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1 .... Introduction 

Dijkstra's informally-stated Dining Philoso- 
phers problem [D] involves a number n of philoso- 
phers s i t t ing  in a c i rc le,  a single fork between 
each pair of adjacent philosophers. Any philoso- 
pher may decide to eat at any time and requires 
both of his forks to do so, but he can only "pick 
up" one fork at a time. Philosophers act asynchro- 
nously. The problem is to program the philosophers 
in ways which guarantee certain conditions of fairo 
ness and absence of deadlock, (For instance, i f  
everyone picks up his l e f t  fork f i r s t  and then 
waits for his r ight fork to become free, the sys- 
tem can deadlock with a circular chain of waiting 
philosophers.) 

Assuming no means of communicatlon among 
philosophers other than through infor'mation 
attached to their  forks, i t  is easy to formalize 
an argument that any solution in which al l  philos- 
ophers are programmed ident ical ly must have a poss- 
i b i l i t y  of deadlock. Thus, (with this assumption), 
correct solutions must allow some dist inct ion to be 
made among the philosophers. 

Because of the imprecision of the problem 
statement, i t  is not clear how to evaluate and 
compare various solutions in the l i terature.  For 
example, Chang [C] presents solutions which dis- 
tinguish certain philosophers with responsibi l i ty 
for breaking deadlocks. He argues that deadlock 
is infrequent, so special protocols to avoid dead- 
lock should not be permitted to add running time 
overhead to normal operation of the system. Thus, 
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his system runs with no special constraints - for 
example, any philosopher may pick up either fork 
f i r s t .  When deadlock occurs, a special recovery 
protocol is executed. No meaningful analysis is 
given to support the alleged time eff iciency, how- 
ever. 

In tu i t i ve ly ,  a d i f f i c u l t y  with Chang's solu- 
tion is that certain time ineff iciencies can occur 
even in the absence of deadlock. Even i f  a com- 
plete circular chain of waiting philosophers is 
not produced, i t  can s t i l l  be the case that a long 
chain occurs, of philosophers waiting for their  
neighbors. Such a chain seems to require consider- 
able time to break. 

James Burns [B] has suggested the following 
alternative, simple algorithm (which ~s 
also known to other researchers in the area). 
Alternate philosophers are distinguished as "L" 
and "R" philosophers (assuming n is even). The L 
and R philosophers are constrained to pick up their  
l e f t  and r ight fork f i r s t ,  respectively. I t  is 
easy to argue by case-analysis that deadlock does 
not occur. I t  is also i n tu i t i ve l y  plausible that 
this solution is more t ime-eff icient than Changes, 
because waiting chains of length greater than 2 
never occur. However, no formal time analysis is 
presented in [B] to support this in tu i t ion .  

In this paper, the problem is generalized to 
a distributed system resource allocation problem 
which is local in two senses. First ,  although the 
system and number of users can be very large, 
there is a l im i t  to the overlap in resource demands 
of dif ferent users. The second condition can be 
thought of as a property of the geography of the 
network - the resources are (or can be) located in 
the network in such a way that communication be- 
tween a user and any of i ts  required resources is 
fast. Both types of loca l i ty  conditions are sat- 
is f ied by the Dining Philosophers problem. Under 
these two conditions, one would hope that waiting 
chains could be avoided, so that the worst-case 
time to grant a user's requests is independent of 
the total size of the network and the total number 
of users. 

In order to prove theorems to this effect, 
one must state precisely the problem to be solved, 
and describe an implementation in an unambiguous 
model. Time complexity analysis should be done 
using rea l is t ic  and precisely-defined measures. 
The simple automata-theoretic model developed in 
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[LF] is used in this paper to describe (separate- 
ly) the generalized problem and one solution. 
Basically, a particular order is specified for 
each user to wait for his resources, generalizing 
the " le f t - r ight"  idea in a natural way. Then a 
version of the time measure described in [PF] and 
[P] is used to perform time analysis. Theorem 8.1, 
the main result, gives an upper bound (independent 
of the network size and total number of users) on 
the worst-case time for a request to be granted. 
Although Theorem 8.1 gives the needed independence 
of network size, in many interesting cases the re- 
sults actually seem sharper than those yielded by 
Theorem 8.1. A second result, Theorem lO.l ,  is 
proved, giving sharper bounds for some special 
cases. 

I t  can be argued that worst-case time for a 
request to be granted is not the only valid measure 
of the time efficiency of an asynchronous resource 
allocation algorithm. Other useful measures in- 
clude worst-case "throughput" and worst-case time 
under various restrictions on the use of the sys- 
tem (e.g. limited number of concurrent active re- 
quests). Some arguments about these other mea- 
sures are sketched in Section I I .  

The contributions of this paper are twofold. 
First, the simple resource-waiting strategy may be 
of some practical interest. Second (and more im- 
portantly), the time complexity analysis meth- 
ods seem to be tractable and useful tools for 
analyzing distributed system designs. There is no 
averaging done over inputs to the system; thus, 
the probabilistic techniques and the approx- 
imations of queuing theory are not usedL The 
analysis of worst-case throughput and other "rates" 
can be considered to be a type of averaging, but 
the averaging is done over the course of a single 
execution, not over alternative executions; i t  is, 
therefore, much simpler. The style of complexity 
analysis is quite similar to the kind of analysis 
usually performed for ordinary (sequential) com- 
plexity theory, with heavy use of recurrence- 
equation techniques. Problem statements are more 
complicated in the new setting, and analysis is 
generally done in terms of many parameters of the 
system. However, the most obvious difference in 
the new setting is the need, imposed by the asyn- 
chronism of the system, to pinpoint the bottle- 
necks at each point in the computation. I cannot 
yet claim that a set of "techniques" for time 
analysis of asynchronous systems has been devel- 
oped; rather, analysis has been performed for 
some particular systems. However, some general 
principles seem to be emerging and should become 
crystall ized in the process of analyzing a 
suff icient variety of asynchronous systems. 

2. Resource Problems 

A resource problem P is a quadruple (R(P), 
U(P), R(P), U(P)), where_~ and ~ _ a r e  dis- 
jo int ,  possibly in f in i te  sets (of "resources" and 
"users" respectively), where R(P) is a mapping 
from U(P) to the set of f in i te  nonempty subsets of 
R(P) (indicating the resources required by each 
user),where U(P) is a mapping from R(P) to f in i te  
nonempty subsets of U(P) (indicating the users for 
each resource), and where r ~ R(P)(u) i f  and only 
i f  u ~ U(P)(r). 

Let rcommon(P) =~u,u') ~ (U(P)) 2 

: R(P)(u) n R(P)(u') t @}, and ucommon(P) = 

{ ( r , r ' )  c (R(P)) 2 : U(P)(r) n U{P)(r') # ¢}. 
Le t graph(P) be the graph with R{P) as i ts  node 
set and ucommon(P) as i ts  edge set. Let 
contention(P) denote max ~U(P)(r) I . A colorin 9 

rcR(P)l 
of P is a total mapping c:-~(P) ÷ N satisfying the 
condition " ( r , r ' )  ~ ucommon(P) implies 
c(r) ~ c ( r ' ) " .  Let ]c I denote the largest number 
in the range of c. Let colors(P) denote the 
minimum value of Ic] for any coloring c of P. 
(Thus, colors(P) is the chromatic number of 
graph(P).) Define f i rs tp,c:  U(P) ÷ R(P) by 

firstp,c(U) = r such that r ~ R(P)(u) and 

(Vr' ~ R(P)(u))[c(r') ~ c(r ) ] .  

