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1. INTRODUCTION

1.1 Indulgence

The idea of indulgence is motivated by the difficulty for any process in a dis-
tributed system to accurately figure out, at any point of its computation, any
new information about which of—and in what order—the rest of the processes
will take steps. Informally, an indulgent algorithm is a distributed algorithm
that tolerates such uncertainty.
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The notion of indulgence is not new and has been implicitly considered
in various forms, usually in specific computing and communication models
(e.g., [Dwork et al. 1988; Chandra and Toueg 1996; Lamport 1998]). The goal
of this work is to capture this notion in an abstract and general way, indepen-
dently of specific computing models, be they time-based, round-based, message-
passing or shared-memory.

An obvious class of indulgent algorithms are asynchronous ones [Fischer
et al. 1985]. These do not make any assumption about communication delays
and relative process speeds. As a consequence, a process can never distinguish
the situation where another process has failed from the situation where the
other process is simply slow, nor can it determine how processes will interleave
their steps if they indeed perform some. The idea of indulgence is however more
general. In particular, an algorithm that eventually becomes synchronous, af-
ter an unknown period of time [Dwork et al. 1988], is also indulgent. Even if
the processes know that there is a time after which bounds on communication
delays and process relative speeds do hold, the processes do not know when that
time will occur, or whether or not that time has occurred. Similarly, algorithms
that rely on an eventual leader election abstraction, such as Paxos [Lamport
1998], or an eventually accurate failure detector, such as the rotating coordina-
tor algorithm of Chandra and Toueg [1996], are also indulgent. Other examples
of indulgent algorithms include those that tolerate an unbounded number of
timing failures [Taubenfeld 2007] or assume an eventual time after which pro-
cesses execute steps in a certain order [Mostefaoui et al. 2004], an eventual
bound on the ratio between the delay of the fastest message and the slowest
message [Widder et al. 2005], or an eventual bound on the response time of the
processes [Fetzer et al. 2005]. All of these algorithms are indulgent, though not
asynchronous.

These examples indeed illustrate the idea of indulgence, but all refer directly
to specific failure detector models or specific synchrony assumptions, typically
assuming a message passing model [Guerraoui 2000; Dutta and Guerraoui
2002; Vicente and Rodrigues 2002; Guerraoui and Raynal 2004; Sampaio and
Brasileiro 2005]. The goal of this work is to characterize the notion of indulgence
in a way that helps determine the inherent power and limitation of indulgent
algorithms, independently of specific models.

1.2 Murphy’s Law

To seek a general characterization of indulgence, it is tempting to consider an
abstract approach that looks at runs of an algorithm as sequences of events that
occur at the interface between the processes executing the algorithm and the
distributed services! used in the algorithm, each event representing a step of a
process. This is in contrast to an approach where we would look into the inter-
nals of the individual services involved in the computation and the automata
executed on the processes.

While appealing for its generality, the abstract approach is not straightfor-
ward, as we explain in this article. In particular, it is not immediate to devise

1Shared memory, broadcast primitive, message passing channel, failure detector, clock, etc.
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an abstract characterization of indulgence without precluding algorithms that
assume a threshold of correct (nonfaulty) processes. This would be unfortu-
nate, since many seminal indulgent algorithms assume a majority of correct
processes [Dwork et al. 1988; Lamport 1998; Chandra and Toueg 1996].

In short, we characterize indulgence by applying Murphy’s law to partial
runs of an indulgent algorithm: whatever can go wrong will go wrong, and at the
worst possible time, in the worst possible way. Basically, we capture indulgence
by requiring that if the interleaving I (the order according to which processes
execute steps) of a partial run R of an algorithm A could be extended with
steps of certain processes and not others, while still being tolerated by the
algorithm, then the partial run R can itself be extended in A with such steps.
More specifically, we say that an algorithm A is indulgent if, given any partial
run R of A and the corresponding interleaving I of processes, if A tolerates an
extension I’ of I, then A does also have an extension of R with interleaving I'. In
a sense, we capture the intuition of indulgence by requiring that partial run R
does not provide the processes with enough information to predict the extension
of the interleaving I: if some extension of I is tolerated by the algorithm, then
this extension can also be associated with an extension of R.

1.3 Results

The first contribution of this article is thus a general characterization of indul-
gence. We show that our characterization is monotonic in the sense that, if an
algorithm A that tolerates % failures is indulgent, then the restriction of A to
runs with 2 — 1 failures is also indulgent.

We then show that every indulgent algorithm A is inherently uniform: if A
ensures the correct-restriction of a safety property P (P restricted to correct
processes), then A ensures the actual property P (required for all processes). A
corollary of this, for instance, is that an indulgent algorithm cannot solve the
correct-restriction of consensus [Fischer et al. 1985], also called nonuniform
consensus (where a process can decide a different value from a value decided
by a failed process) without solving consensus (where no two processes should
ever decide different value-uniform agreement). This is not the case with non-
indulgent algorithms.

