
FAST ALLOCATION OF NEARBY RESOURCES IN A DISTRIBUTED SYSTEM

Nancy A. Lynch
School ot Information and Computer Science

Georgia Inst i tute of Technology
Atlanta, Georgia 30332

1 Introduction

Dijkstra's informally-stated Dining Philoso-
phers problem [D] involves a number n of philoso-
phers s i t t ing in a c i rc le, a single fork between
each pair of adjacent philosophers. Any philoso-
pher may decide to eat at any time and requires
both of his forks to do so, but he can only "pick
up" one fork at a time. Philosophers act asynchro-
nously. The problem is to program the philosophers
in ways which guarantee certain conditions of fairo
ness and absence of deadlock, (For instance, i f
everyone picks up his l e f t fork f i r s t and then
waits for his r ight fork to become free, the sys-
tem can deadlock with a circular chain of waiting
philosophers.)

Assuming no means of communicatlon among
philosophers other than through infor'mation
attached to their forks, i t is easy to formalize
an argument that any solution in which al l philos-
ophers are programmed ident ical ly must have a poss-
i b i l i t y of deadlock. Thus, (with this assumption),
correct solutions must allow some dist inct ion to be
made among the philosophers.

Because of the imprecision of the problem
statement, i t is not clear how to evaluate and
compare various solutions in the l i terature. For
example, Chang [C] presents solutions which dis-
tinguish certain philosophers with responsibi l i ty
for breaking deadlocks. He argues that deadlock
is infrequent, so special protocols to avoid dead-
lock should not be permitted to add running time
overhead to normal operation of the system. Thus,

This research w~s_L:Supported'in part by the
National Science Foundation under grants MCS77-15628
and U.S. Army Research Office Contract Number
DAAG29-79-C-O155.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific perfiaission.

© 1 9 8 0 A C M 0 - 8 9 7 9 1 - 0 1 7 - 6 / 8 0 / 0 4 0 0 / 0 0 7 0 $00.75

his system runs with no special constraints - for
example, any philosopher may pick up either fork
f i r s t . When deadlock occurs, a special recovery
protocol is executed. No meaningful analysis is
given to support the alleged time eff iciency, how-
ever.

In tu i t i ve ly , a d i f f i c u l t y with Chang's solu-
tion is that certain time ineff iciencies can occur
even in the absence of deadlock. Even i f a com-
plete circular chain of waiting philosophers is
not produced, i t can s t i l l be the case that a long
chain occurs, of philosophers waiting for their
neighbors. Such a chain seems to require consider-
able time to break.

James Burns [B] has suggested the following
alternative, simple algorithm (which ~s
also known to other researchers in the area).
Alternate philosophers are distinguished as "L"
and "R" philosophers (assuming n is even). The L
and R philosophers are constrained to pick up their
l e f t and r ight fork f i r s t , respectively. I t is
easy to argue by case-analysis that deadlock does
not occur. I t is also i n tu i t i ve l y plausible that
this solution is more t ime-eff icient than Changes,
because waiting chains of length greater than 2
never occur. However, no formal time analysis is
presented in [B] to support this in tu i t ion .

In this paper, the problem is generalized to
a distributed system resource allocation problem
which is local in two senses. First , although the
system and number of users can be very large,
there is a l im i t to the overlap in resource demands
of dif ferent users. The second condition can be
thought of as a property of the geography of the
network - the resources are (or can be) located in
the network in such a way that communication be-
tween a user and any of i ts required resources is
fast. Both types of loca l i ty conditions are sat-
is f ied by the Dining Philosophers problem. Under
these two conditions, one would hope that waiting
chains could be avoided, so that the worst-case
time to grant a user's requests is independent of
the total size of the network and the total number
of users.

In order to prove theorems to this effect,
one must state precisely the problem to be solved,
and describe an implementation in an unambiguous
model. Time complexity analysis should be done
using rea l is t ic and precisely-defined measures.
The simple automata-theoretic model developed in

70

[LF] is used in this paper to describe (separate-
ly) the generalized problem and one solution.
Basically, a particular order is specified for
each user to wait for his resources, generalizing
the " le f t - r ight" idea in a natural way. Then a
version of the time measure described in [PF] and
[P] is used to perform time analysis. Theorem 8.1,
the main result, gives an upper bound (independent
of the network size and total number of users) on
the worst-case time for a request to be granted.
Although Theorem 8.1 gives the needed independence
of network size, in many interesting cases the re-
sults actually seem sharper than those yielded by
Theorem 8.1. A second result, Theorem lO.l , is
proved, giving sharper bounds for some special
cases.

I t can be argued that worst-case time for a
request to be granted is not the only valid measure
of the time efficiency of an asynchronous resource
allocation algorithm. Other useful measures in-
clude worst-case "throughput" and worst-case time
under various restrictions on the use of the sys-
tem (e.g. limited number of concurrent active re-
quests). Some arguments about these other mea-
sures are sketched in Section I I .

The contributions of this paper are twofold.
First, the simple resource-waiting strategy may be
of some practical interest. Second (and more im-
portantly), the time complexity analysis meth-
ods seem to be tractable and useful tools for
analyzing distributed system designs. There is no
averaging done over inputs to the system; thus,
the probabilistic techniques and the approx-
imations of queuing theory are not usedL The
analysis of worst-case throughput and other "rates"
can be considered to be a type of averaging, but
the averaging is done over the course of a single
execution, not over alternative executions; i t is,
therefore, much simpler. The style of complexity
analysis is quite similar to the kind of analysis
usually performed for ordinary (sequential) com-
plexity theory, with heavy use of recurrence-
equation techniques. Problem statements are more
complicated in the new setting, and analysis is
generally done in terms of many parameters of the
system. However, the most obvious difference in
the new setting is the need, imposed by the asyn-
chronism of the system, to pinpoint the bottle-
necks at each point in the computation. I cannot
yet claim that a set of "techniques" for time
analysis of asynchronous systems has been devel-
oped; rather, analysis has been performed for
some particular systems. However, some general
principles seem to be emerging and should become
crystall ized in the process of analyzing a
suff icient variety of asynchronous systems.

2. Resource Problems

A resource problem P is a quadruple (R(P),
U(P), R(P), U(P)), where_~ and ~ _ a r e dis-
jo int , possibly in f in i te sets (of "resources" and
"users" respectively), where R(P) is a mapping
from U(P) to the set of f in i te nonempty subsets of
R(P) (indicating the resources required by each
user),where U(P) is a mapping from R(P) to f in i te
nonempty subsets of U(P) (indicating the users for
each resource), and where r ~ R(P)(u) i f and only
i f u ~ U(P)(r).

