then there exists a generating tree
T t for G, such that the candidate trees are subtrees of T t.

For the base case, note that initially each candidate tree contains exactly one vertex and the
statement holds. For the general case, let C1, C2 be the two trees that constitute the tth iteration.
By induction, there exists a generating tree T t−1 for G, and associated weights W t−1 (according
to Definition 2) such that C1 and C2 are subtrees of T t−1, rooted at nodes N1 and N2 of T t−1

respectively.
To define T t, we start from T t−1. Consider the path P = {N1, N1, N2, . . . , Nk, N

2} joining N1

to N2 in T t−1 and let Nr = LCAT t−1(N1, N2). If Nr is the parent of N1 and N2, then T t = T t−1,
else do the following transformation: remove the subtrees rooted at N1 and at N2; create a new
node N∗ as the second child of Nk, and let N1 and N2 be its children. This defines T t. To define
W t, extend W t−1 by setting W t(N∗) = W (Nr).

Claim 2. For any Ni, Nj ∈ P , W t−1(Ni) = W t−1(Nj).

Thanks to the inductive hypothesis, with Claim 2 it is easy to verify that W t certifies that T t

is generating for G.

Proof of Claim 2. Fix a node Ni on the path from Nr to N1 (the argument for nodes on the
path from Nr to N2 is similar). By induction W t−1(Ni) ≥ W t−1(Nr). We show that since
the linkage algorithms merge the trees C1 and C2, we also have W t−1(Ni) ≤ W t−1(Nr) and so
W t−1(Ni) = W t−1(Nr), hence the claim. Let w0 = W t−1(Nr).

By induction, for all u ∈ C1, v ∈ C2, w(u, v) = w0, and thus sim(C1, C2) = w0 in the execution
of all the algorithms. Fix a candidate tree C ′ ∈ Ct, C ′ 6= C1, C2 and C ′ ⊆ V (Ni). Since C is a
partition of the vertices of the graph and since candidate trees are subtrees of T t−1, such a cluster
exists. Thus, for u ∈ C1, v ∈ C ′ w(u, v) = W t−1(LCAT t−1(u, v)) = W t−1(Ni) ≥ w0 since Ni is a
descendant of Nr.
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It is easy to check that by their definitions, for any of the linkage algorithms, we thus have
that sim(C1, C

′) ≥ w0 = sim(C1, C2). But since the algorithms merge the clusters with maximum
pairwise similarity, it follows that sim(C1, C

′) ≤ sim(C1, C2) = w0 and therefore, W t−1(Ni) ≤
W t−1(Nr) and so, W t−1(Ni) = W t−1(Nr) and the claim follows. This is true no matter the tie
breaking chosen for the linkage algorithms.

Divisive Heuristics. We now focus on two well-known divisive heuristics: (1) the bisection
2-Center which uses a partition-based clustering objective (the k-Center objective) to divide the
input into two (non necessarily equal-size) parts (see Algorithm 7), and (2) the recursive sparsest-cut
algorithm, which can be implemented efficiently for ground-truth inputs (Lemma 8).

Algorithm 7 Bisection 2-Center (similarity setting)

1: Input: A graph G = (V,E) and a weight function w : E 7→ R+

2: Find {u, v} ⊆ V that maximizes minx maxy∈{u,v} w(x, y)
3: A← {x | w(x, u) ≥ maxy∈{u,v} w(x, y)}
4: B ← V \A.
5: Apply Bisection 2-Center on G[A] and G[B] to obtain trees TA,TB respectively
6: return The union tree of TA, TB .

Loosely speaking, we show that this algorithm computes an optimal solution if the optimal
solution is unique. More precisely, for any similarity graph G, we say that a tree T is strictly
generating for G if there exists a weight function W such that for any nodes N1, N2, if N1 appears
on the path from N2 to the root, then W (N1) < W (N2) and for every x, y ∈ V , w(x, y) =
W (LCAT (x, y)). In this case we say that the input is a strict ground-truth input. In the context
of dissimilarity, an analogous notion can be defined and we obtain a similar result.

Theorem 12. 13 For any admissible objective function, the bisection 2-Center algorithm returns
an optimal solution for any similarity or dissimilarity graph G that is a strict ground-truth input.

