FAST ALLOCATION OF NEARBY RESOURCES IN A DISTRIBUTED SYSTEM*'

Nancy A. Lynch
School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

1... Introduction

Dijkstra's informally-stated Dining Philoso-
phers problem [D] involves a number n of philoso-
phers sitting in a circle, a single fork between
each pair of adjacent philosophers. Any philoso-
pher may decide to eat at any time and requires
both of his forks to do so, but he can only "pick
up" one fork at a time. Philosophers act asynchro-
nously. The problem is to program the philosophers
in ways which guarantee certain conditions of fdir-
ness and absence of deadlock. (For instance, if
everyone picks up his left fork first and then
waits for his right fork to become free, the sys-
tem can deadlock with a circular chain of waiting
philosophers.)

Assuming no means of communication among
philosophers other than through information
attached to their forks, it is easy to formalize
an argument that any solution in which all philos-
ophers are programmed identically must have a poss-
ibility of deadlock. Thus, (with this assumption},
correct solutions must allow some distinction to be
made among the philosophers.

Because of the imprecision of the problem
statement, it is not clear how to evaluate and .
compare various solutions in the literature. For
example, Chang [C] presents solutions which dis-
tinguish certain philosophers with responsibility
for breaking deadlocks. He argues that deadlock
is infrequent, so special protocols to avoid dead-
lock should not be permitted to add running time
overhead to normal operation of the system. Thus,

*

This research was supported 'in part by the

National Science Foundation under grants MCS77-15628
and U.S. Army Research Office Contract Number
DAAG29-79-C-0155.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1980 ACM 0-89791-017-6/80/0400/0070 $00.75

70

his system runs with no special constraints - for
example, any philosopher may pick up either fork
first. When deadlock occurs, a special recovery
protocol is executed. No meaningful analysis is
given to support the alleged time efficiency, how-
ever.

Intuitively, a difficulty with Chang's solu-
tion is that certain time inefficiencies can occur
even in the absence of deadlock. Even if a com-
plete circular chain of waiting philosophers is
not produced, it can still be the case that a long
chain occurs, of philosophers waiting for their
neighbors. Such a chain seems to require consider-
able time to break.

James Burns [B] has suggested the following
alternative, simple algorithm (which is
also known to other researchers in the area).
Alternate philosophers are distinguished as "L"
and "R" philosophers (assuming n is even). The L
and R philosophers are constrained to pick up their
Teft and right fork first, respectively. It is
easy to argue by case-analysis that deadlock does
not occur. It is also intuitively plausible that
this solution is more timé-efficient than Chang's,
because waiting chains of length greater than %)
never occur. However, no formal time analysis is
presented in [B] to support this intuition.

In this paper, the problem is generalized to
a distributed system resource allocation problem
which is local in two senses. First, although the
system and number of users can be very large,
there is a limit to the overlap in resource demands
of different users. The second condition can be
thought of as a property of the geography of the
network - the resources are (or can be) located in
the network in such a way that communication be-
tween a user and any of its required resources is
fast. Both types of locality conditions are sat-
isfied by the Dining Philosophers problem. Under
these two conditions, one would hope that waiting
chains could be avoided, so that the worst-case
time to grant a user's requests is independent of
the total size of the network and the total number
of users.

In order to prove theorems to this effect,
one must state precisely the problem to be solved,
and describe an implementation in an unambiguous
model. Time complexity analysis should be done
using realistic and precisely-defined measures.
The simple automata-theoretic model developed in

[LF] is used in this paper to describe (separate-
1y) the generalized problem and one solution.
Basically, a particular order is specified for
each user to wait for his resources, generalizing
the "left-right" ijdea in a natural way. Then a
version of the time measure described in [PF] and
[P] is used to perform time analysis. Theorem 8.1,
the main result, gives an upper bound (independent
of the network size and total number of users) on
the worst-case time for a request to be granted.
Although Theorem 8.1 gives the needed independence
of network size, in many interesting cases the re-
sults actually seem sharper than those yielded by
Theorem 8.1. A second result, Theorem 10.1, is
proved, giving sharper bounds for some special
cases.

