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Abstract

Hierarchical clustering is a recursive partitioning of
a dataset into clusters at an increasingly finer gran-
ularity. Motivated by the fact that most work on
hierarchical clustering was based on providing algo-
rithms, rather than optimizing a specific objective,
[19] framed similarity-based hierarchical clustering
as a combinatorial optimization problem, where a
‘good’ hierarchical clustering is one that minimizes
some cost function. He showed that this cost function
has certain desirable properties, such as in order to
achieve optimal cost, disconnected components must
be separated first and that in ‘structureless’ graphs,
i.e., cliques, all clusterings achieve the same cost.

We take an axiomatic approach to defining
‘good’ objective functions for both similarity and
dissimilarity-based hierarchical clustering. We char-
acterize a set of admissible objective functions (that
includes the one introduced by Dasgupta) that have
the property that when the input admits a ‘natu-
ral’ ground-truth hierarchical clustering, the ground-
truth clustering has an optimal value.

Equipped with a suitable objective function, we
analyze the performance of practical algorithms, as
well as develop better and faster algorithms for hi-
erarchical clustering. For similarity-based hierarchi-
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cal clustering, [19] showed that a simple recursive

sparsest-cut based approach achieves an Oplog3{2 nq-
approximation on worst-case inputs. We give a more
refined analysis of the algorithm and show that it
in fact achieves an Op

?
log nq-approximation1. This

improves upon the LP-based Oplog nq-approximation
of [33]. For dissimilarity-based hierarchical cluster-
ing, we show that the classic average-linkage algo-
rithm gives a factor 2 approximation, and provide a
simple and better algorithm that gives a factor 3{2
approximation. This aims at explaining the success
of these heuristics in practice. Finally, we consider a
‘beyond-worst-case’ scenario through a generalisation
of the stochastic block model for hierarchical cluster-
ing. We show that Dasgupta’s cost function also has
desirable properties for these inputs and we provide a
simple algorithm that for graphs generated according
to this model yields a 1 + o(1) factor approximation.

1 Introduction

A hierarchical clustering is a recursive partitioning of
a dataset into successively smaller clusters. The in-
put is a weighted graph whose edge weights represent
pairwise similarities or dissimilarities between data-
points. A hierarchical clustering is represented by
a rooted tree where each leaf represents a datapoint
and each internal node represents a cluster containing
its descendant leaves. Computing a hierarchical clus-
tering is a fundamental problem in data analysis; it
is routinely used to analyze, classify, and pre-process
large datasets. A hierarchical clustering provides use-
ful information about data that can be used, e.g., to
divide a digital image into distinct regions of different

1[16] independently proved that the sparsest-cut based

approach achieves a Op
?

lognq approximation.
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granularities, to identify communities in social net-
works at various societal levels, or to determine the
ancestral tree of life. Developing robust and efficient
algorithms for computing hierarchical clusterings is of
importance in several research areas, such as machine
learning, big-data analysis, and bioinformatics.

Compared to flat partition-based clustering (the
problem of dividing the dataset into k parts), hier-
archical clustering has received significantly less at-
tention from a theory perspective. Partition-based
clustering is typically framed as minimizing a well-
defined objective such as k-means, k-medians, etc.
and (approximation) algorithms to optimize these ob-
jectives have been a focus of study for at least two
decades. On the other hand, hierarchical clustering
has rather been studied at a more procedural level in
terms of algorithms used in practice. Such algorithms
can be broadly classified into two categories, agglom-
erative heuristics which build the candidate cluster
tree bottom up, e.g., average-linkage, single-linkage,
and complete-linkage, and divisive heuristics which
build the tree top-down, e.g., bisection k-means, re-
cursive sparsest-cut etc. Dasgupta [19] identified the
lack of a well-defined objective function as one of the
reasons why the theoretical study of hierarchical clus-
tering has lagged behind that of partition-based clus-
tering.

Defining a Good Objective Function. What is a
‘good’ output tree for hierarchical clustering? Let us
suppose that the edge weights represent similarities
(similar datapoints are connected by edges of high
weight)2. Dasgupta [19] frames hierarchical cluster-
ing as a combinatorial optimization problem, where
a good output tree is a tree that minimizes some cost
function; but which function should that be? Each
(binary) tree node is naturally associated to a cut
that splits the cluster of its descendant leaves into the
cluster of its left subtree on one side and the cluster
of its right subtree on the other, and Dasgupta de-
fines the objective to be the sum, over all tree nodes,
of the total weight of edges crossing the cut multi-
plied by the cardinality of the node’s cluster. In what
sense is this good? Dasgupta argues that it has sev-
eral attractive properties: (1) if the graph is discon-
nected, i.e., data items in different connected compo-
nents have nothing to do with one another, then the
hierarchical clustering that minimizes the objective
function begins by first pulling apart the connected
components from one another; (2) when the input is
a (unit-weight) clique then no particular structure is

2This entire discussion can equivalently be phrased in terms

of dissimilarities without changing the essence.

favored and all binary trees have the same cost; and
(3) the cost function also behaves in a desirable man-
ner for data containing a planted partition. Finally,
an attempt to generalize the cost function leads to
functions that violate property (2).

In this paper, we take an axiomatic approach
to defining a ‘good’ cost function. We remark that
in many applications, for example in phylogenetics,
there exists an unknown ‘ground truth’ hierarchical
clustering— the actual ancestral tree of life—from
which the similarities are generated (possibly with
noise), and the goal is to infer the underlying ground
truth tree from the available data. In this sense,
a cluster tree is good insofar as it is isomorphic to
the (unknown) ground-truth cluster tree, and thus
a natural condition for a ‘good’ objective function
is one such that for inputs that admit a ‘natural’
ground-truth cluster tree, the value of the ground-
truth tree is optimal. We provide a formal definition
of inputs that admit a ground-truth cluster tree in
Section 2.2.

We consider, as potential objective functions, the
class of all functions that sum, over all the nodes of
the tree, the total weight of edges crossing the as-
sociated cut times some function of the cardinalities
of the left and right clusters (this includes the class
of functions considered by Dasgupta [19]). In Sec-
tion 3 we characterize the ‘good’ objective functions
in this class and call them admissible objective func-
tions. We prove that for any objective function, for
any ground-truth input, the ground-truth tree has
optimal cost (w.r.t to the objective function) if and
only if the objective function (1) is symmetric (in-
dependent of the left-right order of children), (2) is
increasing in the cardinalities of the child clusters,
and (3) for (unit-weight) cliques, has the same cost
for all binary trees (Theorem 3.1). Dasgupta’s ob-
jective function is admissible in terms of the criteria
described above.

In Section 5, we consider random graphs that
induce a natural clustering. This model can be seen
as a noisy version of our notion of ground-truth inputs
and a hierarchical stochastic block model. We show
that the ground-truth tree has optimal expected cost
for any admissible objective function. Furthermore,
we show that the ground-truth tree has cost at most
p1`op1qqOPT with high probability for the objective
function introduced by Dasgupta [19].

Algorithmic Results The objective functions iden-
tified in Section 3 allow us to (1) quantitatively com-
pare the performances of algorithms used in practice
and (2) design better and faster approximation algo-
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rithms.3

Algorithms for Similarity Graphs: Das-
gupta [19] shows that the recursive φ-approximate
sparsest cut algorithm, that recursively splits the in-
put graph using a φ-approximation to the sparsest
cut problem, outputs a tree whose cost is at most
Opφ log n ¨OPTq. Roy and Pokutta [33] recently gave
an Oplog nq-approximation by providing a linear pro-
gramming relaxation for the problem and providing
a clever rounding technique. Charikar and Chatzi-
afratis [16] showed that the recursive φ-sparsest cut
algorithm of Dasgupta gives an Opφq-approximation.
In Section 4, we obtain an independent proof show-
ing that the φ-approximate sparsest cut algorithm is
an Opφq-approximation (Theorem 4.1)4. Our proof
is quite different from the proof of [16] and relies on
a charging argument. Combined with the celebrated
result of Arora et al. [2], this yields an Op

?
log nq-

approximation. The results stated here apply to Das-
gupta’s objective function; the approximation algo-
rithms extend to other objective functions, though
the ratio depends on the specific function being used.
We conclude our analysis of the worst-case setting by
showing that all the linkage-based algorithms com-
monly used in practice can perform rather poorly on
worst-case inputs (see Sec. ??).

Algorithms for Dissimilarity Graphs: Many
of the algorithms commonly used in practice, e.g.,
linkage-based methods, assume that the input is pro-
vided in terms of pairwise dissimilarity (e.g., points
that lie in a metric space). As a result, it is of in-
terest to understand how they fare when compared
using admissible objective functions for the dissimi-
larity setting. When the edge weights of the input
graph represent dissimilarities, the picture is consid-
erably different from an approximation perspective.
For the analogue of Dasgupta’s objective function in
the dissimilarity setting, we show that the average-
linkage algorithm (see Algorithm 3) achieves a 2-
approximation (Theorem 6.1). This stands in con-
trast to other practical heuristic-based algorithms,
which may have an approximation guarantee as bad
as Ωpn1{4q (see [17]). Thus, using this objective-
function based approach, one can conclude that the

3For the objective function proposed in his work, Das-

gupta [19] shows that finding a cluster tree that minimizes
the cost function is NP-hard. This directly applies to the ad-

missible objective functions for the dissimilarity setting as well.
Thus, the focus turns to developing approximation algorithms.

4Our analysis shows that the algorithm achieves a

6.75φ-approximation and the analysis of [16] yields a 8φ-

approximation guarantee. This minor difference is of limited
impact since the best approximation guarantee for sparsest-cut

is Op
?

lognq.

average-linkage algorithm is the more robust of the
practical algorithms, perhaps explaining its success in
practice. We also provide a new, simple, and better
algorithm, the locally densest-cut algorithm,5 which
we show gives a 3{2-approximation (Theorem 6.3).
Our results extend to any admissible objective func-
tion, though the exact approximation factor depends
on the specific choice.

