Specifications and Proofs for Ensemble Layers

Jason Hickey', Nancy Lynch?, Robbert van Renesse'

! Dept. of Computer Science, Cornell University ***

2 Laboratory for Computer Science, Massachusetts Institute of Technology

Abstract. Ensemble is a widely used group communication system that
supports distributed programming by providing precise guarantees for
synchronization, message ordering, and message delivery. Ensemble eases
the task of distributed-application programming, but as a result, ensur-
ing the correctness of Ensemble itself is a difficult problem. In this paper
we use I/O automata for formalizing, specifying, and verifying the En-
semble implementation. We focus specifically on message total ordering,
a property that is commonly used to guarantee comnsistency within a
process group. The systematic verification of this protocol led to the
discovery of an error in the implementation.

1 Introduction

Ensemble [8, 16] is a working system for supporting group communication.
In the group communication model, processes join together to form views
that vary over time, but at any time a process belongs to exactly one view.
Ensemble provides precise semantics for message delivery and ordering
both within a view, and as views change. The Ensemble implementation
is modular; applications acquire services by constructing layered protocol
stacks. Ensemble currently provides about 50 protocol layers, and the
number of useful protocols that can be constructed by composing the
layers into protocol stacks numbers in the thousands.

Ensemble eases the task of distributed-application programming by
supporting properties like failure detection and recovery, process migra-
tion, message ordering, and conflict resolution, through a common ap-
plication interface. From one perspective, Ensemble provides a model for
establishing confidence: the critical algorithms are cleanly isolated and
modularized. From another perspective, the task of verifying thousands
of protocols is seemingly impossible! Any verification model that we use
must capture the modularity of Ensemble, and it must be able to provide
automated assistance for module composition.

In this paper we present our experience applying I/O automata [13,
14] to Ensemble. The I/O automaton model provides a good framework

*** Support for this research was provided by DARPA contract F30602-95-1-0047 (Cor-
nell), and DARPA contract F19628-95-C-0118, AFOSR. contract F49620-97-1-0337,
and NSF grants CCR-9804665 and CCR-9225124 (MIT).

for modeling Ensemble because: (a) Ensemble layers can be described for-
mally as automata, and composition of layers corresponds to composition
of automata, (b) the I/O automaton model language supports a range of
specification, from abstract specifications that characterize services to op-
erational specifications that characterize program behavior, and (c) the
automata can be interpreted formally, as part of a mechanical verification
we are performing with the Nuprl system [5]. We demonstrate our expe-
rience through a case study of the Ensemble total-order protocol, which
specifies an ordering property for message delivery. It is built incremen-
tally from wvirtual synchrony, a basic Ensemble service. We present the
following contributions:

— EVS, a specification for the safety properties guaranteed by the En-
semble virtual synchrony layer.

— ETO, for the Ensemble totally ordered virtual synchrony layer.

— EVStoETO,, for the local program at node p, used in Ensemble in the
implementation of ETO using EVS. The original program was written
in OCaml by Mark Hayden [16, 8], based on C code developed by
Robbert van Renesse for the Horus system [17].

— a simulation relation showing that the composition of Evs and all the
EVStoETO,, for all p, implements ETO.

This document gives the specifications and summarizes the proofs
for the total order case study. The full proofs are given in detail in [9],
which provides the formal arguments used in the mechanical verification
using the Nuprl proof development system. At the time of writing, the
mechanical verification is partially complete. While we do not discuss
proof automation specifically, the specifications we present were developed
through a process of reverse-engineering, by hand-translating Ensemble
code into a Nuprl specification, and the proofs were developed in concert
with the Nuprl formalism.

The outline for the rest of the paper is as follows. In Section 2, we
give a brief description of the I/O automata formalism, and in Section 3,
we use it to specify the abstract Ensemble client. We specify the ETO and
EVS services in Sections 4 and 5; we develop the layer specification and
its verification in Section 6; and we finish with a discussion of the specific
ordering properties that led to the discovery of an error in Ensemble and
Horus in Section 7.

2 Notation and mathematical foundations

Sets, functions, sequences. Given a set S not containing 1, the nota-
tion S| refers to the set S U {L}. We write (()) for the empty sequence.
If a is a sequence, |a| denotes the length of a. We also use the notation

\al, to denote the number of elements in a that are equal to z. If a is
a sequence and 1 < 4 < j < |a| then a(i) denotes the ith element of a

and a(i..j) denotes the subsequence a(i),...,a(j). We say that sequence
s is a prefix of sequence ¢, written as s < t iff there exists 4 such that
s=1t(1...9).