We use our uniformity result to show that certain problems are impossible
with indulgent algorithms. In particular, we show that no indulgent algorithm
can solve a failure-sensitive problem, even if only one process can fail, and can do
so only initially. In short, a failure sensitive problem is one the specification of
which depends on whether certain processes take steps after a decision is taken.
Failure-sensitive problems include some classical ones, such as nonblocking
atomic commit [Skeen 1981] and terminating reliable broadcast [Hadzilacos
and Toueg 1993], also known as the Byzantine Generals problem [Lamport
et al. 1982]. There are known algorithms that solve these problems, but these
are not indulgent.

Our reduction from uniformity to impossibility with respect to failure-
sensitive problems is, we believe, interesting in its own right. By showing that
our impossibility applies only to initial failures, and holds even if the algorithm
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uses powerful services like consensus, we emphasize the fact that this impos-
sibility is fundamentally different from the classical impossibility of consensus
in an asynchronous system, when a process can fail during the computation
[Fischer et al. 1985].

Finally, we prove that, given n the number of processes in the system, and
assuming n— |n/x | processes can fail (x < n), noindulgent algorithm can ensure
a x—divergent property using only timeless services. In short, a x—divergent
property is any property that can hold for partial runs involving a disjoint
subset of processes, but not in the composition of these runs, whereas a timeless
service is one that does not provide any real-time guarantee. We capture here,
in a general way, the traditional partitioning argument that is frequently used
in distributed computing. Corollaries of our result include the impossibility
for an indulgent algorithm using message passing or sequentially consistent
objects [Lamport 1979] to (a) implement a safe register [Lamport 1979] if half
of the processes can fail, as well as (b) implement k-set agreement if n — |n/k |
processes can fail.

To conclude the article, we discuss how, using our notion of indulgence,
we derive the first precise definition of the notion of unreliable failure detec-
tion [Chandra and Toueg 1996]. Whereas this elegant notion is now folklore in
the distributed computing literature, it has never been precisely defined in a
general model of distributed computation.

2. MODEL

2.1 Processes and Services

We consider a set I1 of n > 1 processes each representing a Turing ma-
chine. Every process has a unique identity (id). Processes communicate
through shared abstractions, including sequentially consistent or atomic objects
[Lamport 1979; Herlihy 1991], as well as message passing channels and broad-
cast primitives [Hadzilacos and Toueg 1993]. The processes can also consult
oracle abstractions such as failure detectors [Chandra and Toueg 1996] about
the operational status of other processes, or specific devices that provide them
with random values [Ben-Or 1983]. We call these oracles and communication
abstractions distributed services or simply services. Each service exports a set
of operations through which it is accessed. For instance:

— A message passing channel exports send and receive operations. The send
takes an input parameter, that is, a message, and returns simply an ok in-
dication that the message was sent. On the other hand, a receive does not
take any input parameter and returns a message, possibly nil (empty mes-
sage) if there is no message to be received. Message passing channels differ
according to the guarantees on message delivery. Some might ensure that
a message that is sent is eventually received by every correct process (the
notion of correct is recalled more precisely in the following). Others ensure
simply that the message is received if both the sender and the receiver are
correct.
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— An atomic queue exports enqueue and dequeue operations. The enqueue
takes an input parameter (an element to enqueue) and returns an ok in-
dication. On the other hand, a dequeue does not take any input parameter
and returns an element in the queue (the oldest), if there is any, or simply
nil if there is no element in the queue.

— A failure detector exports one query operation that typically does not take
any input parameter, and returns a set of processes that are suspected
to have failed and stopped their execution. In a sense, a failure detector
provides information about the future interleaving of the processes. More
generally, one could also imagine oracles that inform a process that certain
processes will be scheduled before others.

2.2 Steps

Each process is associated with a set of possible states, some of which are initial
states. A set of n states, each associated with a different process of the system,
is called a configuration. A configuration composed of initial states is called an
initial configuration. Besides a set of states, a process is also associated with an
automaton that regulates the transition of the states of the processes according
to a given algorithm.

The system starts from an initial configuration, among a set of possible initial
configurations, and evolves to new configurations by having processes execute
steps of their algorithm. A step is an atomic unit of computation that takes the
system from a configuration to a new configuration.

Every step is associated with exactly one process. In every step, the asso-
ciated process accesses at most one shared service by invoking one of the op-
erations of the service and getting back a reply (we do not assume here any
determinism). Based on this reply, the process modifies its local state before
moving to the next step. The automaton of the process determines, given a
state of a process and a reply from the invocation of an operation, the new state
of the process and the operation to invoke in the next step of the process.

The visible part of a step, at the interface between a process and a service,
is sometimes called an event. It is modeled by a process id, the name of a
service, the name of an operation, as well as input and output parameters of
the operation’s invocation. By language abuse, we also call this a step when
there is no ambiguity between the event and the corresponding step.

2.3 Schedules

A sequence of steps S is called a schedule and the corresponding sequence of
process ids is called the interleaving of the schedule S and is denoted by I(S). We
talk about infinite schedules (respectively, infinite interleavings) if the sequence
is infinite, and finite schedules (respectively, finite interleavings) otherwise.

If (the id of) a process p appears infinitely often in an infinite interleaving I,
we say that p is correct in I. Otherwise, we say that p is faulty in I. We denote
the set of faulty processes in I by faulty(I). We say that a process p initially
fails in I if p does never appear in I. We denote the set of processes that do not
appear in I by faulty*(I).
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We say that a schedule Sy (respectively, an interleaving Iy) is an extension
of a schedule S; (respectively interleaving I7) if S (respectively, I7) is a prefix
of Sy (resp. I3). We write Sg € E(S7) (resp. Iy = E(I7)).