Proof. We proceed by induction on the number of nodes in the graph. Consider a strictly generating
tree T and the corresponding weight function W . Consider the root node Nr of T and let N1, N2

be the children of the root. Let (α, β) be the cut induced by the root node of T (i.e., α = V (N1),
β = V (N2)). Define w0 to be the weight of an edge between u ∈ α and v ∈ β for any u, v (recall that
since T is strictly generating all the edges between α and β are of same weight). We show that the
bisection 2-Centers algorithm divides the graph into α and β. Applying the inductive hypothesis
on both subgraphs yields the result.

Suppose that the algorithm locates the two centers in β. Then, minx∈α maxy∈{u,v} w(x, y) = w0

since the vertices of α are connected by an edge of weight w0 to the centers. Thus, the value of
the clustering is w0. Now, consider a clustering consisting of a center c0 in α and a center c1 in β.
Then, for each vertex u, we have maxc∈{c0,c1} w(u, c) ≥ min(W (N1),W (N2)) > W (Nr) = w0 since
T and W are strictly generating; hence, a strictly better clustering value. Therefore, the algorithm
locates x ∈ α and y ∈ β. Finally, it is easy to see that the partitioning induced by the centers yields
parts A = α and B = β.

13This Theorem may be folklore, but we have been unable to find a reference.
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Remark 4. To extend our result to (non-strict) ground-truth inputs, one could consider the follow-
ing variant of the algorithm (which bears similarities with the popular elbow method for partition-
based clustering): Compute a k-Center clustering for all k ∈ {1, . . . , n} and partition the graph
according to the k-Center clustering of the smallest k > 1 for which the value of the clustering
increases. Mimicking the proof of Theorem 12, one can show that the tree output by the algorithm
is generating.

We now turn to the recursive sparsest-cut algorithm (i.e., the recursive φ-sparsest-cut algorithm
of Section 4.1, for φ = 1). The recursive sparsest-cut consists of recursively partitioning the graph
according to a sparsest cut of the graph. We show (1) that this algorithm yields a tree of optimal
cost and (2) that computing a sparsest cut of a similarity graph generated from an ultrametric
can be done in linear time. Finally, we observe that the analogous algorithm for the dissimilarity
setting consists of recursively partitioning the graph according to the densest cut of the graph and
achieves similar guarantees (and similarly the densest cut of a dissimilarity graph generated from
an ultrametric can be computed in linear time).

Theorem 13. 14 For any admissible objective function, the recursive sparsest-cut (respectively
densest-cut) algorithm computes a tree of optimal cost if the input is a similarity (respectively
dissimilarity) ground-truth input.

Proof. The proof is by induction and presents no difficulty; it may be easier to recreate it than to
read it.

Let T be a generating tree and W be the associated weight function. Let Nr be the root of T ,
N1, N2 the children of Nr, and (α = V (N1), β = V (N2)) the induced root cut. Since T is generating,
all the edges between α and β are of same weight w, which is therefore also the sparsity of (α, β).
For every edge (u, v) of the graph, w(u, v) = W (LCAT (u, v)) ≥ w, so every cut has sparsity at least
w, so (α, β) has minimum sparsity.

Now, consider the tree T ∗ computed by the algorithm, and let (γ, δ) denote the sparsest-cut used
by the algorithm at the root (in case of ties it might not be different from (α, β)). By induction, the
algorithm on G[γ] and G[δ] gives two generating trees Tγ and Tδ with associated weight functions
Wγ and Wδ. To argue that T ∗ is generating, we define W ∗ as follows, where N∗r denotes the root
of T ∗.

W ∗(N) =


Wγ(N) if N ∈ Tγ
Wδ(N) if N ∈ Tδ
w if N = N∗r

By induction w(u, v) = W (LCAT (u, v)) if either both u, v ∈ γ, or both u, v ∈ δ. For any u ∈ γ, v ∈
δ, we have w(u, v) = w = W (N∗r ) = W (LCAT (u, v)). Finally, since w ≤ w(u, v) for any u, v, we
have W (N∗r ) = w ≤W (N), for any N ∈ T ∗, and therefore T ∗ is generating.

We then show how to compute a sparsest-cut of a graph that is a ground-truth input.

Lemma 8. If the input graph is a ground-truth input then the sparsest cut is computed in O(n)
time by the following algorithm: pick an arbitrary vertex u, let wmin be the minimum weight of
edges adjacent to u, and partition V into A = {x | w(u, x) > wmin} and B = V \A.