Views. P denotes the universe of all processes. G is a totally ordered
set of identifiers used to distinguish views. Within G, we distinguish view
identifiers g,, p € P, one per process p. We assume that these special
view identifiers come before all other view identifiers in the given total
ordering of G. A view v = (g, P) consists of a view identifier g, g € G and
a nonempty set P, P € 27 of processors called “members” of the view.
V = G x 2% is the set of all views. Given a view v = (g, P), the notation
v.id refers to the view identifier g of view v and the notation v.set refers
to the view membership set P of view v. We distinguish special initial
views vy, = (gp, {p}) for all p € P. In specifications that associate at most
one view with each identifier g € G, we will sometimes refer to the “view”
g, meaning the view with identifier g.

Messages. We denote by M the universe of all possible messages. When
messages are placed in queues, they are often paired with processors M x
P. Given a message-processor pair x = (m, p), the notation z.msg refers
to the message m, and x.proc refers to the processor p.

I/O automata. I/O automata provide a reactive model for programs
that react with their environment in an ongoing manner, as described
by Lynch [14]. An automaton consists of a set of actions, classified as
input, output, or internal, a (possibly inifinite) set of states, and a set of
transitions, which are (state, action, state) triples. A valid ezecution is
a state-action sequence siaj ... $;a;s;4+1 ... where each triple s;a;s;41 is
a transition of the automaton. The I/O automata pseudocode we use in
this paper describes the automaton in three parts: (1) the possible actions
are described in the signature, (2) the state is expressed as a collection
of variables and their domains, (3) the transitions are described with
precondition/effect clauses for each action.

3 The client automaton C),

The specification of the Ensemble client is shown in Figure 1. The client
automaton is used to formalize restrictions on the environment in which
Ensemble services exist. There is one client C, per process p € P; each
client represents a single process in an Ensemble application. The group
membership changes over time in three distinct phases, represented by
three modes.

The client is initialized in the “normal” mode, and it can communicate
with other processes in the view by sending and receiving messages. When

Gy

Signature:

Input: ETO-BLOCK,, p € P Output: ETO-BLOCK-OKyp, p € P
ETO-NEWVIEW(V)p, v € V, p € v.set ETO-GPSND(m),, m € M, p e P
ETO-GPRCV(m)p,q, m € M, p,qg € P

State:

mode € { “normal”, “preparing”, “blocked”}, initially “normal”

Transitions:

input ETO-NEWVIEW(v), output ETO-GPSND(m),
Eff: mode := normal Pre: mode # blocked
input ETO-BLOCK, Eff: none
Eff: mode := preparing input ETO-GPRCV(m)p, q
output ETO-BLOCK-OKp Eff: none

Pre: mode = preparing

Eff: mode := blocked

Fig. 1. The C, specification

a new view is to be installed, Ensemble notifies the client by sending it
a BLOCK message. The BLOCK message puts the client in the “prepar-
ing” mode; the client may continue to send and receive messages in the
“preparing” mode. The client may respond to the BLOCK request with
a BLOCK-OK message, which makes the client “blocked.” The client is
not allowed to send messages in the blocked mode. The transition from
the “blocked” to the “normal” mode occurs when Ensemble delivers the
NEWVIEW message, which installs a new view in the client with a poten-
tially new list of view members.

4 Ensemble virtual synchrony (EVS)

Virtual Synchrony provides the semantics of group communication. The
view guarantees provided by Ensemble can be summarized with the fol-
lowing informal properties. EVS-self: if process p installs view v, then
p € v.set. EVS-view-order: views are installed in ascending order of view
id. EVS-non-overlap: for any two processes p and ¢ that both install view
v, the previous views of p and ¢ must either be the same or be disjoint.

Failures may prevent messages from being delivered, and virtual syn-
chrony provides the following delivery guarantees. EVS-msg-view: all deliv-
ered messages are delivered in the view in which they were sent. EVS-fifo:
messages between any two processes in a view are delivered in FIFO order.
EVS-sync: any two processes that install a view vy, both with preceding
view v, deliver the same messages in view v .