Let rcommon(P) =~u,u') ~ (U(P)) 2

: R(P)(u) n R(P)(u') t @}, and ucommon(P) =

{ (r , r ') c (R(P)) 2 : U(P)(r) n U{P)(r') # ¢}.
Le t graph(P) be the graph with R{P) as i ts node
set and ucommon(P) as i ts edge set. Let
contention(P) denote max ~U(P)(r) I . A colorin 9

rcR(P)l
of P is a total mapping c:-~(P) ÷ N satisfying the
condition " (r , r ') ~ ucommon(P) implies
c(r) ~ c (r ') " . Let]c I denote the largest number
in the range of c. Let colors(P) denote the
minimum value of Ic] for any coloring c of P.
(Thus, colors(P) is the chromatic number of
graph(P).) Define f i rs tp,c: U(P) ÷ R(P) by

firstp,c(U) = r such that r ~ R(P)(u) and

(Vr' ~ R(P)(u))[c(r') ~ c(r)] .

Define nextp, c : U(P) x R(P) ÷ R(P) by

n e x t p , c ~ = r' such that r ' ~ R(P)(u)

and (Vr" ~ iR(P):(u)i)[c(r") ~ c(r) or c(r',) ~ c (r ')] ,

(Firstp, c and nextp, c l i s t the resources of each

user in increasing order. Firstp, c is total ,

while nextp, c is part ial . They are well-defined

since c is injective on R(P)(u) for each u.)

The f i r s t local i ty condition mentioned in
the Introduction, the l im i t to overlap in resource
demands, is captured formally by the bounds
contention(P) and colors(P).

Ex. 2.1. Dinin 9 Philosophers

R(P) = {r I rn}, U(P) = {u I Un},

R(P)(ui) = { r i ' r i + l mod n } and U(P)(ri) =

{Ui-l mod n'Ui }"

Graph(P) is a cycle with vertices r i , l < i < n.

Contention(P) = 2.

Let c(r i) = i , and c ' (r i) 1 i f n is even and i
is odd, or i f n is
odd and i < n is
odd,

2 i f i is even,

3 i f n is odd and
i = n .

Thus, c provides a linear order for the resources,
while c' provides a partial order of depth ~ 3.
In either case, resources with common users are
comparable. However, c' is minimum in the sense

that ~23]c'] = Colors(P) = i f n ~s even,

i f n isodd.

Ex, 2.2. k-Fork Philosophers

Let R(P) and U(P) be as in Ex. 2.1,
R(P)(ui) = { r i ' r i + l mod n r i+k-l mod n } and

U(P)(ri) = {Ui-k+l mod n ' "~ "u i - I mod n'Ui }"
Contention(P) = k. Colors(P) = k + l (i f n > k2).

Ex. 2.3. 2-Dimensional Philosophers

The resource requirement pattern in a dis-
tributed system might not have a l-dimensional

71

structure such as those of Ex. 2.1 and Ex. 2.2.
As a s imp l i f ied example of a 2-dimensional

pattern, l e t R(P) = { r i : i = (i l , i 2) ~ Z 2 and

i I + i 2 is even}, U(P) = {u i : i = (i l , i 2) ~ Z 2

and i I + i 2 is odd}, and R(P)(ui) =
2

{ r j : Z~ 1 l j Z - i z l = I } . Contention(P) :

colors(P) = 4. Graph(P) is a diagonal gr id .

The remaining two examples w i l l be used la te r
to demonstrate s i tuat ions in which our algori thm
approaches i t s upper bound; they do not describe
" loca l " resource requirement patterns for which
the algori thm is well suited.

Ex. 2.4. k-Tree

Let A be an alphabet of k elements, a any
dist inguished element of A. Let

R(P) : { r i : i ~ A*, l i l < k}, U(P) : {u i : i ~ Ak},

and l e t U(P)(r i) consist of a l l U ia~ak - l i l - I

fo r a l l a' ~ A. The resources can be envisioned
as forming a tree. For instance, i f k = 3,
A = {1,2,3} and a : I , the resources form a 3-ary
t ree, wi th users as indicated in Figure I .

I ~ I ~?~

,~21 I"21H I~2~21 I ~ I I°31~I °~I

Figure 1

Contention(P) = k and colors(P) = k. (Let t ing
c(r i) = l i l + 1 shows colors(P) ~ k. Colors(P)

cannot be less than k because IR(P)(Uak)l = k.)

Graph(P) includes the tree as a subgraph.

Ex. 2.5. k-Nested Sets

R(P) = { r i : 1 < i < k}, U(P) :

{u i : 1 < i < k}, and U(P)(r i) = {u j : j ~ i } .

Contention(P) = colors(P) = k, and graph(P) is the
complete graph on k ver t ices.

3. A Model fo r Dist r ibuted Systems and Their
Behavior

We use the model of [LF] to describe the
problem and our algori thm. The reader is referred
to [LF] for a completely formal descr ipt ion of
the model. In th i s paper, we w i l l be less formal;
however, i t is s t ra ight forward to express our
informal condit ions as precise condit ions w i th in
the model, fo l lowing the examples in
[LF],

B r i e f l y , the basic en t i t i es of the model in
[LF] are processes (automata) and variables
(fo r communication). An atomic execution step
of a process involves accessing one var iable and
possibly changing the process' state oF the
var iab le 's value or both ~"test-and-set") . Pro-
cesses are able to respond in some way to any-
thing that they might f ind in a var iab le. A
system of processes is a set of processes, wi th
cer ta in of i t s var iables designated as in terna l
and the others as external . In ternal v a r i a ~
are to be used only by the given system. Ex te r -
nal var iables are assumed to be accessible to
other processes (or other external agents) which
can change the values between steps of the given
system.

The execution of a system of processes is
described by a set of execution sequences. Each
sequence is a (f i n i t e or i n f i n i t e) l i s t of steps
which the system could perform when inter leaved
with appropriate actions by the external agent.

For the purpose of describing the external
behavior of a system of processes, cer ta in
information in the execution sequences is i r r e l -
evant. The external behavior of a system of
processes is the set of sequences derived from
the execution sequences by "erasing" information
about process i d e n t i t y , changes of process state
and accesses to in ternal var iables. What remains
is information about accesses to external va r i -
ables.

A d i s t r i bu ted problem is any set of sequen-
ces of accesses to var iables. A system is said
to solve the problem i f i t s external behavior is
an X subset of the given problem.

One method fo r specify ing a d is t r ibu ted
problem [LF] is to describe f i r s t the set of
al lowable sequences of accesses to the external
var iables by the user and the system together,
tagging each access by the label "user" or
"system" as appropr ia te, second the assumed
external behavior of the user (environment) of a
system, and t h i r d the i n i t i a l i z a t i o n of the
external var iables. Then a sequence of system
accesses to external var iables is acceptable
provided when i t is inter leaved cons is tent ly
wi th a correct user sequence, the resu l t ing se-
quence is correct fo r the user and system
together. The d is t r ibu ted problem is the set of
acceptable sequences, and a system solves the
problem i f a l l of i t s external behavior sequences
are acceptable.