2.4 Runs

A run R is a pair (S, C) composed of a schedule S and a configuration C, called
the initial configuration of the run R. The interleaving of the schedule S, I(S),
is also called the interleaving of the run R, and is denoted by I(R). We say that
R is associated with I. We talk about partial runs for those associated with
finite interleavings. We say that a (partial) run Ry = (Ss, C) is an extension of
a partial run R; = (S1, C) (we write Ry € E(R)) if Sq is an extension of S;. We
simply say that R, is a partial run of Rs. In this case, I (R32) is also an extension
of I(R;) (we write I(R3) € E(I(R1))). We also denote by R/p = (S/p, C) the
restriction of R = (S, C) to the steps involving only process p.

2.5 Algorithms

We model an algorithm as a set of runs. The interleavings of the runs of an
algorithm A are said to be tolerated by A, and the set of these interleavings
is denoted by I(A). This terminology conveys the idea that the interleaving
is chosen by the operating system and not by the algorithm. In some sense,
the operating system acts as an adversary that the algorithm needs to face.
For instance, in wait-free computing [Herlihy 1991], an algorithm tolerates all
possible interleavings: the algorithm has at least one run for every possible
interleaving.

We focus on algorithms that ensure the following three properties:

(1) If R is a run of an algorithm A, then every partial run of R is also in A.

(2) Let A be any algorithm, and R = (C, S) any run of A. If C’ is an initial
configuration similar to C, except for the initial states of the processes in
faulty*(I(R)), then R’ = (C’, S) is also a run of A. This property conveys
the fact that we consider distributed algorithms where processes can only
learn the states of other processes by communicating with them, that is, by
performing steps.

(8) Any finite interleaving of some run of an algorithm A has a failure-free
extension also associated with some run of A. That is, VI; € I(A), 35 €
I(A) N E(I7) such that faulty(I3) = @. Requiring this property means that
we preclude algorithms that assume that, eventually, a threshold of the
processes do fail. On the other hand, we do encompass algorithms that
tolerate a threshold of failures, as we precisely define in the following.

— We say that an algorithm A is a k-resilient algorithm if 1(A) is the set of
all interleavings where at least n — k processes appear infinitely often.
That is, I € I(A) if and only if faulty(I) < k.

— We say that A is a k*-resilient algorithm if every process that appears
once in any interleaving I of A appears infinitely often in I (we capture
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here the assumption of initial failures only). In other words, I € I(A) if
and only if faulty*(I) = faulty(I) < n — k.

We also introduce two forms of algorithm extensions. Let A and A’ be any two
algorithms.

(1) A’is an extension of Aif A C A’ (every run of A is a run of A’).
We also say in this case that A is a restriction of A.

(2) A’ is a strict extension of A if, (a) A’ is an extension of A, and (b) VR € A’
such that I(R) € I(A), R € A (every run of A’ with an interleaving tolerated
by A is also a run of A). We also say in this case that A is a strict restriction
of A’

3. INDULGENCE

3.1 Overview

Informally, an algorithm is indulgent if no process, at any point of its com-
putation, can accurately predict the future interleaving of the processes. For
instance, no process can ever determine if another process has stopped its ex-
ecution, nor will perform any step in the future. In the same vein, no process
can ever accurately determine the future order of events of some other couple
of processes.

As we discuss in the following, it is not trivial to capture this intuition with-
out precluding algorithms that tolerate certain interleavings and not others.
Examples of these algorithms are ¢-(or ¢*-) resilient algorithms. In such al-
gorithms, certain interleavings are known to be impossible in advance, that
is, before the processes start any computation. Hence a process can, in some
sense, predict the future interleaving. As we will explain, a naive definition of
indulgence would preclude such algorithms. We discuss three such candidate
definitions in the following.

(1) Consider a definition (characterization 1) that would declare an algorithm
A indulgent if, for any partial run R of A, for any process g, A has an
extension of R with an infinite number of steps by q. This clearly captures
the idea that no process can, at any point of its computation (say after any
partial run R) declare that some other process q is faulty, since ¢ could still
take an infinite number of steps (after R) and thus be correct. Although
intuitive, this characterization is fundamentally flawed, as we discuss in
the following. With this characterization, we might consider as indulgent
an algorithm that relies on the ability of a process to accurately learn that
at least one out of two processes have failed, or learn that certain processes
will perform their steps in a round-robin manner if they indeed perform
future steps. Indeed, characterization 1 simply says that any process q can
still take steps in some extension of the partial run R. For some pair of
processes g1 and qg, there might be no extension of R with both ¢; and go
taking an infinite number of steps.

(2) We would like indulgence to express the very fact that any subset of pro-
cesses can still take steps after any point of the computation, that is, after
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any partial run R, and in every possible order. In fact, there is an easy fix to
characterization 1 that deals with this issue. It is enough to require (char-
acterization 2) that, for any partial run R of A, for any subset of processes
I1;, A has an extension of R with an infinite number of steps of all processes
of IT; in every order. As we will discuss however, this characterization raises
other issues. This characterization might lead us to consider as indulgent
an algorithm that relies on the ability for the processes to learn that some
specific process will take steps in the future.