Structured Inputs and Beyond-Worst-Case
Analysis: The recent work of Roy and Pokutta [33]
and Charikar and Chatziafratis [16] have shown
that obtaining constant approximation guarantees for
worst-case inputs is beyond current techniques (see
Section 1.2). Thus, we consider inputs that admit a
‘natural’ ground-truth cluster tree. For such inputs,
we show that essentially all the practical algorithms
do the right thing, in that they recover the ground-
truth cluster tree. Since real-world inputs might ex-
hibit a noisy structure, we consider more general sce-
narios:

• We consider a natural generalization of the clas-
sic stochastic block model that generates random
graphs with a hidden ground-truth hierarchical
clustering. We provide a simple algorithm based
on singular value decomposition (SVD) and ag-
glomerative methods that achieves a p1` op1qq-
approximation for Dasgupta’s objective function
(in fact, it recovers the ground-truth tree) with
high probability. Interestingly, this algorithm is
very similar to approaches used in practice for
hierarchical clustering.

• We introduce the notion of a δ-adversarially per-
turbed ground-truth input, which can be viewed
as being obtained from a small perturbation to
an input that admits a natural ground truth
cluster tree. This approach bears similarity to
the stability-based conditions used by Balcan et
al. [8] and Bilu and Linial [12]. We provide an al-
gorithm that achieves a δ-approximation in both
the similarity and dissimilarity settings, indepen-
dent of the objective function used as long as it
is admissible according to the criteria used in
Section 3.

1.1 Summary of Our Contributions Our work
makes significant progress towards providing a more
complete picture of objective-function based hierar-
chical clustering and understanding the success of the
classic heuristics for hierarchical clustering.

5We say that a cut pA,Bq is locally dense if moving a vertex
from A to B or from B to A does not increase the density of

the cut. One could similarly define locally-sparsest-cut.
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• Characterization of ‘good’ objective functions.
We prove that for any ground-truth input, the
ground-truth tree has strictly optimal cost for an
objective function if and only if, the objective
function (1) is symmetric (independent of the
left-right order of children), (2) is monotone in
the cardinalities of the child clusters, and (3) for
unit-weight cliques, gives the same weight to all
binary trees (Theorem 3.1). We refer to such
objective functions as admissible; according to
these criteria Dasgupta’s objective function is
admissible.

• Worst-case approximation. First, for similarity-
based inputs, we provide a new proof that the
recursive φ-approximate sparsest cut algorithm
is an Opφq-approximation (hence an Op

?
log nq-

approximation) (Theorem 4.1) for Dasgupta’s
objective function. Second, for dissimilarity-
based inputs, we show that the classic average-
linkage algorithm is a 2-approximation (Theo-
rem 6.1), and provide a new algorithm which we
prove is a 3{2-approximation (Theorem 6.3). All
those results extend to other cost functions but
the approximation ratio is function-dependent.

• Beyond worst-case. First, stochastic models. We
consider the hierarchical stochastic block model
(Definition 5). We give a simple algorithm based
on SVD and classic agglomerative methods that,
with high probability, recovers the ground-truth
tree and show that this tree has cost that is
p1`op1qqOPT with respect to Dasgupta’s objec-
tive function (Theorem 5.2). Second, adversarial
models. We introduce the notion of δ-perturbed
inputs, obtained by a small adversarial pertur-
bation to ground-truth inputs, and give a simple
δ-approximation algorithm (Theorem 7.5).

• Perfect inputs, perfect reconstruction. For
ground-truth inputs, we note that the algorithms
used in practice (the linkage algorithms, the bi-
section 2-centers, etc.) correctly reconstruct a
ground truth tree (Theorems 7.1, 7.2, 7.3). We
introduce a simple, faster algorithm that is also
optimal on ground-truth inputs (Theorem 7.4).

Techniques: A key observation that is used in
several of our results is that ultrametrics are the nat-
ural notion to model perfect inputs for hierarchical
clustering. (Although the output of our algorithms
(and that of Dasgupta [19]) are trees and not
ultrametrics, it is easy to see that data arising from
tree metrics does not exhibit perfect hierarchical
stucture.) The use of ultrametrics in this context

is motivated by the fact that they exhibit a strong
relationship with hierarchical clustering heuristics
(see [14]). We use ultrametrics to define ideal inputs
for hierarchical clustering (Section 2) and to identify
“good” objective functions (Section 3). We also
use them to introduce a random graph model for
hierarchical clustering (Section 5). Elsewhere, we
use techniques such as concentration of measure
phenomena and charging schemes for analysing
approximation ratios in our results.

Proofs. Due to space limitations most proofs are
omitted from this extended abstract and appear in
the full version [17].

1.2 Related Work The recent paper of Das-
gupta [19] served as the starting point of this work.
Dasgupta [19] defined an objective function for hi-
erarchical clustering and thus formulated the ques-
tion of constructing a cluster tree as a combinato-
rial optimization problem. Dasgupta also showed
that the resulting problem is NP-hard and that
the recursive φ-sparsest-cut algorithm achieves an
Opφ log nq-approximation. Dasgupta’s results have
been improved in two subsequent papers. Roy and
Pokutta [33] wrote an integer program for the hi-
erarchical clustering problem using a combinatorial
characterization of the ultrametrics induced by Das-
gupta’s cost function. They also provide a spread-
ing metric LP and a rounding algorithm based
on sphere/region-growing that yields an Oplog nq-
approximation. Finally, they show that no polyno-
mial size SDP can achieve a constant factor approxi-
mation for the problem and that under the Small Set
Expansion (SSE) hypothesis, no polynomial-time al-
gorithm can achieve a constant factor approximation.

Charikar and Chatizafratis [16] also gave a proof
that the problem is hard to approximate within
any constant factor under the Small Set Expan-
sion hypothesis. They also proved that the recur-
sive φ-sparsest cut algorithm produces a hierarchi-
cal clustering with cost at most OpφOPTq; their
techniques appear to be significantly different from
ours. Additionally, [16] introduce a spreading metric
SDP relaxation for the hierarchical clustering prob-
lem introduced by Dasgupta that has integrality gap
Op
?

log nq and a spreading metric LP relaxation that
yields an Oplog nq-approximation to the problem.

On hierarchical clustering more broadly.
There is an extensive literature on hierarchical clus-
tering and its applications. It will be impossible to
discuss most of it here; for some applications the
reader may refer to e.g., [25, 34, 23, 15]. Algorithms
for hierarchical clustering have received a lot of at-
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tention from a practical perspective. For a definition
and overview of agglomerative algorithms (such as
average-linkage, complete-linkage, and single-linkage)
e.g., [24] and for divisive algorithms see e.g., [35].

Most previous theoretical work on hierarchical
clustering aimed at evaluating the cluster tree output
by the linkage algorithms using the traditional ob-
jective functions for partition-based clustering, e.g.,
considering k-median or k-means cost of the clusters
induced by the top levels of the tree e.g., [32, 20, 28].
Previous work also proved that average-linkage can
be useful to recover an underlying partition-based
clustering when it exists under certain stability con-
ditions [8, 9]. The approach of this paper is different:
we aim at associating a cost or a value to each hier-
archical clustering and finding the best hierarchical
clustering with respect to these objective functions.

In Section 3, we take an axiomatic approach to-
ward objective functions. Axiomatic approach to-
ward a qualitative analysis of algorithms for clus-
tering where taken before. For example, the cele-
brated result of Kleinberg [26] (see also [37]) showed
that there is no algorithm satisfying three natural
axioms simultaneously. This approach was applied
to hierarchical clustering algorithms by Carlsson and
M’emoli [14] who showed that in the case of hierar-
chical clustering one gets a positive result, unlike the
impossibility result of Kleinberg. Their focus was on
finding an ultrametric (on the datapoints) that is the
closest to the metric (in which the data lies) in terms
of the Gromov-Hausdorf distance. Our approach is
completely different as we focus on defining objective
functions and use these for quantitative analyses of
algorithms.

Our condition for inputs to have a ground-truth
cluster tree, and especially their δ-adversarially per-
turbed versions, can be to be in the same spirit as
that of the stability condition of Bilu and Linial [12]
or Bilu et al. [11]: the input induces a natural clus-
tering to be recovered whose cost is optimal. It bears
some similarities with the “strict separation” con-
dition of Balcan et al. [8], while we do not require
the separation to be strict, we do require some ad-
ditional hierarchical constraints. There are a variety
of stability conditions that aim at capturing some
of the structure that real-world inputs may exhibit
e.g., [4, 7, 8, 31]. Some of them induce a condition
under which an underlying clustering can be mostly
recovered e.g., [12, 6, 7], for deterministic conditions
and e.g., [1, 13, 21, 18, 10] for probabilistic con-
ditions). Imposing other conditions allows one to
bypass hardness-of-approximation results for classi-
cal clustering objectives (such as k-means), and de-
sign efficient approximation algorithms e.g., [3, 5, 27].

Eldridge et al. [22] also investigate the question of
understanding hierarchical cluster trees for random
graphs generated from graphons. Their goal is quite
different from ours—they consider the “single-linkage
tree” obtained using the graphon as the ground-truth
tree and investigate how a cluster tree that has low
merge distortion with respect to this single-linkage
tree can be obtained.6 This is quite different from
the approach taken in our work which is primarily
focused on understanding performance with respect
to admissible cost functions.

2 Preliminaries

2.1 Notation An undirected weighted graph G “
pV,E,wq is defined by a finite set of vertices V , a
set of edges E Ď ttu, vu | u, v P V u and a weight
function w : E Ñ R`, where R` denotes non-
negative real numbers. We will only consider graphs
with positive weights in this paper. To simplify
notation (and since the graphs are undirected) we let
wpu, vq “ wpv, uq “ wptu, vuq. When the weights on
the edges are not pertinent, we simply denote graphs
as G “ pV,Eq. When G is clear from the context, we
denote |V | by n and |E| by m. We define GrU s to be
the subgraph induced by the nodes of U .