72

4. External Behavior Description for Resource
Allocation Systems

The model in [LF] is best suited for specifi-
cation of interface behavior of systems and their
components, rather than the "eating and thinking
region" behavior described by Dijkstra. Direct
formalization of region behavior for the general
resource problem does not seem to be particularly
natural. Therefore, we formulate the problem in
terms of external behavior. (I f one wants bounds
similar to those in this paper for region behav-
ior, one should proceed as in [FLBB] to construct
systems of the required type which "simulate"
those described in this paper. This does not
appear to pose any serious d i f f i cu l ty , but seems
detailed and tedious.)

For any resource problem P, the interface
description for the needed system is as follows.
(We follow the specification method described
in Section 3.)

For each u ~ U(P), there is an external
variable EXT u, having values 'E'(empty), 'A'(ask)

and 'G'(grant). Allowed transitions at any EXT u
are as in the following diagram:

user or system~ Quser or system

E u ether ~Jser~~s
user usen system

G user or system

I f the value of any EXT u stops changing, then the

f inal value is 'E' Finally, i f two variables,
EXT u and EXT u, , are ever simultaneously equal to

'G', then (u,u') ~ rcommon(P). A "correct user"
is one that only makes allowed transitions and

does not leave the variable at 'G'. All variables
are in i t ia l i zed at 'E'. The set of sequences of
system accesses to the external variables which
combine consistently with correct user sequences
to yield behavior satisfying the interface des-
cription comprises the distributed problem to be
solved.

5. Geographical Considerations

There are many d i f fe ren t solut ions (wi th in
the [LF] model) to the d is t r ibu ted problem des-
cribed above. However, in a d is t r ibu ted environ-
ment, there are geographical constraints in
addi t ion to inter face requirements. These con-
s t ra in ts involve number and locat ion of processes,
connect iv i ty and communication time. For the
problem at hand, we constrain the solut ion to con-
s i s t of user processes, one accessing each exter-
nal var iab le, and (a d i s j o i n t set of) resource
processes, one for each resource. For notat ional
convenience, these processes are i den t i f i ed with

the elements of U(P) u R(P). These processes need

to communicate, but we do not want to study the
means of communication in this paper. Therefore,
we assume another interface exists between al l of
these processes and a message system. Each pro-
cess p communicates with the message system by
two variables IN n-~ and OUTp. I f M is a message

alphabet, then the values of INp are M u {'NULL'},

while the values of OUTp are M × 2 R(P)(p) u

{'NULL'} i f p c U(P) and M × (U(P)(p) u

R(P)(U(P)(p)) u {'NULL"} i f p ~ RIP). (Intui t ive-
ly, the second component of OUT values is an
address or set of addresses. User processes can
simultaneously broadcast the same message to al l
associated resource processes, while resource
processes can only send messages one at a time to
associated processes.) Allowed transitions are:

set or system, user or S stem user or system user or system

~.~ users
N u L L S y S ~ a # NULL NULL a f NULL

OUTp INp

(Here, the tag "system" refecs to the message
system.) I f the value of any variable stops
changing, the f inal value is 'NULL' Finally,
messages "get delivered" - in any execution
sequence, the "writes" by the message system to
any INp variable must be of message values which

are some permutation of the message values "read"
(i .e. changed to 'NULL') by the system from the
OUT variables, addressed to process p. (We do
not specify any order for delivery, nor do we
care how the message system operates.) A
"correct user" of the message system is one that
only makes allowed transitions and does not leave
its input variable ~ 'NULL'. All variables are
in i t ia l i zed at 'NULL'.

The reason for this particular choice of
message system interface is that i t seems to be
the minimum natural interface needed to make our
solution work as ef f ic ient ly as i t should. We
have made this interface description part of the
given conditions on the problem solution. The
reader might conceive of an alternate resource
allocation strategy which uses a different mess-
age interface; such a strategy would not be
directly comparable to our solution. In order to
compare two solutions with different message
interfaces, the two problem-solvers must agree on
a common basic interface out of which the two
different interfaces can be bui l t , and then
complexity analysis must be done relat ive to the
common interface.

The formal correspondence between resources
and resource processes is not intended to imply
that the resources must be "located at" or
"controlled by" the corresponding processes. The
space of allowable solutions includes solutions
in which control over the granting of a resource
is shared by many different resource processes.
I t also includes solutions in which one resource
process controls many resources. (In the solution
of this paper, however, the resources are con-
trol led by their respective processes.)

73

6. Time Measure

The time measure of [PF,P] hypothesizes upper
bounds (but no lower bounds) on the time f o r cer-
ta in events to occur dur ing execut ion. (Thus,
the set of possib le execut ion sequences is not
r e s t r i c t e d in any way.) These upper bounds are
used to i n f e r upper bounds on the time f o r cer-
ta in other events to occur. Let P denote a f i xed
resource problem. Let S, M, and V denote a r b i t r a r y
implementations w i t h i n our model of a cor rec t
resource a l l o c a t i o n system, a cor rec t message sys-
tem and a cor rec t user f o r a resource a l l o c a t i o n
system, respec t i ve ly , f o r P. (Correctness f o r M
and V involves i n te r face behavior on ly , wh i le
correctness fo r S impl ies also tha t i t s set of
processes is U(P) u R(P) w i th va r iab le access
c a p a b i l i t i e s as described in Sect ion 5.) Let C
be the system constructed by combining M, S and g.
~n the no ta t ion of [LF] , the combined system is consisty,f(SC)M(~)V), where

Y : {EXTu: u e U(P)} u {INp: p e U(P) u R(P)} u

{OUTp: p e U(P) u R(P), f(EXTu) = 'E' f o r a l l

u ~ U(P) and f (INp) = f(OUTp) = 'NULL' f o r a l l

p e U(P) u R(P).) Let e denote an execut ion se-
quence of C.

Let § # n t (e , i , a , p , p ') dennte the number o f
times message 'a ' is placed in OUTp,

addressed to process p' (i nc lud ing broadcasts in
which p' is included among the addressees) , • in
execut ion sequence e up to and inc lud ing step io
Let collectedIe,i,a,p,p') be the number of times
changes are made in variable OUTp from values in

which message 'a' is addressed to process p', up
to and including step i . Let sentfrom(e,i,a,p)
denote Z sent(e, i ,a,p,p'), and simi lar ly for p'

c611eCtedfrom(e,i,a;p). Let-sen~from(e~i~.)
de'note % sentfrom(e,i,a,p), and similar ly for a

collectedfrom(e,i sentto(e,i,a,p) denote
~,sent(e,i,a,p,,piP~d Let simi lar ly for

collectedto(e,i,a,~). Let deliveredto(e,i,a,p) be
the number of times a transition tO 'a' is made in
INp, up to and including step i . Let sentto(e,i,p)

denote Z sentto(e,i,a,p) and similar ly for
a

collectedto(e,i,p) and deliveredto(e,i,p).
Finally, let sent(e,i) denote Z sentto(e,i,p), and

P
simi lar ly for collected(e,i) and delivered!el i).

