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for modeling Ensemble because: (a) Ensemble layers can be described for-mally as automata, and composition of layers corresponds to compositionof automata, (b) the I/O automaton model language supports a range ofspeci�cation, from abstract speci�cations that characterize services to op-erational speci�cations that characterize program behavior, and (c) theautomata can be interpreted formally, as part of a mechanical veri�cationwe are performing with the Nuprl system [5]. We demonstrate our expe-rience through a case study of the Ensemble total-order protocol, whichspeci�es an ordering property for message delivery. It is built incremen-tally from virtual synchrony, a basic Ensemble service. We present thefollowing contributions:{ EVS, a speci�cation for the safety properties guaranteed by the En-semble virtual synchrony layer.{ ETO, for the Ensemble totally ordered virtual synchrony layer.{ evstoetop, for the local program at node p, used in Ensemble in theimplementation of eto using evs. The original program was writtenin OCaml by Mark Hayden [16, 8], based on C code developed byRobbert van Renesse for the Horus system [17].{ a simulation relation showing that the composition of evs and all theevstoetop, for all p, implements eto.This document gives the speci�cations and summarizes the proofsfor the total order case study. The full proofs are given in detail in [9],which provides the formal arguments used in the mechanical veri�cationusing the Nuprl proof development system. At the time of writing, themechanical veri�cation is partially complete. While we do not discussproof automation speci�cally, the speci�cations we present were developedthrough a process of reverse-engineering, by hand-translating Ensemblecode into a Nuprl speci�cation, and the proofs were developed in concertwith the Nuprl formalism.The outline for the rest of the paper is as follows. In Section 2, wegive a brief description of the I/O automata formalism, and in Section 3,we use it to specify the abstract Ensemble client. We specify the eto andevs services in Sections 4 and 5; we develop the layer speci�cation andits veri�cation in Section 6; and we �nish with a discussion of the speci�cordering properties that led to the discovery of an error in Ensemble andHorus in Section 7.2 Notation and mathematical foundationsSets, functions, sequences. Given a set S not containing ?, the nota-tion S? refers to the set S [ f?g. We write hhii for the empty sequence.If a is a sequence, jaj denotes the length of a. We also use the notation



jajx to denote the number of elements in a that are equal to x. If a isa sequence and 1 � i � j � jaj then a(i) denotes the ith element of aand a(i::j) denotes the subsequence a(i); : : : ; a(j). We say that sequences is a pre�x of sequence t, written as s � t i� there exists i such thats = t(1 : : : i).Views. P denotes the universe of all processes. G is a totally orderedset of identi�ers used to distinguish views. Within G, we distinguish viewidenti�ers gp, p 2 P, one per process p. We assume that these specialview identi�ers come before all other view identi�ers in the given totalordering of G. A view v = hg; P i consists of a view identi�er g, g 2 G anda nonempty set P , P 2 2P , of processors called \members" of the view.V = G � 2P is the set of all views. Given a view v = hg; P i, the notationv:id refers to the view identi�er g of view v and the notation v:set refersto the view membership set P of view v. We distinguish special initialviews vp = hgp; fpgi for all p 2 P. In speci�cations that associate at mostone view with each identi�er g 2 G, we will sometimes refer to the \view"g, meaning the view with identi�er g.Messages. We denote by M the universe of all possible messages. Whenmessages are placed in queues, they are often paired with processorsM�P. Given a message-processor pair x = hm; pi, the notation x:msg refersto the message m, and x:proc refers to the processor p.I/O automata. I/O automata provide a reactive model for programsthat react with their environment in an ongoing manner, as describedby Lynch [14]. An automaton consists of a set of actions, classi�ed asinput, output, or internal, a (possibly ini�nite) set of states, and a set oftransitions, which are (state, action, state) triples. A valid execution isa state-action sequence s1a1 : : : siaisi+1 : : : where each triple siaisi+1 isa transition of the automaton. The I/O automata pseudocode we use inthis paper describes the automaton in three parts: (1) the possible actionsare described in the signature, (2) the state is expressed as a collectionof variables and their domains, (3) the transitions are described withprecondition/e�ect clauses for each action.3 The client automaton CpThe speci�cation of the Ensemble client is shown in Figure 1. The clientautomaton is used to formalize restrictions on the environment in whichEnsemble services exist. There is one client Cp per process p 2 P; eachclient represents a single process in an Ensemble application. The groupmembership changes over time in three distinct phases, represented bythree modes.The client is initialized in the \normal" mode, and it can communicatewith other processes in the view by sending and receiving messages. When



CpSignature:Input: eto-blockp, p 2 Peto-newview(v)p, v 2 V, p 2 v:seteto-gprcv(m)p;q, m 2M, p; q 2 P Output: eto-block-okp, p 2 Peto-gpsnd(m)p, m 2 M, p 2 PState:mode 2 f\normal"; \preparing"; \blocked"g, initially \normal"Transitions:input eto-newview(v)pE�: mode := normalinput eto-blockpE�: mode := preparingoutput eto-block-okpPre: mode = preparingE�: mode := blocked
output eto-gpsnd(m)pPre: mode 6= blockedE�: noneinput eto-gprcv(m)p;qE�: noneFig. 1. The Cp speci�cationa new view is to be installed, Ensemble noti�es the client by sending ita block message. The block message puts the client in the \prepar-ing" mode; the client may continue to send and receive messages in the\preparing" mode. The client may respond to the block request witha block-ok message, which makes the client \blocked." The client isnot allowed to send messages in the blocked mode. The transition fromthe \blocked" to the \normal" mode occurs when Ensemble delivers thenewview message, which installs a new view in the client with a poten-tially new list of view members.4 Ensemble virtual synchrony (EVS)Virtual Synchrony provides the semantics of group communication. Theview guarantees provided by Ensemble can be summarized with the fol-lowing informal properties. EVS-self : if process p installs view v, thenp 2 v:set . EVS-view-order : views are installed in ascending order of viewid. EVS-non-overlap: for any two processes p and q that both install viewv, the previous views of p and q must either be the same or be disjoint.Failures may prevent messages from being delivered, and virtual syn-chrony provides the following delivery guarantees. EVS-msg-view : all deliv-ered messages are delivered in the view in which they were sent. EVS-�fo:messages between any two processes in a view are delivered in FIFO order.EVS-sync: any two processes that install a view v2, both with precedingview v1, deliver the same messages in view v1.The automaton for evs is shown in Figure 2. This automaton containsa state shared by all processes, and the external events in the signatureare indexed by processes p 2 P. There is one event to match each of the



evsSignature:In: evs-gpsnd(m)p, m 2 M, p 2 Pevs-block-okp, p 2 PInternal: evs-createview(v), v 2 V Out: evs-gprcv(m)p;q, m 2 M, p; q 2 Pevs-blockp. p 2 Pevs-newview(v)p, v 2 V, p 2 v:setState:created � V, initially fvp : p 2 Pgfor each p 2 P:mode[p] 2 f\normal"; \preparing"; \blocked"g, initially \normal"all-viewids[p] � G, initially fgpgfor each p 2 P, g 2 G:pending[p; g] 2 seqof (M), initially hhiifor each p; q 2 P, g 2 G:next[p; q; g] 2 N+, initially 1Derived variables:for each p 2 P:all-views[p] � V, given by fv 2 created : v:id 2 all-viewids[p]gcurrent-viewid[p] 2 G, given by max (all-viewids[p])current-view[p] 2 G, a default view v 2 created such thatv:id = current-viewid[p]for each g 2 G, p 2 P:pred-viewid[g; p] 2 G?, the largest viewid strictly smaller thang in all-viewids[p], if g 2 all-viewids[p] and any such viewid exists, else ?for each v 2 V, p 2 P:pred-view[v; p] 2 V, a default view w 2 all-views[p] such thatw:id = pred-viewid[v:id ; p], if v 2 all-views [p] and any such w exists, else ?Transitions:output