14This Theorem may be folklore, at least when there are no ties, but we have been unable to find a reference.
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Proof. Let wmin = w(u, v). We show that w(A,B)/(|A||B|) = wmin and since wmin is the minimum
edge weight of the graph, that the cut (A,B) only contains edges of weight wmin. Fix a generating
tree T . Consider the path from u to the root of T and let N0 be the first node on the (bottom-up)
path such that W (N0) = wmin. For any vertex x ∈ A, we have that w(u, x) > wmin. Hence by
definition, we have that N0 is an ancestor of LCAT (u, x). Therefore, for any other node y such
that w(u, y) = wmin, we have LCAT (u, y) = LCAT (x, y) and so, w(x, y) = W (LCAT (x, y)) =
W (LCAT (u, y)) = wmin. It follows that all the edges in the cut (A,B) are of weight wmin and so,
the cut is a sparsest cut.

A.2 A Near-Linear Time Algorithm

In this section, we propose a simple, optimal, algorithm for computing a generating tree of a ground-
truth input. For any graph G, the running time of this algorithm is O(n2), and Õ(n) if there exists
a tree T that is strictly generating for the input. For completeness we recall that for any graph G,
we say that a tree T is strictly generating for G if there exists a weight function W such that for
any nodes N1, N2, if N1 appears on the path from N2 to the root, then W (N1) < W (N2) and for
every x, y ∈ V , w(x, y) = W (LCAT (x, y)). In this case we say that the input is a strict ground-truth
input.

The algorithm is described for the similarity setting but could be adapted to the dissimilarity
case to achieve the same performances.

Algorithm 8 Fast and Simple Algorithm for Hierarchical Clustering on Perfect Data (similarity
setting)

1: Input: A graph G = (V,E) and a weight function w : E 7→ R+

2: p← random vertex of V
3: Let w1 > . . . > wk be the edge weights of the edges that have p as an endpoint
4: Let Bi = {v | w(p, v) = wi}, for 1 ≤ i ≤ k.
5: Apply the algorithm recursively on each G[Bi] and obtain a collection of trees T1, . . . , Tk
6: Define T ∗0 as a tree with p as a single vertex
7: For any 1 ≤ i ≤ k, define T ∗i to be the union of T ∗i−1 and Ti
8: return T ∗k

Theorem 14. For any admissible objective function, Algorithm 8 computes a tree of optimal cost
in time O(n log2 n) with high probability if the input is a strict ground-truth input or in time O(n2)
if the input is a (non-necessarily strict) ground-truth input.

Proof. We proceed by induction on the number of vertices in the graph. Let p be the first pivot
chosen by the algorithm and let B1, . . . , Bk be the sets defined by p at Step 4 of the algorithm,
with w(p, u) > w(v, p), for any u ∈ Bi, v ∈ Bi+1.

We show that for any u ∈ Bi, v ∈ Bj , j > i, we have w(u, v) = w(p, v). Consider a generating
tree T and define N1 = LCAT (p, u) and N2 = LCAT (p, v). Since T, h, σ is generating and w(p, u) >
w(p, v), we have that N2 is an ancestor of N1, by Definition 2. Therefore, LCAT (u, v) = N2, and
so w(u, v) = W (N2) = w(p, v). Therefore, combining the inductive hypothesis on any G[Bi] and
by Definition 2 the tree output by the algorithm is generating.

A bound of O(n2) for the running time follows directly from the definition of the algorithm.
We now argue that the running time is O(n log2 n) with high probability if the input is strictly
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generated from a tree T . First, it is easy to see that a given recursive call on a subgraph with n0

vertices takes O(n0) time (excluding time required for further recursive calls). Now, observe that if
at each recursive call the pivot partitions the n0 vertices of its subgraph into buckets of size at most
2n0/3, then applying the master theorem implies a total running time of O(n log n). Unfortunately,
there are trees where picking an arbitrary vertex as a pivot yields a single bucket of size n− 1.

Thus, consider the node N of T that is the first node reached by the walk from the root that
always goes to the child tree with the higher number of leaves, stopping when the subtree of T
rooted at N contains fewer than 2n/3 but at least n/3 leaves. Since T is strictly generating we have
that the partition into B1, . . . , Bk induced by any vertex v ∈ V (N) is such that any Bi contains less
than 2n/3 vertices. Indeed, for any u such that LCAT (u, v) is an ancestor of N and x ∈ V (N), we
have that w(u, v) < w(x, v), and so u and x belong to different parts of the partition B1, . . . , Bk.