Let requests(e,i,u) (resp. ~rants(e,i,u),
returns(e,i,u)) denote the number of changes to
~A' (resp. to 'G' from 'G') , at variable EXT in u
execution sequence e, up to and including step i .
Let requests(e,i,V) = Z requests(e,i,u) for

uEV
V c U(P), and similar ly for grants(e,i,V) and
returns(e,i,V). Let requests(e,i) :
requests(e,i~U(P)) and' similarly for grants(e,i)
ahd returns(e,i).

Let R + represent the nonnegative rea ls . A

t iming is a nondecreasing t o ta l mapping t : N ÷ R +.

Let A = (a ,u , y ,6) e (R+) 4, and l e t t be a
t iming. Then t is A-admissib le f o r e provided
(a) - (d) hold.

(a) o is an upper bound on process step time.

Let p e U(P) u R(P) and let the execution
steps involving actions of process p be
Pl,P2 Then t(Pl) ~ a i f Pl exists.

Also, t(Pi+l) - t(Pi) ~ a for each i for

which Pi and Pi+l are both defined.

(b) u is an upper bound on time for a user to
return a granted resource.

I f grants(e,i,u) = k, i f returns(e,j,u) = k
and returns(e,j- l ,u) < k, then t (j) - t (i)
< U.

(c) ~ is an upper bound on message collection
time.

I f sentfrom(e,i,p) = k, i f
collectedfrom(e,j,p) = k and
collectedfrom(e,j-l,p) < k, then t (j) - t (i)
< y.

(d) 8 is an upper bound on message delivery time.
I f sentto(e,i,a,p) = k, i f
deliveredto(e,j,a,p) : k and
deliveredto(e,j- l ,a,p) < k, then t (j) - t (i)
< 6.

The second, "geographical" local i ty condition
mentioned in the Introduction is captured formally
by the bound 6. 6 is to be thought of as much
smaller than the worst-case transmission time for
a message system that could send messages between
al l processes in the entire distributed network.

We now define the "worst-case response time"
to be measured. Let To(A,u) denote the supremum,

for a l l execution sequences e of combined system
C and al l A-admissible timings t for e, of the
quantity t (j) - t (i) , where requests(e,i,u) = k,
where grants(e,j:u) = k and . grants(e~j-l,u) < k.
Let Tc(A) denote sup Tc(A,u), u

7. The Solution

We consider solutions in which each resource
process maintains a FIFO queue of waiting users.
I t is easy to see [G] that deadlock is prevented
in a distributed resource allocation system i f
the resources are l inearly ordered (isay by <), i f
each user waits on queues for a l l of his resources
in increasing order of resources, i f he only
waits for one resource at a time (ii.e. unti l
reaching the front of the associated queue), and
i f he remains on al l queues unti l he is f i r s t on
al l of them. In fact, i f al l granted resources
are eventually returned, i t is clear that each
user eventually obtains al l of his resources.

On closer examination, we note that a
linear ordering of resources is unnecessary. A
partial ordering suffices, provided any two

74

resources required by the same user are comparable.
Any coloring c of P specifies such a partial order-
ing. We use an arbitrary coloring c and the
strategy described above in our solution. The
complete code for user and resource processes
appears at the bottom of the page.

The high-level language used is (almost) the
same as that used in [CH,FLBB]. Computation
occurring within a lock-unlock pair occurs within
a single execution step in the formal model. In
the formal model, every step involves access to
a variable. The local computation appearing in
our language is combined into the previous lock-
unlock pair in the formal model. (In [FLBB], this
computation was combined into the following lock-
unlock pair, an alternative which would change
the complexity analysis of our algorithm sl ight-
l y .) The construct "waitfor (condition);" is an
abbreviation for "A:lock; i f (7 condition) then
[unlock;goto A];". Subscripts are omitted from
EXT, IN and OUT variables.

I t is easy to see that deadlock is avoided by
this solution, and that each user eventually ob-
tains his resources (provided al l granted re-
sources are eventually returned). In addition, i f
Icl is small, this solution appears to l im i t the
lengths of chains of waiting processes, thereby
providing an upper bound on runningtime. The
remaining sections prove results to this effect.

8. Worst-C~e Performance

We obtain a general theorem giv ing an upper
bound on performance of our so lu t ion, which is not
d i r ec t l y dependent on to ta l network size or to ta l
number of users. Let ¢(P,c) denote the combined
system composed of our solut ion fo r resource
problem P using color ing c, and any a rb i t ra ry
correct message system and correct resource system
user. Let A = (o, u, y, 6).

Theorem 8.1. T¢(p,c)(A) ~ (contention(P) Icl - I)~
l ,

+ O(Ic lcontent ion(p) ICl (a + y + 6)) .

Proof. Since processes operate asynchronously,
i t is general ly the case during execution that
some parts of the system are wai t ing for work to
be accomplished by other parts. (The wait ing
processes might be busy-wait ing, or might be per-
forming a considerable amount of work.) In the
analysis, i t is crucia l that the key parts of
the system be i den t i f i ed at each time during
e×ecutio~.

Classify the resource processes into levels,
each resource process r at level c(r). For
l < i < Ic l , l < j < contention(P), let Gi, j

denote the supremum, over al l execution sequences
e and A-admissible timings t , of the time from
when any user u reaches position j from the front
of a level > i resource process QUEUE, unt i l the
resources ate next granted to u. A system of
recurrences is obtained.

First , consider arbitrary i and j > 2. Let
i I be an execution step in which u reaches po-

si t ion j from the front of the QUEUE of a level
> i process, r. Let u' be u's immediate prede-
Cessor on r 's QUEUE. By induction, within time
at most Gi,j_ l from t (i l) (as measured by timing

t) , u' is granted his resources, Then within
time at most u, u' returns the resources (because
of A-admissibi l i ty), and then within time ~,
user process u' detects the return. Also, within
time y of t (i l) , the value (u', { f i rs tp ,c(U ') })

arising from this u' request is removed from
OUTu,. Thereafter, within time a, u' broadcasts

a 'RETURN' message, and then within 6 the

Code for user process u local: STATUS i n i t 'E'

do forever
i f STATUS = 'E'
then [lock; i f EXT = 'A' then STATUS := 'A' ; unlock]
else [waitfor (OUT = 'NULL'); OUT := (u, { f i rs tp,c(U)}) ; unlock;

waitfor (IN = 'G'); IN := 'NULL'; unlock;
lock; EXT := 'G'; unlock;
waitfor (EXT # 'G'); STATUS := EXT; unlock;
waitfor (OUT = 'NULL'); OUT := ('RETURN' , R(P)(u)); unlock];

Code for resource process r local: QUEUE i n i t 9, MSG i n i t 'NULL'
J i n i t 'NULL', STATUS i n i t 'E'

do forever
lock; i f IN I 'NULL' then [MSG := IN; IN := 'NULL']; unlock;
i f MSG E U then append MSG to QUEUE;
i f MSG = 'RETURN' then delete front of QUEUE;
i f MSG ~ U and IQUEUE I : 1 or MSG = 'RETURN' and IQUEUE[~ 1
then [STATUS := 'A ' ; J := front(QUEUE)];
i f STATUS = 'A'
then [lock; i f OUT = 'NULL' then OUT : : i f nex tp ,c (J , r) is defined then

(J ,nex tp ,c (J , r)) else ('G ' , J) ; unlock; STATUS :~ 'E '] ;

MSG := 'NULL';

75

'RETURN' reaches IN r. Within ~, the 'RETURN' is
read by r and u' is removed from r 's QUEUE, making
u f i r s t . Then within Gi, l , u is granted his re-

sources. We see that Gi, j < max(y, Gi,j_ l + u + ~)

+ 20 + 6 + Gi, l , for j ,> 2.