A cluster tree or hierarchical clustering T for
graph G is a rooted binary tree with exactly |V |
leaves, each of which is labeled by a distinct vertex
v P V .7 Given a graph G “ pV,Eq and a cluster tree
T for G, for nodes u, v P V we denote by LCAT pu, vq
the lowest common ancestor (furthest from the root)
of u and v in T .

For any internal node N of T , we denote the
subtree of T rooted at N by TN .8 Moreover, for any
node N of T , define V pNq to be the set of leaves of the
subtree rooted at N . Additionally, for any two trees
T1, T2, define the union of T1, T2 to be the tree whose
root has two children C1, C2 such that the subtree
rooted at C1 is T1 and the subtree rooted at C2 is T2.

Finally, given a weighted graph G “ pV,E,wq,
for any set of vertices A Ď V , let wpAq “
ř

a,bPA wpa, bq and for any set of edges E0, let
wpE0q “

ř

ePE0
wpeq. Finally, for any sets of vertices

6This is a simplistic characterization of their work. How-
ever, a more precise characterization would require introducing
a lot of terminology from their paper, which is not required in
this paper.

7In general, one can look at trees that are not binary.
However, it is common practice to use binary trees in the

context of hierarchical trees. Also, for results presented in

this paper nothing is gained by considering trees that are not
binary.

8For any tree T , when we refer to a subtree T 1 (of T ) rooted

at a node N , we mean the connected subgraph containing all
the leaves of T that are descendant of N .
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A,B Ď V , let wpA,Bq “
ř

aPA,bPB wpa, bq.

2.2 Ultrametrics

Definition 1. (Ultrametric) A metric space
pX, dq is an ultrametric if for every x, y, z P X,
dpx, yq ď maxtdpx, zq, dpy, zqu.

Similarity Graphs Generated from Ultramet-
rics We say that a weighted graph G “ pV,E,wq is
a similarity graph generated from an ultrametric, if
there exists an ultrametric pX, dq, such that V Ď X,
and for every x, y P V, x ‰ y, e “ tx, yu exists, and
wpeq “ fpdpx, yqq, where f : R` Ñ R` is a non-
increasing function.9

Dissimilarity Graphs Generated from Ultra-
metrics We say that a weighted graphG “ pV,E,wq
is a dissimilarity graph generated from an ultramet-
ric, if there exists an ultrametric pX, dq, such that
V Ď X, and for every x, y P V, x ‰ y, e “ tx, yu
exists, and wpeq “ fpdpx, yqq, where f : R` Ñ R` is
a non-decreasing function.

Minimal Generating Ultrametric For a weighted
undirected graph G “ pV,E,wq generated from
an ultrametric (either similarity or dissimilarity),
in general there may be several ultrametrics and
corresponding functions f mapping distances in the
ultrametric to weights on the edges, that generate the
same graph. It is useful to introduce the notion of a
minimal ultrametric that generates G.

We focus on similarity graphs here; the notion
of minimal generating ultrametric for dissimilarity
graphs is easily obtained by suitable modifications.
Let pX, dq be an ultrametric that generates G “

pV,E,wq and f the corresponding function mapping
distances to similarities. Then we consider the
ultrametric pV, rdq defined as follows: (i) rdpu, uq “ 0
and (ii) for u ‰ v,

rdpu, vq “ rdpv, uq

“ max
u1,v1

tdpu1, v1q | fpdpu1, v1qq “ fpdpu, vqqu(2.1)

It remains to be seen that pV, rdq is indeed an ultra-

metric. First, notice that by definition, rdpu, vq ě

dpu, vq and hence clearly rdpu, vq “ 0 if and only if u “
v as d is the distance in an ultrametric. The fact that
rd is symmetric is immediate from the definition. The
only part remaining to check is the so called isosceles
triangles with longer equal sides conditions—the ul-
trametric requirement that for any u, v, w, dpu, vq ď

9In some cases, we will say that e “ tx, yu R E, if wpeq “ 0.

This is fine as long as fpdpx, yqq “ 0.

maxtdpu,wq, dpv, wqu implies that all triangles are
isosceles and the two sides that are equal are at least
as large as the third side. Let u, v, w P V , and
assume without loss of generality that according to
the distance d of pV, dq, dpu,wq “ dpv, wq ě dpu, vq.

From (2.1) it is clear that rdpu,wq “ rdpv, wq ě dpu,wq.
Also, from (2.1) and the non-increasing nature of f

it is clear that if dpu, vq ď dpu1, v1q, then rdpu, vq ď
rdpu1, v1q. Thence, pV, rdq is an ultrametric. The ad-
vantage of considering the minimal ultrametric is the
following: if D “ trdpu, vq | u, v P V, u ‰ vu and
W “ twpu, vq | u, v P V, u ‰ vu, then the restriction
of f from D ÑW is actually a bijection. This allows
the notion of a generating tree to be defined in terms
of distances in the ultrametric or weights, without
any ambiguity. Applying an analogous definition and
reasoning yields a similar notion for the dissimilarity
case.

Definition 2. (Generating Tree) Let
G “ pV,E,wq be a graph generated by a min-
imal ultrametric pV, dq (either a similarity or
dissimilarity graph). Let T be a rooted binary tree
with |V | leaves and |V | ´ 1 internal nodes; let N
denote the internal nodes and L the set of leaves
of T and let σ : L Ñ V denote a bijection between
the leaves of T and nodes of V . We say that T
is a generating tree for G, if there exists a weight
function W : N Ñ R`, such that for N1, N2 P N ,
if N1 appears on the path from N2 to the root,
W pN1q ď W pN2q. Moreover for every x, y P V ,
wptx, yuq “W pLCAT pσ

´1pxq, σ´1pyqqq.

The notion of a generating tree defined above
more or less corresponds to what is referred to as
a dendogram in the machine learning literature e.g.,
[14]. More formally, a dendogram is a rooted tree
(not necessarily binary), where the leaves represent
the datapoints. Every internal node in the tree has
associated with it a height function h which is the
distance between any pairs of datapoints for which it
is the least common ancestor. It is a well-known fact
that a set of points in an ultrametric can be repre-
sented using a dendogram e.g., [14]. A dendogram
can easily be modified to obtain a generating tree in
the sense of Definition 2: an internal node with k
children is replace by an arbitrary binary tree with k
leaves and the children of the nodes in the dendogram
are attached to these k leaves. The height h of this
node is used to give the weight W “ fphq to all the
k´ 1 internal nodes added when replacing this node.
Figure 1 shows this transformation.

Ground-Truth Inputs
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v1 v2 v3 v4

h

h1

(a) Dendogram on 4 nodes.

fph1q

fphq fph1q

v1 v2 v3 v4

(b) Generating tree equivalent to dendogram

Figure 1: Dendogram and equivalent generating tree.

Definition 3. (Ground-Truth Input.) We say
that a graph G is a ground-truth input if it is a sim-
ilarity or dissimilarity graph generated from an ul-
trametric. Equivalently, there exists a tree T that is
generating for G.

Motivation. We briefly describe the motivation
for defining graphs generated from an ultrametric as
ground-truth inputs. We’ll focus the discussion on
similarity graphs, though essentially the same logic
holds for dissimilarity graphs. As described earlier,
there is a natural notion of a generating tree associ-
ated with graphs generated from ultrametrics. This
tree itself can be viewed as a cluster tree. The clusters
obtained using the generating tree have the property
that any two nodes in the same cluster are at least
as similar to each other as they are to points outside
this cluster; and this holds at every level of gran-
ularity. Furthermore, as observed by Carlsson and
M’emoli [14], many practical hierarchical clustering
algorithms such as the linkage based algorithms, ac-
tually output a dendogram equipped with a height
function, that corresponds to an ultrametric embed-
ding of the data. While their work focuses on al-
gorithms that find embeddings in ultrametrics, our
work focuses on finding cluster trees. We remark that
these problems are related but also quite different.

Furthermore, our results show that the linkage
algorithms (and some other practical algorithms), re-
cover a generating tree when given as input graphs
that are generated from an ultrametric. Finally, we
remark that relaxing the notion further leads to in-
stances where it is hard to define a ‘natural’ ground-
truth tree. Consider a similarity graph generated by
a tree-metric rather than an ultrametric, where the
tree is the caterpillar graph on 5 nodes (see Fig. 2(a)).
Then, it is hard to argue that the tree shown in
Fig. 2(b) is not a more suitable cluster tree. For
instance, D and E are more similar to each other
than D is to B or A. In fact, it is not hard to
show that by choosing a suitable function f mapping

distances from this tree metric to similarities, Das-
gupta’s objective function is minimized by the tree
shown in Fig. 2(b), rather than the ‘generating’ tree
in Fig. 2(a).

3 Quantifying Output Value: An Axiomatic
Approach

3.1 Admissible Cost Functions Let us focus on
the similarity case; in this case we use cost and
objective interchangeably. Let G “ pV,E,wq be an
undirected weighted graph and let T be a cluster tree
for graph G. We want to consider cost functions
for cluster trees that capture the quality of the
hierarchical clustering produced by T . Following the
recent work of Dasgupta [19], we adopt an approach
in which a cost is assigned to each internal node of
the tree T that corresponds to the quality of the split
at that node.

The Axiom. A natural property we would like the
cost function to satisfy is that a cluster tree T has
minimum cost if and only if T is a generating tree
for G. Indeed, the objective function can then be
used to indicate whether a given tree is generating
and so, whether it is an underlying ground-truth
hierarchical clustering. Hence, the objective function
acts as a “guide” for finding the correct hierarchical
classification. Note that there may be multiple trees
that are generating for the same graph. For example,
if G “ pV,E,wq is a clique with every edge having the
same weight then every tree is a generating tree. In
these cases, all the generating tree are valid ground-
truth hierarchical clusterings.