evs-blockpPre: mode [p] = normalE�: mode [p] := preparinginput evs-block-okpE�: mode [p] := blocked internal evs-createview(v)Pre: 8w 2 created : v:id > w:idE�: created := created [fvginput evs-gpsnd(m)pE�: append m to pending[p; current-viewid[p]]output evs-gprcv(m)q;p, choose gPre: g = current-viewid [p]pending [q; g] 6= hhiipending [q; g](next[q; p; g]) = mE�: next[q; p; g] := next[q; p; g] +1output evs-newview(v)p choose v1Pre: mode [p] = blockedv1 = current-view [p]v 2 createdv:id > v1:id8q 2 v:set :if pred-view [v; q] 6= ? thenpred-view [v; q] = v1 _ pred-view [v; q]:set \ v1:set = fgif pred-view [v; q] = v1 then8r 2 v1:set :next [r; p; v1:id] = next [r; q; v1:id]E�: mode := normalall-viewids[p] := all-viewids[p] [ fv:idgFig. 2. evs speci�cation



client events. In addition there is a new internal action evs-createview(v)that creates new views that may eventually be installed.In the state, we keep a history for each process. The variable mode [p]represents the mode of client Cp. The sequence all-viewids [p] is the his-tory of all views that have been delivered to process p. The sequencepending [p; g] is the sequence of messages sent by process p in view g. Theindex next [q; p; g] indicates the next message to be delivered to process pfrom process q in view g (so pending [q; g](next [q; p; g]) is the next messageto be delivered). The view current-view [p] is the last view that was de-livered to the client, and pred-view [g; p] is the view delivered just beforeview g to process p.The transitions for evs-block and evs-block-ok represent state changesin the client. The transition for evs-gpsnd(m)p places the message m inthe current sequence of pending messages for process p, and the transitionfor evs-gprcv(m)q;p takes a message from the pending queue for processq and delivers it to process p.The evs-newview(v)p transition requires several properties before anew view can be delivered to the client Cp. The precondition v:id > v1:idrequires that the new view be larger than the current view (which ensuresEVS-view-order). For each process q 2 P, the precondition pred-view [v; q] =v1_pred-view [v; q]:set \v1:set = fg provides the EVS-non-overlap propertyfor processes that have already installed view v (pred-view [v; q] 6= ?).The precondition next [r; p; v1:id ] = next [r; q; v1:id ] provides the EVS-syncproperty: the messages delivered from process r must be the same forall processes that have installed view v from view v1. These properties,together with the EVS-�fo property that follows from the ordering of mes-sages in the pending queues, yield the informal properties claimed by thedesigners.5 Ensemble total order (ETO)The eto service guarantees all of the properties of evs, and also thefollowing ordering guarantees on message delivery. ETO-total : Any twomessages m1 and m2 delivered to more than one process are deliveredin the same order. ETO-causal : Messages are causally ordered: if processp2 receives a message m from process p1, then it must have received allmessages received by p1 before m was sent.The automaton for eto is derived from evs, with the di�erencesshown in Figure 3: 1) the evs-� � � actions of evs are renamed with theeto-� � � pre�x, 2) the transitions for eto-gpsnd(m)p and eto-gprcv(m)q;preplace the corresponding transitions of evs, 3) eto-order(m; i; j)p is anew action, and 4) the eto state adds the state variables queue[g] andpending [p; g] to the state of evs. The total order for each view g 2 G is



eto: changes from evsSignature:In: eto-gpsnd(m)p, m 2M, p 2 Peto-block-okp, p 2 P Out: eto-gprcv(m)p;q, m 2M, p; q 2 Peto-blockp. p 2 Peto-newview(v)p, v 2 V, p 2 v:setInternal: eto-createview(v), v 2 Veto-order(m; i; j)p, m 2M, i; j 2 N+, p 2 PState:for each g 2 G:queue[g] 2 seqof (P), initially hhiifor each p 2 P, g 2 G:pending[p; g] 2 seqof (M� (P ! N+)), initially hhiiDerived variables:enabled [p; q; g] 2 bool , indicates when a totally ordered message can be deliveredfrom process p to process q in view g:9i: queue [g](i) = p^ jqueue [g](1 : : : i)jp = next [p; q; g]^8p0 2 P:p0 6= p) 9j < i: jqueue [g](1 : : : j)jp0 = next [p0; q; g]� 1Transitions:input eto-gpsnd(m)pE�: choose g = current-viewid[p]choose f = �r:next [r; p; g]append (m; f) to pending[p; g]internal eto-order(m; i; j)p, choose gPre: jqueue [g](1 : : : i)jp = j � 1jqueue [g]jp = j � 1pending [p; g](j) = mE�: insert p into queue [g] at i