Define nextp, c : U(P) x R(P) ÷ R(P) by 

n e x t p , c ~ =  r' such that r '  ~ R(P)(u) 

and (Vr" ~ iR(P):(u)i)[c(r") ~ c(r) or c(r',) ~ c ( r ' ) ] ,  

(Firstp, c and nextp, c l i s t  the resources of each 

user in increasing order. Firstp, c is total ,  

while nextp, c is part ial .  They are well-defined 

since c is injective on R(P)(u) for each u.) 

The f i r s t  local i ty  condition mentioned in 
the Introduction, the l im i t  to overlap in resource 
demands, is captured formally by the bounds 
contention(P) and colors(P). 

Ex. 2.1. Dinin 9 Philosophers 

R(P) = {r  I . . . . .  rn}, U(P) = {u I . . . . .  Un}, 

R(P)(ui) = { r i ' r i + l  mod n } and U(P)(ri) = 

{Ui-l mod n'Ui }" 

Graph(P) is a cycle with vertices r i ,  l < i < n. 

Contention(P) = 2. 

Let c(r i )  = i ,  and c ' ( r i )  1 i f  n is even and i 
is odd, or i f  n is 
odd and i < n is 
odd, 

2 i f  i is even, 

3 i f  n is odd and 
i = n .  

Thus, c provides a linear order for the resources, 
while c' provides a partial order of depth ~ 3. 
In either case, resources with common users are 
comparable. However, c' is minimum in the sense 

that ~23 ]c'] = Colors(P) = i f  n ~s even, 

i f  n isodd. 

Ex, 2.2. k-Fork Philosophers 

Let R(P) and U(P) be as in Ex. 2.1, 
R(P)(ui) = { r i ' r i + l  mod n . . . . .  r i+k-l mod n } and 

U(P)(ri) = {Ui-k+l mod n ' "~ "u i - I  mod n'Ui }" 
Contention(P) = k. Colors(P) = k + l ( i f  n > k2). 

Ex. 2.3. 2-Dimensional Philosophers 

The resource requirement pattern in a dis- 
tributed system might not have a l-dimensional 
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structure such as those of  Ex. 2.1 and Ex. 2.2. 
As a s imp l i f ied  example of a 2-dimensional 

pattern,  l e t  R(P) = { r i :  i = ( i l , i 2 )  ~ Z 2 and 

i I + i 2 is  even}, U(P) = {u i :  i = ( i l , i 2 )  ~ Z 2 

and i I + i 2 is odd}, and R(P)(ui) = 
2 

{ r j :  Z~ 1 l j  Z - i z l  = I } .  Contention(P) : 

colors(P) = 4. Graph(P) is a diagonal gr id .  

The remaining two examples w i l l  be used la te r  
to demonstrate s i tuat ions in which our algori thm 
approaches i t s  upper bound; they do not describe 
" loca l "  resource requirement patterns for  which 
the algori thm is well suited. 

Ex. 2.4. k-Tree 

Let A be an alphabet of  k elements, a any 
dist inguished element of  A. Let 

R(P) : { r i :  i ~ A*, l i l  < k}, U(P) : {u i :  i ~ Ak}, 

and l e t  U(P)( r i )  consist of a l l  U ia~ak - l i l - I  

fo r  a l l  a' ~ A. The resources can be envisioned 
as forming a tree. For instance, i f  k = 3, 
A = {1,2,3}  and a : I ,  the resources form a 3-ary 
t ree,  wi th users as indicated in Figure I .  

I ~  I ~?~ 

,~21 I"21H I~2~21 I ~ I  I°31~I °~I 

Figure 1 

Contention(P) = k and colors(P) = k. (Let t ing 
c( r  i )  = l i l  + 1 shows colors(P) ~ k. Colors(P) 

cannot be less than k because IR(P)(Uak)l = k.)  

Graph(P) includes the tree as a subgraph. 

Ex. 2.5. k-Nested Sets 

R(P) = { r i :  1 < i < k}, U(P) : 

{u i :  1 < i < k}, and U(P)(r i )  = {u j :  j ~ i } .  

Contention(P) = colors(P) = k, and graph(P) is the 
complete graph on k ver t ices.  

3. A Model fo r  Dist r ibuted Systems and Their 
Behavior 

We use the model of [LF] to describe the 
problem and our algori thm. The reader is referred 
to [LF] for  a completely formal descr ipt ion of 
the model. In th i s  paper, we w i l l  be less formal; 
however, i t  is s t ra ight forward to express our 
informal condit ions as precise condit ions w i th in  
the model, fo l lowing the examples in 
[LF], 

B r i e f l y ,  the basic en t i t i es  of the model in 
[LF] are processes (automata) and variables 
( fo r  communication). An atomic execution step 
of a process involves accessing one var iable and 
possibly changing the process' state oF the 
var iab le 's  value or both ~"test-and-set") .  Pro- 
cesses are able to respond in some way to any- 
thing that  they might f ind  in a var iab le.  A 
system of processes is a set of processes, wi th 
cer ta in of i t s  var iables designated as in terna l  
and the others as external .  In ternal  v a r i a ~  
are to be used only by the given system. Ex te r -  
nal var iables are assumed to be accessible to 
other processes (or other external agents) which 
can change the values between steps of the given 
system. 

The execution of a system of processes is 
described by a set of execution sequences. Each 
sequence is a ( f i n i t e  or i n f i n i t e )  l i s t  of steps 
which the system could perform when inter leaved 
with appropriate actions by the external agent. 

For the purpose of describing the external 
behavior of a system of processes, cer ta in 
information in the execution sequences is i r r e l -  
evant. The external behavior of a system of 
processes is the set of sequences derived from 
the execution sequences by "erasing" information 
about process i d e n t i t y ,  changes of process state 
and accesses to in ternal  var iables.  What remains 
is information about accesses to external va r i -  
ables. 

A d i s t r i bu ted  problem is any set of sequen- 
ces of accesses to var iables.  A system is said 
to solve the problem i f  i t s  external behavior is  
an X subset of the given problem. 

One method fo r  specify ing a d is t r ibu ted  
problem [LF]  is  to describe f i r s t  the set of 
al lowable sequences of accesses to the external 
var iables by the user and the system together, 
tagging each access by the label "user" or 
"system" as appropr ia te,  second the assumed 
external behavior of the user (environment) of  a 
system, and t h i r d  the i n i t i a l i z a t i o n  of the 
external var iables.  Then a sequence of system 
accesses to external var iables is  acceptable 
provided when i t  is  inter leaved cons is tent ly  
wi th a correct  user sequence, the resu l t ing  se- 
quence is correct  fo r  the user and system 
together. The d is t r ibu ted  problem is the set of 
acceptable sequences, and a system solves the 
problem i f  a l l  of  i t s  external behavior sequences 
are acceptable. 
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4. External Behavior Description for Resource 
Allocation Systems 

The model in [LF] is best suited for specifi- 
cation of interface behavior of systems and their 
components, rather than the "eating and thinking 
region" behavior described by Dijkstra. Direct 
formalization of region behavior for the general 
resource problem does not seem to be particularly 
natural. Therefore, we formulate the problem in 
terms of external behavior. ( I f  one wants bounds 
similar to those in this paper for region behav- 
ior, one should proceed as in [FLBB] to construct 
systems of the required type which "simulate" 
those described in this paper. This does not 
appear to pose any serious d i f f i cu l ty ,  but seems 
detailed and tedious.) 