Following Dasgupta [19], we restrict the search
space for such cost functions. For an internal node
N in a clustering tree T , let A,B Ď V be the leaves
of the subtrees rooted at the left and right child of
N respectively. We define the cost Γ of the tree T as
the sum of the cost at every internal node N in the
tree, and at an individual node N we consider cost
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Figure 2: (a) Caterpillar tree on 5 nodes with unit-weight edges used to define a tree metric. (b) A candidate
cluster tree for the data generated using the tree metric

functions γ of the form

ΓpT q “
ÿ

N

γpNq,(3.2)

γpNq “

˜

ÿ

xPA,yPB

wpx, yq

¸

¨ gp|A|, |B|q(3.3)

We remark that Dasgupta [19] defined gpa, bq “ a`b.

Definition 4. (Admissible Cost Function)
We say that a cost function γ of the form (3.2,3.3)
is admissible if it satisfies the condition that for
all similarity graphs G “ pV,E,wq generated from
a minimal ultrametric pV, dq, a cluster tree T for
G achieves the minimum cost if and only if it is a
generating tree for G.

Remark 1. Analogously, for the dissimilarity set-
ting we define admissible value functions to be the
functions of the form (3.2,3.3) that satisfy: for all
dissimilarity graph G generated from a minimal ul-
trametric pV, dq, a cluster tree T for G achieves the
maximum value if and only if it is a generating tree
for G.

Remark 2. The RHS of (3.3) has linear dependence
on the weight of the cut pA,Bq in the subgraph of
G induced by the vertex set A Y B as well as on
an arbitrary function of the number of leaves in the
subtrees of the left and right child of the internal
node creating the cut pA,Bq. For the purpose of
hierarchical clustering this form is fairly natural and
indeed includes the specific cost function introduced
by Dasgupta [19]. We could define the notion of
admissibility for other forms of the cost function
similarly and it would be of interest to understand
whether they have properties that are desirable from
the point of view of hierarchical clustering.

3.2 Characterizing Admissible Cost Func-
tions In this section, we give an almost complete
characterization of admissible cost functions of the
form (3.3). The following theorem shows that cost
functions of this form are admissible if and only if
they satisfy three conditions: that all cliques must
have the same cost, symmetry and monotonicity.

Theorem 3.1. Let γ be a cost function of the
form (3.3) and let g be the corresponding function
used to define γ. Then γ is admissible if and only if
it satisfies the following three conditions.

1. Let G “ pV,E,wq be a clique, i.e., for every
x, y P V , e “ tx, yu P E and wpeq “ 1 for every
e P E. Then the cost ΓpT q for every cluster tree
T of G is identical.

2. For every n1, n2 P N, gpn1, n2q “ gpn2, n1q.

3. For every n1, n2 P N, gpn1 ` 1, n2q ą gpn1, n2q.

3.2.1 Characterizing g that satisfy conditions
of Theorem 3.1 Theorem 3.1 give necessary and
sufficient conditions on g for cost functions of the
form (3.3) be admissible. However, it leaves open
the question of the existence of functions satisfying
the criteria and also characterizing the functions
g themselves. The fact that such functions exist
already follows from the work of Dasgupta [19],
who showed that if gpn1, n2q “ n1 ` n2, then all
cliques have the same cost. Clearly, g is monotone
and symmetric and thus satisfies the condition of
Theorem 3.1.

In order to give a more complete characterization,
we define g as follows: Suppose gp¨, ¨q is symmetric,
we define gpn, 1q for all n ě 1 so that gpn, 1q{pn` 1q
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Figure 3: The caterpillar cluster tree for a clique
with 4 nodes.

is non-decreasing.10 We consider a particular cluster
tree for a clique that is defined using a caterpillar
graph, i.e., a cluster tree where the right child of any
internal node is a leaf labeled by one of the nodes of G
and the left child is another internal node, except at
the very bottom. Figure 3 shows a caterpillar cluster
tree for a clique on 4 nodes. The cost of the clique
on n nodes, say κpnq, using this cluster tree is given
by

κpnq “
n´1
ÿ

i“0

i ¨ gpi, 1q

Now, we enforce the condition that all cliques have
the same cost by defining gpn1, n2q for n1, n2 ą 1
suitably, in particular,

gpn1, n2q “
κpn1 ` n2q ´ κpn1q ´ κpn2q

n1 ¨ n2
(3.4)

Thus it only remains to be shown that g is strictly
increasing. We show that for n2 ď n1, gpn1`1, n2q ą
gpn1, n2q. In order to show this it suffices to show
that,

n1pκpn1 ` n2 ` 1q ´ κpn1 ` 1q ´ κpn2qq

´ pn1 ` 1qpκpn1 ` n2q ´ κpn1q ´ κpn2qq ą 0

10The function proposed by Dasgupta [19] is gpn, 1q “ n`1,

so this ratio is always 1.

Thus, consider

n1pκpn1 ` n2 ` 1q ´ κpn1 ` 1q ´ κpn2qq

´ pn1 ` 1qpκpn1 ` n2q ´ κpn1q ´ κpn2qq

“ n1pκpn1 ` n2 ` 1q ´ κpn1 ` n2q ´ κp1q

´ κpn1 ` 1q ` κpn1q ` κp1qq

´ pκpn1 ` n2q ´ κpn1q ´ κpn2qq

“ n1pn1 ` n2qgpn1 ` n2, 1q ´ n
2
1gpn1, 1q

´ pκpn1 ` n2q ´ κpn1q ´ κpn2qq

ě n1pn1 ` n2qgpn1 ` n2, 1q ´ n
2
1gpn1, 1q

´

n1`n2´1
ÿ

i“n1

i ¨ gpi, 1q

ě
gpn1 ` n2, 1q

n1 ` n2 ` 1
¨ ppn1pn1 ` n2qpn1 ` n2 ` 1q

´ n21pn1 ` 1q ´
n1`n2´1

ÿ

i“n1

ipi` 1qq

ą 0

Above we used the fact that gpn, 1q{pn`1q is non-
decreasing in n and some elementary calculations.
This shows that the objective function proposed by
Dasgupta [19] is by no means unique. Only in the
last step, do we get an inequality where we use the
condition that gpn, 1q{pn` 1q is increasing. Whether
this requirement can be relaxed further is also an
interesting direction.

3.2.2 Characterizing Objective Functions for
Dissimilarity Graphs When the weights of the
edges represent dissimilarities instead of similarities,
one can consider objective functions of the same form
as (3.3). As mentioned in Remark 1, the difference in
this case is that the goal is to maximize the objective
function and hence the definition of admissibility now
requires that generating trees have a value of the
objective that is strictly larger than any tree that
is not generating.

The characterization of admissible objective
functions as given in Theorem 3.1 for the similarity
case continues to hold in the case of dissimilarities.
The proof follows in the same manner by appropri-
ately switching the direction of the inequalities when
required.

4 Similarity-Based Inputs: Approximation
Algorithms

In this section, we analyze the recursive φ-sparsest-
cut algorithm (see Algorithm 1) that was described
previously in [19]. For clarity, we work with the cost
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function introduced by Dasgupta [19]: The goal is to
find a tree T minimizing costpT q “

ř

NPT costpNq
where for each node N of T with children N1,
N2, costpNq “ wpV pN1q, V pN2qq ¨ V pNq. We show
that the φ-sparsest-cut algorithm achieves a 6.75φ-
approximation. (Charikar and Chatziafratis [16]
also proved an Opφq approximation for Dasgupta’s
function.) Our proof also yields an approximation
guarantee not just for Dasgupta’s cost function but
more generally for any admissible cost function, but
the approximation ratio depends on the cost function.

The φ-sparsest-cut algorithm (Algorithm 1) con-
structs a binary tree top-down by recursively finding
cuts using a φ-approximate sparsest cut algorithm,
where the sparsest-cut problem asks for a set A mini-
mizing the sparsity wpA, V zAq{p|A||V zA|q of the cut
pA, V zAq.

Algorithm 1 Recursive φ-Sparsest-Cut Algorithm
for Hierarchical Clustering

1: Input: An edge weighted graph G “ pV,E,wq.
2: tA, V zAu Ð cut with sparsity ď φ ¨

min
SĂV

wpS, V zSq{p|S||V zS|q

3: Recurse on GrAs and on GrV zAs to obtain trees
TA and TV zA

4: return the tree whose root has two children, TA
and TV zA.

Theorem 4.1. 11 For any graph G “ pV,Eq, and
weight function w : E Ñ R`, the φ-sparsest-cut
algorithm (Algorithm 1) outputs a solution of cost at
most 27

4 φOPT.

Proof. Let G “ pV,Eq be the input graph and n
denote the total number of vertices of G. Let T
denote the tree output by the algorithm and T˚ be
any arbitrary tree. We will prove that costpT q ď
27
4 φcostpT˚q. 12

Recall that for an arbitrary tree T0 and node N
of T0, the vertices corresponding to the leaves of the
subtree rooted at N is denoted by V pNq. Consider
the node N0 of T˚ that is the first node reached
by the walk from the root that always goes to the
child tree with the higher number of leaves, stopping
when the subtree of T˚ rooted at N0 contains fewer
than 2n{3 leaves. The balanced cut (BC) of T˚ is the
cut pV pN0q, V ´ V pN0qq. For a given node N with

11For Dasgupta’s function, this was already proved in [16]
with a different constant. The present, independent proof,

uses a different method.
12The following paragraph bears similarities with the first

part of the analysis of [19, Lemma 11] but we obtain a more

fine-grained analysis by introducing a charging scheme.

children N1, N2, we say that the cut induced by N
is the sum of the weights of the edges that have one
extremity in V pN1q and the other in V pN2q.

Let pA Y C,B Y Dq be the cut induced by the
root node u of T , where A,B,C,D are such that
pA Y B,C Y Dq is the balanced cut of T˚. Since
pAY C,B YDq is a φ-approximate sparsest cut:

wpAY C,B YDq

|AY C| ¨ |B YD|
ď φ

wpAYB,C YDq

|AYB| ¨ |C YD|
.