Since the number of vertices in V (N) is at least n/3, the probability of picking one of them is
at least 1/3. Therefore, since the pivots are chosen independently, after c log n recursive calls, the
probability of not picking a vertex of V (N) as a pivot is 1/nΩ(c) for some large enough constant c.
Taking the union bound yields the theorem.

A.3 Beyond Structured Inputs

Since real-world inputs are unlikely to correspond exactly to our definition of ground-truth inputs
introduced in Section 2, we introduce the notion of δ-adversarially-perturbed ground-truth inputs.
This notion aims at accounting for noise in the data. We then design a simple and arguably
more reliable algorithm (a robust variant of Algorithm 8) that achieves a δ-approximation for δ-
adversarially-perturbed ground-truth inputs in O(n(n+m)) time. An interesting property of this
algorithm is that its approximation guarantee is the same for any admissible objective function.

We first introduce the definition of δ-adversarially-perturbed ground-truth inputs. For any real
δ ≥ 1, we say that a weighted graph G = (V,E,w) is a δ-adversarially-perturbed ground-truth input
if there exists an ultrametric (X, d), such that V ⊆ X, and for every x, y ∈ V, x 6= y, e = {x, y}
exists, and f(d(x, y)) ≤ w(e) ≤ δf(d(x, y)), where f : R+ → R+ is a non-increasing function.
This defines δ-adversarially-perturbed ground-truth inputs for similarity graphs and an analogous
definition applies for dissimilarity graphs.

We now introduce a robust, simple version of Algorithm 8 that returns a δ-approximation if the
input is a δ-adversarially-perturbed ground-truth inputs. Algorithm 8 was partitioning the input
graph based on a single, random vertex. In this slightly more robust version, the partition is built
iteratively: Vertices are added to the current part if there exists at least one vertex in the current
part or in the parts that were built before with which they share an edge of high enough weight
(see Algorithm 9 for a complete description).

Theorem 15. For any admissible objective function, Algorithm 9 returns a δ-approximation if the
input is a δ-adversarially-perturbed ground-truth input.

To prove the theorem we introduce the following lemma whose proof is temporarily deferred.
The lemma states that the tree built by the algorithm is almost generating (up to a factor of δ in
the edge weights).

Lemma 9. Let T be a tree output by Algorithm 9, let N be the set of internal nodes of T . For any
node N with children N1, N2 there exists a function ω : N 7→ R+, such that for any u ∈ V (N1), v ∈
V (N2), ω(N) ≤ w(u, v) ≤ δω(N). Moreover, for any nodes N,N ′, if N ′ is an ancestor of N , we
have that ω(N) ≥ ω(N ′).
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Algorithm 9 Robust and Simple Algorithm for Hierarchical Clustering on δ-adversarially-
perturbed ground-truth inputs (similarity setting)

1: Input: A graph G = (V,E), a weight function w : E 7→ R+, a parameter δ
2: p← arbitrary vertex of V
3: i← 0
4: Ṽi ← {p}
5: while Ṽi 6= V do
6: Let p1 ∈ Ṽi, p2 ∈ V \ Ṽi s.t. (p1, p2) is an edge of maximum weight in the cut (Ṽi, V \ Ṽi)
7: wi ← w(p1, p2)
8: Bi ← {u | w(p1, u) = wi}
9: while ∃u ∈ V \ (Ṽi ∪Bi) s.t. ∃v ∈ Bi ∪ Ṽi, w(u, v) ≥ wi do

10: Bi ← Bi ∪ {u}.
11: Ṽi+1 ← Ṽi ∪Bi
12: i← i+ 1

13: Let B1, . . . , Bk be the sets obtained
14: Apply the algorithm recursively on each G[Bi] and obtain a collection of trees T1, . . . , Tk
15: Define T ∗0 as a tree with p as a single vertex
16: For any 1 ≤ i ≤ k, define T ∗i to be the union of T ∗i−1 and Ti
17: return T ∗k

Assuming Lemma 9, the proof of Theorem 15 is as follows.

Proof of Theorem 15. Let G = (V,E), w : E 7→ R+ be the input graph and T ∗ be a tree of optimal
cost. By Lemma 9, the tree T output by the algorithm is such that for any node N with children
N1, N2 there exists a real ω(N), such that for any u ∈ V (N1), v ∈ V (N2), ω(N) ≤ w(u, v) ≤ δω(N).
Thus, consider the slightly different input graph G′ = (V,E,w′), where w′ : E 7→ R+ is defined as
follows. For any edge (u, v), define w′(u, v) = ω(LCAT (u, v)). Since by Lemma 9, for any nodes
N,N ′ of T , ifN ′ is an ancestor ofN , we have that ω(N) ≥ ω(N ′) and by Definition 2, T is generating
for G′. Thus, for any admissible cost function, we have that for G′, cost(T ;G′) ≤ cost(T ∗;G′).