For any resource problem P, the interface 
description for the needed system is as follows. 
(We follow the specification method described 
in Section 3. ) 

For each u ~ U(P), there is an external 
variable EXT u, having values 'E'(empty), 'A'(ask) 

and 'G'(grant). Allowed transitions at any EXT u 
are as in the following diagram: 

user or system~ Quser or system 

E u ether ~Jser~~s 
user usen system 

G user or system 

I f  the value of any EXT u stops changing, then the 

f inal value is 'E' Finally, i f  two variables, 
EXT u and EXT u, , are ever simultaneously equal to 

'G', then (u,u') ~ rcommon(P). A "correct user" 
is one that only makes allowed transitions and 

does not leave the variable at 'G'. All variables 
are in i t ia l i zed at 'E'. The set of sequences of 
system accesses to the external variables which 
combine consistently with correct user sequences 
to yield behavior satisfying the interface des- 
cription comprises the distributed problem to be 
solved. 

5. Geographical Considerations 

There are many d i f fe ren t  solut ions (wi th in  
the [LF] model) to the d is t r ibu ted  problem des- 
cribed above. However, in a d is t r ibu ted environ- 
ment, there are geographical constraints in 
addi t ion to inter face requirements. These con- 
s t ra in ts  involve number and locat ion of processes, 
connect iv i ty  and communication time. For the 
problem at hand, we constrain the solut ion to con- 
s i s t  of user processes, one accessing each exter-  
nal var iab le,  and (a d i s j o i n t  set of)  resource 
processes, one for  each resource. For notat ional  
convenience, these processes are i den t i f i ed  with 

the elements of U(P) u R(P). These processes need 

to communicate, but we do not want to study the 
means of communication in this paper. Therefore, 
we assume another interface exists between al l  of 
these processes and a message system. Each pro- 
cess p communicates with the message system by 
two variables IN n-~ and OUTp. I f  M is a message 

alphabet, then the values of INp are M u {'NULL'}, 

while the values of OUTp are M × 2 R(P)(p) u 

{'NULL'} i f  p c U(P) and M × (U(P)(p) u 

R(P)(U(P)(p)) u {'NULL"} i f  p ~ RIP). ( Intui t ive- 
ly, the second component of OUT values is an 
address or set of addresses. User processes can 
simultaneously broadcast the same message to al l  
associated resource processes, while resource 
processes can only send messages one at a time to 
associated processes.) Allowed transitions are: 

set or system, user or S stem user or system user or system 

~.~ users 
N u L L S y S ~ a  # NULL NULL a f NULL 

OUTp INp 

(Here, the tag "system" refecs to the message 
system.) I f  the value of any variable stops 
changing, the f inal value is 'NULL' Finally, 
messages "get delivered" - in any execution 
sequence, the "writes" by the message system to 
any INp variable must be of message values which 

are some permutation of the message values "read" 
( i .e. changed to 'NULL') by the system from the 
OUT variables, addressed to process p. (We do 
not specify any order for delivery, nor do we 
care how the message system operates.) A 
"correct user" of the message system is one that 
only makes allowed transitions and does not leave 
its input variable ~ 'NULL'. All variables are 
in i t ia l i zed at 'NULL'. 

The reason for this particular choice of 
message system interface is that i t  seems to be 
the minimum natural interface needed to make our 
solution work as ef f ic ient ly  as i t  should. We 
have made this interface description part of the 
given conditions on the problem solution. The 
reader might conceive of an alternate resource 
allocation strategy which uses a different mess- 
age interface; such a strategy would not be 
directly comparable to our solution. In order to 
compare two solutions with different message 
interfaces, the two problem-solvers must agree on 
a common basic interface out of which the two 
different interfaces can be bui l t ,  and then 
complexity analysis must be done relat ive to the 
common interface. 

The formal correspondence between resources 
and resource processes is not intended to imply 
that the resources must be "located at" or 
"controlled by" the corresponding processes. The 
space of allowable solutions includes solutions 
in which control over the granting of a resource 
is shared by many different resource processes. 
I t  also includes solutions in which one resource 
process controls many resources. (In the solution 
of this paper, however, the resources are con- 
trol led by their respective processes.) 
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6. Time Measure 

The time measure of  [PF,P] hypothesizes upper 
bounds (but no lower bounds) on the time f o r  cer-  
ta in  events to occur dur ing execut ion.  (Thus, 
the set of  possib le execut ion sequences is not 
r e s t r i c t e d  in any way.) These upper bounds are 
used to i n f e r  upper bounds on the time f o r  cer-  
ta in  other  events to occur. Let P denote a f i xed  
resource problem. Let S, M, and V denote a r b i t r a r y  
implementations w i t h i n  our model of  a cor rec t  
resource a l l o c a t i o n  system, a cor rec t  message sys- 
tem and a cor rec t  user f o r  a resource a l l o c a t i o n  
system, respec t i ve ly ,  f o r  P. (Correctness f o r  M 
and V involves i n te r face  behavior on ly ,  wh i le  
correctness fo r  S impl ies also tha t  i t s  set of  
processes is U(P) u R(P) w i th  va r iab le  access 
c a p a b i l i t i e s  as described in  Sect ion 5.)  Let C 
be the system constructed by combining M, S and g. 
~n the no ta t ion  of  [LF] ,  the combined system is  consisty,f(SC)M(~)V), where 

Y : {EXTu: u e U(P)} u {INp: p e U(P) u R(P)} u 

{OUTp: p e U(P) u R(P), f(EXTu) = 'E' f o r  a l l  

u ~ U(P) and f ( INp)  = f(OUTp) = 'NULL' f o r  a l l  

p e U(P) u R(P).)  Let e denote an execut ion se- 
quence of  C. 

Let § # n t ( e , i , a , p , p ' )  dennte the number o f  
times message 'a '  is  placed in  OUTp, 

addressed to process p' ( i nc lud ing  broadcasts in 
which p' is  included among the addressees) , • in  
execut ion sequence e up to and inc lud ing  step io 
Let collectedIe,i,a,p,p' ) be the number of times 
changes are made in variable OUTp from values in 

which message 'a' is addressed to process p', up 
to and including step i .  Let sentfrom(e,i,a,p) 
denote Z sent(e, i ,a,p,p'),  and simi lar ly for p' 

c611eCtedfrom(e,i,a;p). Let-sen~from(e~i~. ) 
de'note % sentfrom(e,i,a,p), and similar ly for a 

collectedfrom(e,i sentto(e,i,a,p) denote 
~,sent(e,i,a,p,,piP~d Let simi lar ly for 

collectedto(e,i,a,~). Let deliveredto(e,i,a,p) be 
the number of times a transition tO 'a' is made in 
INp, up to and including step i .  Let sentto(e,i,p) 

denote Z sentto(e,i,a,p) and similar ly for 
a 

collectedto(e,i,p) and deliveredto(e,i,p). 
Finally, let  sent(e,i) denote Z sentto(e,i,p), and 

P 
simi lar ly for collected(e,i) and delivered!el i).  