By definition of N0, AYB and CYD both have size
in rn{3, 2n{3s, so the product of their sizes is at least
pn{3qp2n{3q “ 2n2{9; developing wpA Y B,C Y Dq
into four terms, we obtain

wpAY C,B YDq

ď φ
9

2n2
|AY C||B YD|¨

pwpA,Cq ` wpA,Dq ` wpB,Cq ` wpB,Dqq

ď φ
9

2

„

|B YD|

n
wpA,Cq ` wpA,Dq`

wpB,Cq `
|AY C|

n
wpB,Dq



,

and so the cost induced by node u of T˚ satisfies

n ¨ wpAY C,B YDq

ď
9

2
φ|B YD|wpA,Cq `

9

2
φ|AY C|wpB,Dq

`
9

2
φnpwpA,Dq ` wpB,Cqq.

To account for the cost induced by u, we thus assign a
charge of p9{2qφ|BYD|wpeq to each edge e of pA,Cq,
a charge of p9{2qφ|AYC|wpeq to each edge e of pB,Dq,
and a charge of p9{2qφnwpeq to each edge e of pA,Dq
or pB,Cq.

When we do this for every node u of T , how much
does each edge get charged?

Lemma 4.1. Let G “ pV,Eq be a graph on n nodes.
We consider the above charging scheme for T and
T˚. Then, an edge pv1, v2q P E gets charged at most
p9{2qφminpp3{2q|V pLCAT˚pv1, v2qq|, nqwpeq overall,
where LCAT˚pv1, v2q denotes the lowest common an-
cestor of v1 and v2 in T˚.

We temporarily defer the proof and first see how
Lemma 4.1 implies the theorem. Observe (as in [19])
that costpT˚q “

ř

tu,vuPE |V pLCAT˚pu, vqq|wpu, vq.
Thanks to Lemma 4.1, when we sum charges assigned
because of every node N of T , overall we obtain

costpT q ď
9

2
φ

ÿ

tv1,v2uPE

3

2
|V pLCAT˚pv1, v2qq|wpv1, v2q

“
27

4
φcostpT˚q.
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Proof. [Proof of Lemma 4.1]
The lemma is proved by induction on the number

of nodes of the graph. (The base case is obvious.) For
the inductive step, consider the cut pA Y C,B Y Dq
induced by the root node u of T .

• Consider the edges that cross the cut. First,
observe that edges of pA,Bq or of pC,Dq never
get charged at all. Second, an edge e “ tv1, v2u
of pA,Dq or of pB,Cq gets charged p9{2qφnwpeq
when considering the cost induced by node u,
and does not get charged when considering any
other node of T . In T˚, edge e is separated by
the cut pA Y B,C Y Dq induced by N0, so the
least common ancestor of v1 and v2 is the parent
node of N0 (or above), and by definition of N0

we have |V pLCAT˚pv1, v2qq| ě 2n{3, hence the
lemma holds for e.

• An edge e “ tv1, v2u of GrAs Y GrCs does not
get charged when considering the cut induced
by node u. Apply Lemma 4.1 to GrA Y Cs
for the tree T˚AYC defined as the subtree of
T˚ induced by the vertices of A Y C13. By
induction, the overall charge to e due to
the recursive calls for GrA Y Cs is at most
p9{2qφminpp3{2q|V pLCAT˚AYC

pv1, v2qq|, |A Y

C|qwpeq. By definition of T˚AYC , we have
|V pLCAT˚AYC

pv1, v2qq| ď |V pLCAT˚pv1, v2qq|,

and |AY C| ď n, so the lemma holds for e.

• An edge tv1, v2u of pA,Cq gets a charge of
p9{2qφ|B Y D|wpeq plus the total charge to e
coming from the recursive calls for GrA Y Cs
and the tree T˚AYC . By induction the latter is
at most

p9{2qφminpp3{2q|V pLCAT˚
AYC

pv1, v2qq|, |AY C|qwpeq

ď p9{2qφ|AY C|wpeq.

Overall the charge to e is at most p9{2qφnwpeq.
Since the cut induced by node u0 of T˚ separates
v1 from v2, we have |V pLCAT˚pv1, v2qq| ě 2n{3,
hence the lemma holds for e. For edges of pB,Dq
or of GrBs Y GrDs, a symmetrical argument
applies.

Remark 3. The recursive φ-sparsest-cut algorithm
achieves an Opfnφq-approximation for any admissible
cost function f , where fn “ maxn fpnq{fprn{3sq.
Indeed, adapting the definition of the balanced cut as
in [19] and rescaling the charge by a factor of fn imply
the result.

13note that T˚AYC is not necessarily the optimal tree for
GrA Y Cs, which is why the lemma was stated in terms of

every tree T˚, not just on the optimal tree.

We complete our study of classical algorithms for
hierarchical clustering by showing that the standard
agglomerative heuristics can perform poorly (Theo-
rems 7.6, 7.7). Thus, the sparsest-cut-based approach
seems to be more reliable in the worst-case. To under-
stand better the success of the agglomerative heuris-
tics, we restrict our attention to ground-truth inputs
(Section 7), and random graphs (Section 5), and show
that in these contexts these algorithms are efficient.

5 Admissible Objective Functions and
Algorithms for Random Inputs

In this section, we initiate a beyond-worst-case anal-
ysis of the hierarchical clustering problem (see also
Section 7.3). We study admissible objective functions
in the context of random graphs that have a natural
hierarchical structure; for this purpose, we consider a
suitable generalization of the stochastic block model
to hierarchical clustering.

We show that, for admissible cost functions, an
underlying ground-truth cluster tree has optimal ex-
pected cost. Additionally, for a subfamily of admissi-
ble cost functions (called smooth, see Defn. 6) which
includes the cost function introduced by Dasgupta,
we show the following: The cost of the ground-truth
cluster tree is with high probability sharply concen-
trated (up to a factor of p1` op1qq around its expec-
tation), and so of cost at most p1 ` op1qqOPT. This
is further evidence that optimising admissible cost
functions is an appropriate strategy for hierarchical
clustering.

We also provide a simple algorithm based on
the SVD based approach of McSherry [30] followed
by a standard agglomerative heuristic that yields
a hierarchical clustering which is, up to a factor
p1`op1qq, optimal with respect to smooth admissible
cost functions.

5.1 A Random Graph Model For Hierar-
chical Clustering We describe the random graph
model for hierarchical clustering, called the hierar-
chical block model. This model has already been
studied earlier, e.g., [29]. However, prior work has
mostly focused on statistical hypothesis testing and
exact recovery in some regimes. We will focus on
understanding the behaviour of admissible objective
functions and algorithms to output cluster trees that
have almost optimal cost in terms of the objective
function.

We assume that there are k “bottom”-level clus-
ters that are then arranged in a hierarchical fash-
ion. In order to model this we will use a similarity
graph on k nodes generated from an ultrametric (see
Sec. 2.2). There are n1, . . . , nk nodes in each of the
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k clusters. Each edge is present in the graph with a
probability that is a function of the clusters in which
their endpoints lie and the underlying graph on k
nodes generated from the ultrametric. The formal
definition follows.

Definition 5. Hierarchical Stochastic
Block Model (HSBM) A hierarchical stochastic
block model with k bottom-level clusters is defined as
follows:

• Let rGk “ prVk, rEk, wq be a graph generated from

an ultrametric (see Sec. 2.2), where |rVk| “ k for

each e P rEk, wpeq P p0, 1q.14 Let rTk be a tree

on k leaves, let rN denote the internal nodes of
rT and rL denote the leaves; let rσ : rL Ñ rks be a

bijection. Let rT be generating for rGk with weight
function ĂW : rN Ñ p0, 1q (see Defn. 2).

• For each i P rks, let pi P p0, 1s be such that

pi ą ĂW pNq, if N denotes the parent of rσ´1piq

in rT .

• For each i P rks, there is a fixed constant fi P

p0, 1q; furthermore
řk
i“1 fi “ 1.

Then a random graph G “ pV,Eq on n nodes
with sparsity parameter αn P p0, 1s is defined as
follows: pn1, . . . , nkq is drawn from the multinomial
distribution with parameters pn, pf1, . . . , fkqq. Each
vertex i P rns is assigned a label ψpiq P rks, so that
exactly nj nodes are assigned the label j for j P rks.
An edge pi, jq is added to the graph with probability

αnpψpiq if ψpiq “ ψpjq and with probability αnĂW pNq
if ψpiq ‰ ψpjq and N is the least common ancestor

of rσ´1piq and rσ´1pjq in rT . The graph G “ pV,Eq is
returned without any labels.

As the definition is rather long and technical, a
few remarks are in order.

• Rather than focusing on an arbitrary hierarchy
on n nodes, we assume that there are k clusters
(which exhibit no further hierarchy) and there
is a hierarchy on these k clusters. The model
assumes that k is fixed, but in future work, it
may be interesting to study models where k itself
may be a (modestly growing) function of n. The

14In addition to rGk being generated from an ultrametric, we

make the further assumption that the function f : R` Ñ R`,
that maps ultrametric distances to edge weights, has range

p0, 1q, so that the weight of an edge can be interpreted as a

probability of an edge being present. We rule out wpeq “ 0
as in that case the graph is disconnected and each component

can be treated separately.

condition pi ą ĂW pNq (where N is the parent
of rσ´1piq ) ensures that nodes in cluster i are
strictly more likely to connect to each other than
to nodes from any other cluster.

• The graphs generated can be of various sparsi-
ties, depending on the parameter αn. If αn P
p0, 1q is a fixed constant, we will get dense graphs
(with Ωpn2q edges), however if αn Ñ 0 as n Ñ
8, sparser graphs may be achieved. This is
similar to the approach taken by Wolfe and Ol-
hede [36] when considering random graph models
generated according to graphons.