Finally, observe that for any edge e, we have w′(e) ≤ w(e) ≤ δw′(e). It follows that cost(T ;G) ≤
δcost(T ;G′) for any admissible cost function and cost(T ∗;G′) ≤ cost(T ∗;G). Therefore, cost(T ;G) ≤
δcost(T ∗;G) = δOPT.

Proof of Lemma 9. We proceed by induction on the number of vertices in the graph (the base case
is trivial). Consider the first recursive call of the algorithm. We show the following claim.

Claim 3. For any 1 ≤ i ≤ k, for any y ∈ Ṽi, x ∈ Bi, wi ≥ w(x, y) ≥ wi/δ. Additionally, for any
x, y ∈ Bi, w(x, y) ≥ wi/δ.

We first argue that Claim 3 implies the lemma. Let T be the tree output by the algorithm.
Consider the nodes on the path from p to the root of T ; let Ni denote the node whose subtree is
the union of T ∗i−1 and Ti. By definition, V (T ∗i−1) = Ṽi and V (Ti) = Bi. Applying Claim 3 and
observing that wi > wi+1 implies that the lemma holds for all the nodes on the path. Finally,
since for any edge {u, v}, for u, v ∈ Bi, we also have w(u, v) ≥ wi/δ, combining with the inductive
hypothesis on Bi implies the lemma for all the nodes of the subtree Ti.
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Proof of Claim 3. Let (X, d) and f be a pair of ultrametric and function that is generating for G.

Fix i ∈ {1, . . . , k}. For any vertex x ∈ Bi, let σ(x) denote a vertex y that is in Ṽi or inserted to
Bi before x and such that w(y, x) ≥ wi. For any vertex v, let σi(x) denotes the vertex obtained
by applying σ i times to x (i.e., σ2(x) = σ(σ(x))). By definition of the algorithm, it holds that for

any x ∈ Bi, ∃s ≥ 1, such that σs(x) ∈ Ṽi.
Fix x ∈ Bi. For any y ∈ Ṽi, we have that w(y, x) ≤ wi since otherwise, the algorithm would

have added x before.
Now, let y ∈ Ṽi or y be inserted to Bi prior to x. We show that w(y, x) ≥ wi/δ. Observe that

since X, d is an ultrametric, d(x, y) ≤ max(d(x, σ(x)), d(σ(x), y)).
We now “follow” σ by applying the function σ to σ(x) and repeating until we reach σ`(x) = z ∈

Ṽi, for some `. Combining this with the definition of an ultrametric, it follows that

d(x, y) ≤ max(d(x, σ(x)), d(σ(x), σ2(x)), . . . , d(σ(x)`−1, z), d(z, y)).

If y was in Ṽi, we define ŷ = y. Otherwise y is also in Bi (and so was added to Bi before x).

We then proceed similarly as for x and “follow” σ. In this case, let ŷ = σk(y) ∈ Ṽi, for some k.
Applying the definition of an ultrametric again, we obtain

d(x, y) ≤ max(d(x, σ(x)), d(σ(x), σ2(x)), . . . , d(σ`−1, z), d(z, ŷ), d(y, σ(y)), . . . , d(σk−1(y), ŷ)).

Assume for now that d(z, ŷ) is not greater than the others. Applying the definition of a δ-
adversarially-perturbed input, we have that

δw(x, y) ≥ min(. . . , w(σa(x), σa+1(x)), . . . , w(σb(y), σb+1(y)), . . .).

Following the definition of σ, we have for all v that w(v, σ(v)) ≥ wi. Therefore, we conclude
δw(x, y) ≥ wi.