It can be argued that worst-case time for a
request to be granted is not the only valid measure
of the time efficiency of an asynchronous resource
allocation algorithm. Other useful measures in-
clude worst-case "throughput" and worst-case time
under various restrictions on the use of the sys-
tem (e.g. limited number of concurrent active re-
quests). Some arguments about these other mea-
sures are sketched in Section 11.

The contributions of this paper are twofold.
First, the simple resource-waiting strategy may be
of some practical interest. Second (and more im-
portantly), the time complexity analysis meth-
ods seem to be tractable and useful tools for
analyzing distributed system designs. There is no
averaging done over inputs to the system; thus,
the: probabilistic techniques and the approx-
imations of queuing theory are not used. The
analysis of worst-case throughput and other "rates"
can be considered to be a type of averaging, but
the averaging is done over the course of a single
execution, not over alternative executions; it is,
therefore, much simpler. The style of complexity
analysis is quite similar to the kind of analysis
usually performed for ordinary (sequential) com-
plexity theory, with heavy use of recurrence-
equation techniques. Problem statements are more
complicated in the new setting, and analysis is
generally done in terms of many parameters of the
system. However, the most obvious difference in
the new setting is the need, imposed by the asyn-
chronism of the system, to pinpoint the bottle-
necks at each point in the computation. I cannot
yet claim that a set of "techniques" for time
analysis of asynchronous systems has been devel-
oped; rather, analysis has been performed for
some particular systems. However, some general
principles seem to be emerging and should become
crystallized in the process of analyzing a
sufficient variety of asynchronous systems.

2. Resource Problems

A resource problem P is a quadruple (R(P),
U(P), R(P}, U[P}), where R(P) and U(P) are dis-
joint, possibly infinite sets (of "resources" and
"users" respectively), where R(P) is a mapping
from U(P) to the set of finite nonempty subsets of
R(P) (indicating the resources required by each
user),where U(P) is a mapping from R(P) to finite
nonempty subsets of U(P) (indicating the users for
each resource), and where r e R(P)(u) if and only
if ue UP)(r).

Let rcommon(P) = {(u,u') e (u(p))?

71

: R(P)(u) n R(P)(u') # ¢}, and ucommon(P) =
£(rar') € (R(P))Z : U(P)(r) 0 U(PY(r') # 4}
Let graph(P) be the graph with R{P) as its node
set and ucommon(P) as its edge set. Let
contention(P) denote maX()LU(P)(r)!- A coloring
. - reR(P)
of P is a total mapping c?‘ﬁ(P) + N satisfying the
condition “(r,r') & ucommon(P) implies
c(r) # c(r')". Let |c| denote the largest number
in the range of c. Let colors(P) denote the
minimum value of |c| for any coloring ¢ of P.
(Thus, colors(P) is the chromatic number of
graph(P).) Define first, _: U(P) > R{P) by

firstp’c(u) =r sucﬁ~iﬁi%l% ¢ R(P)(u) and

(¥r' € R(P)(u))lc(r') > c(r)].

Define nextp’ : U(P) x R(P) ~ R(P) by

nextp,C u,r r' such that r' e R(P)(u)

and (vr" e R(P){u)}lc(r*) < c(r) or c{r") > c(r')]
(F1’1r'st:P’C and nextp’c Tist the resources of each
FirstP c is total,

{#H|O

user in increasing order.
while nextP c is partial. They are well-defined
since ¢ is injective on R(P)(u) for each u.)

The first locality condition mentioned in
the Introduction, the 1imit to overlap in resource
demands, is captured formally by the bounds
contention(P) and colors(P).

Ex. 2.1. Dining Philosophers

R{P) = {rl,...,rn}, u(p) = {u],...,un},
R(P)(ui) = {ri,ri+1 mod n} and U(P)(ri) =
U351 mod nYit-

Graph(P) is a cycle with vertices rys 1<i<n.
Contention(P) = 2.
Let c(ri) =1, and ¢'(r.) =1 if n is even and i
1 is odd, or if n is
odd and i < n is
< odd,
2 if 1 is even,
3 if n is odd and
i=n.