We define the expected graph, Ḡ, which is a
complete graph where an edge pi, jq has weight pi,j
where pi,j is the probability with which it appears in
the random graph G. In order to avoid ambiguity,
we denote by ΓpT ;Gq and ΓpT ; Ḡq the costs of the
cluster tree T for the unweighted (random) graph
G and weighted graph Ḡ respectively. Observe that
due to linearity (see Eqns. (3.2) and (3.3)), for any
tree T and any admissible cost function, ΓpT ; Ḡq “
E rΓpT ;Gq s, where the expectation is with respect to
the random choices of edges in G (in particular this
holds even when conditioning on n1, . . . , nk).

Furthermore, note that Ḡ itself is generated from
an ultrametric and the generating trees for Ḡ are
obtained as follows: Let rTk be any generating tree
for rGk, let T̂1, T̂2, . . . , T̂k be any binary trees with
n1, . . . , nk leaves respectively. Let the weight of every
internal node of T̂i be pi and replace each leaf l in rTk
by T̂

rσplq. In particular, this last point allows us to
derive Proposition 5.1. We refer to any tree that is
generating for the expected graph Ḡ as a ground-truth
tree for G.

Remark 4. Although it is technically possible to
have ni “ 0 for some i under the model, we will as-
sume in the rest of the section that ni ą 0 for each
i. This avoids getting into the issue of degenerate
ground-truth trees; those cases can be handled easily,
but add no expository value.

5.2 Objective Functions and Ground-Truth
Tree In this section, we assume that the graphs
represent similarities. This is clearly more natural
in the case of unweighted graphs; however, all our
results hold in the dissimilarity setting and the proofs
are essentially identical.

Proposition 5.1. Let Γ be an admissible cost func-
tion. Let G be a graph generated according to an
HSBM (See Defn. 5). Let ψ be the (hidden) func-
tion mapping the nodes of G to rks (the bottom-level
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clusters). Let T be a ground-truth tree for G Then,

E rΓpT q | ψ s ď min
T 1

E
“

ΓpT 1q | ψ
‰

.

Moreover, for any tree T 1, E rΓpT q | ψ s “

E rΓpT 1q | ψ s if and only if T 1 is a ground-truth tree.

Definition 6. Let γ be a cost function defined using
the function gp¨, ¨q (see Defn. 4). We say that the
cost function Γ (as defined in Eqn. 3.2) satisfies the
smoothness property if

gmax :“ maxtgpn1, n2q | n1 ` n2 “ nu “ O

ˆ

κpnq

n2

˙

,

where κpnq is the cost of a unit-weight clique of size
n under the cost function Γ.

Fact 5.1. The cost function introduced by Das-
gupta [19] satisfies the smoothness property.

Theorem 5.1. Let αn “ ωp
a

log n{nq. Let Γ be
an admissible cost function satisfying the smoothness
property (Defn. 6). Let k be a fixed constant and G
be a graph generated from an HSBM (as per Defn. 5)

where the underlying graph rGk has k nodes and the
sparsity factor is αn. Let ψ be the (hidden) function
mapping the nodes of G to rks (the bottom-level
clusters). For any binary tree T with n leaves labelled
by the vertices of G, the following holds with high
probability:

|ΓpT q ´ E rΓpT q | ψ s| ď opE rΓpT q | ψ sq.

The expectation is taken only over the random choice
of edges. In particular if T˚ is a ground-truth tree
for G, then, with high probability,

ΓpT˚q ď p1` op1qqmin
T 1

ΓpT 1q “ p1` op1qqOPT.

5.3 Algorithm for Clustering in the HSBM In
this section, we provide an algorithm for obtaining a
hierarchical clustering of a graph generated from an
HSBM. The algorithm is quite simple and combines
approaches that are used in practice for hierarchi-
cal clustering: SVD projections and agglomerative
heuristics. See Algorithm 2 for a complete descrip-
tion.

Theorem 5.2. Let αn “ ωp
a

log n{nq. Let Γ be
an admissible cost function (Defn. 4) satisfying the
smoothness property (Defn 6). Let k be a fixed
constant and G be a graph generated from an HSBM
(as per Defn. 5) where the underlying graph rGk has
k nodes and the sparsity factor is αn. Let T be
a ground-truth tree for G. With high probability,
Algorithm 2 with parameter k on graph G outputs
a tree T 1 that satisfies ΓpT q ď p1` op1qqOPT.

Algorithm 2 Agglomerative Algorithm for Recover-
ing Ground-Truth Tree of an HSBM Graph

1: Input: Graph G “ pV,Eq generated from an
HSBM.

2: Parameter: A constant k.
3: Apply (SVD) projection algorithm of [30, Thm.

12] with parameters G, k, δ “ |V |´2, to get
ζp1q, . . . , ζp|V |q P R|V | for vertices in V , where
dimpspanpζp1q, . . . , ζp|V |qqq “ k.

4: Run the single-linkage algorithm (Alg. 6) on the
points tζp1q, . . . , ζp|V |qu until there are exactly k

clusters. Let C “ tCζ1 , . . . , C
ζ
ku be the clusters (of

points ζpiq) obtained. Let Ci Ď V denote the set

of vertices corresponding to the cluster Cζi .
5: while there are at least two clusters in C do
6: Take the pair of clusters Ci, Cj of C that

maximizes
cutpCi,Cjq

|Ci|¨|Cj |

7: C Ð C z tCiu z tCju Y tCi Y Cju
8: end while
9: The sequence of merges in the while-loop (Steps 5

to 8) induces a hierarchical clustering tree on
tC1, . . . , Cku, say T 1k with k leaves (represented
by C1, . . . , Ck). Replace each leaf of T 1k by
an arbitrary binary tree on |Ck| leaves labelled
according to the vertices Ck to obtain T .

10: Repeat the algorithm k1 “ 2k log n times. Let
T 1, . . . T k

1

be the corresponding hierarchical clus-
tering trees.

11: Output: Tree T i (out of the k1 candidates) that
minimises ΓpTiq.

Remark 5. In an HSBM, k is a fixed constant.
Thus, even if k is not known in advance, one can
simply run the Algorithm 2 with all possible different
values (constantly many) and return the solution with
the minimal cost ΓpT q.

Let G “ pV,Eq be the input graph generated
according to an HSBM. Let T be the tree output
by Algorithm 2. We divide the proof into two claims
that correspond to the outcome of Step 3 and the
while-loop (Steps 5 to 8) of Algorithm 2.

We use a result of McSherry [30] who considers a
random graph model with k clusters that is (slightly)
more general than the HSBM considered here. The
difference is that there is no hierarchical structure
on top of the k clusters in his setting; however, his
goal is also simply to identify the k clusters and not
any hierarchy upon them. The following theorem is
derived from [30, Obs. 11 and Thm.12].

Theorem 5.3. ([30]) Let s be the size of the small-
est cluster (of the k clusters) and δ be the confidence
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parameter. Assume that for all u, v belonging to dif-
ferent clusters with with adjacency vectors u,v (i.e.,
ui is 1 if the edge pu, iq exists in G and 0 otherwise)
satisfy

}E ru s ´ E rv s }22 ě c ¨ k ¨ pn{s` logpn{δqq

for a large enough constant c, where E ru s is the
entry-wise expectation. Then, the algorithm of McSh-
erry [30, Thm. 12] with parameters G, k, δ projects
the columns of the adjacency matrix of G to points
tζp1q, . . . , ζp|V |qu in a k-dimensional subspace of R|V |
such that the following holds w.p. at least 1´ δ over
the random graph G and with probability 1{k over the
random bits of the algorithm. There exists η ą 0 such
that for any u in the ith cluster and v in the jth clus-
ter:

1. if i “ j then }ζpuq ´ ζpvq}22 ď η;

2. if i ‰ j then }ζpuq ´ ζpvq}22 ą 2η,

Recall that ψ : V Ñ rks is the (hidden) labelling
assigning each vertex of G to one of the k bottom-
level clusters. Let C˚i “ tv P V | ψpvq “ iu. Recall
that ni “ |V pC

˚
i q|.

The algorithm of [30, Thm. 12] might fail for
two reasons. The first reason is that the random
choices by the algorithm yield an incorrect clustering.
This happens w.p. at most 1 ´ 1{k and we can
simply repeat the algorithm sufficiently many times
to be sure that at least once we get the desired
result, i.e., the projections satisfy the conclusion of
Thm. 5.3. Claims 2 and 3 show that in this case,
Steps 5 to 8 of Alg. 2 produce a tree that has cost
close to optimal. The second reason for failure is
the randomness in the (random) edge choices. We
need to carefully take these random edge choices into
account, which are only made once and therefore
cannot be repeated. We explicitly describe the bad
events below and show that these occur with very
low probability. Ultimately, the algorithm simply
outputs a tree that has the least cost among all the
ones produced (and one of them is guaranteed to have
cost p1` op1qqOPT) with high probability.

In order to apply our algorithm (and therefore
also McSherry’s algorithm) we need that the graph
does not “deviate” too much from its expectation.
For this reason we define the following three bad
events. Let Ē1 be the event that there exists i, such
that ni ă fin{2, i.e., at least one of the bottom-
level clusters has size that is not representative. Let
E1 be the complement of Ē1. If E1 holds the term
n{s that appears in Thm. 5.3 is a constant. The
second bad event is that McSherry’s algorithm fails
due to the random choice of edges. This happens

with probability at most δ (note that the condition in
Theorem 5.3 depends on δ), which we set at δ “ 1

|V |2 .

We denote the complement of this event E2. We
remark that E2 depends only on random choices made
in regards to edges (not node labels) and hence holds
with probability 1´ δ conditioned on E1.