The automaton for EVS is shown in Figure 2. This automaton contains
a state shared by all processes, and the external events in the signature
are indexed by processes p € P. There is one event to match each of the

EVS

Signature:

In: EVS-GPSND(m)p, m € M, p € P Out: EVS-GPRCV(m)p,q, m € M, p,q € P
EVS-BLOCK-OKp, p € P EVS-BLOCKy. p € P

Internal: EVS-CREATEVIEW(v), v € V EVS-NEWVIEW(v)p, v € V, p € v.set

State:

created C V), initially {v, : p € P}
for each p € P:
mode[p] € { “normal”, “preparing”, “blocked”}, initially “normal”
all-viewids[p] C G, initially {gp}
for each p € P, g € G:
pending[p, g] € seqof (M), initially (())
for each p,q € P, g € G:
next[p, q, g] € NT, initially 1

Derived variables:

for each p € P:
all-views[p] C V, given by {v € created : v.id € all-viewids[p]}
current-viewid[p] € G, given by maz (all-viewids[p])
current-view[p] € G, a default view v € created such that
v.id = current-viewid[p]
for each g € G, p € P:
pred-viewid[g, p] € G1, the largest viewid strictly smaller than
g in all-viewids[p], if g € all-viewids[p] and any such viewid exists, else L
for eachv eV, p e P:
pred-view[v, p] € V, a default view w € all-views[p] such that
w.id = pred-viewid[v.id, p], if v € all-views[p] and any such w exists, else L

Transitions:
output EVS-BLOCK), internal EVS-CREATEVIEW (v)
Pre: mode[p] = normal Pre: Yw € created : v.id > w.id
Eff: mode[p] := preparing Eff: created := created U{v}
input EVS-BLOCK-OK, input EVS-GPSND(m),
Eff: mode[p] := blocked Eff: append m to pending[p, current-viewid[p]]

output EVS-GPRCV(m)y,,, choose g
output EVS-NEWVIEW(v), choose vl pre. ¢ = current-viewid p]

Pre: mode[p] = blocked pending[q, g] # ()

vl = cuzrznt—view [p] pending[q, g](next]q, p,g]) = m
v € create Eff: nextlq, p, g] := next|q, p, g] +1
v.id > vl.id g, p, 9] [a.p, 9]

Vq € v.set:

if pred-view[v, q] # L then
pred-view[v, q] = vl V pred-view[v, g].set Nvl.set = {}
if pred-view[v, q] = v1 then
Vr € vl.set:
next[r, p,vl.id] = next[r, q, v1l.id]
Eff: mode := normal
all-viewids[p] := all-viewids[p] U {v.id}

Fig. 2. EVvS specification

client events. In addition there is a new internal action evs-creaTeviEw(v)
that creates new views that may eventually be installed.

In the state, we keep a history for each process. The variable mode[p]
represents the mode of client Cj,. The sequence all-viewids[p] is the his-
tory of all views that have been delivered to process p. The sequence
pending[p, g| is the sequence of messages sent by process p in view g. The
index next[q, p, g] indicates the next message to be delivered to process p
from process ¢ in view g (so pendingq, g](next|q, p, g]) is the next message
to be delivered). The view current-view[p] is the last view that was de-
livered to the client, and pred-view[g, p] is the view delivered just before
view g to process p.

The transitions for evs-sLock and Evs-BLOCK-0OK represent state changes
in the client. The transition for evs-rsnp(m), places the message m in
the current sequence of pending messages for process p, and the transition
for EVS—GPRCV(m)qyp takes a message from the pending queue for process
q and delivers it to process p.

The evs-Newview(v), transition requires several properties before a
new view can be delivered to the client C). The precondition v.id > v1l.id
requires that the new view be larger than the current view (which ensures
EVS-view-order). For each process ¢ € P, the precondition pred-view|v, q] =
v1V pred-view[v, q].set Nvl.set = {} provides the EVS-non-overlap property
for processes that have already installed view v (pred-view[v,q] # L1).
The precondition nezxt[r,p,vl.id] = next[r, q, vl.id] provides the EVS-sync
property: the messages delivered from process r must be the same for
all processes that have installed view v from view vl. These properties,
together with the EVS-fifo property that follows from the ordering of mes-
sages in the pending queues, yield the informal properties claimed by the
designers.

5 Ensemble total order (ETO)

The ETO service guarantees all of the properties of Evs, and also the
following ordering guarantees on message delivery. ETO-total: Any two
messages m; and mg delivered to more than one process are delivered
in the same order. ETO-causal: Messages are causally ordered: if process
po receives a message m from process pp, then it must have received all
messages received by p; before m was sent.