A

Thus, ¢ provides a linear order for the resources,
while c¢' provides a partial order of depth < 3.

In either case, resources with common users are

comparable. However, c¢' is minimum in the sense
that
le'| = colors(P) =} 2 if n.is even,

3 if n is odd.

Ex. 2.2. k-Fork Philosophers

Let R(P) and U(P) be as in Ex. 2.1,
R(P)(ug) = {risrisg mod n*==**"4+k-1 mod n
U(P)(ri) B {ui-k+1 mod n***>Yi-1 mod n’ui}‘ 5
Contention(P) = k. Colors{P) = k + 1 (if n > k).

} and

Ex. 2.3. 2-Dimensional Philosophers

The resource requirement pattern in a dis-
tributed system might not have a 1-dimensional

structure such as those of Ex. 2.1 and Ex. 2.2.
As a simplified example of a 2-dimensional

pattern, let R(P) = {ri: is= (i],iz) e 22 and
L S 2
i)+, s even}, U(P) = {ui. i = (1],12) e 7
and i1 + 12 is odd}, and R(P)(ui) =

2
{rj: ZEI lip - ipl = 1}. Contention(P) =
colors{P) = 4. Graph(P) is a diagonal grid.

The remaining two examples will be used later
to demonstrate situations in which our algorithm
approaches its upper bound; they do not describe
"Jocal" resource requirement patterns for which
the algorithm is well suited.

Ex. 2.4.

Let A be an alphabet of k elements, a any
distinguished element of A. Let

R(P) = {ry: 4 € A, Ji] < K, U(P) = {u,: i e A%,
and let u(P)(ri) consist of all uia'ak'lil']

k-Tree

for all a' € A. The resources can be envisioned
as forming a tree. For instance, if k = 3,

A= {1,2,3} and a = 1, the resources form a 3-ary
tree, with users as indicated in Figure 1.

3 s}
U3n) 331
u312 332
U313 "333
Figure 1
Contention(P) = k and colors(P) = k. (Letting
c(ry) = [i[+ 1 shows colors(P) < k. Colors(P)
cannot be less than k because |R(P)(u k)] = k.)
a

Graph(P) includes the tree as a subgraph.

Ex. 2.5. k-Nested Sets
R(P) = {r: 1 <4< kb, U(P) =
{uj: V24 < kb, and U(P)(r,) = {uj: § < ik

Contention(P) = colors(P) = k, and graph(P) is the
complete graph on k vertices.

72

3. A Model for Distributed Systems and Their
Behavior

We use the model of [LF] to describe the
problem and our algorithm. The reader is referred
to [LF] for a completely formal description of
the model. In this paper, we will be less formal;
however, it is straightforward to express our
informal conditions as precise conditions within
the model, following the examplies in

[LF].

Briefly, the basic entities of the model in
[LF] are processes (automata) and variables
{for communication). An atomic execution step
of a process involves accessing one variable and
possibly changing the process' state or the
variable's value or both ("test-and-set”). Pro-
cesses are able to respond in some way to any-
thing that they might find in a variable. A
system of processes is a set of processes, with
certain of its-variables designated as internal
and the others as external. Internal variables
are to be used only by the given system. -Exter-
nal variables are assumed to be accessible to
other processes (or other external agents) which
can change the values between steps of the given
system.

The execution of a system of processes is
described by a set of execution sequences. Each
sequence is a (finite or infinite) Tist of steps
which the system could perform when interlieaved
with appropriate actions by the external agent.

For the purpose of describing the external
behavior of a system of processes, certain
information in the execution sequences is irrel-
evant. The external behavior of a system of
processes is the set of sequences derived from
the execution sequences by "erasing" information
about process identity, changes of process state
and accesses to internal variables. What remains
is information about accesses to external vari-
ables.