output eto-gprcv(m)q;p, choose g, fPre: g = current-viewid[q]pending [q; g](next [q; p; g]) = (m; f)8r 2 P:next [r; p; g] � f(r)enabled [q; p; g]E�: next [q; p; g] := next [q; p; g] + 1Fig. 3. The speci�cation modi�cations for etorepresented by the queue[g] process sequence, where message mi in thetotal order is from process queue[g](i). The queue[g] entries are insertedby the internal action eto-order(m; i; j)p, which inserts process p into thetotal order queue[g] at location i after all other occurrences of process pin the total order.The message delivery ordering at process p is determined by the pre-condition for the evs-gprcv(m)q;p. The precondition 8r 2 P:next(r; q; g) �f(r) provides causal ordering: the eto-gpsnd(m)p transition saves a causal\snapshot" of the delivery state when the message was sent, and the8r 2 P:next [r; q; g] � f(r) is the causality requirement. Total orderingis determined by the enabled predicate: if enabled [p; q; g] then there issome index i into the total order queue[g] where the number of deliv-ered messages from each process p0 2 P is no more than the number ofoccurrences of p0 in queue[g](1 : : : i). This condition for ordering allowsmessage deliveries that contain gaps. For example, consider the orderingqueue[g] = hhp1 p2 p1 p2 p1 p3 p2 p3 p2ii, where the underlined process



identi�ers represent messages that have been delivered to process p. Twomessages have been delivered from processes p1 and p2. Message deliver-ies from p1 and p3 are no longer enabled|they would violate the totalorder. The only possible future delivery is from process p2.6 The implementation algorithm (evstoeto)Ensemble implements services using separate protocol stacks for each pro-cess. The layer that implements total-order uses a two-phase token-basedalgorithm. When a view is �rst installed with the evs-newview(v)p actiona token is generated by the group leader (the process with the smallestprocess identi�er). Each message sent during the �rst phase, called theordered phase, must be associated with a token. When a process has amessage to send, it is required to obtain a token. If it obtains a token ti, itsends the message with the token, and generates new token ti+1. Duringthis phase, the sent messages (m1; t1); (m2; t2); : : : can be totally orderedby their tokens.When messages are received by the layer from evs in the orderedphase, they are saved in a queue, called the ordered queue, in the orderdetermined by their tokens. The evstoetop layer delivers message mi tothe client Cp only if messages m1;m2; : : : ;mi�1 have been successfullyreceived by the layer (with the evs-gprcv(m)q;p action) and delivered tothe client (with the eto-gprcv(m)p;q action).The second phase of the protocol, called the unordered phase, can beentered by the layer at any time. During the unordered phase, outgoingmessages are sent without waiting for the token, and they are designatedas \unordered." Layers that receive unordered messages place them on aqueue called the unordered queue. Delivery of an unordered message tothe client is delayed until the installation of the next view, upon whichthe layer sorts the contents of the unordered queue by process-identi�er,and delivers the queued messages to the client before delivering the newview.The speci�cation for the evstoeto layer is shown in Figures 4 and51. In this speci�cation, tokens for messages in the ordered mode arerepresented by their number. The layer for evstoeto uses four messagetypes to communicate information about messages and their ordering:Ordered (t;m) pairs token t with message m, Unordered (m) designates anunordered message, TokenReq is used to request a token from anotherprocess, and TokenSend(t; p) is used to deliver token t to process p.The signature for the evstoeto layer includes both actions for com-municating with evs (the evs-� � � events), and with the client (the eto-� � �1 This version �xes the original error in Ensemble and Horus, which di�ered in theimplementation of the precondition for eto-gprcv(m)q;p, as discussed in Section 7.