Let requests(e,i,u) (resp. ~rants(e,i,u), 
returns(e,i,u)) denote the number of changes to 
~A' (resp. to 'G' from 'G')  , at variable EXT in u 
execution sequence e, up to and including step i .  
Let requests(e,i,V) = Z requests(e,i,u) for 

uEV 
V c U(P), and similar ly for grants(e,i,V) and 
returns(e,i,V). Let requests(e,i) : 
requests(e,i~U(P)) and' similarly for grants(e,i) 
ahd returns(e,i). 

Let R + represent the nonnegative rea ls .  A 

t iming is a nondecreasing t o ta l  mapping t :  N ÷ R +. 

Let A = (a ,u , y ,6 )  e (R+) 4, and l e t  t be a 
t iming.  Then t is  A-admissib le f o r  e provided 
(a) - (d) hold. 

(a) o is an upper bound on process step time. 

Let p e U(P) u R(P) and let  the execution 
steps involving actions of process p be 
Pl,P2 . . . . .  Then t(Pl ) ~ a  i f  Pl exists. 

Also, t(Pi+l) - t(Pi) ~ a  for each i for 

which Pi and Pi+l are both defined. 

(b) u is an upper bound on time for a user to 
return a granted resource. 

I f  grants(e,i,u) = k, i f  returns(e,j,u) = k 
and returns(e,j- l ,u) < k, then t ( j )  - t ( i )  
< U. 

(c) ~ is an upper bound on message collection 
time. 

I f  sentfrom(e,i,p) = k, i f  
collectedfrom(e,j,p) = k and 
collectedfrom(e,j-l,p) < k, then t ( j )  - t ( i )  
< y. 

(d) 8 is an upper bound on message delivery time. 
I f  sentto(e,i,a,p) = k, i f  
deliveredto(e,j,a,p) : k and 
deliveredto(e,j- l ,a,p) < k, then t ( j )  - t ( i )  
< 6. 

The second, "geographical" local i ty  condition 
mentioned in the Introduction is captured formally 
by the bound 6. 6 is to be thought of as much 
smaller than the worst-case transmission time for 
a message system that could send messages between 
al l  processes in the entire distributed network. 

We now define the "worst-case response time" 
to be measured. Let To(A,u ) denote the supremum, 

for a l l  execution sequences e of combined system 
C and al l  A-admissible timings t for e, of the 
quantity t ( j )  - t ( i ) ,  where requests(e,i,u) = k, 
where grants(e,j:u) = k and . grants(e~j-l,u) < k. 
Let Tc(A) denote sup Tc(A,u), u 

7. The Solution 

We consider solutions in which each resource 
process maintains a FIFO queue of waiting users. 
I t  is easy to see [G] that deadlock is prevented 
in a distributed resource allocation system i f  
the resources are l inearly ordered (isay by <), i f  
each user waits on queues for a l l  of his resources 
in increasing order of resources, i f  he only 
waits for one resource at a time (ii.e. unti l 
reaching the front of the associated queue), and 
i f  he remains on al l  queues unti l he is f i r s t  on 
al l  of them. In fact, i f  al l  granted resources 
are eventually returned, i t  is clear that each 
user eventually obtains al l  of his resources. 

On closer examination, we note that a 
linear ordering of resources is unnecessary. A 
partial ordering suffices, provided any two 
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resources required by the same user are comparable. 
Any coloring c of P specifies such a partial order- 
ing. We use an arbitrary coloring c and the 
strategy described above in our solution. The 
complete code for user and resource processes 
appears at the bottom of the page. 

The high-level language used is (almost) the 
same as that used in [CH,FLBB]. Computation 
occurring within a lock-unlock pair occurs within 
a single execution step in the formal model. In 
the formal model, every step involves access to 
a variable. The local computation appearing in 
our language is combined into the previous lock- 
unlock pair in the formal model. (In [FLBB], this 
computation was combined into the following lock- 
unlock pair, an alternative which would change 
the complexity analysis of our algorithm sl ight-  
l y . )  The construct "waitfor (condition);" is an 
abbreviation for "A:lock; i f  (7 condition) then 
[unlock;goto A];". Subscripts are omitted from 
EXT, IN and OUT variables. 

I t  is easy to see that deadlock is avoided by 
this solution, and that each user eventually ob- 
tains his resources (provided al l  granted re- 
sources are eventually returned). In addition, i f  
Icl is small, this solution appears to l im i t  the 
lengths of chains of waiting processes, thereby 
providing an upper bound on runningtime. The 
remaining sections prove results to this effect. 

8. Worst-C~e Performance 

We obtain a general theorem giv ing an upper 
bound on performance of our so lu t ion,  which is not 
d i r ec t l y  dependent on to ta l  network size or to ta l  
number of users. Let ¢(P,c) denote the combined 
system composed of our solut ion fo r  resource 
problem P using color ing c, and any a rb i t ra ry  
correct message system and correct resource system 
user. Let A = (o, u, y, 6). 

Theorem 8.1. T¢(p,c)(A ) ~ (contention(P) Icl - I)~ 
l , 

+ O( Ic lcontent ion(p) ICl (a  + y + 6)) .  

Proof. Since processes operate asynchronously, 
i t  is general ly the case during execution that 
some parts of the system are wai t ing for  work to 
be accomplished by other parts. (The wait ing 
processes might be busy-wait ing, or might be per- 
forming a considerable amount of work.) In the 
analysis,  i t  is crucia l  that  the key parts of 
the system be i den t i f i ed  at each time during 
e×ecutio~. 

Classify the resource processes into levels, 
each resource process r at level c(r). For 
l < i < Ic l ,  l < j < contention(P), let  Gi, j 

denote the supremum, over al l  execution sequences 
e and A-admissible timings t ,  of the time from 
when any user u reaches position j from the front 
of a level > i resource process QUEUE, unt i l  the 
resources ate next granted to u. A system of 
recurrences is obtained. 

First ,  consider arbitrary i and j > 2. Let 
i I be an execution step in which u reaches po- 

si t ion j from the front of the QUEUE of a level 
> i process, r. Let u' be u's immediate prede- 
Cessor on r 's QUEUE. By induction, within time 
at most Gi,j_ l from t ( i l ) ( as  measured by timing 

t ) ,  u' is granted his resources, Then within 
time at most u, u' returns the resources (because 
of A-admissibi l i ty), and then within time ~, 
user process u' detects the return. Also, within 
time y of t ( i l ) ,  the value (u',  { f i rs tp ,c(U ' ) } )  

arising from this u' request is removed from 
OUTu,. Thereafter, within time a, u' broadcasts 

a 'RETURN' message, and then within 6 the 

Code for user process u local: STATUS i n i t  'E' 

do forever 
i f  STATUS = 'E' 
then [lock; i f  EXT = 'A' then STATUS := 'A' ;  unlock] 
else [waitfor (OUT = 'NULL'); OUT := (u, { f i rs tp,c(U)}) ;  unlock; 

waitfor (IN = 'G'); IN := 'NULL'; unlock; 
lock; EXT := 'G'; unlock; 
waitfor (EXT # 'G'); STATUS := EXT; unlock; 
waitfor (OUT = 'NULL'); OUT := ('RETURN' , R(P)(u)); unlock]; 