We thus turn to the case where d(z, ŷ) is greater than the others. Since both z, ŷ ∈ Ṽi, we have
that they belong to some Bj0 , Bj1 , where j0, j1 < i. We consider the minimum j such that a pair at

distance at least d(z, ŷ) was added to Ṽj . Consider such a pair u, v ∈ Ṽj satisfying d(u, v) ≥ d(z, ŷ)

and suppose w.l.o.g. that v ∈ Bj−1 (we could have either u ∈ Bj−1 or u ∈ Ṽj−1). Again, we

follow the path σ(v), σ(σ(v)), . . ., until we reach σr1(v) ∈ Ṽj−1, for some r1, and similarly for u:

σr2(u) ∈ Ṽj−1, for some r2. Applying the definition of an ultrametric this yields that

d(u, v) ≤ max(. . . , d(σa(u), σa+1(u)), . . . , d(σb(v), σb+1(v)), . . . , d(σr1(v), σr2(u))). (20)

Now the difference is that Ṽj−1 does not contain any pair at distance at least d(z, ŷ). Therefore,
we have d(σr1(v), σr2(u)) < d(z, ŷ). Moreover, recall that by definition of u, v, d(z, ŷ) ≤ d(u, v).
Thus, d(σr1(v), σr2(u)) is not the maximum in Equation (20) since it is smaller than the left-hand
side. Simplifying Equation (20) yields

d(x, y) < d(z, ŷ) ≤ d(u, v) ≤ max(. . . , d(σa(u), σa+1(u)), . . . , d(σb(v), σb+1(v)), . . .).

By definition of a δ-adversarially-perturbed input, we obtain δw(x, y) ≥ min` w(σ`(b), σ`+1(b)) ≥
wj . Now, it is easy to see that for j < i, wi < wj and therefore δw(x, y) ≥ wi.

We conclude that for any y ∈ Ṽi, x ∈ Bi, wi ≥ w(x, y) ≥ wi/δ and for x, y ∈ Bi, we have that
w(x, y) ≥ wi/δ, as claimed.
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B Worst-Case Analysis of Common Heuristics

The results presented in this section show that for both the similarity and dissimilarity settings, some
of the widely-used heuristics may perform badly. The proofs are neither difficult nor particularly
interesting, but the results stand in sharp contrast to those for structured inputs and help motivate
our study of inputs beyond worst case.

Similarity Graphs. We show that for very simple input graphs (i.e., unweighted trees), the
linkage algorithms (adapted to the similarity setting, see Algorithm 6) may perform badly.

Theorem 16. There exists an infinite family of inputs on which the single-linkage and complete-
linkage algorithms output a solution of cost Ω( n

logn ·OPT).

Proof. The family of inputs consists of the graphs that represent paths of length n > 2. More
formally, Let Gn be a graph on n vertices such that V = {v1, . . . , vn} and that has the following
edge weights. Let w(vi−1, vi) = w(vi, vi+1) = 1, for all 1 < i < n and for any i, j, j /∈ {i−1, i, i+1},
define w(vi, vj) = 0. Dasgupta [21] showed that OPT(Gn) = O(n log n).

Complete-Linkage. We show that the complete-linkage algorithm could perform a sequence
of merges that would induce a tree of cost Ω(n2). The complete-linkage algorithm is defined as
merging the two clusters Ci, Cj that maximize the W (Ci, Cj) = minu∈Ci,v∈Cj w(u, v).

Observe that in the instance created w(u, v) ∈ {0, 1}. So, w.l.o.g. the first merges done by
the algorithm will consist of vertices vi, vi+1, for i even since the similarity between these pairs of
clusters is 1 and so maximum. Let Vi/2 denote the cluster containing vi, vi+1. Now, observe that
for the resulting clusters, the similarity between them is 0 since w(u, v) = 0 for any u, v that are
not adjacent on the line and so the order of merges could be arbitrary.

Thus, the sequence of merges done by the algorithm could result in a hierarchical clustering tree
where the root node splits the nodes such that on the one side there are all the nodes in clusters
Vj such that j is even and on the other side all the nodes in clusters Vj such that j is odd. Since
the total number of edges between all the odd and even such clusters is Ω(n), the cost induced by
the root node of the tree output is Ω(n2).

Single-Linkage. Recall that the algorithm merges the two candidate clusters Ci, Cj that
maximize w(Ci, Cj) = maxu∈Ci,v∈Cj w(u, v).

At the beginning, each cluster contains a single vertex and so, the algorithm could merge any
two clusters {vi}, {vj} for j ∈ {i − 1, i + 1} since the edge weight is 1. Suppose w.l.o.g. that
the algorithm merges v1, v2, let V1 be this cluster. Then, observe that w(V1, v3) = 1 as well and
so the next merge can be V1, v3. An immediate induction shows that the hierarchical clustering
tree output by single linkage could be a caterpillar: namely, the first split at the root being a cut
V − vn, vn, the next split on G[V − vn] being V − vn − vn−1, vn−1 and so on. As observed by
Dasgupta [21], the cost of this tree is Ω(n2) and so the ratio between OPT and single linkage could
be as bad as Ω(n/ log n).