Furthermore, we define E3 as follows. Let
C˚1 , . . . , C

˚
k be the hidden bottom-level clusters, i.e.,

C˚i “ tv | ψpvq “ iu; notice that the definition of
tC˚i u depends only on the random assignments of la-
bels to vertices and not the random choice of edges.
For the partition C˚1 , . . . , C

˚
k of V and for any S1, S2,

where S1 and S2 are disjoint and both sets are unions
of some cluster sets from tC˚1 , . . . , C

˚
k u the following

holds:
ˇ

ˇ

ˇ

ˇ

E
„

cutpS1, S2q

|S1| ¨ |S2|



´
wpS1, S2q

|S1| ¨ |S2|

ˇ

ˇ

ˇ

ˇ

ď
1

log n
(5.5)

In Claim 1 we show that the event E1XE2XE3 occurs
with high probability.

In order to prove Theorem 5.2 we establish the
following claims.

Claim 1. With high probability, the event E1XE2XE3
holds.

Observation 1. Let αn “ ωp
a

log n{nq. Let G
be generated by an HSBM. Assume that event E1
occurs. Let u, v be two nodes such that i “ ψpuq ‰
ψpvq “ j. Let u and v denote the random variables
corresponding to the columns of u and v in the
adjacency matrix of G. Then,

}E ru | tE1u s ´ E rv | tE1u s }22 “ ωplog nq

The expectations are with respect to the random
choice of the edges.

Claim 2. Let αn “ ωp
a

log n{nq. Let G be generated
by an HSBM. Let C˚1 , . . . , C

˚
k be the hidden bottom-

level clusters, i.e., C˚i “ tv | ψpvq “ iu. Assume
that event E1 and E2 occur. With probability at least
Ωp1{kq, the clusters obtained after Step 4 correspond
to the assignment ψ, i.e., there exists a permutation
π : rks Ñ rks, such that Cj “ C˚πpjq.

Claim 3. Let αn “ ωp
a

log n{nq. Let G be generated
according to an HSBM and let T˚ be a ground-
truth tree for G. Assume that the events E1, E2, and
E3 occur and that furthermore, the clusters obtained
after Step 4 correspond to the assignment ψ, i.e.,
there exists a permutation π : rks Ñ rks such that
for each v P Ci, ψpvq “ πpiq. Then, the sequence
of merges in the while-loop (Steps 5 to 8) followed
by Step 9 produces w.p. Ωp1{kq a tree T such that
ΓpT q ď p1` op1qqOPT .
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We are ready to prove Theorem 5.2.

Proof. [Proof of Theorem 5.2] Conditioning on E1 X
E2E3 which occurs w.h.p. we get from Claims 2
and 3 that w.p. at least Ωp1{kq the tree T i (the
ith run of the algorithm) obtained in step 9 satisfies
ΓpT iq ď p1 ` op1qqOPT . It is possible to boost this
probability by running Algorithm 2 multiple times.
Running it Ωpk log nq times and taking the tree with
the smallest ΓpT iq yields the result.

6 Dissimilarity-Based Inputs:
Approximation Algorithms

In this section, we consider general dissimilarity in-
puts and admissible objective functions for these in-
puts. For ease of exposition, we focus on a particular
admissible objective function for dissimilarity inputs.
Find T maximizing the value function corresponding
to Dasgupta’s cost function of Section 4: valpT q “
ř

NPT valpNq where for each node N of T with chil-
drenN1, N2, valpNq “ wpV pN1q, V pN2qq¨V pNq. This
optimization problem is NP-Hard [19], hence we focus
on approximation algorithms.

We show (Theorem 6.1) that average-linkage
achieves a 2 approximation for the problem. We then
introduce a simple algorithm based on locally-densest
cuts and show (Theorem 6.3) that it achieves a 3{2`ε
approximation for the problem.

We remark that our proofs show that for any
admissible objective function, those algorithms have
approximation guarantees, but the approximation
guarantee depends on the objective function.

We start with the following elementary upper
bound on OPT.

Fact 6.1. For any graph G “ pV,Eq, and weight
function w : E Ñ R`, we have OPT ď n ¨

ř

ePE wpeq.

6.1 Average-Linkage We show that average-
linkage is a 2-approximation in the dissimilarity set-
ting.

Theorem 6.1. For any graph G “ pV,Eq, and
weight function w : E Ñ R`, the average-linkage
algorithm (Algorithm 3) outputs a solution of value
at least n

ř

ePE wpeq{2 ě OPT{2.

When two trees are chosen at Step 4 of Algo-
rithm 3, we say that they are merged. We say that
all the trees considered at the beginning of an itera-
tion of the while loop are the trees that are candidates
for the merge or simply the candidate trees.

We first show the following lemma and then prove
the theorem.

Algorithm 3 Average-Linkage Algorithm for Hier-
archical Clustering (dissimilarity setting)

1: Input: Graph G “ pV,Eq with edge weights
w : E ÞÑ R`

2: Create n singleton trees.
3: while there are at least two trees do
4: Take trees roots N1 and N2 minimizing

ř

xPV pN1q,yPV pN2q

wpx, yq{p|V pN1q||V pN2q|q

5: Create a new tree with root N and children
N1 and N2

6: end while
7: return the resulting binary tree T

Lemma 6.1. Let T be the output tree and A,B be the
children of the root. We have,

wpV pAq, V pBqq

|V pAq| ¨ |V pBq|
ě

wpV pAqq

|V pAq| ¨ p|V pAq| ´ 1q
`

wpV pBqq

|V pBq| ¨ p|V pBq| ´ 1q
.

6.2 A Simple and Better Approximation Al-
gorithm for Worst-Case Inputs In this section,
we introduce a very simple algorithm (Algorithm 5)
that achieves a better approximation guarantee. The
algorithm follows a divisive approach by recursively
computing locally-densest cuts using a local search
heuristic (see Algorithm 4). This approach is similar
to the recursive-sparsest-cut algorithm of Section 4.
Here, instead of trying to solve the densest cut prob-
lem (and so being forced to use approximation algo-
rithms), we solve the simpler problem of computing
a locally-densest cut. This yields both a very simple
local-search-based algorithm and a good approxima-
tion guarantee.

We use the notation A ‘ x to mean the set
obtained by adding x to A if x R A, and by removing
x from A if x P A. We say that a cut pA,Bq is a
ε{n-locally-densest cut if for any x,

wpA‘ x,B ‘ xq

|A‘ x| ¨ |B ‘ x|
ď

´

1`
ε

n

¯ wpA,Bq

|A||B|
.

The following local search algorithm computes an
ε{n-locally-densest cut.

Theorem 6.2. Algorithm 4 computes an ε{n-locally-

densest cut in time rOpnpn`mq{εq.

Theorem 6.3. Algorithm 5 returns a tree of value
at least

2n

3
p1´ εq

ÿ

e

wpeq ě
2

3
p1´ εqOPT,
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Algorithm 4 Local Search for Densest Cut

1: Input: Graph G “ pV,Eq with edge weights
w : E ÞÑ R`

2: Let pu, vq be an edge of maximum weight
3: AÐ tvu, B Ð V ztvu

4: while Dx: wpA‘x,B‘xq
|A‘x|¨|B‘x| ą p1` ε{nq

wpA,Bq
|A||B| do

5: AÐ A‘ x, B Ð B ‘ x
6: end while
7: return pA,Bq

Algorithm 5 Recursive Locally-Densest-Cut for Hi-
erarchical Clustering

1: Input: Graph G “ pV,Eq, with edge weights
w : E ÞÑ R`, ε ą 0

2: Compute an ε{n-locally-densest cut pA,Bq using
Algorithm 4

3: Recurse on GrAs and GrBs to obtain rooted trees
TA and TB .

4: Return the tree T whose root node has two
children, TA and TB .

in time rOpn2pn`mq{εq.

Remark 6. The average-linkage and the recursive
locally-densest-cut algorithms achieve an Opgnq- and
Ophnq-approximation respectively, for any admissible
cost function f , where gn “ maxn fpnq{fprn{2sq.
hn “ maxn fpnq{fpr2n{3sq. An almost identical proof
yields the result.

Remark 7. In Section ??, we show that other com-
monly used algorithms, such as complete-linkage,
single-linkage, or bisection 2-Center, can perform ar-
bitrarily badly. Hence average-linkage is more robust
in that sense.

7 Perfect Ground-Truth Inputs and Beyond

In this section, we focus on ground-truth inputs. We
state that when the input is a perfect ground-truth
input, commonly used algorithms (single linkage,
average linkage, and complete linkage; as well as
some divisive algorithms – the bisection k-Center and
sparsest-cut algorithms) yield a tree of optimal cost,
hence (by Definition 4) a ground-truth tree. Some
of those results are folklore (and straightforward
when there are no ties), but we have been unable
to pin down a reference, so we include them for
completeness (Section 7.1). We also introduce a
faster optimal algorithm for “strict” ground-truth
inputs (Section 7.2). The proofs present no difficulty.
The meat of this section is Subsection 7.3, where
we go beyond ground-truth inputs; we introduce

δ-adversarially-perturbed ground-truth inputs and
design a simple, more robust algorithm that, for any
admissible objective function, is a δ-approximation.

Algorithm 6 Linkage Algorithm for Hierarchical
Clustering (similarity setting)

1: Input: A graph G “ pV,Eq with edge weights
w : E ÞÑ R`

2: Create n singleton trees. Root labels: C “

ttv1u, . . . , tvnuu
3: Define dist : C ˆ C ÞÑ R`: distpC1, C2q “

$

’

’

&

’

’

%

1
|C1||C2|

ř

xPC1,yPC2

wppx, yqq Average Linkage

minxPC1,yPC2 wppx, yqq Single Linkage

maxxPC1,yPC2
wppx, yqq Complete Linkage

.

4: while there are at least two trees do
5: Take the two trees with root labels C1, C2

such that distpC1, C2q is maximum
6: Create a new tree by making those two tree

children of a new root node labeled C1 Y C2

7: Remove C1, C2 from C, add C1YC2 to C, and
update dist

8: end while
9: return the resulting binary tree T

7.1 Perfect Ground-Truth Inputs are Easy
In the following, we refer to the tie breaking rule
of Algorithm 6 as the rule followed by the algo-
rithm for deciding which of Ci, Cj or Ck, C` to merge,
when maxC1,C2PC distpC1, C2q “ distpCi, Cjq “

distpCk, C`q.