(3) A naive way to address this issue is to also require (characterization 3)
that, for any partial run R of an indulgent algorithm A, for any subset of
processes I1;, A has an extension of R where no process in I1; takes any step
after R. Characterization 3, however, excludes algorithms that assume a
threshold of correct processes. As we pointed out earlier, many indulgent
algorithms [Chandra et al. 1996; Dwork et al. 1988; Lamport 1998] assume a
correct threshold of processes: in particular, they assume that every partial
run has an extension where a majority of processes take an infinite number
of steps. We now introduce our characterization of indulgence which, we
claim, addresses these issues.

3.2 Characterization

Very intuitively, we cope with the issues we have described by proposing a
definition of indulgence inspired by Murphy’s law, which we apply to partial
runs. Basically, we declare an algorithm A indulgent if, whenever the finite
interleaving I(R) of any partial run R of A could be extended with a certain
interleaving I’ tolerated by A, R also could be extended with a run R’ associated
with I’. In other words, if the interleaving I(R) of a partial run R has an
extension I’ in I(A), then R does also have an interleaving R’ in A with the
interleaving I(R') = I'.

Definition. Indulgence. An algorithm A is indulgent if, for any pair of in-
terleavings I; and I, tolerated by A such that I extends I, any partial run R,
of A with interleaving I, has an extension Ry in A with interleaving Is. More
specifically: VI; € I(A) s.t.VIs € I(A)NE([1),YVR1 € Ast. I(R1)=1,3Rs € A
such that I(Ro) = I and I, € E(I7).

Basically, the definition says that no partial run R; can preclude any exten-
sion Ry with interleaving Iy, provided I is indeed tolerated by A. The definition
does not preclude ¢-resilient algorithms from being indulgent. This would not
have been the case, for instance, with a definition that would only consider as
indulgent an algorithm A such that, for any partial run R of A, for any subset
of processes IT; C I1, A has an extension R of R where all processes of I1; are
correct, and an extension Ry of R where no process in I1; takes any step after R.

3.3 Examples

Clearly, our definition of indulgence precludes synchronous algorithms [Lynch
1996]. This is because, in a synchronous algorithm, a process that does not
take a step within a round of a partial run R does never take any step in future
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rounds of extensions of R. With an appropriate communication abstraction that
reveals the absence of a step, a process can hence predict the fact that the absent
process will never take any further step. Similarly, an asynchronous algorithm
that makes use of a perfect failure detector [Chandra and Toueg 1996] is not
indulgent. If a process is detected to have failed in some partial run R, then R
cannot be extended with an interleaving including steps of p.

In fact, even an algorithm relying on an anonymously perfect failure detector
is not indulgent [Guerraoui 2002]. Such a failure detector might signal that
some process has failed, without indicating which one. When the failure detector
does so in some partial run R, all processes can deduce that it is impossible to
extend R with a run where all processes are correct. Similarly, an algorithm that
uses an oracle that declares some process correct, say from the start [Guerraoui
2001], would not be indulgent if the algorithm tolerates at least one interleaving
where that process crashes.

An obvious class of indulgent algorithms are #¢-resilient asynchronous
ones [Fischer et al. 1985]. Such algorithms do not have any partial run provid-
ing meaningful information about the future interleaving of the processes. How-
ever, the idea of indulgence is broader than that of asynchrony. Algorithms that
rely (only) on eventual properties (i.e., that hold only after an unknown period
of time) about the interleavings of the processes, are indulgent. These include
eventually synchronous algorithms [Dwork et al. 1988], eventual leader-based
algorithms [Lamport 1998], rotating coordinator-based algorithms [Chandra
and Toueg 1996], as well as algorithms that tolerate an unbounded number
of timing failures [Taubenfeld 2007], or assume eventual interleaving proper-
ties [Mostefaoui et al. 2004], an eventual bound on the ratio between the delay of
the fastest and the slowest communication [Widder et al. 2005], or an eventual
bound of the response time of the processes [Fetzer et al. 2005].

In the following, we prove two characteristics of indulgent algorithms:
monotony and uniformity. We then use these to prove some inherent limita-
tions of indulgent algorithms.

4. MONOTONY

In short, the monotony aspect (of our definition) of indulgence conveys the fact
that removing interleavings of an algorithm does not impact its indulgence.
In particular, if an algorithm A that tolerates ¢ failures is indulgent, then the
restriction of A to (runs with) ¢ — 1 failures is also indulgent.

ProposiTioN 1. Every strict restriction of an indulgent algorithm is also in-
dulgent.

Proor. Consider any two algorithms A and A’ such that A is a strict restric-
tion of A’. We proceed by contradiction and assume that A’ is indulgent whereas
A is not.

By definition, the fact that A is not indulgent means that (a) there are two
interleavings I and I tolerated by I(A) such that Iy € E(I;) (I3 is an extension
of I;) (b) there is a partial run R of A such that I(R) = I;, and (¢) A has no
extension of R, R’, such that I(R’) = I5.
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The fact that I; and I are tolerated by A means that A has two runs R, and
Rs such that I(R1) = I; and I(R3) = I>.