Next, consider i > 2 and j : I . Consider an
execution step in whicl~ u reaches the front of
the QUEUE of a level > i process, r. Within time
y + 20, a value ('G',-u) or (u, nextp,c(U,r)) is

placed in OUT r. I f the value is ('G', u), then

within 6 + 20, u is granted his resources. I f the
value is (u, nextp,c(U,r)), then within 6 + 20, u

is appended to the QUEUE of a level > i + l pro-
cess, r ' . At that moment, u is in position <
contention(P) + l on r ' 's QUEUE; each contender
for resource r ' can appear at most once, with
the single exception that the f i r s t user on r' 's
QUEUE might appear twice. (This is because the
f i r s t user might have his resources granted,
return them, and then request them again. The new
request might arrive at r ' before the 'RETURN'
message.) However, within time 6 + ~, u reaches
a position_< contention(P) on r ' 's QUEUE. Then
within Gi+l,contention(P), u is granted his
resources. We see that Gi, l < y + 2o +

max(6 + 2~, 6 + 2~ + 6 + ~ + Gi+l,contention(P)),
i < Ic{. That is, Gi, l < y + 26 + 5~ +

Gi+l,contention(P), for i < Ic l .

Next, note that G[c l , l -< Y + 2c~ + 6 + 2~ =

y + ~ + 4 ~ .

F i n a l l y , consider Te(p ,c) (A) . Let i I be an
execut ion step in which u makes a request. With-
in t ime o from t (i l) , the request is detected by

user process u. Also, w i t h i n t ime y from t (i l) ,

OUT u becomes 'NULL'. Thus, w i t h i n time

max(y, o) + ~ of t (i l) , the value (u, { f i rs tp ,c (U l })

is placed in OUT u. Then (as above) within

6 + 2~ + 6 + c~, u reaches position _< contention(P)
on some QUEUE. Thus, To(p,c)(A) <

max(y, o) + ~ + 6 + 2~ + 6 + ~ + G l,contention(P).
That is, To(P,c)(A) _< max(y, ~) + 26 + 4~ +

Gl, contenti on (P)"

To summarize the inequalit ies, le t ~' denote
+ y + 6. Then for some constant k, we have

Gi, j < k~' + u + Gi , j . 1 + Gi, 1 for j_> 2, Gi, 1 <

kc~' + Gi+l,contention(P) for i < [c I, Glcl, 1 <_ kc~',

and TC(p,c)(A) < ko' + Gl,contention(P). Letting

a denote contention(P), we have Gi, j <

(j - l) (k O ' + u) + j Gi, 1 for a l l i , j , and so

< (2a - l) (k~ ') + (a - l)u + a Gi+l, a for Gi,a -

i < Ic l . Also, Glc],a_< (2a - l) (ko ') + (a - l)u.

Thus, Gl, a ~ ' (l + a + a 2 + . . . + a Icl-z)

((2a - l) (k~ ') + (a - l) (u)) + a Ic l - I Glc], a

(l + a + a 2 + . . . + alCl- l)((2a - l) (ko ') +

(a - l) (u)) . Then Tc(p,c)(A) ~ k~' +

(I + a + a 2 + . . . + a]C[-l)((2a - l) (ko ') +

(a l) (u)) ~ 2k]cl alCl~ ' + (a Ic l - l)u, as

required. []

Since we do not hypothesize any lower bounds
on time for events to occur, there is no l im i t on
the number of times competing users can get ahead
of a part icular user. However, Theorem 8.1 shows
that the only way large numbers of processes can
get ahead is by goingfast; there is s t i l l a
l im i t on the total time any part icular user waits.

Corollary 8.1. For some c, T (A) <
colors(P) (contention(P) - I) U u ~ b u , u . a ~ r j "

content ion(P) cOlOrs(P) (a + y + 6)) .

Ex. 8 . l . Dining Phi losophers

Recall the co lor ings c and c' from Ex. 2.1. c

y i e l ds a worst-case running time of (2 n - l) u +

O(n2n(o + y + 8)) , wh i le c' y i e l ds the much be t te r
running time 7u + 0(o + y + 6). I n t u i t i v e l y , the
order ing y ie lded by c al lows length n wa i t i ng
chains to form, but c' does not a l low chains of
length greater than 3.

Ex. 8.2. k-Fork Phi losophers

A worst-case bound of (k k + l - l) u + O(k k+2
(o + y + 6)) is obtained. I f , however, the
co lo r ing c (r i) = i is used, one obtains a bound

of (k n -

Ex. 8.3.

The

Ex. 8.4.

The

Ex. 8.5.

The

1)u + O(nkn(o + y + 6)) .

2-Dimensional Phi losophers

bound is O(u + o + y + 6).

k-Tree

bound is (k k - 1)u + o(kk(o + y + 6)) .

k-Nested Sets

bound is (k k - 1)u + o(kk(o + y + $)) .

9. Realizing the Upper Bound

I t is not always clear how to produce "bad"
execution sequences and "bad" A-admissible timings
for which the bound derived in Theorem 8.1 is
(approximately) realized. For instance, i t does
not seem possible to exhibi t exponential depen-
dence on n in Ex. 8.1 (Dining Philosophers). In
this section, we sketch how to construct bad
execution sequences and timings for k-Trees,
k-Nested Sets and k-Fork Philosophers. In Section
lO, we prove an alternative upper bound theorem
which implies that such bad execution sequences
and timings cannot be constructed for Ex. 8.1.

76

Ex. 9.1. k-Tree

Consider an execution sequence for a request
from user u k in which, whenever a user u k_l i I

a ia
arrives on the QUEUE for a resource r i , a l l of the

other contenders for r i have just arrived very

short ly before. This execution involves u k wait-
a

ing for k k - l other users to obtain (sequential ly)
the i r resources. Thus, i f a timing is constructed
to maximize waiting times, a response time of at

least (k k - l)u is real ized. Note that whenever
the specified users arr ive on the specif ied
QUEUEs, i t is possible that the other contenders
can a l l arr ive as required. This is because these
other contenders are only being required to
arr ive at the i r f i r s t resources, which they can do
independently.