The automaton for ETO is derived from EVS, with the differences
shown in Figure 3: 1) the EVS---- actions of EVS are renamed with the
ETO-- - - prefix, 2) the transitions for ero-apsno(m), and ero-arrev(m)gp
replace the corresponding transitions of EVS, 3) rro-orner(m,1,j), is a
new action, and 4) the ETO state adds the state variables queuelg] and
pending[p, g] to the state of EVS. The total order for each view g € G is

ETO: changes from EVS

Signature:

In: ETO-GPSND(m),, m € M, p € P Out: ETO-GPRCV(m)p.q, m € M, p,q € P
ETO-BLOCK-OKp, p € P ETO-BLOCK,. p € P

Internal: ETO-CREATEVIEW(v), v € V ETO-NEWVIEW(v)p, v € V, p € v.set

ETO-ORDER(m,4,5)p, m € M, i,j ENT peP
State:

for each g € G:
queuelg] € seqof (P), initially ()
for each p e P, g € G:
pending[p, g] € seqof (M x (P — NT)), initially ()
Derived variables:
enabled[p, q, g] € bool, indicates when a totally ordered message can be delivered
from process p to process ¢ in view g:
Ji. queuelg](i) =p
A |queuelg](1... i)|p = nezt[p, q, g

AVp' € P.p' # p = 3j < i:|queuelg|(1...5)|, = nest[p’,q,9] L1

P

Transitions:
input ETO-GPSND(m), output ETO-GPRCV(m)g,p, choose g, f
Eff: choose g = current-viewid[p] Pre: g = current-viewid[q]
choose f = Ar.nezt[r,p, g] pendinglq, g](nezt(q, p, g]) = (m, f)
append (m, f) to pending[p, g] Vr € P.next[r,p,g] > f(r)
internal ETO-ORDER(m, i, j),, choose g enabled[q, p, g]
Pre: |queuelg](1... i)|p =511 Eff: nestlq, p, g] := nest[q,p,g] + 1

| queuelg]|, =j L1

pending[p, g](j) = m
Eff: insert p into queue[g] at i

Fig. 3. The specification modifications for ETO

represented by the queuelg] process sequence, where message m; in the
total order is from process queue[g](i). The queue[g] entries are inserted
by the internal action ero-orner(m, i, j),, which inserts process p into the
total order queue[g] at location 7 after all other occurrences of process p
in the total order.

The message delivery ordering at process p is determined by the pre-
condition for the evs-aprev(m), . The precondition Vr € P.nest(r, q, g) >
f(r) provides causal ordering: the eTo-apsnp(m), transition saves a causal
“snapshot” of the delivery state when the message was sent, and the
Vr € P:next[r,q,g9] > f(r) is the causality requirement. Total ordering
is determined by the enabled predicate: if enabled[p,q,g] then there is
some index i into the total order queue[g] where the number of deliv-
ered messages from each process p’ € P is no more than the number of
occurrences of p’ in queue[g](1...4). This condition for ordering allows
message deliveries that contain gaps. For example, consider the ordering
queuelg] = {(p1 p2 p1 P2 P1 P3 P2 P3 p2)), where the underlined process

identifiers represent messages that have been delivered to process p. Two
messages have been delivered from processes p; and py. Message deliver-
ies from p; and p3 are no longer enabled—they would violate the total
order. The only possible future delivery is from process po.

6 The implementation algorithm (EVStoETO)

Ensemble implements services using separate protocol stacks for each pro-
cess. The layer that implements total-order uses a two-phase token-based
algorithm. When a view is first installed with the evs-Newview(v), action
a token is generated by the group leader (the process with the smallest
process identifier). Each message sent during the first phase, called the
ordered phase, must be associated with a token. When a process has a
message to send, it is required to obtain a token. If it obtains a token ¢;, it
sends the message with the token, and generates new token ¢;, ;. During
this phase, the sent messages (mj,t1), (ma,t2),... can be totally ordered
by their tokens.

When messages are received by the layer from EVS in the ordered
phase, they are saved in a queue, called the ordered queue, in the order
determined by their tokens. The EVStoETO,, layer delivers message m; to
the client C}, only if messages mi, ma,...,m; 11 have been successfully
received by the layer (with the rvs-cprov(m),,, action) and delivered to
the client (with the ero-aprev(m), 4 action).

The second phase of the protocol, called the unordered phase, can be
entered by the layer at any time. During the unordered phase, outgoing
messages are sent without waiting for the token, and they are designated
as “unordered.” Layers that receive unordered messages place them on a
queue called the unordered queue. Delivery of an unordered message to
the client is delayed until the installation of the next view, upon which
the layer sorts the contents of the unordered queue by process-identifier,
and delivers the queued messages to the client before delivering the new
view.

The specification for the EVStoETO layer is shown in Figures 4 and
5'. In this specification, tokens for messages in the ordered mode are
represented by their number. The layer for EVStoETO uses four message
types to communicate information about messages and their ordering:
Ordered (t,m) pairs token ¢ with message m, Unordered (m) designates an
unordered message, TokenReq is used to request a token from another
process, and TokenSend(t,p) is used to deliver token ¢ to process p.