Since A is a restriction of A’, and R, R; and Ry are runs of A, then R, R,
and Rg are also runs of A’. In particular, this means that I; and I5 are tolerated
by A'.

As A’ is indulgent, I; = I(R) is tolerated by A’, Is is an extension of I; also
tolerated by A’, R is a partial of A’, then A’ has an extension R’ of R such that
I(R) = Is.

Finally, because A is a strict restriction of A’, I5 is tolerated by A and A’, and
R’ € A/, then R’ € A: a contradiction with (c). Hence A is indulgent. O

Consider an algorithm A that is ¢-resilient (¢ > 1) and define A(¢ — 1) as the
restriction of A to runs with ¢ — 1 failures. Remember that the fact that A is
t-resilient means A tolerates all interleavings where at least n — ¢ processes
are correct, that is, n — ¢ processes take an infinite number of steps. Algorithm
A(t — 1) is thus a ¢ — 1-resilient algorithm, that is, where at least n — ¢ — 1
processes take an infinite number of steps: it is a strict restriction of A. We
thus get the following corollary from Proposition 1 (the same reasoning applies
to ¢t*-resilient algorithms):

COROLLARY 2. Ifa t-resilient algorithm A is indulgent then so is At — 1).

5. UNIFORMITY

In the following, we show that indulgent algorithms are inherently uniform, in
the intuitive sense that they are not sensitive to safety properties that restrict
only the behavior of correct processes. More specifically, indulgent algorithms
cannot satisfy a safety property for correct processes without satisfying it for
all processes. We will illustrate the idea of uniformity through the consensus
problem and point out the fact that uniformity does not hold for algorithms
that are not indulgent. Later, we will use the notion of uniformity to prove
that certain problems do not have indulgent solutions. First however, we re-
call the notions of safety, and introduce the notion of correct-restriction of a
property.

5.1 Safety

The specifications of problems are typically expressed in terms of predicates
over runs, also called properties of runs. An algorithm solves a problem if those
predicates hold over all runs of the algorithm.

Informally, a safety property states that nothing bad should happen, whereas
a liveness property states that something good should eventually happen
[Lamport 1977; Alpern and Schneider 1985] .

Consider a predicate P over runs and a specific run R. We say that P holds
in R if P(R) = true; P does not hold in R if P(R) = false.

A safety property P is a predicate that satisfies the two following conditions:

(1) any run for which P does not hold has a partial run for which P does not
hold;
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(2) P does not hold in every extension of a partial run where P does not hold.
A liveness property P, on the other hand, is one such that:
—any partial run has an extension for which P holds.

It was shown in Lamport [1977] and in Alpern and Schneider [1985] that any
property can be expressed as the intersection of a safety property and a liveness
property. Given a property P, possibly a set of properties (i.e., a problem), we
denote by S(P) the safety part of P and L(P) the liveness part of P.

5.2 Correct Restriction of a Property

We now introduce the notion of a correct-restriction of a property.

Informally, the correct-restriction of a property P, denoted C[P], is the re-
striction of P to correct processes. In the following, we denote by R [Correct(R)]
the restriction of R to correct processes.

Definition. Correct-restriction. Let P be any property. We define the correct-
restriction of P, denoted C[P] as the property that is true for any run R if and
only if P is true for R[Correct(R)].

ProposiTioN 3. Let P be any safety property and A any indulgent algorithm.
If A satisfies C[P] then A satisfies P.

Proor. Let P be any safety property and A any indulgent algorithm that
satisfies C[P].

Assume by contradiction that A does not satisfy P. This implies that there
is a run of A, say R, such that P(R) is false. Because P is a safety property,
there is a partial run of R, R’, such that P(R’) is false.

By the indulgence of A, and our assumption that any interleaving has a
failure-free extension, A has an extension of R’, say R”, where all processes
are correct.

Because P is a safety property and P(R’) is false, P(R") is also false. Hence
C[P](R")is false because all processes are correct in R” and C[P](R") = P(R").
A contradiction with the fact that A satisfies C[P]. O

5.3 Example: Consensus

An immediate corollary of our proposition concerns, for instance, the consen-
sus [Fischer et al. 1985] and uniform consensus problems (respectively, total or-
der broadcast and uniform total order broadcast) [Hadzilacos and Toueg 1993].
Before stating our corollary, we recall the consensus problem.

We assume here a set of values V. For every value v € V and every process
p € 11, there is an initial state e, of p associated with v and e, is not associated
with any other value v’ # v. v is called the initial value of p (in state e,,). Hence
each vector of n values correspond to an initial configuration of the system. We
also assume that, among other distributed services used by the processes, a
specific one models the act of deciding on a value. The service, called the output
service, has an operation output(); when a process p invokes that operation with
an input parameter v, we say that p decides v.
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An algorithm A solves the consensus problem if, in any run R = (C, S) of A,
the three following properties are satisfied.

— Validity: the value decided by any process p; in R is the initial value of some
process p; in C.

—Agreement: no two processes decide different values in R;
—Termination: every correct process in R eventually decides in R.