Ex. 9.2. k-Nested Sets

Let c(r i) = i , l < i < k. Construct an exe-

cution sequence for a request for user u I in

which whenever a user u i a r r i veson the QUEUE for

a resource r j , j > i , i t is the case that uj has

jus t arrived very short ly before. This execution

involves u I waiting for 2 k-l - l other requests

to be granted; unlike Ex. 9.1, many of these
requests are repeats, however. (For instance,
for k = 5, the order of granted requests is given

by u5u4u5u3u5u4u5u2u5u4u5u3u5u4u5ul.) Thus, i f a
timing is constructed to maximize waiting times,

a response time of at least (2 k - l)u is
real ized. Again, the required ar r iva ls are
possible because we are only requir ing contenders
to arr ive at the i r f i r s t resources.

In both of these examples above, a permuta-
t ion of the values of c w i l l make i t impossible
to construct execution sequences and timings with
exponential dependence on k. (For instance, for
Ex. 9.2, simply reversing the order of the re-
sources w i l l make the dependence on k quadratic,
as we w i l l show in Section lO.)

Neither of the examples above is of the
" local" type for which th is algorithm is intended.
However, one can easi ly construct an example with
a " local" f lavor which approaches the upper bound,
by patching together mul t ip le instances of
Ex. 9.1 or 9.2.

Ex. 9.3. k-Fork Philosophers

Let c (r i) = i , l < i < n, as in Ex. 8.3. We

construct an execution sequence for a request of
u l , using only u I Un_k+ I . Whenever a user

u i , l < i < n-k, arr ives on the QUEUE for a re-

source r j , i < j ~ n-k + l , i t is the case that

uj has jus t arr ived. Then, for example, i f k = 3

and n = 7, the order of granted requests is
u5u4u5u3u5u4u2u5u4u5u3u I . In general, i f f (k ,n)
is the number of requests for which u I waits,

then one can calculate f (k ,n) as fol lows.

Consider a s l i g h t l y modi f ied resource problem P'
having R(P') = { r I rn } , U(P') : {u I Un},

and U(P ') (r i) = { u i : i - k + 1 < j < i } . (Thus,

modular a r i thmet i c is e l im inated and so the f i r s t
few resources have fewer than k users i f k > I) .
Let c (r i) : i . We construct an execut ion

sequence fo r a request o f Ul: whenever u i ,

1 < i < n - l , a r r i ves on the QUEUE fo r a resource
r j , i ~ j < n, i t is the case that uj has jus t

a r r i ved . I f g(k,n) denote the to ta l number o f
requests granted in th i s execut ion up to and
inc lud ing the i n i t i a l u I request, then

f (k ,n) = g(k ,n -k+ l) - 1 f o r n > 2k - I . Then
- n-I

we can see that g (k , l) = I , g(k,n) = S g (i , i) + 1
i= l

n- I
f o r n < k, and g(k,n) = ~ g (k , i) + 1 fo r

- i=n-k+l
n > k. This F ibonacc i -s ty le bound shows tha t

f (k ,n) is ~ (kn /k) , so tha t a response t ime of

~(kn/k) (u) is r e a l i z e d .

I0. A Special Case

A case analys is fo r the co lo r ing c o f the
Dining Philosophers Ex. 2.1 shows (in cont rast
wi th Ex. 9.3) that no execut ion e x h i b i t i n g ex-
ponent ia l dependence on I c l i s poss ib le. Also,
fo r example, changing only the order ing o f the
colors in Ex. 9.2 changes the dependence on Icl
from exponent ia l to quadrat ic . Thus, whi le
Theorem 8.1 y i e l d s the required independence o f
network s ize, i t does not t e l l the en t i r e story.

Theorem 8.1 al lows f o r the p o s s i b i l i t y that
a user w i l l have to wai t f o r the maximum number
o f competing processes on each queue. However,
i f two users contend fo r two d i f f e r e n t resources,
then ne i t he r w i l l ever have to wai t f o r the other
f o r the second of the two resources. Moreover,
Theorem 8.1 does not take in to account any
l i m i t a t i o n s on the resources needed by any par-
t i c u l a r user. The second theorem takes these
fac tors in to account.

Define a t ree wa i t t r ee IP ,c ,u) fo r a resource
problem P, a co lo r ing c and u ~ U(P) as fo l lows.

(I) p re t ree(P,c ,u)

The root node has a s ing le son labe l l ed by
the resource f i r s t p , c (U) . The edge j o i n i n g the

the roo t node to th i s son is l abe l l ed by u.

For any node x l abe l l ed by any r , and any
u' c U(P)(r) wi th nex tp , c (U ' , r) def ined, there

is a son of node x l abe l l ed by nex tp , c (U ' , r) . I f

nex tp , c (U ' , r) is undefined, there is a son of

node x which is a dummy node. In e i t h e r case,
the edge j o i n i n g x to th i s son is l abe l l ed by u ' .

77

Ex. lO.l . Dinin 9 P.hilosophers

Let n = 4. Pretree(P,c,U4) is as follows.

()
14

4

u u3

t

Ex. 10.2. k-Nested Sets

Let k = 4 and c ' (r i) = 5 - i .

P re t ree (P ,c ' , u 3) is as fo l lows.

u X

u 3
u

u3

1"2

l U. U

(2~ waittree(P,c,u)

The non-dummy nodes of pretree(P,c,u) are
assigned tags consisting of sets of processes.
I f node x has label r, then the tag, A x, for x
is the set of al l u' ~ U(P)(r) with the follow-
ing property. For al l ancestors y of x, where y
is labelled by r ' , i f u' ~ U(P)(r') then u'
labels the out-edge leaving y in the direction
of node x. The resulting tagged tree is then
pruned so that the only edges leaving any node
are those labelled by processes included in the
tag of that node.

Ex. I0.3. Dinin 9 Philosophers

Waittree(P,c,u4), for Ex. lO.l , is as follows.

(rl: ~"1,u4~

t
r4: {u 3} ~)

Ju3

The only user omitted from a tag is u 4, omitted

from the tag of the double circled node. u 4 is

omitted because u 4 c U(P)(rl) and u 4 does not

label the edge leaving the root in the direction
of the double circled node.

Ex. 10.4. k-Nested Sets

WaittreeCP,c' ,u 3) . _ is as fo l lows .

~u 3

t[ul

A considerable amount of pruning occurs for
this tree.

Let weight(P,c,u,x,B), where B ~A x, denote

the number of edges in waittree(P,c,u) below node
x, along paths whose f i r s t edge below x is
labelled by an element of B. Let weight(P,c,u,x)
denote weight(P,c,u,x,Ax), and le t weight('P,c,u)

denote weight(P,c,u,x), where x is the son of the
root.