Theorem 17. There exists an infinite family of inputs on which the average-linkage algorithm
outputs a solution of cost Ω(n1/3OPT).

Proof. For any n = 2i for some integer i, we define a tree Tn = (V,E) as follows. Let k = n1/3.
Let P = (u1, . . . , uk) be a path of length k (i.e., for each 1 ≤ i < k, we have an edge between ui
and ui+1). For each ui, we define a collection Pi = {P i1 = (V i1 , E

i
1), . . . , P ik = (V ik , E

i
k)} of k paths
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of length k and for each P ij we connect one of its extremities to ui. Define Vi = {ui}
⋃
j V

i
j and

V =
⋃
i Vi.

Claim 4. OPT(Tn) ≤ 3n4/3

Proof. Consider the following non-binary solution tree T ∗: Let the root have children N1, . . . , Nk
such that V (Ni) = Vi and for each child Ni let it have children N j

i such that V (N j
i ) = V ji . Finally,

for each N j
i let the subtree rooted at N j

i be any tree.
We now analyze the cost of T ∗. Observe that for each edge e in the path P , we have |V (LCAT∗(e))| =

n. Moreover, for each edge e connecting a path P ij to ui, we have |V (LCAT∗(e))| = k2 = n2/3.

Finally, for each edge e whose both endpoints are in a path P ij , we have that |V (LCAT∗(e))| ≤ k =

n1/3.
We now sum up over all edges to obtain the overall cost of Tn. There are k = n1/3 edges in

P ; They incur a cost of nk = n4/3. There are k2 edges joining a vertex ui to a path P ij ; They

incur a cost of k2 · n2/3 = n4/3. Finally, there are k3 edges whose both endpoints are in a path
P ij ; they incur a cost of at most k3 · n1/3 = n4/3. Thus, the total cost of this tree is at most

3n4/3 ≥ OPT(Tn).

We now argue that there exists a sequence of merges performed by the average-linkage algorithm
that yields a solution of cost at least n5/3.

Claim 5. There exists a sequence of merges performed by average-linkage and an integer t such
that the candidate trees at time t have leaves sets {{u1, . . . , uk}}

⋃
i,j{V ij }.

Equipped with this claim, we can finish the proof of the proposition. Since there is no edge
between V ij and V i

′

j′ for i′ 6= i or j′ 6= j the similarity between those trees in the algorithm will

always be 0. However, the similarity between the tree T̃ that has leaves set {u1, . . . , uk} and any
other tree is positive (since there is one edge joining those two sets of vertices in Tn). Thus, the

algorithm will merge T̃ with some tree whose vertex set is exactly V ij for some i, j. For the same

reasons, the resulting cluster will be merged with a cluster whose vertex set is exactly V i
′

j′ , and

so on. Hence, after n/2k = k2/2 such merges, the tree T̃ has a leaves set of size k · k2/2 = n/2.
However, the number of edges from this cluster to the other candidate clusters is k2/2 (since each
other remaining clusters correspond to a vertex set V ij for some i, j) For each such edge e we have

|V (LCAT (e))| ≥ n/2. Since there are k2/2 of them, the resulting tree has cost Ω(n5/3). Combining
with Claim 4 yields the theorem.

We thus turn to the proof of Claim 5.

Proof of Claim 5. Given a graph G and a set of candidate trees C. Define G/C to be the graph
resulting from the contraction of all the edges for which both endpoints belong to the same cluster.
We show a slightly stronger claim. We show that for any graph G and candidate trees V such that

1. All the candidate clusters in V have the same size; and

2. There exists a bijection φ between vertices v ∈ Tn and vertices in G/C;
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There exists a sequence of merges and an integer t such that the candidate trees at time t have
leaves sets {{φ(u1), . . . , φ(uk)}}

⋃
i,j{φ(V ij )} where φ(V ij ) = {φ(v) | v ∈ V ij }.

This slightly stronger statement yields the claim by observing that Tn and the candidate trees
at the start of the algorithm satisfy the conditions of the statement.