evstoetopSignature: de�ne MT � Ordered (t;m), t 2 N, m 2Mj Unordered (m), m 2 Mj TokenReqj TokenSend (t; r), t 2 N, r 2 PInput:evs-gprcv(m)q;p, m 2 MT , p; q 2 Pevs-blockp, p 2 Pevs-newview(v)p, v 2 V, p 2 Peto-block-okp, p 2 Peto-gpsnd(m)p, m 2 M, p 2 P Output:evs-gpsnd(t;m)p, t 2 N, m 2MT , p 2 Pevs-block-okp, p 2 Peto-blockp, p 2 Peto-newview(v)p, v 2 V, p 2 v:seteto-gprcv(m)q;p, m 2M, p; q 2 PInternal: evs-unorderedp, p 2 PState:blocked 2 bool , initially falsehave-block 2 bool , initially falsehave-block-ok 2 bool , initially falsehave-newview 2 bool , initially falseholds-token 2 bool , initially truetoken 2 N, initially 1use-token 2 bool , initially trueview 2 V, initially vp
request 2 2P , initially fgrequested 2 bool , initially falsepending 2 seqof (M), initially hhiinext 2 N+, initially 1order 2 N, initially 1for each t 2 N:ordered [t] 2 (M�P)?, initially ?unordered 2 seqof (M�P), initially hhiiTransitions:input evs-gprcv(Ordered(t;m))q;pE�: ordered [t] := hm; qiinput evs-gprcv(Unordered (m))q;pE�: append hm; qi to unorderedinput evs-gprcv(TokenReq)q;pE�: request := request [ fqginput evs-gprcv(TokenSend(t; r))q;pE�: if r = p ^ use-token thenholds-token := truetoken := tinput eto-gpsnd(m)pE�: append m to pending

input evs-blockpE�: have-block := trueinput evs-newview(v)pE�: have-newview := trueview := vinput eto-block-okpE�: have-block-ok := trueblocked := trueinternal eto-unorderedpPre: trueE�: holds-token := falseuse-token := falseFig. 4. State, input, and internal transitions for evstoetoevents). In the speci�cation, a process p is allowed to initiate unorderedmode at any time with the internal event evs-unorderedp. The state hasthree parts.The view part maintains information about the view state and pend-ing views. The blocked 
ag is true i� the client is considered to be blocked.The have-block , have-block-ok , and have-new-view 
ags keep track ofqueued block events as they are passed between evs and the client; forinstance, have-block is set in the transition for evs-blockp, and reset in thetransition for eto-blockp. The view �eld is valid if the 
ag have-new-viewis set, and it contains the next view to be delivered to the client.The next part of the state is for token-management. The holds-token
ag is set i� the process is known to hold a valid token; the token is



Output transitionsoutput eto-blockpPre: have-block:have-newviewE�: have-block := falseoutput evs-block-okpPre: have-block-oknext = jpending j+ 1E�: have-block-ok := falseoutput evs-gpsnd(Ordered(t;m))pPre: pending(next) = mholds-tokentoken = tE�: next := next + 1token := t+ 1output evs-gpsnd(Unordered(m))pPre: :use-tokenpending(next) = mE�: next := next + 1output eto-newview(v)pPre: have-newviewv = viewordered [order ] = ?8i: unordered (i):proc =2 view :setE�: have-newview := falsetoken := 1order := 1next := 1pending := hhiifor each t 2 Nordered [t] := ?holds-token = :9q 2 v:set :q <P prequest := fgrequested := falseblocked := falseuse-token := true