Clearly, agreement and validity are safety properties whereas termination
is a liveness property. Two weaker, yet orthogonal, variants of consensus have
been studied in the literature. One, called nonuniform consensus, only requires
that no two correct processes decide different values (interestingly, this is
a liveness property, since it can always be eventually ensured by crashing
processes). Another variant, called k-set-agreement [Chaudhuri 1993], requires
that the number of different values decided by all processes (in any run) is at
most k.

The following is a corollary of Proposition 3.

CoROLLARY 4. Any indulgent algorithm that solves consensus also solves
uniform consensus.

This is not the case with nonindulgent algorithms, as we will explain. Con-
sider a system of two processes {p1, p2} using two services: an atomic shared
register and a perfect failure detector. The latter service ensures that any pro-
cess is eventually informed about the failure of the other process, and only if the
other process, has indeed failed. The idea of a nonindulgent algorithm solving
nonuniform consensus is the following: process p; decides its initial value and
then writes it in the shared register; process ps keeps periodically consulting
its failure detector and reading the register until either (a) p; is declared faulty
by the failure detector, or (b) pe reads p;’s value. In the first case, (a) py decides
its own value, and in the second, (b) ps decides the value read in the register.
If both processes are correct, they both decide the value of p;. If p; fails after
deciding, ps might decide a different value.

6. FAILURE SENSITIVITY

In the following, we show that no indulgent algorithm can solve certain prob-
lems if at least one process can fail, even if this process can do so only initially,
thatis, if the algorithm is 1*-resilient. We call a 1*-resilient indulgent algorithm
simply a 1*-indulgent algorithm.

The problems we show to be impossible are those we call failure-sensitive. In
short, these are decision problems that resemble consensus with the particular-
ity that the decision value might be considered valid depending on whether cer-
tain processes have failed. These problems include several classical problems
in distributed computing, such as terminating reliable broadcast, interactive
consistency and nonblocking atomic commit [Hadzilacos and Toueg 1993].

To prove our impossibility, we proceed as follows: we first define a sim-
ple failure sensitive problem, which we call failure signal, and which we
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show cannot be solved with a 1*-indulgent algorithm. Then we show that
any solution to terminating reliable broadcast, interactive consistency or non-
blocking atomic commit solves failure signal: in this sense, failure signal is
weaker than all those problems that are thus impossible with a 1*-indulgent
algorithm.

6.1 The Failure Signal Problem

In failure signal, just as in consensus, the goal is for processes to decide on a
value based on some initial value. As we explain however, unlike consensus, no
agreement is required, and a process can decide different values.

More specifically, in failure signal, a specific designated process p has an
initial binary value, 0 or 1, as part of p’s initial state. The two following prop-
erties need to be satisfied: (1) Every correct process eventually decides and (2)
no process (a) decides 1 if p proposes 0, nor (b) decides 0 if p proposes 1 and p
is correct.

Interestingly, we prove the impossibility of failure signal by reduction to our
uniformity result (Proposition 3). We prove by contradiction that if there is a 1*-
indulgent algorithm that solves failure signal, then there is an algorithm that
ensures the corrected-restricted variant of a safety property without ensuring
the actual property.

ProrosiTioN 5. There is no solution to failure signal using a 1*-indulgent
algorithm.

Proor. Assume by contradiction that there is a 1*-indulgent algorithm that
solves failure signal. Consider the designated process p and some other process
q (remember that we assume a system of at least two processes).

Define property P such that (a) P(R)is false in every run R where p proposes
1 and ¢ decides 0, and (b) P(R) is true in all other runs. By definition of a
correct-restriction, C[P] is false in runs where p proposes 1, g decides 0 and all
processes are correct, and ¢rue in all other runs.

We now show that, if there is a 1*-indulgent algorithm that solves failure
signal, then A ensures C[P] but not P.

It is easy to show that A ensures C[P]. Indeed, because A solves failure
signal, in any run R where p proposes 1 and all processes are correct, all
processes decide 1.

We now show that A does not ensure P. Remember that A is a 1*-resilient
algorithm, that is, A tolerates at least one initial failure. Consider a run R
where p proposes 0 and does not take any step whereas all other processes are
correct (p initially fails). Any 1*-resilient algorithm that solves the failure signal
problem has such a run R—in this run, every process that decides decides 0.

Consider now a run R’ with the same schedule as R, except that p initially
proposes 1 (and fails before taking any step). Such a run R is also a run of A
and, because no process other than p, which fails initially, can distinguish R
from R’, all processes but p decide 0. This run R’ is thus a run of A, and P(R’)
is false. This contradicts the uniformity of A. O
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6.2 Example 1: Terminating Reliable Broadcast

In terminating reliable broadcast, also called Byzantine generals [Lamport
et al. 1982], a specific designated process is supposed to broadcast one
message m # | that is a priori unknown to the other processes. (In our
model, the process invokes a specific service with m as a parameter.) In a
run R where the sender p does not fail, all correct processes are supposed
to eventually receive m. If the sender fails, then the processes might or not
receive m. If they do not, then they receive a specific message | indicating
that the sender has failed. More specifically, the following properties need to
be satisfied. (1) Every correct process eventually receive one message; (2) No
process receives more than one message; (3) No process receives a message
different from | or the message broadcast by the sender; (4) No two processes
receive different messages; and (5) No process receives | if the sender is correct.