The signature for the EVStoETO layer includes both actions for com-
municating with EVS (the Evs-- - - events), and with the client (the ETO-- - -

! This version fixes the original error in Ensemble and Horus, which differed in the
implementation of the precondition for ETO-GPRCV(m), ,, as discussed in Section 7.

EVStOETO,

Signature:

define My = Ordered (t,m),t € N, m € M

| Unordered (m), m € M

TokenReq

\
| TokenSend (t,r),t € N, r € P

Input:

EVS-GPRCV(m)g,p, m € Mr, p,q € P
EVS-BLOCKp, p € P
EVS-NEWVIEW(v)p, v €V, p € P
ETO-BLOCK-OKp, p € P
ETO-GPSND(m)p, m € M, p € P

Internal:

State:

blocked € bool, initially false
have-block € bool, initially false
have-block-ok € bool, initially false
have-newview € bool, initially false
holds-token € bool, initially true
token € N, initially 1

use-token € bool, initially true
view € V, initially v,

EVS-UNORDERED,, p € P

Output:

EVS-GPSND(t,m)p, t € N, m € Mr,p€ P
EVS-BLOCK-OKp, p € P

ETO-BLOCKp, p € P

ETO-NEWVIEW(v),, v € V, p € v.set
ETO-GPRCV(m)qp, m € M, p,q € P

request € 27 initially {}
requested € bool, initially false
pending € seqof (M), initially (())
next € NV, initially 1
order € N, initially 1
for each £ € N:
ordered[t] € (M x P) 1, initially L
unordered € seqof (M x P), initially (())

Transitions:
input EVS-GPRCV(Ordered (t,m))q,p
Eff: ordered[t] := (m,q)
input Evs-arPrcv(Unordered(m))q,p
Eff: append (m,q) to unordered
input Evs-arPrev(TokenReq)q.p
Eff: request := request U {q}
input Evs-arPrcv(TokenSend(t,r))q,p
Eff: if r = p A use-token then
holds-token := true
token =1t
input ETO-GPSND(m),
Eff: append m to pending

input EVS-BLOCK,
Eff: have-block := true
input EVS-NEWVIEW(v),
Eff: have-newview := true
view 1= v
input ETO-BLOCK-OK,

Eff: have-block-ok := true
blocked := true
internal ETO-UNORDERED,

Pre: true
Eff: holds-token := false

use-token := false

Fig. 4. State, input, and internal transitions for EVStoETO

events). In the specification, a process p is allowed to initiate unordered
mode at any time with the internal event evs-uNorDERED,. The state has
three parts.

The view part maintains information about the view state and pend-
ing views. The blocked flag is true iff the client is considered to be blocked.
The have-block, have-block-ok, and have-new-view flags keep track of
queued block events as they are passed between EVS and the client; for
instance, have-block is set in the transition for rvs-sLock,, and reset in the
transition for rro-sLock,. The view field is valid if the flag have-new-view
is set, and it contains the next view to be delivered to the client.

The next part of the state is for token-management. The holds-token
flag is set iff the process is known to hold a valid token; the token is

Output transitions

output ETO-BLOCK,
Pre: have-block
—have-newview
Eff: have-block := false
output EVS-BLOCK-OK,
Pre: have-block-ok
next = |pending| + 1
Eff: have-block-ok := false
output EVS-GPSND(Ordered (t,m)),
Pre: pending(next) = m
holds-token
token =t
Eff: next := next + 1
token ==t +1
output EVS-GPSND(Unordered(m)),
Pre: —use-token
pending(next) = m
Eff: next := next +1
output ETO-NEWVIEW (),
Pre: have-newview
v = view
ordered[order] = L

Eff:

output ETO-GPRCV(m)q p choose i, j
Pre:

ordered[order] = (m, q)
V (have-newview
At > order ANj =0
A ordered[i] = (m, q)
Aq € view.set

AYj € [order ...i L 1]: ordered[j] # L

= ordered[j].proc ¢ view.set)
V (have-newview
AVE > order: ordered[k] # L
= ordered[k].proc ¢ view.set
A unordered (j) = (m,q) Ni =10
AVEk < j¥p' = unordered[k].proc:
p' & view.set Vp' >pq
AVEk > j¥p' = unordered[k].proc:
p' ¢ view.set Vp' >p q)
if ordered[order] = (m,p) then
order := order + 1
else if j = 0 then
ordered[i] := L
else
remove element j from unordered

Vi: unordered (i).proc ¢ view.setoutput EVS-GPSND(TokenReq),

Eff: have-newview := false Pre: nest < |pending|
token =1 use-token
order :=1 —holds-token
next :=1 —requested
pending = () Eff: requested := true

for each t € N output EVS-GPSND(TokenSend (t,1),)
ordered[t] := L Pre: next = |pending| + 1

holds-token = —3q € v.set.q <p p holds-token

request := {} token =t

requested := false r € request

blocked := false holds-token := false

use-token := true request := request L {r}

requested := false

Eff:

Fig. 5. Output transitions for EVStoETO

represented as a number stored in the token field. The use-token flag is
true iff the layer is in the ordered phase of the protocol. The request field
is a set of processes known to be requesting the token. The requested flag
is set iff process p is actively requesting the token.