Theorem lO. l . Tc(P,c)(A,u) = O((weight(P,c,u)) "
(~ + ~ + y + ~)).

Proof Sketch. Each request generates a set of
QUEUE entries which persist unti l 'RETURN' mess-
ages are received. A QUEUE entry is said to be

78

active at step i of execution sequence e provided
the request which generated i t has not yet been
granted at (i .e. immediately after) step i. Step
i of execution sequence e is consistent with node
x of waittree(P,c,u) provided each user which
labels an edge above x has an entry which is
active on the QUEUE of the resource labell ing the
lower (son) endpoint of that edge, at step i .
(There can be at most one such active entry for
each QUEUE.)

Claim I. At any step i of an execution sequence
e, any user u' who has an entry active on the
QUEUE for any resource r also has an entry which
is f i r s t on the QUEUEs for al l r ' ~ R~PI(u') with
c (r ') < c(r) .

Claim 2. Let x be a node of waittree(P,c,u)
labelled by resource r. Assume step i of execu-
tion sequence e is consistent with x. Let u' be
a user with an active entry on r's QUEUE at step
i . Then u' E A x.

Proof of Claim 2. Assume u' ~ A x. Then there is

an ancestor y of x, labelled by a resource r ' ,
with u' ~ U(P)(r') and u" the label of the out-
edge leaving y in the direction of node x,
u" # u'. By consistency, u" has an entry active
on the QUEUE for some resource with a higher
number than c(r ') , at step i. By Claim l , u" has
an entry which is f i r s t on r' 's QUEUE at steP i.
However, Claim l also implies that u' has an en-
try which is f i r s t on r' 's QUEUE at step i , a
contradiction.

Now write o' = o + u + ¥ + 8.

Claim 3. Let x be a node of waittree(P,c,u)
labelled by resource r. Let u' be the label of
the edge immediately above x. Assume step i of
execution sequence e is consistent with x, and
that u" is a user having an active entry a (not
necessarily proper) predecessor of u "s active
entry on r 's QUEUE at step i. Let B be the set
of users having active entries which are prede-
cessors of this entry of u" (including u" i t se l f)
at step i. (By Claim 2, B ~Ax.) Let j be the

step at which the request of u" which generated
this active entry is granted. Let t be an A-
admissible timing for e. Then t (j) - t (i) is
O((weight(P,c,u,x,B))(o ')) .

Proof of Claim 3. We use induction on the nodes
x of waittree(P,c,u), starting at the lowest nodes
and working towards the root. For each node x,
we use induction on subsets B of A x, ordered by

containment. Assume e, i , x, r, u', u" and B
are as above.

There are three cases.

(1) The given active entry of u" is the f i r s t
active entry on r's QUEUE at step i , and
nextp,c(U",r) is undefined.
Then within time 0(0'), u" 's request is
granted, as needed.

(2) The given active entry of u" is the f i r s t
active entry on r's QUEUE at step i , and
nextp,c(U",r) = r ' .

(3)

Then within time 0(o'), a Step i ' is reached
which is consistent with node y, where y is
the son of x reached by following the edge
labelled by u". Thereafter, by induction on
nodes and by Claim 2, the time unti l u" 's
request is granted is
O((weight(P,c,u,y))(~')). The total time is
O((weight(P,c,u,y) + I) (o ')) , as needed.

The f i r s t active entry on r's QUEUE at step
i is generated by u'"# u".

Then, by induction on subsets, within time
O((weight(P,c,u,x, {u ' " '~)(o ')) , a step i ' is
reached at which u " ' ' s request is granted,
making the given u" 'ent ry inact ive. Step i '
is s t i l l consistent with x, and
B' = B - {u " ' } is the set of users having
act ive entr ies which are predecessors of the
given entry of u" at step i ' . Then, by
induction on subsets, u" 's request is
granted wi th in time
O((weight (P,c ,u ,x ,B ')) (o ')) . The to ta l time
is O((weight(P,c,u,x , {u" ' }) +
we igh t (P ,c ,u ,x ,B ')) (o ')) =
O((weight(P,c,u,x ,B)) (o ')) , as needed.

Now consider any request of u. Within time
0(0') of in i t ia t ion , a step i is reached at which
u obtains an active entry on the QUEUE for
firstp,c(U). Step i is consistent with the son

of the root of waittree(P,c,u). Claim 3 yields
the result. []

Ex. I0.5. Dining Philosophers

Generalizing Ex. I0.3, we see that coloring
c provides a running time of O(n(o + u + y + 8)),
because of the size of the waittrees. This is in
contrast to the exponential bound of Ex. 9.3.

Ex. 10.6. k-Nested Sets

Generalizing Ex. 10.4, we see that the
coloring c' provides a running time of

O(n2(~ + u + ¥ + 8)). This is in contrast to
Ex. 9.2.

There are, of course, cases in which Theorem
I0 . I does not provide improvement over Theorem
8.1. For example, for a k-tree, the wai t t ree for
color ing c of Ex. 2.4 and user u k fol lows the

a

structure of the k-tree i t s e l f . (See the example
for k = 3 in Ex. 2.4.) Thus, the wai t t ree has

more than k k edges. We also note that the given
upper bound proportional to the size of the
waittree cannot always be realized; by some com-
plicated arguments, i t is often possible to
eliminate s t i l l more possible waiting.

I I . Throughput and Limited Concurrency Bounds

The material of this section is presented in
outline; many details are reserved for a longer
version of this paper. One might be interested
in measures other than worst-case response time.
For example, one can obtain an upper bound on
"worst-case throughput" by measuring the rate at
which requests are granted, assuming that each
user always in i t iates a new request within some

79

time e a f te r the preceding request is returned.

Roughly, i f A = (0, u, ¥, 6, E) e (R+) 5, then a
timing is A-admissible provided o, u, y, and 6
are as before and, in addi t ion, the f i r s t request
of each user is within e of the beginning, and
each subsequent request is within time E of the
previous return by that user. Then l e t T'c(A) de-

t(i)
note the supremum of the quant i ty l.imsupgrants(e,i)

i -~o

for a l l execution sequences e of ¢ and a l l A-
admissible timings t fo r e. An easy coro l la ry to
T h e o r e m _ h 8 . 1 says that T'crP,c~j is

o(IClcontent ion(P) l~I (c + u + - /+ 6) + i f

Iu(P)l = n, This rate seems to compare favorably
with other a l ternat ives.