Code for resource process r local: QUEUE i n i t  9, MSG i n i t  'NULL' 
J i n i t  'NULL', STATUS i n i t  'E' 

do forever 
lock; i f  IN I 'NULL' then [MSG := IN; IN := 'NULL']; unlock; 
i f  MSG E U then append MSG to QUEUE; 
i f  MSG = 'RETURN' then delete front of QUEUE; 
i f  MSG ~ U and IQUEUE I : 1 or MSG = 'RETURN' and IQUEUE[ ~ 1 
then [STATUS := 'A ' ;  J := front(QUEUE)]; 
i f  STATUS = 'A' 
then [ lock;  i f  OUT = 'NULL' then OUT : :  i f  nex tp ,c (J , r )  is defined then 

(J ,nex tp ,c (J , r ) )  else ( 'G ' , J ) ;  unlock; STATUS :~ 'E ' ] ;  

MSG := 'NULL'; 
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'RETURN' reaches IN r. Within ~, the 'RETURN' is 
read by r and u' is removed from r 's QUEUE, making 
u f i r s t .  Then within Gi, l ,  u is granted his re- 

sources. We see that Gi, j < max(y, Gi,j_ l + u + ~) 

+ 20 + 6 + Gi, l ,  for j ,>  2. 

Next, consider i > 2 and j : I .  Consider an 
execution step in whicl~ u reaches the front of 
the QUEUE of a level > i process, r. Within time 
y + 20, a value ( 'G',-u) or (u, nextp,c(U,r)) is 

placed in OUT r. I f  the value is ( 'G', u), then 

within 6 + 20, u is granted his resources. I f  the 
value is (u, nextp,c(U,r)), then within 6 + 20, u 

is appended to the QUEUE of a level > i + l pro- 
cess, r ' .  At that moment, u is in position < 
contention(P) + l on r '  's QUEUE; each contender 
for resource r '  can appear at most once, with 
the single exception that the f i r s t  user on r' 's 
QUEUE might appear twice. (This is because the 
f i r s t  user might have his resources granted, 
return them, and then request them again. The new 
request might arrive at r '  before the 'RETURN' 
message.) However, within time 6 + ~, u reaches 
a position_< contention(P) on r '  's QUEUE. Then 
within Gi+l,contention(P ), u is granted his 
resources. We see that Gi, l < y + 2o + 

max(6 + 2~, 6 + 2~ + 6 + ~ + Gi+l,contention(P)), 
i < Ic{. That is, Gi, l < y + 26 + 5~ + 

Gi+l,contention(P ), for i < Ic l .  

Next, note that G[c l , l  -< Y + 2c~ + 6 + 2~ = 

y + ~ + 4 ~ .  

F i n a l l y ,  consider Te(p ,c ) (A) .  Let i I be an 
execut ion step in which u makes a request. With- 
in  t ime o from t ( i l ) ,  the request is  detected by 

user process u. Also,  w i t h i n  t ime y from t ( i l ) ,  

OUT u becomes 'NULL'. Thus, w i t h i n  time 

max(y, o) + ~ of t ( i l ) ,  the value (u, { f i rs tp ,c (U l } )  

is placed in OUT u. Then (as above) within 

6 + 2~ + 6 + c~, u reaches position _< contention(P) 
on some QUEUE. Thus, To(p,c)(A) < 

max(y, o) + ~ + 6 + 2~ + 6 + ~ + G l,contention(P). 
That is,  To(P,c)(A) _< max(y, ~) + 26 + 4~ + 

Gl, contenti on (P)" 

To summarize the inequalit ies, le t  ~' denote 
+ y + 6. Then for some constant k, we have 

Gi, j < k~' + u + Gi , j .  1 + Gi, 1 for j_> 2, Gi, 1 < 

kc~' + Gi+l,contention(P ) for i < [c I, Glcl, 1 <_ kc~', 

and TC(p,c)(A) < ko' + Gl,contention(P ). Letting 

a denote contention(P), we have Gi, j < 

(j - l ) ( k O '  + u) + j Gi, 1 for a l l  i ,  j ,  and so 

< (2a - l ) (k~ ' )  + (a - l )u + a Gi+l, a for Gi,a - 

i < Ic l .  Also, Glc],a_< (2a - l ) (ko ' )  + (a - l )u.  

Thus, Gl, a ~ ' ( l  + a + a 2 + . . .  + a Icl-z) 

((2a - l ) (k~ ' )  + (a - l ) (u) )  + a Ic l - I  Glc], a 

(l + a + a 2 + . . .  + alCl- l )((2a - l ) (ko ' )  + 

(a - l ) (u ) ) .  Then Tc(p,c)(A) ~ k~' + 

(I + a + a 2 + . . .  + a]C[-l)((2a - l ) (ko ' )  + 

(a l ) (u) )  ~ 2k ]cl alCl~ ' + (a Ic l -  l )u,  as 

required. [] 

Since we do not hypothesize any lower bounds 
on time for events to occur, there is no l im i t  on 
the number of times competing users can get ahead 
of a part icular user. However, Theorem 8.1 shows 
that the only way large numbers of processes can 
get ahead is by goingfast;  there is s t i l l  a 
l im i t  on the total time any part icular user waits. 

Corollary 8.1. For some c, T . . . .  (A) < 
colors(P) (contention(P) - I )  U u ~ b u ,  u . a ~ r j  " 

content ion(P)  cOlOrs(P) (a + y + 6 ) ) .  

Ex. 8 . l .  Dining Phi losophers 

Recall the co lor ings  c and c' from Ex. 2.1. c 

y i e l ds  a worst-case running time of  (2 n - l ) u  + 

O(n2n(o + y + 8 ) ) ,  wh i le  c' y i e l ds  the much be t te r  
running time 7u + 0(o + y + 6).  I n t u i t i v e l y ,  the 
order ing y ie lded  by c al lows length n wa i t i ng  
chains to form, but c' does not a l low chains of  
length greater  than 3. 

Ex. 8.2. k-Fork Phi losophers 

A worst-case bound of  ( k k + l - l ) u  + O(k k+2 
(o + y + 6))  is  obtained. I f ,  however, the 
co lo r ing  c ( r  i )  = i is  used, one obtains a bound 

of (k n - 

Ex. 8.3. 

The 

Ex. 8.4. 

The 

Ex. 8.5. 

The 

1)u + O(nkn(o + y + 6) ) .  

2-Dimensional Phi losophers 

bound is O(u + o + y + 6). 

k-Tree 

bound is  (k k - 1)u + o(kk(o + y + 6) ) .  

k-Nested Sets 

bound is (k k - 1)u + o(kk(o + y + $) ) .  