output eto-gprcv(m)q;p choose i; jPre: ordered [order ] = hm; qi_ (have-newview^ i � order ^ j = 0^ ordered [i] = hm; qi^ q 2 view :set^8j 2 [order : : : i� 1]: ordered [j] 6= ?) ordered [j]:proc =2 view :set)_ (have-newview^8k � order : ordered [k] 6= ?) ordered [k]:proc =2 view :set^ unordered (j) = hm; qi ^ i = 0^8k < j:8p0 = unordered [k]:proc :p0 =2 view :set _ p0 >P q^8k > j:8p0 = unordered [k]:proc :p0 =2 view :set _ p0 �P q)E�: if ordered [order ] = hm; pi thenorder := order + 1else if j = 0 thenordered [i] := ?elseremove element j from unorderedoutput evs-gpsnd(TokenReq)pPre: next � jpending juse-token:holds-token:requestedE�: requested := trueoutput evs-gpsnd(TokenSend(t; r)p)Pre: next = jpending j+ 1holds-tokentoken = tr 2 requestE�: holds-token := falserequest := request � frgrequested := falseFig. 5. Output transitions for evstoetorepresented as a number stored in the token �eld. The use-token 
ag istrue i� the layer is in the ordered phase of the protocol. The request �eldis a set of processes known to be requesting the token. The requested 
agis set i� process p is actively requesting the token.The �nal part of the state is for ordering and queueing. The pending�eld contains the messages sent by the client in the current view. Thenext �eld is the index of the next message to be sent to evs from thepending queue. The ordered queue is the queue of ordered messages thathave been received by the layer in the current view. The order �eld is theindex of the last ordered message that was delivered to the client fromthe ordered queue. Unordered messages are stored in the unordered queueuntil the arrival of the next view.



An ordered message is sent to evs with the evs-gpsnd(m)p action whenthe process has the token and a pending message; pending messages aresent unordered only after the unordered phase is initiated.The ordering part of the protocol is implemented in the transitionfor eto-gprcv(m)p;q. There are three cases where a message can be deliv-ered to the client: (1) The next ordered message ordered [order ] has beenqueued. In this case, the message is delivered to the client, and the order�eld is incremented. (2) A new view is pending, there is a ordered mes-sage m from process q in the ordered queue, and q survives in the newview. The message is delivered to the client and removed from the orderedqueue. (3) A new view is pending, all messages in the ordered queue be-long to failed processes (processes that are not in the new view), andmessage m is the �rst message from a surviving process q. The messageis delivered to the client, and removed from the unordered queue.The new view is delivered to the client only after all messages fromsurviving process have been delivered to the client from the ordered andunordered queues. All messages from failed processes are discarded.The layer veri�cation is a forward simulation relation, as described inChapter 8 of Lynch [14], showing that the implementation, evs composedwith all the layers evstoetop and clients Cp for each p 2 P, implementsthe speci�cation eto composed with all the clients Cp for each p 2 P. Weimplement the speci�cation as the automaton S, and the implementationas automaton T . We abbreviate T:evstoetop with the notation Lp (for\layer" p), and T:evs as V (for Virtual synchrony). The speci�cation forthe automaton S is the composition of eto and Cp for each p 2 P.For the implementation T , we de�ne additional derived variables thatcorrespond to values in the speci�cation S, as shown in Figure 6. Thempending [p; g] is the list of pending messages in the evs automaton fromprocess p in view