The final part of the state is for ordering and queueing. The pending
field contains the messages sent by the client in the current view. The
next field is the index of the next message to be sent to EVS from the
pending queue. The ordered queue is the queue of ordered messages that
have been received by the layer in the current view. The order field is the
index of the last ordered message that was delivered to the client from
the ordered queue. Unordered messages are stored in the unordered queue
until the arrival of the next view.

An ordered message is sent to EVS with the EVS—GPSND(m)p action when
the process has the token and a pending message; pending messages are
sent unordered only after the unordered phase is initiated.

The ordering part of the protocol is implemented in the transition
for ero-arrev(m), .. There are three cases where a message can be deliv-
ered to the client: (1) The next ordered message ordered|order] has been
queued. In this case, the message is delivered to the client, and the order
field is incremented. (2) A new view is pending, there is a ordered mes-
sage m from process ¢ in the ordered queue, and ¢ survives in the new
view. The message is delivered to the client and removed from the ordered
queue. (3) A new view is pending, all messages in the ordered queue be-
long to failed processes (processes that are not in the new view), and
message m is the first message from a surviving process gq. The message
is delivered to the client, and removed from the unordered queue.

The new view is delivered to the client only after all messages from
surviving process have been delivered to the client from the ordered and
unordered queues. All messages from failed processes are discarded.

The layer verification is a forward simulation relation, as described in
Chapter 8 of Lynch [14], showing that the implementation, EVS composed
with all the layers EVStoETO, and clients C), for each p € P, implements
the specification ETO composed with all the clients C), for each p € P. We
implement the specification as the automaton S, and the implementation
as automaton 7. We abbreviate T.EVStoETO, with the notation L, (for
“layer” p), and T.EVS as V (for Virtual synchrony). The specification for
the automaton S is the composition of ETO and C,, for each p € P.

For the implementation 7', we define additional derived variables that
correspond to values in the specification S, as shown in Figure 6. The
mpending[p, g] is the list of pending messages in the EVS automaton from
process p in view g. The gcountlp,q| is the number of messages from
process p that have been queued for process g by the layer EVStoETO,.
The mcount[p, ¢] is the number of messages from process p that have been
delivered to process g by the layer EVStoETO,. The next[p, ¢] is the index
into mpending|p, g| of the next message to be delivered from process p
to process ¢ by the layer EVStoETO,. The Ipending[p,q| field is the list
of messages, both ordered and unordered, that are queued in the layer
EVStoETO, for delivery to process q.

These variables provide the state correspondence shown in Figure 7.
The proof of the simulation relation is by induction on the length of
executions. We summarize the proof here.

First, we show that the V.evs-apsxp(m), corresponds to the action
S.ETO.ET0-0RDER(M, 1, j),. The index j is the number of messages L,.next.
We choose the index i as follows. If m = Ordered (t,m') is an ordered mes-

T

Compose: Hide:
EVS EVS-GPSND(m),, m € My, p € P
for each p € P: EVS-BLOCK-OKp, p € P
EVStOETO, EVS-GPRCV(m)p,q, m € M1, p,q € P
Cp EVS-BLOCK,. p € P