We proceed by induction on the number of vertices of the graph. Let V ij = {vij(1), . . . , vij(k)}
such that (vij(`), v

i
j(`+ 1)) ∈ Eij for any 1 ≤ ` < k, and (vij(k), ui) ∈ E.

We argue that the algorithm could perform a sequence of merges that results in the following
set C of candidate trees. C contains candidate trees U i = φ(u2i−1)∪φ(u2i) for 1 ≤ i < k/2, and for
each i, j, candidate trees vi,j,` = φ(vij(2`− 1)∪ φ(vij(2`)), for 1 ≤ ` < k/2. Let s0 be the number of
vertices in each candidate tree.

At first, all the trees contain a single vertex and so, for each pair of adjacent vertices of the graph
the similarity between their corresponding trees in the algorithm is 1/s0. For any non-adjacent pair
of vertices, the corresponding trees have similarity 0. Thus, w.l.o.g. assume the algorithm first
merges u1, u2. Then, the similarity between the newly created tree U1 and any other candidate
tree C is 0 if there is no edge between u1 and u2 and C or 1/(2s0) if there is one (since U1

contains now two vertices). For the other candidate trees the similarity is unchanged. Thus, the
algorithm could merge vertices u3, u4. Now, observe that the similarity between U2 and U1 is at
most 1/(4s0). Thus, it is possible to repeat the argument assuming that the algorithm merges
the candidate trees corresponding to u5, u6. Repeating this argument k/2 times yields that after
k/2 merges, the algorithm has generated the candidates trees U1, . . . , Uk/2−1. The other candidate
trees still contain a single vertex. Thus, the algorithm is now forced to merge candidate trees that
contain single vertices that are adjacent (since their similarity is 1/s0 and any other similarity
is < 1/s0). Assume, w.l.o.g. assume that the algorithm merges v1

1(1), v1
1(2). Again, applying a

similar reasoning to each v1
1(2`− 1), v1

1(2`) yields the set of candidate clusters v1,1,1, . . . , v1,1,k/2−1.
Applying this argument to all sets V ij yields that the algorithm could perform a sequence of merges
that results in the set C of candidate clusters described above.

Now, all the clusters have size 2s0 and there exists a bijection between vertices of G/C and Tn/2.
Therefore, combining with the induction hypothesis yields the claim.

Dissimilarity Graphs. We now show that single-linkage, and bisection 2-Center might return
a solution that is arbitrarily bad compared to OPT in some cases. Hence, since average-linkage
achieves a 2/3-approximation in the worst-case it seems that it is more robust than the other
algorithms used in practice.

Theorem 18. For each of the single-linkage, and bisection 2-Center algorithms, there exists a
family of inputs for which the algorithm outputs a solution of value O(OPT/n).

Proof. We define the family of inputs for single-linkage and bisection 2-Center as follows. For any
n > 2, the graph Gn consists of n vertices V = {v1, . . . , vn−1, u} and the edge weights are the
following: For any i, j ∈ {1, . . . , n − 1}, w(vi, vj) = 1, for any 1 < i ≤ n − 1, w(vi, u) = 1, and
w(v1, u) = W for some fixed W ≥ n3. Consider the tree T ∗ whose root induces a cut (V \{u}, {u}).
Then, the value of this tree (and so OPT) is at least nW , since |V (LCAT∗(v1, u))| = n.

Single-Linkage. At the beginning, all the clusters are at distance 1 from each other except
v1 and u that are at distance W . Thus, suppose that the first merge generates a candidate tree
C1 whose leaves set is {v1, v2}. Now, since w(v2, u) = 1, we have that all the clusters are at
distance 1 from each other. Therefore, the next merge could possibly generate the cluster C2 with
leaves sets {u, v1, v2}. Assume w.l.o.g. that this is the case and let T be the tree output by the
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algorithm. We obtain |V (LCAT (u, v1))| = 3 and so, since for any vi, vj , |V (vi, vj)| ≤ n, we have
val(T ) ≤ n2 + 3W ≤ 4W , because W > n2. Hence, val(T ) = O(val(T ∗)/n).

Bisection 2-Center. It is easy to see that for any location of the two centers, the cost of
the clustering is 1. Thus, suppose that the algorithm locates centers at v2 and v3 and that the
induced partitioning is {v1, v2, u}, V \ {v1, v2, u}. It follows that |V (LCAT (u, v1))| ≤ 3 and so,
val(T ) ≤ n2 + 3W ≤ 4W , since W > n2. Again, val(T ) = O(val(T ∗)/n).
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