Theorem 7.1. 15 Assume that the input is a (dis-
similarity or similarity) ground-truth input. Then,
for any admissible objective function, the agglomer-
ative heuristics average-linkage, single-linkage, and
complete-linkage (see Algorithm 6) return an optimal
solution. This holds no matter the tie breaking rule
of Algorithm 6.

Divisive Heuristics. In this section, we focus
on two well-known divisive heuristics: (1) the bisec-
tion 2-Center which uses a partition-based clustering
objective (the k-Center objective) to divide the in-
put into two (non necessarily equal-size) parts (see
Algorithm 7), and (2) the recursive sparsest-cut al-
gorithm, which can be implemented efficiently for
ground-truth inputs (Lemma 7.1).

Loosely speaking, we show that this algorithm
computes an optimal solution if the optimal solution

15This Theorem may be folklore, at least when there are no

ties, but we have been unable to find a reference.
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Algorithm 7 Bisection 2-Center (similarity setting)

1: Input: A graph G “ pV,Eq and a weight
function w : E ÞÑ R`

2: Find tu, vu Ď V that maximizes
minx maxyPtu,vu wpx, yq

3: AÐ tx | wpx, uq ě maxyPtu,vu wpx, yqu
4: B Ð V zA.
5: Apply Bisection 2-Center on GrAs and GrBs to

obtain trees TA,TB respectively
6: return The union tree of TA, TB .

is unique. More precisely, for any similarity graph
G, we say that a tree T is strictly generating for G
if there exists a weight function W such that for any
nodes N1, N2, if N1 appears on the path from N2

to the root, then W pN1q ă W pN2q and for every
x, y P V , wpx, yq “ W pLCAT px, yqq. In this case we
say that the input is a strict ground-truth input. In
the context of dissimilarity, an analogous notion can
be defined and we obtain a similar result.

Theorem 7.2. 16 For any admissible objective func-
tion, the bisection 2-Center algorithm returns an
optimal solution for any similarity or dissimilarity
graph G that is a strict ground-truth input.

Remark 8. To extend our result to (non-strict)
ground-truth inputs, one could consider the follow-
ing variant of the algorithm (which bears similarities
with the popular elbow method for partition-based
clustering): Compute a k-Center clustering for all
k P t1, . . . , nu and partition the graph according to the
k-Center clustering of the smallest k ą 1 for which
the value of the clustering increases. Mimicking the
proof of Theorem 7.2, one can show that the tree out-
put by the algorithm is generating.

We now turn to the recursive sparsest-cut algo-
rithm (i.e., the recursive φ-sparsest-cut algorithm of
Section 4, for φ “ 1). The recursive sparsest-cut con-
sists in recursively partitioning the graph according
to a sparsest cut of the graph. We show (1) that this
algorithm yields a tree of optimal cost and (2) that
computing a sparsest cut of a similarity graph gener-
ated from an ultrametric can be done in linear time.
Finally, we observe that the analogous algorithm for
the dissimilarity setting consists in recursively par-
titioning the graph according to the densest cut of
the graph and achieves similar guarantees (and sim-
ilarly the densest cut of a dissimilarity graph gener-
ated from an ultrametric can be computed in linear
time).

16This Theorem may be folklore, but we have been unable

to find a reference.

Theorem 7.3. 17 For any admissible objective func-
tion, the recursive sparsest-cut (respectively densest-
cut) algorithm computes a tree of optimal cost if
the input is a similarity (respectively dissimilarity)
ground-truth input.

We then show how to compute a sparsest-cut of
a graph that is a ground-truth input.

Lemma 7.1. If the input graph is a ground-truth
input then the sparsest cut is computed in Opnq time
by the following algorithm: pick an arbitrary vertex
u, let wmin be the minimum weight of edges adjacent
to u, and partition V into A “ tx | wpu, xq ą wminu

and B “ V zA.

7.2 A Near-Linear Time Algorithm In this
section, we propose a simple, optimal, algorithm for
computing a generating tree of a ground-truth input.
For any graph G, the running time of this algorithm is
Opn2q, and rOpnq if there exists a tree T that is strictly
generating for the input. For completeness we recall
that for any graph G, we say that a tree T is strictly
generating for G if there exists a weight function W
such that for any nodes N1, N2, if N1 appears on the
path from N2 to the root, then W pN1q ăW pN2q and
for every x, y P V , wpx, yq “W pLCAT px, yqq. In this
case we say that the inputs is a strict ground-truth
input.

The algorithm is described for the similarity
setting but could be adapted to the dissimilarity case
to achieve the same performances.

Algorithm 8 Fast and Simple Algorithm for Hierar-
chical Clustering on Perfect Data (similarity setting)

1: Input: A graph G “ pV,Eq and a weight
function w : E ÞÑ R`

2: pÐ random vertex of V
3: Let w1 ą . . . ą wk be the edge weights of the

edges that have p as an endpoint
4: Let Bi “ tv | wpp, vq “ wiu, for 1 ď i ď k.
5: Apply the algorithm recursively on each GrBis

and obtain a collection of trees T1, . . . , Tk
6: Define T˚0 as a tree with p as a single vertex
7: For any 1 ď i ď k, define T˚i to be the union of
T˚i´1 and Ti

8: Return T˚k

Theorem 7.4. For any admissible objective func-
tion, Algorithm 8 computes a tree of optimal cost in
time Opn log2 nq with high probability if the input is a

17This Theorem may be folklore, at least when there are no

ties, but we have been unable to find a reference.
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strict ground-truth input or in time Opn2q if the input
is a (non-necessarily strict) ground-truth input.

7.3 Beyond Structured Inputs Since real-world
inputs might sometimes differ from our definition of
ground-truth inputs introduced in Section 2, we intro-
duce the notion of δ-adversarially-perturbed ground-
truth inputs. This notion aims at accounting for
noise in the data. We then design a simple and
arguably more reliable algorithm (a robust variant
of Algorithm 8) that achieves a δ-approximation
for δ-adversarially-perturbed ground-truth inputs in
Opnpn ` mqq time. An interesting property of this
algorithm is that its approximation guarantee is the
same for any admissible objective function.

We first introduce the definition of δ-
adversarially-perturbed ground-truth inputs. For
any real δ ě 1, we say that a weighted graph
G “ pV,E,wq is a δ-adversarially-perturbed ground-
truth input if there exists an ultrametric pX, dq, such
that V Ď X, and for every x, y P V, x ‰ y, e “ tx, yu
exists, and fpdpx, yqq ď wpeq ď δfpdpx, yqq, where
f : R` Ñ R` is a non-increasing function. This de-
fines δ-adversarially-perturbed ground-truth inputs
for similarity graphs and an analogous definition
applies for dissimilarity graphs.

We now introduce a robust, simple version of Al-
gorithm 8 that returns a δ-approximation if the in-
put is a δ-adversarially-perturbed ground-truth in-
puts. Algorithm 8 was partitioning the input graph
based on a single, random vertex. In this slightly
more robust version, the partition is built iteratively:
Vertices are added to the current part if there exists
at least one vertex in the current part or in the parts
that were built before with which they share an edge
of high enough weight (see Algorithm 9 for a complete
description).

Theorem 7.5. For any admissible objective func-
tion, Algorithm 9 returns a δ-approximation if the
input is a δ-adversarially-perturbed ground-truth in-
put.

The results presented in this section show that for
both the similarity and dissimilarity settings, some of
the widely-used heuristics may perform badly. The
proofs are neither difficult nor particularly interest-
ing, but the results stand in sharp contrast to those
for structured inputs and help motivate our study of
inputs beyond worst case.

Similarity Graphs. We show that for very
simple input graphs (i.e., unweighted trees), the
linkage algorithms (adapted to the similarity setting,
see Algorithm 6) may perform badly.

Algorithm 9 Robust and Simple Algorithm for
Hierarchical Clustering on δ-adversarially-perturbed
ground-truth inputs (similarity setting)

1: Input: A graph G “ pV,Eq and a weight
function w : E ÞÑ R`, a parameter δ

2: pÐ arbitrary vertex of V
3: iÐ 0
4: rVi Ð tpu

5: while rVi ‰ V do
6: Let p1 P rVi, p2 P V zrVi s.t. pp1, p2q is an edge

of maximum weight in the cut prVi, V zrViq
7: wi Ð wpp1, p2q
8: Bi Ð tu | wpp1, uq “ wiu

9: while Du P V zp rVi Y Biq s.t. Dv P Bi Y rVi,
wpu, vq ě wi do

10: Bi Ð Bi Y tuu.
11: end while
12: rVi`1 Ð rVi YBi
13: iÐ i` 1
14: end while
15: Let B1, . . . , Bk be the sets obtained
16: Apply the algorithm recursively on each GrBis

and obtain a collection of trees T1, . . . , Tk
17: Define T˚0 as a tree with p as a single vertex
18: For any 1 ď i ď k, define T˚i to be the union of

T˚i´1 and Ti
19: Return T˚k
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Theorem 7.6. There exists an infinite family of in-
puts on which the single-linkage and complete-linkage
algorithms output a solution of cost ΩpnOPT{ log nq.

Theorem 7.7. There exists an infinite family of
inputs on which the average-linkage algorithm output
a solution of cost Ωpn1{3OPTq.

Dissimilarity Graphs. We now show that
single-linkage, complete-linkage, and bisection 2-
Center might return a solution that is arbitrarily
bad compared to OPT in some cases. Hence, since
average-linkage achieves a 2-approximation in the
worst-case it seems that it is more robust than the
other algorithms used in practice.

Theorem 7.8. For each of the single-linkage,
complete-linkage, and bisection 2-Center algorithms,
there exists a family of inputs for which the algorithm
outputs a solution of value OpOPT{nq.

Proposition 7.1. For any input I lying in a metric
space, for any solution tree T for I, we have valpT q “
OpOPTq.
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