EVS-NEWVIEW(v)p, v € V, p € v.set
Derived variables:), P

for each p € P:
current-viewid [p] € G, given by EVS.current-viewid[p] if ~EVStoETO.have-newview,
or EVS.pred-viewid [EVS. current-viewid [p], p] otherwise. This view represents the
“current view” of the EVStoETO layer.
for each g € G:
oqueue[g| € seqof (P), where
oquevelg](i) = p
if there is a pending entry j where EVS.pending|p, g](j) = Ordered(i, m).
The length |oqueue[g]| is the number of pending ordered messages.
uqueue[g] € seqof (P), where uqueue[g](i) = p
if there is a pending entry j where EvVS.pending[p, g](j) = Unordered(m),
and |uqueue[g]|p is the number of unordered messages in pendinglp, g],
and uqueue[g] is sorted by processor using the ordering <p of EVS
queuelg] € seqof (P) defined by queue[g] = oqueue|g] + uqueue[g]
for each p € P, g € G:
mpending[p, g] € seqof (M) defined by the the sequence of Ordered and Unordered
messages in EVS.pending[p, g]
for each p,q € P:
gecount[p, q] € N defined by the number of messages from processor p in
EVStOETO,.ordered (EVStOETO.order . . .) and EVStOETO,.unordered
mcount[p,q] € N defined by the number of Ordered and Unordered messages in
EVS.pending[p, EVS.current-viewid[q]|(1 . . . EVS.nezt[p, q, EVS. current-viewid[q]]).
nezt[p, q] € NT defined by mcount[p, q] L gecount[p, q]
Ipending[p, q] € seqof (M) defined by the sequence of messages from p
in EVStoETOg.ordered + EVStOETO4.unordered

Fig. 6. Total Order Implementation

sage, then the insertion occurs at location i = t. If m = Unordered (m') is
an unordered message, then the location i is the last location in T'. queue[g]
after all ordered messages, but before any occurrences of processes p’ > p.

Next, we show that the action T.rro-cprev(m)g, corresponds directly
to the action S.evo-aprcv(m),,. For this part, we need to prove that
each delivery T.ero-aprcv(m),, is both causal and enabled (with the
S.ETO.enabled[q, p, g] predicate). The ordering argument has three parts,
corresponding to the precondition for Ly.ETo-GPROV.

For ordered messages in the first clause of the precondition, the order-
ing conditions are straightforward. Since every message is associated with
a token, and all messages are delivered in strict token order, causality and
totality are trivially preserved.

S.ETO.created = V.created
S.Cp.mode = T.Cp.mode
S.ET0.mode = T.Cp.mode

V.all-viewids[p] L {L,.view} if hnv
S.ETO.all-viewids = { V.all-viewids[p] if =hnv
where hnv = L,.have-newview

©@ ©® @6

S.ETO.queue[g] = T.queue[g]
® S.ETO.pending(p, g] = Ly.pending
@) S.ETO.nezt(p, q, 9] = T.next[p,q|
where g = S.ETO.current-viewid (p)

Fig. 7. State relation

The proof for the second disjunct of ero-aprev(m),,, is more complex
because of causal relationships between queued messages at the arrival
of a new view. At the new view, the ordered queue may contain mes-
sages interspersed with gaps for messages that were never received by the
layer. The only assumption that can be made about the lost messages is
that they were not received by any process in the new view (the EVS-sync
property). Since the causal relationships are otherwise unknown, the im-
plementation can only deliver messages from processes that remain in the
new view. As we discuss in Section 7, the original Ensemble and Horus
implementations did not implement this step exactly.

Lastly, the proof of ordering for messages in the unordered queue is
straightforward. Since delivery of unordered messages is postponed until
the next view, all unordered messages are causally unrelated. The to-
tal ordering property follows because the layers sort the messages using
the ordering over P, and causality follows because messages from failed
processes are not delivered.

7 EVStoETO: discussion

The most complex part of the proof is the action for evs-grrcv, because
three different cases have to be handled: one case for ordered messages,
one for unordered, and one for ordered messages that have been received
during the transition when some layers are sending ordered messages,
and others are sending unordered messages. The message delivery prop-
erties of EVS do not guarantee that there will be no gaps in the ordered
queue of messages, even when a new view is passed to the layer with the
EVS-NEWVIEW(v), action. This is a subtle point that involves the issue of
causal ordering of messages.

We can illustrate the problem with a scenario involving four processes,
all initially in the same view. In this scenario, message m; is delivered to
process po, which immediately delivers it to the client. The client sends
a new message mgy which is received by processes p3 and p4, and then
processes p; and po fail.

Message mo is causally related to Pa

message my, but msy, m3, and my are L Initid View
causally unrelated because clients C3 my: token 1
and Cy do not receive any messages m,: token 2
until the arrival of the new view due

to the gap in the ordered queue left ma: token 3

for message mi. Because of failures,
there is no way to recover message m.
Which messages should be delivered?

The implementations addressed this
problem in two different ways. The En-
semble implementation discarded all pending ordered messages at the
arrival of the new view, and Horus implementation delivered them all.
Ensemble would discard message m3 but deliver my, violating the EVS-
fifo property, and Horus would deliver message mg without delivering my,
violating ETO-causal. An implementation with the EVS-fifo and ETO-causal
properties would deliver, at most, messages ms and my.