9. Realizing the Upper Bound 

I t  is not always clear how to produce "bad" 
execution sequences and "bad" A-admissible timings 
for which the bound derived in Theorem 8.1 is 
(approximately) realized. For instance, i t  does 
not seem possible to exhibi t  exponential depen- 
dence on n in Ex. 8.1 (Dining Philosophers). In 
this section, we sketch how to construct bad 
execution sequences and timings for k-Trees, 
k-Nested Sets and k-Fork Philosophers. In Section 
lO, we prove an alternative upper bound theorem 
which implies that such bad execution sequences 
and timings cannot be constructed for Ex. 8.1. 
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Ex. 9.1. k-Tree 

Consider an execution sequence for  a request 
from user u k in which, whenever a user u k_l i  I 

a ia 
arrives on the QUEUE for  a resource r i ,  a l l  of the 

other contenders for  r i have just  arrived very 

short ly before. This execution involves u k wait-  
a 

ing for  k k - l other users to obtain (sequential ly) 
the i r  resources. Thus, i f  a timing is constructed 
to maximize waiting times, a response time of at 

least (k k - l )u is real ized. Note that whenever 
the specified users arr ive on the specif ied 
QUEUEs, i t  is possible that the other contenders 
can a l l  arr ive as required. This is because these 
other contenders are only being required to 
arr ive at the i r  f i r s t  resources, which they can do 
independently. 

Ex. 9.2. k-Nested Sets 

Let c( r  i )  = i ,  l < i < k. Construct an exe- 

cution sequence for  a request for  user u I in 

which whenever a user u i a r r i veson the QUEUE for  

a resource r j ,  j > i ,  i t  is the case that uj has 

jus t  arrived very short ly before. This execution 

involves u I waiting for  2 k-l - l other requests 

to be granted; unlike Ex. 9.1, many of these 
requests are repeats, however. (For instance, 
for  k = 5, the order of granted requests is given 

by u5u4u5u3u5u4u5u2u5u4u5u3u5u4u5ul. ) Thus, i f  a 
timing is constructed to maximize waiting times, 

a response time of at least (2 k - l )u  is 
real ized. Again, the required ar r iva ls  are 
possible because we are only requir ing contenders 
to arr ive at the i r  f i r s t  resources. 

In both of these examples above, a permuta- 
t ion of the values of c w i l l  make i t  impossible 
to construct execution sequences and timings with 
exponential dependence on k. (For instance, for  
Ex. 9.2, simply reversing the order of the re- 
sources w i l l  make the dependence on k quadratic, 
as we w i l l  show in Section lO.) 

Neither of the examples above is of the 
" local"  type for  which th is algorithm is intended. 
However, one can easi ly construct an example with 
a " local"  f lavor  which approaches the upper bound, 
by patching together mul t ip le instances of 
Ex. 9.1 or 9.2. 

Ex. 9.3. k-Fork Philosophers 

Let c ( r i )  = i ,  l < i < n, as in Ex. 8.3. We 

construct an execution sequence for  a request of 
u l ,  using only u I . . . . .  Un_k+ I .  Whenever a user 

u i ,  l < i < n-k, arr ives on the QUEUE for  a re- 

source r j ,  i < j ~ n-k + l ,  i t  is the case that 

uj has jus t  arr ived. Then, for  example, i f  k = 3 

and n = 7, the order of  granted requests is 
u5u4u5u3u5u4u2u5u4u5u3u I .  In general, i f  f (k ,n)  
is the number of requests for  which u I waits, 

then one can calculate f (k ,n)  as fol lows. 

Consider a s l i g h t l y  modi f ied resource problem P' 
having R(P') = { r  I . . . . .  rn } ,  U(P') : {u I . . . . .  Un}, 

and U(P ' ) ( r  i )  = { u i : i - k  + 1 < j < i } .  (Thus, 

modular a r i thmet i c  is e l im inated and so the f i r s t  
few resources have fewer than k users i f  k > I ) .  
Let c ( r  i )  : i .  We construct  an execut ion 

sequence fo r  a request o f  Ul: whenever u i ,  

1 < i < n - l ,  a r r i ves  on the QUEUE fo r  a resource 
r j ,  i ~ j < n, i t  is the case that  uj has jus t  

a r r i ved .  I f  g(k,n) denote the to ta l  number o f  
requests granted in th i s  execut ion up to and 
inc lud ing the i n i t i a l  u I request,  then 

f ( k ,n )  = g(k ,n -k+ l )  - 1 f o r  n > 2k - I .  Then 
- n-I 

we can see that  g ( k , l )  = I ,  g(k,n)  = S g ( i , i )  + 1 
i= l  

n- I  
f o r  n < k, and g(k,n) = ~ g ( k , i )  + 1 fo r  

- i=n-k+l  
n > k. This F ibonacc i -s ty le  bound shows tha t  

f ( k ,n )  is ~ (kn /k ) ,  so tha t  a response t ime of  

~(kn/k) (u)  is r e a l i z e d .  

I0. A Special Case 

A case analys is  fo r  the co lo r ing  c o f  the 
Dining Philosophers Ex. 2.1 shows ( in  cont rast  
wi th Ex. 9.3) that  no execut ion e x h i b i t i n g  ex- 
ponent ia l  dependence on I c l i s  poss ib le.  Also, 
fo r  example, changing only the order ing o f  the 
colors in Ex. 9.2 changes the dependence on Icl 
from exponent ia l  to quadrat ic .  Thus, whi le  
Theorem 8.1 y i e l d s  the required independence o f  
network s ize,  i t  does not t e l l  the en t i r e  story.  

Theorem 8.1 al lows f o r  the p o s s i b i l i t y  that  
a user w i l l  have to wai t  f o r  the maximum number 
o f  competing processes on each queue. However, 
i f  two users contend fo r  two d i f f e r e n t  resources, 
then ne i t he r  w i l l  ever have to wai t  f o r  the other  
f o r  the second of  the two resources. Moreover, 
Theorem 8.1 does not take in to  account any 
l i m i t a t i o n s  on the resources needed by any par- 
t i c u l a r  user. The second theorem takes these 
fac tors  in to  account. 

Define a t ree wa i t t r ee IP ,c ,u )  fo r  a resource 
problem P, a co lo r ing  c and u ~ U(P) as fo l lows.  

( I )  p re t ree(P,c ,u)  

The root  node has a s ing le  son labe l l ed  by 
the resource f i r s t p , c ( U ) .  The edge j o i n i n g  the 

the roo t  node to th i s  son is l abe l l ed  by u. 

For any node x l abe l l ed  by any r ,  and any 
u' c U(P)(r)  wi th  nex tp , c (U ' , r )  def ined,  there 

is a son of  node x l abe l l ed  by nex tp , c (U ' , r ) .  I f  

nex tp , c (U ' , r )  is undefined, there is a son of  

node x which is a dummy node. In e i t h e r  case, 
the edge j o i n i n g  x to th i s  son is l abe l l ed  by u ' .  
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Ex. lO.l .  Dinin 9 P.hilosophers 

Let n = 4. Pretree(P,c,U4) is as follows. 

() 
14 

4 

u u3 

t 

Ex. 10.2. k-Nested Sets 

Let k = 4 and c ' ( r i )  = 5 - i .  

P re t ree (P ,c ' , u  3) is as fo l lows.  

u X 

u 3 
u 

u3 

1"2 

l U. U 

(2~ waittree(P,c,u) 

The non-dummy nodes of pretree(P,c,u) are 
assigned tags consisting of sets of processes. 
I f  node x has label r, then the tag, A x, for x 
is the set of al l  u' ~ U(P)(r) with the follow- 
ing property. For al l  ancestors y of x, where y 
is labelled by r ' ,  i f  u' ~ U(P)(r') then u' 
labels the out-edge leaving y in the direction 
of node x. The resulting tagged tree is then 
pruned so that the only edges leaving any node 
are those labelled by processes included in the 
tag of that node. 