g. The qcount [p; q] is the number of messages fromprocess p that have been queued for process q by the layer evstoetoq.The mcount [p; q] is the number of messages from process p that have beendelivered to process q by the layer evstoetoq. The next [p; q] is the indexinto mpending [p; g] of the next message to be delivered from process pto process q by the layer evstoetoq. The lpending [p; q] �eld is the listof messages, both ordered and unordered, that are queued in the layerevstoetoq for delivery to process q.These variables provide the state correspondence shown in Figure 7.The proof of the simulation relation is by induction on the length ofexecutions. We summarize the proof here.First, we show that the V:evs-gpsnd(m)p corresponds to the actionS:eto:eto-order(m; i; j)p. The index j is the number of messages Lp:next .We choose the index i as follows. Ifm = Ordered (t;m0) is an ordered mes-



TCompose:evsfor each p 2 P:evstoetopCp Hide:evs-gpsnd(m)p, m 2MT , p 2 Pevs-block-okp, p 2 Pevs-gprcv(m)p;q, m 2 MT , p; q 2 Pevs-blockp. p 2 Pevs-newview(v)p, v 2 V, p 2 v:setDerived variables:for each p 2 P:current-viewid [p] 2 G, given by evs:current-viewid [p] if :evstoeto:have-newview ,or evs:pred-viewid [evs:current-viewid [p]; p] otherwise. This view represents the\current view" of the evstoeto layer.for each g 2 G:oqueue [g] 2 seqof (P), whereoqueue [g](i) = pif there is a pending entry j where evs:pending [p; g](j) = Ordered(i; m).The length joqueue [g]j is the number of pending ordered messages.uqueue [g] 2 seqof (P), where uqueue [g](i) = pif there is a pending entry j where evs:pending [p; g](j) = Unordered (m),and juqueue [g]jp is the number of unordered messages in pending [p; g],and uqueue [g] is sorted by processor using the ordering <P of evsqueue [g] 2 seqof (P) de�ned by queue [g] = oqueue [g] + uqueue [g]for each p 2 P, g 2 G:mpending [p; g] 2 seqof (M) de�ned by the the sequence of Ordered and Unorderedmessages in evs:pending [p; g]for each p; q 2 P:qcount [p; q] 2 N de�ned by the number of messages from processor p inevstoetoq:ordered (evstoeto:order : : :) and evstoetoq:unorderedmcount [p; q] 2 N de�ned by the number of Ordered and Unordered messages inevs:pending [p; evs:current-viewid [q]](1 : : : evs:next [p; q; evs:current-viewid [q]]).next [p; q] 2 N+ de�ned by mcount [p; q]� qcount [p; q]lpending [p; q] 2 seqof (M) de�ned by the sequence of messages from pin evstoetoq:ordered + evstoetoq :unorderedFig. 6. Total Order Implementationsage, then the insertion occurs at location i = t. If m = Unordered (m0) isan unordered message, then the location i is the last location in T:queue[g]after all ordered messages, but before any occurrences of processes p0 > p.Next, we show that the action T:eto-gprcv(m)q;p corresponds directlyto the action S:eto-gprcv(m)q;p. For this part, we need to prove thateach delivery T:eto-gprcv(m)q;p is both causal and enabled (with theS:eto:enabled [q; p; g] predicate). The ordering argument has three parts,corresponding to the precondition for Lp:eto-gprcv.For ordered messages in the �rst clause of the precondition, the order-ing conditions are straightforward. Since every message is associated witha token, and all messages are delivered in strict token order, causality andtotality are trivially preserved.