Another in terest ing measure is worst-case
performances under assumptions of l imi ted con-
currency. I f at most k requests are concurrent
with a given request, then worst-case response
time for the given request might be better than
worst-case with unl imited concurrency, for small
values of k. Analysis techniques for deriv ing
such bounds are quite d i f fe ren t from those used
for Theorems 8.1 and I 0 . I . For the problem
treated in th is paper, l o c a l i t y is important.
Therefore, we seek a worst-case bound in the
presents of at most k concurrent "nearby" requests.
For u E U(P), define p.red(u) to be the set of
users appearing as edge labels and res(u) to be
the set of resources appearing as node labels, in
wai t t ree(P,c,u) . (Thus, pred(u) represents a l l
users which could delay the granting of a request
of u.) Let A = (~, u, y, 6) and use the de f in i -
t ion of A-admiss ib i l i ty in Section 6. Let
T"c(a,u,k) denote the supremum, for a l l execution

sequences e and A-admissible timings t , of the
quant i ty t (j) - t (i) , where u makes a request at
step i which is granted at step j , and where
requests(e, j , pred(u)) < k + returns(e, i ,pred(u)) .
I t is not d i f f i c u l t to ve r i f y
the fo l lowing claim about our system C(P,c): i f at
any step of any execution sequence there is a
request of user u pending, and i f there is no
request of a user in pred(u) current ly granted,
then wi th in time O(Ic I(o + y + 6)) , some request
by a user in pred(u) gets granted. Therefore, i f
there is a bound of k on such requests, the to ta l
time to grant the request of u is
(k - l)u +O(klcl(~+y+~)).

A refinement on the analysis out l ined above
might attempt to use the fact that the message
system might also be guaranteed to perform at
better than i ts worst-case performance under the
l imi ted usage deducible from the given l i m i t on
user requests. The message system is performing
a s ign i f i can t part of the work of the ent i re sys-
tem, and i t s improved performance under l i g h t
usage conditions might be expected to have a sig-
n i f i can t impact on the calculated bounds. In
order to obtain such a sharpened analysis, one
needs to include more detai led bounds on the
behavior of the message system in the admissib i l -
i t y vector, rather than just y and ~. Let A =

(~, u, y, 6, lJ) ~ (R+) 5, and redefine a timing t

to be A-admissible for an execution sequence e
provided o, u, y and 6 are as in Section 6, and

sat is f ies the fo l lowing. For a l l k > 1 and a l l
p, i f sent to(e , j ,p) < k + m in (de l i ve re~ to (e , i ,~ ,
co l l ec ted to (e , i , p)) and i f for no £, i < £ < j
is the case that sentto(e,£,p) =
col lectedto(e,Z,p) : de l iveredto(e ,£ ,p) , then
t (j) - t (i) < k~. That is, we bound the length
of an interv~l during which there are at most k
messages to one process p, provided that some
message to process p is being processed at
each intermediate step. For s imp l i c i t y , we
assume a bound of the form k~, where ~ is to be
thought of as much smaller than y and 6. Let
T"' ¢(A,u,k) be defined to be the same as

T " / A , u , k) , except that the new de f i n i t i on of

A-admiss ib i l i t y is used. We require a lemma in
order to analyze our system C(P,c).

Lemma I I . I . I f r e res(u) and u' e U(P)(r), then
u' c pred(u).

Proof. Let x be the highest node on the path
from the root of wai t t ree(P,c,u) to any node
label led by r, such that label (x) e R(P)(u').
Then u' e A x.

[]

T"'Cip,c~(A,u,k),, can be bounded as fo l lows.

F i rs t , there may be an i n i t i a l in terva l of
0(0 + y + 6) before a l l old 'RETURN' messages
from non-concurrent requests have been col lected,
del ivered and processed. We analyze the remain
in terval I un t i l u's request is granted. F i rs t
imagine that a l l messages overlapping I which are
addressed to users in pred(u) or to resources in
res(u) take time zero un t i l co l lec t ion and
del ivery. With th is assumption, the time for I
is at most (k - l)u + O(klclo). (The analysis

T,, rA ' k)) We is the same as that for . ¢(p,c)~

must add to th is bound the to ta l time spent
wait ing for a l l the relevant messages to be
col lected and del ivered, which we calculate as
fol lows.

The given requests concurrent with the
or ig ina l request of u produce a set of at most
k(2|c I + I) messages, a l l addressed e i ther to
users in pred(u) or to resources in res(u).
Moreover, a l l messages which overlap interval I
and are addressed to these users and resources
are among th is set of messages. This is because
the only messages addressed to a user process are
'G' messages or ig ina t ing from his own requests,
and also the only messages addressed to a resource
process are 'RETURN' messages and requests from
i t s users and from lower numbered resources of
i t s users. But a l l of these types of messages
must or ig inate from requests by users in pred(u),
by Len~na I I . I . Because I does not begin un t i l
the i n i t i a l in terval has elapsed, these requests
must a l l be among the given concurrent requests.

Now consider any par t i cu la r dest inat ion
process p, and assume £ of the messages above
are addressed to p. By admiss ib i l i t y , th~ to ta l
time for the £ messages to p is at most Z~.
Summing over a l l of the relevant processes y ie lds

80

a total message waiting time of k(21c I + I)~.
Thus, the total time is at most
(k - l)u + O(a +y + 6) + O(klcl (a + ~)).

This work is part of two larger projects - a
jo in t project with Professor Michael J. Fischer on
theory of asynchronous systems and a Georgia Tech
project for design of distributed computing sys-
tems. Thanks for many ideas and discussions go to
the members of both projects, especially Mike
Fischer, Nancy Gri f feth, and Jim Burns.

References

[B] Burns, J.E., PhD Thesis, School of Inform-
ation and Computer Science, Georgia
Inst i tute of Technology, in progress.

[C] Chang, E., n-philosophers: "An Exercise in
Distributed Control", University of Toronto,
unpublished manuscript, 1978.

[CH] Cremers, A.B. and Hibbard, T.N.,
"Arbitration and Queueing Under Limited
Shared Storage Requirements", University of
Dortmund Technical Report, 1979.

[D] Dijkstra, E.W., "Hierarchical Ordering of
Sequential Processes", Acta Informatica I :
115-138, 1971.

[FLBB] Fischer, M., Lynch, N., Burns, J. and
Borodin, A., "Resource Allocation with
Immunity to Limited Process Failure",
20th Annual Symposium on Foundations of
Computer Science, 234-254, 1979.

[G] Garcia-Molina, H., "Performance of Update
Algorithms for Replicated Data in a Dis-
tributed Database", PhD Thesis, Stanford
University, 1979.

[LF] Lynch, N. and Fischer, M., "On Describing
the Behavior and Implementation of Dis-
tributed Systems", GIT-ICS-79/03.
See also Lecture Notes in Computer Science,
Semantics of Concurrent Computation, Pro-
ceedings, Evian, France, 147-171, 1979.
Also submitted for publication in
Theoretical Computer Science.

[P] Peterson, G., PhD Thesis, Computer Science
Department, University of Washington, 1979.

[PF] Peterson, G., and Fischer, M., "Economical
Solutions to the Cri t ical Section Problem
in a Distributed System", Proceedings of the
Ninth Annual ACM Symposium on Theory of Com-
putin 9, 91-97, 1977.

81