Ex. I0.3. Dinin 9 Philosophers 

Waittree(P,c,u4), for Ex. lO.l ,  is as follows. 

(rl: ~"1,u4~ 

t 
r4: {u 3} ~) 

Ju3 

The only user omitted from a tag is u 4, omitted 

from the tag of the double circled node. u 4 is 

omitted because u 4 c U(P)(rl) and u 4 does not 

label the edge leaving the root in the direction 
of the double circled node. 

Ex. 10.4. k-Nested Sets 

WaittreeCP,c' ,u 3 ) . _  is  as fo l lows .  

~u 3 

t[ ul 

A considerable amount of pruning occurs for 
this tree. 

Let weight(P,c,u,x,B), where B ~A x, denote 

the number of edges in waittree(P,c,u) below node 
x, along paths whose f i r s t  edge below x is 
labelled by an element of B. Let weight(P,c,u,x) 
denote weight(P,c,u,x,Ax), and le t  weight('P,c,u ) 

denote weight(P,c,u,x), where x is the son of the 
root. 

Theorem lO. l .  Tc(P,c)(A,u) = O((weight(P,c,u)) " 
( ~ + ~ + y +  ~)). 

Proof Sketch. Each request generates a set of 
QUEUE entries which persist unti l  'RETURN' mess- 
ages are received. A QUEUE entry is said to be 
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active at step i of execution sequence e provided 
the request which generated i t  has not yet been 
granted at ( i .e. immediately after) step i.  Step 
i of execution sequence e is consistent with node 
x of waittree(P,c,u) provided each user which 
labels an edge above x has an entry which is 
active on the QUEUE of the resource labell ing the 
lower (son) endpoint of that edge, at step i .  
(There can be at most one such active entry for 
each QUEUE.) 

Claim I. At any step i of an execution sequence 
e, any user u' who has an entry active on the 
QUEUE for any resource r also has an entry which 
is f i r s t  on the QUEUEs for al l  r ' ~ R~PI(u') with 
c ( r ' )  < c(r ) .  

Claim 2. Let x be a node of waittree(P,c,u) 
labelled by resource r. Assume step i of execu- 
tion sequence e is consistent with x. Let u' be 
a user with an active entry on r's QUEUE at step 
i .  Then u' E A x. 

Proof of Claim 2. Assume u' ~ A x. Then there is 

an ancestor y of x, labelled by a resource r ' ,  
with u' ~ U(P)(r') and u" the label of the out- 
edge leaving y in the direction of node x, 
u" # u'. By consistency, u" has an entry active 
on the QUEUE for some resource with a higher 
number than c( r ' ) ,  at step i.  By Claim l ,  u" has 
an entry which is f i r s t  on r' 's QUEUE at steP i. 
However, Claim l also implies that u' has an en- 
try which is f i r s t  on r' 's QUEUE at step i ,  a 
contradiction. 

Now write o' = o + u + ¥ + 8. 

Claim 3. Let x be a node of waittree(P,c,u) 
labelled by resource r. Let u' be the label of 
the edge immediately above x. Assume step i of 
execution sequence e is consistent with x, and 
that u" is a user having an active entry a (not 
necessarily proper) predecessor of u "s  active 
entry on r 's QUEUE at step i.  Let B be the set 
of users having active entries which are prede- 
cessors of this entry of u" (including u" i t se l f )  
at step i.  (By Claim 2, B ~Ax.) Let j be the 

step at which the request of u" which generated 
this active entry is granted. Let t be an A- 
admissible timing for e. Then t ( j )  - t ( i )  is 
O((weight(P,c,u,x,B))(o ' ) ) .  

Proof of Claim 3. We use induction on the nodes 
x of waittree(P,c,u), starting at the lowest nodes 
and working towards the root. For each node x, 
we use induction on subsets B of A x, ordered by 

containment. Assume e, i ,  x, r, u', u" and B 
are as above. 

There are three cases. 

(1) The given active entry of u" is the f i r s t  
active entry on r's QUEUE at step i ,  and 
nextp,c(U",r)  is undefined. 
Then within time 0(0'), u" 's request is 
granted, as needed. 

(2) The given active entry of u" is the f i r s t  
active entry on r's QUEUE at step i ,  and 
nextp,c(U",r)  = r ' .  

(3) 

Then within time 0(o'), a Step i '  is reached 
which is consistent with node y, where y is 
the son of x reached by following the edge 
labelled by u". Thereafter, by induction on 
nodes and by Claim 2, the time unti l u" 's 
request is granted is 
O((weight(P,c,u,y))(~')). The total time is 
O((weight(P,c,u,y) + I ) (o ' ) ) ,  as needed. 

The f i r s t  active entry on r's QUEUE at step 
i is generated by u'"# u". 

Then, by induction on subsets, within time 
O((weight(P,c,u,x, {u ' " '~)(o ' ) ) ,  a step i '  is 
reached at which u " ' ' s  request is granted, 
making the given u" 'ent ry  inact ive.  Step i '  
is s t i l l  consistent with x, and 
B' = B - {u " ' }  is the set of users having 
act ive entr ies which are predecessors of the 
given entry of u" at step i ' .  Then, by 
induction on subsets, u" 's request is 
granted wi th in time 
O((weight (P,c ,u ,x ,B ' ) ) (o ' ) ) .  The to ta l  time 
is O((weight(P,c,u,x , {u" ' } )  + 
we igh t (P ,c ,u ,x ,B ' ) ) (o ' ) )  = 
O((weight(P,c,u,x ,B)) (o ' ) ) ,  as needed. 

Now consider any request of u. Within time 
0(0') of in i t ia t ion ,  a step i is reached at which 
u obtains an active entry on the QUEUE for 
firstp,c(U). Step i is consistent with the son 

of the root of waittree(P,c,u). Claim 3 yields 
the result. [] 

Ex. I0.5. Dining Philosophers 

Generalizing Ex. I0.3, we see that coloring 
c provides a running time of O(n(o + u + y + 8)), 
because of the size of the waittrees. This is in 
contrast to the exponential bound of Ex. 9.3. 

Ex. 10.6. k-Nested Sets 

Generalizing Ex. 10.4, we see that the 
coloring c' provides a running time of 

O(n2(~ + u + ¥ + 8)). This is in contrast to 
Ex. 9.2. 

There are, of course, cases in which Theorem 
I0 . I  does not provide improvement over Theorem 
8.1. For example, for  a k-tree, the wai t t ree for  
color ing c of Ex. 2.4 and user u k fol lows the 

a 

structure of the k-tree i t s e l f .  (See the example 
for  k = 3 in Ex. 2.4.) Thus, the wai t t ree has 

more than k k edges. We also note that the given 
upper bound proportional to the size of the 
waittree cannot always be realized; by some com- 
plicated arguments, i t  is often possible to 
eliminate s t i l l  more possible waiting. 