The following is a corollary of Proposition 5.

COROLLARY 6. No 1*-resilient algorithm solves terminating reliable broad-
cast.

Proor. We show how any solution to terminating reliable broadcast can
be used to solve failure signal. Assume there is an algorithm A that solves
terminating reliable broadcast. Whenever the designated process p (in failure
signal) proposes a value, 0 or 1, p broadcasts a message with that value to all,
using terminating reliable broadcast. Any process that receives the message
delivers the value in the message (0 or 1). A process that delivers | decides 0. O

6.3 Example 2: Nonblocking Atomic Commit

In nonblocking atomic commit, processes do all start with initial values 0 or
1, and are supposed to eventually decide one of these values. The following
properties need to be satisfied. (1) Every correct process eventually decides one
value (0 or 1); (2) no process decides two values; (3) No two processes decide
different values; (4) No process decides 1 if some process proposes 0, and no
process decides 0 if all processes propose 1 and no process fails.

The following is a corollary of Proposition 5.
CoRrROLLARY 7. No 1*-resilient algorithm solves nonblocking atomic commit.

Proor. Assume there is a solution to nonblocking atomic commit. We show
how to obtain a solution to failure signal. All processes but p propose 1. Process
p proposes exactly its initial value (of failure signal) to nonblocking atomic
commit. The processes decide the output of nonblocking atomic commit. Because
all processes but p propose 1, the decision can be 1 only if p proposes 1, and
can be 0 only if p fails or proposes 0. O

6.4 Example 3: Interactive Consistency

In interactive consistency, processes do all start with initial values, and are
supposed to eventually decide an n-vector of values. The following properties
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need to be satisfied. (1) Every correct process eventually decides one vector; (2)
No process decides two vectors; (3) No two processes decide different vectors;
(4) If a process decides a vector v, then v[i] should contain the initial value of
p; if p; is correct. Otherwise, if p; is faulty, v[i] can be the initial value of p; or L.

The following is a corollary of Proposition 5.
CoroLLARY 8. No 1*-indulgent algorithm solves interactive consistency.

Proor. Assume there is a solution to interactive consistency. Assume p is
pi. We show how to obtain a solution to failure signal. All processes propose to
interactive consistency their identity, except p which proposes its initial value
of failure signal. If a process ¢ outputs a vector v such that v[i] # L, then ¢
decides v[i]. Otherwise, ¢ decides 0. O

7. DIVERGENCE

We now capture, in a general way, the traditional partitioning argument that is
frequently used in distributed computing, for example, [Attiya et al. 1995]. This
argument was traditionally used for message-passing asynchronous algorithms
where half of the processes can fail. In this case, the system can partition into
two disjoint subsets that progress concurrently. We precisely state it here in
the general context of indulgent algorithms using timeless services which, as
we have pointed out, is a wider class than the class of asynchronous algorithms
using message passing, and for systems with several possible partitions (the
case with two partitions is just a special case).

Definition. Divergent property. We call a k—divergent property P a property
such that, for any % disjoint nonempty subsets of processes I1y, I1s,..IT;, there
is a configuration C such that every £ runs R;, Rs,..R; of A, such that R;
involves only processes from IT;, have respective partial runs R}, R,,..,R, for
which S(P(R].R,...R})) is false.

Remember that S(P) denotes the safety part of P. We call configuration
C the critical configuration for Iy, Is,..T1; with respect to P. Note that, by
construction, any property that is £ —divergent is also £ + 1—divergent.

To intuitively illustrate the idea of a 2—divergent property, consider the spec-
ification of consensus in a system of two processes p; and ps. Consider the initial
configuration where p; has initial value 1 and p9 has initial value 2. Starting
from C, every run R; involving only p; eventually decides 1, and every run
R involving only p; eventually decides 2. Consider the partial run R} of R;
composed of all steps of R; until the decision of p; (1) is made, and the partial
run R, of Rs until the decision of ps (2) is made. Clearly, the safety of consensus
(in particular agreement) is violated in R|.R,,.

Definition. Timeless service. We say that an algorithm A uses timeless ser-
vices if, for any two partial runs R, and R of A starting from the same initial
configurations C and involving disjoint subsets of processes, if A has an exten-
sion of R, R1.R] such that I(R]) = I(R3), then R;.R; is also a run of A. The
idea is similar to that of Voelzer [2004].
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Examples of timeless services include sequentially consistent shared ob-
jects [Lamport 1979] as well as reliable message passing or broadcast prim-
itives [Hadzilacos and Toueg 1993]. To illustrate the underlying idea, consider
an algorithm A in a system of two processes p; and ps using a message pass-
ing primitive that ensures that any message sent from process p; to process
p2 is eventually received by pg, provided pg is correct. Assume that A has a
partial run R; where p; executes steps alone, and a partial run Ry where po
executes steps alone (clearly, ps cannot have received any message from p; in
R3). Provided that A does not preclude the possibility of ps to execute steps
alone after R, and because there is no guarantee on the time after which the
message of p; arrives at pg, then R.Rs, the composition of both partial runs,
is also a possible run of A. This captures the intuition that the message of p;
can be arbitrarily delayed.