h1 S:eto:created = V:createdh2 S:Cp:mode = T:Cp:modeh3 S:eto:mode = T:Cp:modeh4 S:eto:all-viewids = (V:all-viewids[p]� fLp:viewg if hnvV:all-viewids[p] if :hnvwhere hnv = Lp:have-newviewh5 S:eto:queue [g] = T:queue [g]h6 S:eto:pending [p; g] = Lp:pendingh7 S:eto:next [p; q; g] = T:next [p; q]where g = S:eto:current-viewid (p)Fig. 7. State relationThe proof for the second disjunct of eto-gprcv(m)q;p is more complexbecause of causal relationships between queued messages at the arrivalof a new view. At the new view, the ordered queue may contain mes-sages interspersed with gaps for messages that were never received by thelayer. The only assumption that can be made about the lost messages isthat they were not received by any process in the new view (the EVS-syncproperty). Since the causal relationships are otherwise unknown, the im-plementation can only deliver messages from processes that remain in thenew view. As we discuss in Section 7, the original Ensemble and Horusimplementations did not implement this step exactly.Lastly, the proof of ordering for messages in the unordered queue isstraightforward. Since delivery of unordered messages is postponed untilthe next view, all unordered messages are causally unrelated. The to-tal ordering property follows because the layers sort the messages usingthe ordering over P, and causality follows because messages from failedprocesses are not delivered.7 evstoeto: discussionThe most complex part of the proof is the action for evs-gprcv, becausethree di�erent cases have to be handled: one case for ordered messages,one for unordered, and one for ordered messages that have been receivedduring the transition when some layers are sending ordered messages,and others are sending unordered messages. The message delivery prop-erties of evs do not guarantee that there will be no gaps in the orderedqueue of messages, even when a new view is passed to the layer with theevs-newview(v)p action. This is a subtle point that involves the issue ofcausal ordering of messages.We can illustrate the problem with a scenario involving four processes,all initially in the same view. In this scenario, message m1 is delivered toprocess p2, which immediately delivers it to the client. The client sendsa new message m2 which is received by processes p3 and p4, and thenprocesses p1 and p2 fail.
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Message m2 is causally related tomessage m1, but m2, m3, and m4 arecausally unrelated because clients C3and C4 do not receive any messagesuntil the arrival of the new view dueto the gap in the ordered queue leftfor message m1. Because of failures,there is no way to recover messagem1.Which messages should be delivered?The implementations addressed thisproblem in two di�erent ways. The En-semble implementation discarded all pending ordered messages at thearrival of the new view, and Horus implementation delivered them all.Ensemble would discard message m3 but deliver m4, violating the EVS-�fo property, and Horus would deliver message m2 without deliveringm1,violating ETO-causal. An implementation with the EVS-�fo and ETO-causalproperties would deliver, at most, messages m3 and m4.When we �rst started working on the veri�cation problem, the �rststep was to derive the speci�cations from the Ensemble ML code, whichgave us the speci�cation evstoetop shown in Figure 5 without the mid-dle precondition for eto-gprcv(m)q;p. It became clear as we were doingthe simulation proof that the simulation step for eto-gprcv(m)q;p wouldfail: there were some message deliveries that would not be allowed bythe speci�cation of total order eto. The solution seemed to be eitherto strengthen the properties of evs or strengthen the precondition foreto-gprcv.When we spoke with the developers about this problem, we found aline of reasoning common to both implementations: if evs were to preservecausal ordering of messages, the implementations would work correctly.However, causal ordering is not provided by evs for e�ciency reasons;applications that need causal ordering add an additional protocol layerto implement the property. The code was corrected by implementing theadditional precondition and e�ect for eto-gprcv(m)q;p. The changes tothe implementation code were minimal, and both implementations havesince been corrected.8 Related workBirman and Joseph presented one of the earliest accounts of virtual syn-chrony [4] in 1987. Since that time many group membership and com-munication speci�cations have appeared. An article published in 1995 [1]points out that many attempts of these have been unsatisfactory. Severalnew speci�cations have appeared that do not su�er from the shortcomings
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