I I .  Throughput and Limited Concurrency Bounds 

The material of this section is presented in 
outline; many details are reserved for a longer 
version of this paper. One might be interested 
in measures other than worst-case response time. 
For example, one can obtain an upper bound on 
"worst-case throughput" by measuring the rate at 
which requests are granted, assuming that each 
user always in i t iates a new request within some 
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time e a f te r  the preceding request is returned. 

Roughly, i f  A = (0, u, ¥, 6, E) e (R+) 5, then a 
timing is A-admissible provided o, u, y, and 6 
are as before and, in addi t ion,  the f i r s t  request 
of each user is within e of the beginning, and 
each subsequent request is within time E of the 
previous return by that user. Then l e t  T'c(A) de- 

t(i) 
note the supremum of the quant i ty l.imsupgrants(e,i) 

i -~o 

for  a l l  execution sequences e of ¢ and a l l  A- 
admissible timings t fo r  e. An easy coro l la ry  to 
T h e o r e m _ h 8 . 1  says that T'crP,c~j is 

o( IClcontent ion(P) l~I (c  + u + - /+ 6) + i f  

Iu(P)l = n, This rate seems to compare favorably 
with other a l ternat ives.  

Another in terest ing measure is worst-case 
performances under assumptions of l imi ted con- 
currency. I f  at most k requests are concurrent 
with a given request, then worst-case response 
time for  the given request might be better than 
worst-case with unl imited concurrency, for  small 
values of k. Analysis techniques for  deriv ing 
such bounds are quite d i f fe ren t  from those used 
for  Theorems 8.1 and I 0 . I .  For the problem 
treated in th is paper, l o c a l i t y  is important. 
Therefore, we seek a worst-case bound in the 
presents of at most k concurrent "nearby" requests. 
For u E U(P), define p.red(u) to be the set of 
users appearing as edge labels and res(u) to be 
the set of resources appearing as node labels,  in 
wai t t ree(P,c,u) .  (Thus, pred(u) represents a l l  
users which could delay the granting of a request 
of u.) Let A = (~, u, y, 6) and use the de f in i -  
t ion of A-admiss ib i l i ty  in Section 6. Let 
T"c(a,u,k) denote the supremum, for  a l l  execution 

sequences e and A-admissible timings t ,  of the 
quant i ty t ( j )  - t ( i ) ,  where u makes a request at 
step i which is granted at step j ,  and where 
requests(e, j ,  pred(u)) < k + returns(e, i ,pred(u)) .  
I t  is not d i f f i c u l t  to ve r i f y  
the fo l lowing claim about our system C(P,c): i f  at 
any step of any execution sequence there is a 
request of user u pending, and i f  there is no 
request of a user in pred(u) current ly  granted, 
then wi th in time O(Ic I(o + y + 6)) ,  some request 
by a user in pred(u) gets granted. Therefore, i f  
there is a bound of k on such requests, the to ta l  
time to grant the request of u is 
(k - l )u  +O(klcl(~+y+~)). 

A refinement on the analysis out l ined above 
might attempt to use the fact that the message 
system might also be guaranteed to perform at 
better than i ts  worst-case performance under the 
l imi ted usage deducible from the given l i m i t  on 
user requests. The message system is performing 
a s ign i f i can t  part of  the work of the ent i re  sys- 
tem, and i t s  improved performance under l i g h t  
usage conditions might be expected to have a sig- 
n i f i can t  impact on the calculated bounds. In 
order to obtain such a sharpened analysis, one 
needs to include more detai led bounds on the 
behavior of the message system in the admissib i l -  
i t y  vector, rather than just  y and ~. Let A = 

(~, u, y, 6, lJ) ~ (R+) 5, and redefine a timing t 

to be A-admissible for  an execution sequence e 
provided o, u, y and 6 are as in Section 6, and 

sat is f ies  the fo l lowing.  For a l l  k > 1 and a l l  
p, i f  sent to(e , j ,p )  < k + m in (de l i ve re~ to (e , i ,~ ,  
co l l ec ted to (e , i , p ) )  and i f  for  no £, i < £ < j 
is the case that sentto(e,£,p) = 
col lectedto(e,Z,p)  : de l iveredto(e ,£ ,p) ,  then 
t ( j )  - t ( i )  < k~. That is,  we bound the length 
of an interv~l  during which there are at most k 
messages to one process p, provided that some 
message to process p is being processed at 
each intermediate step. For s imp l i c i t y ,  we 
assume a bound of  the form k~, where ~ is to be 
thought of as much smaller than y and 6. Let 
T"' ¢(A,u,k) be defined to be the same as 

T " / A , u , k ) ,  except that the new de f i n i t i on  of 

A-admiss ib i l i t y  is used. We require a lemma in 
order to analyze our system C(P,c). 

Lemma I I . I .  I f  r e res(u) and u' e U(P)(r),  then 
u' c pred(u). 

Proof. Let x be the highest node on the path 
from the root of wai t t ree(P,c,u) to any node 
label led by r,  such that label (x)  e R(P)(u').  
Then u' e A x. 

[ ]  

T"'Cip,c~(A,u,k),, can be bounded as fo l lows. 

F i rs t ,  there may be an i n i t i a l  in terva l  of 
0(0 + y + 6) before a l l  old 'RETURN' messages 
from non-concurrent requests have been col lected,  
del ivered and processed. We analyze the remain 
in terval  I un t i l  u's request is granted. F i rs t  
imagine that a l l  messages overlapping I which are 
addressed to users in pred(u) or to resources in 
res(u) take time zero un t i l  co l lec t ion  and 
del ivery.  With th is  assumption, the time for  I 
is at most (k - l )u  + O(klclo).  (The analysis 

T,, rA '  k) ) We is the same as that  for  . ¢(p,c)~ . . . .  

must add to th is  bound the to ta l  time spent 
wait ing for  a l l  the relevant messages to be 
col lected and del ivered, which we calculate as 
fol lows. 

The given requests concurrent with the 
or ig ina l  request of u produce a set of at most 
k(2|c I + I) messages, a l l  addressed e i ther  to 
users in pred(u) or to resources in res(u). 
Moreover, a l l  messages which overlap interval  I 
and are addressed to these users and resources 
are among th is set of messages. This is because 
the only messages addressed to a user process are 
'G' messages or ig ina t ing  from his own requests, 
and also the only messages addressed to a resource 
process are 'RETURN' messages and requests from 
i t s  users and from lower numbered resources of 
i t s  users. But a l l  of  these types of messages 
must or ig inate  from requests by users in pred(u), 
by Len~na I I . I .  Because I does not begin un t i l  
the i n i t i a l  in terval  has elapsed, these requests 
must a l l  be among the given concurrent requests. 

Now consider any par t i cu la r  dest inat ion 
process p, and assume £ of the messages above 
are addressed to p. By admiss ib i l i t y ,  th~ to ta l  
time for  the £ messages to p is at most Z~. 
Summing over a l l  of  the relevant processes y ie lds 
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a total message waiting time of k(21c I + I)~. 
Thus, the total time is at most 
(k - l )u + O(a +y  + 6) + O(klcl (a + ~)). 

This work is part of two larger projects - a 
jo in t  project with Professor Michael J. Fischer on 
theory of asynchronous systems and a Georgia Tech 
project for design of distributed computing sys- 
tems. Thanks for many ideas and discussions go to 
the members of both projects, especially Mike 
Fischer, Nancy Gri f feth,  and Jim Burns. 
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