ProrosiTioN 9. No (n — |n/x])-indulgent algorithm ensures a x—divergent
property using x—timeless services.

Proor. Assume by contradiction that there is a (n — |n/x|)-resilient indul-
gent algorithm A that ensures a x —divergent property P using timeless services.

Divide the set of processes IT of the system into £ subsets Iy, Is,..IT, of
size at least [n/x| such that all the subsets are disjoint and their union is IT.
Consider the critical configuration C for Iy, Is,..IT, with respect to P.

Because the algorithm A is (n — |n/x])-resilient, and each Pi; is of size at
least |[n/x], then A has x runs R1, Rs,..R, such that each such R; involves only
processes in IT;, that is, only processes of P; take steps in R; and every such R;
start from C.

Because P is x—divergent, these runs have respective partial runs R, R,
...,R;, such that S(P(R}.R}...R))) is false. We need to show that R|.R;, - -- R}, is
also a partial run of A. Because S(P(R}.R; - - - R},))is false, this would contradict
the very fact that A ensures P.

We first show that R}.R) is a partial run of A. By the assumption that A is
(n — [n/x])-resilient, there is a partial run R, of A such that I(Ro) = I(R].Rj)
(remember that an x-resilient algorithm is one that tolerates all interleavings
where at least n — x processes appear infinitely often).

By the indulgence of A, there is a partial run Rj such that R|.R] is a partial
run of A and I(R}.Rj) = I(R].R;). By the assumption that A uses timeless
services, R}.Rj is also a partial run of A. By a simple induction, R.R;--- R},
is also a run of A.

Because S(P(R}.R,---R})) is false, P is false in every extension of
R|.R,---R: contradiction. O

The following is a corollary of Proposition 9.

CoroLLARY 10. No (n — |n/2])-indulgent algorithm using message passing
or sequentially consistent objects can implement a safe register.

There are nonindulgent algorithms that implement a safe register with any
number of failures, using only message passing—for instance, an algorithm
assuming a perfect failure detector. The idea is to make sure every value
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written is stored at all processes that are not detected to have crashed, and the
value read can then simply be a local value. On the other hand, the previous
result means that an algorithm using eventually perfect failure detectors,
and possibly also sequentially consistent registers or message passing, cannot
implement a safe register if two disjoint subsets of processes can fail. This
clearly also applies to problems like consensus.

The following, assuming & > 1, is also a corollary of Proposition 9.

CoroLLARY 11. No (n — |n/k|)-indulgent algorithm using message passing
or sequentially consistent objects can solve k-set agreement [Chaudhuri 1993].

8. CONCLUDING REMARKS

Indulgent algorithms are algorithms that tolerate, besides process failures,
unreliable information about the interleaving of the processes. This article
presents a general characterization of indulgence. The characterization does
not require any failure detector machinery [Chandra and Toueg 1996], or tim-
ing assumptions [Dwork et al. 1988]. We simply express indulgence in terms of
the possibility of extending runs.

Our general characterization is furthermore not restricted to a specific com-
munication model. Instead, we consider a general model of a distributed system,
where processes might be communicating using any kind of services, including
shared objects, be they simple read-write registers [Lamport 1979], or more so-
phisticated objects like compare-and-swap or consensus [Herlihy 1991], as well
as message passing channels and broadcast primitives [Hadzilacos and Toueg
1993].

Our characterization of indulgence also abstracts the essence of unreli-
able failure detection. The notion of unreliable failure detection, informally
introduced in Chandra and Toueg [1996], captures the idea that failure de-
tectors might not need to be accurate to be useful in solving interesting
problems. Although the concept of failure detector was precisely defined in
Chandra and Toueg [1996], the idea of an unreliable one was not, except
in Guerraoui [2000] for the specific message passing context. Using our char-
acterization of indulgence, we can precisely define it by simply stating that a
failure detector is unreliable if any algorithm that uses that failure detector is
indulgent.

Generalizing the notion of a failure detector, one can actually imagine oracles
that inform a process that certain processes will be scheduled before others. In
certain operating systems, for instance, processes can be not only informed
about which processes have been swapped out, but also in which order these
processes will be scheduled. For instance, an oracle could inform processes that
a certain run is eventually synchronous. Indeed, a failure detector can be viewed
as a particular case of an oracle that provides information about the interleaving
of the processes (in the case of a failure detector, the information indicates when
a process executes its last step, or will execute an infinite number of steps). Our
characterization of indulgence thus helps capture what it means for such oracles
to be unreliable.
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To conclude, it is important to recall that we focused, in this article, on com-
putability and not complexity. We studied what can it means for an algorithm
to be indulgent, and what can be computed with such algorithms. We did not
discuss the complexity of indulgent algorithms. One could generally expect that
indulgent algorithms be less efficient than their nonindulgent counterparts to
solve the same problem. There are many interesting open problems in mea-
suring the inherent overhead of indulgence, but this goes through defining ap-
propriate frameworks to measure the complexity of indulgent algorithms, for
example, Dutta and Guerraoui [2002], Keidar and Shraer [2006], and Zielinski
[2006].
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