When we first started working on the verification problem, the first
step was to derive the specifications from the Ensemble ML code, which
gave us the specification EVStoETO,, shown in Figure 5 without the mid-
dle precondition for ero-grrev(m)g,. It became clear as we were doing
the simulation proof that the simulation step for rvo-aprev(m),, would
fail: there were some message deliveries that would not be allowed by
the specification of total order ETO. The solution seemed to be either
to strengthen the properties of EVS or strengthen the precondition for
ETO-GPRCV.

When we spoke with the developers about this problem, we found a
line of reasoning common to both implementations: if EVS were to preserve
causal ordering of messages, the implementations would work correctly.
However, causal ordering is not provided by EVS for efficiency reasons;
applications that need causal ordering add an additional protocol layer
to implement the property. The code was corrected by implementing the
additional precondition and effect for rvo-cprcov(m),,. The changes to
the implementation code were minimal, and both implementations have
since been corrected.

8 Related work

Birman and Joseph presented one of the earliest accounts of virtual syn-
chrony [4] in 1987. Since that time many group membership and com-
munication specifications have appeared. An article published in 1995 [1]
points out that many attempts of these have been unsatisfactory. Several
new specifications have appeared that do not suffer from the shortcomings

mg: unordered

__Jd___L NewView

in [1], such as [15,7, 2, 3]. A specification of protocol layers and their com-
position appeared in [17]. Automata are used for specifying distributed
systems in [10, 6]. In [11], protocol layers for point-to-point messaging are
formally specified and composed using TLA [12].

References

10.

11.

12.

13.

14.

15.

16.

17.

. Emmanuelle Anceaume, Bernadette Charron-Bost, Pascale Minet, and Sam Toueg.

On the formal specification of group membership services. Technical Report TR
95-1534, Cornell University Computer Science Department, August 1995.

. Ozalp Babaoglu, Renzo Davoli, L. Giachini, and G. Baker. System support for

partition-aware network applications. In Proceedings of the 18th IEEE Interna-
tional Conference on Distributed Computing Systems, May 1998.

Kenneth P. Birman. Building Secure and Reliable Network Applications. Manning
Publishing Company and Prentice Hall, January 1997.

Kenneth P. Birman and Thomas A. Joseph. Exploiting virtual synchrony in
distributed systems. In Proc 11th Symposium on Operating Systems Principles
(SOSP), pages 123 138, November 1987.

. R.L. Constable et.al. Implementing Mathematics in the NuPRL Proof Development

System. Prentice Hall, 1986.

Alan Fekete. Formal models of communications services: A case study. IEEE
Computer, 26(8):37-47, August 1993.

Alan Fekete, Nancy Lynch, and Alex Shvartsman. Specifying and using parti-
tionable group communication service. In Proc.16thAnnual ACM Symposium on
Principles of Dist. Comp., pages 52 62, 1997.

Mark G. Hayden. The Ensemble System. PhD thesis, Dept. of Computer Science,
Cornell University, January 1997.

. Jason Hickey, Nancy Lynch, and Robbert van Renesse. Specifications and proofs

for Ensemble layers. Technical Report forthcoming, MIT and Cornell University,
1998. available at http:// www.cs.cornell.edu/jyh/papers/HLR98.ps.

Bengt Jonsson. Compositional specification and verification of distributed sys-
tems. ACM Transactions on Programming Languages and Systems, 16(2):259 303,
March 1994.

David A. Karr. Protocol Composition on Horus. PhD thesis, Dept. of Computer
Science, Cornell University, December 1996.

Leslie Lamport. Introduction to TLA. Technical Report 1994-001, DIGITAL SRC,
Palo Alto, CA, 1994.

Nancy Lynch and Mark Tuttle. An introduction to Input/Output automata. Cen-
trum voor Wiskunde en Informatica, Amsterdam, The Netherlands, 2(3):219-246,
September 1989. Also Tech. Memo MIT/LCS/TM-373.

Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

Gil Neiger. A new look at membership services. In Proc.15thAnnual ACM Sym-
posium on Principles of Dist. Comp., pages 331 340, May 1996.

Robbert Van Renesse, Ken Birman, Mark Hayden, Alexey Vaysburd, and David
Karr. Building adaptive systems using Ensemble. Software Practice and Ezperi-
ence, 29(9):963-979, July 1998.

Robbert Van Renesse, Kenneth P. Birman, Roy Friedman, Mark Hayden, and
David A. Karr. A Framework for Protocol Composition in Horus. In Proc. 14th
Annual ACM Symposium on Principles of Dist. Comp., pages 80 89, Ottawa, On-
tario, August 1995. ACM SIGOPS-SIGACT.