A distributed problem is any set of sequen-
ces of accesses to variables. A system is said
to solve the problem if its external behavior is
any subset of the given problem.

One method for specifying a distributed
problem [LF] is to describe first the set of
allowable sequences of accesses to the external
variables by the user and the system together,
tagging each access by the Tabel "user" or
"system" as appropriate , second the assumed
external behavior of the user (environment} of a
system, and third the initialization of the
external variables. Then a sequence of system
accesses to external variables is acceptable
provided when it is interleaved consistently
with a correct user sequence, the resulting se-
quence is correct for the user and system
together. The distributed problem is the set of
acceptable sequences, and a system solves the
problem if all of its external behavior sequences
are acceptable.

4. External Behavior Description for Resource
Allocation Systems

The model in [LF] is best suited for specifi-
cation of interface behavior of systems and their
components, rather than the "eating and thinking
region" behavior described by Dijkstra. Direct
formalization of region behavior for the general
resource problem does not seem to be particularly
natural. Therefore, we formulate the problem in
terms of external behavior. (If one wants bounds
similar to those in this paper for region behav-
ior, one should proceed as in [FLBB] to construct
systems of the required type which "simulate"
those described in this paper. This does not
appear to pose any serious difficulty, but seems
detailed and tedious.)

For any resource problem P, the interface
description for the needed system is as follows.
(We follow the specification method described
in Section 3.

For each u € U(P), there is an external
variable EXTu, having values 'E'(empty), 'A'(ask)

and 'G'(grant). Allowed transitions at any EXTu
are as in the following diagram:

user or system 0 O user or system

E user ; A

US& usery

G
C)user or system

system

If the value of any EXTu stops changing, then the

final value is 'E'. Finally, if two variables,
EXTu and EXTu. , are ever simultaneously equal to

'G', then (u,u') ¢ rcommon(P). A "correct user"
is one that only makes allowed transitions and
does not Teave the variable at 'G'. A1l variables
are initialized at 'E'. The set of sequences of
system accesses to the external variables which
combine consistently with correct user sequences
to yield behavior satisfying the interface des-
cr;pt;on comprises the distributed problem to be
solved.

5. Geographical Considerations

There are many different solutions (within
the [LF] model) to the distributed problem des-
cribed above. However, in a distributed environ-
ment, there are geographical constraints in
addition to interface requirements. These con-
straints involve number and location of processes,
connectivity and communication time. For the
problem at hand, we constrain the solution to con-
sist of user processes, one accessing each exter-
nal variable, and (a disjoint set of) resource
processes, one for each resource. For notational
convenience, these processes are identified with

the elements of U(P) u R(P). These processes need

73

to communicate, but we do not want to study the
means of communication in this paper. Therefore,
we assume another interface exists between all of
these processes and a message system. Each pro-
cess p communicates with the message system by
two variables IN_ and OUT . If M is a message

alphabet, then the values of IN_are M u {'NULL'},
while the values of OUT_ are M x 2R(P)(p)

{'NULL'} if p & U(P) and M x (U(P)(p) v
R{PY(U(PY(p)) u {"NULL"} if p e R(P). (Intuitive-
1y, the second component of OUT values is an
address or set of addresses. User processes can
simultaneously broadcast the same message to all
associated resource processes, while resource
processes can only send messages one at a time to
associated processes.) Allowed transitions are:

ﬁ or system . user Oéstem
. ¥,

user or system USer or system

&____/

fsysten_—
NULL a ¢ NULL NULL a ¥ NULL
OUTp INp

(Here, the tag "system" refers to the message
system.) If the value of any variable stops
changing, the final value is 'NULL'. Finally,
messages "get delivered" - in any execution
sequence, the "writes" by the message system to
any INp variable must be of message values which

are some permutation of the message values "read"
(i.e. changed to 'NULL') by the system from the
OUT variables, addressed to process p. (We do
not specify any order for delivery, nor do we
care how the message system operates.) A
"correct user" of the message system is one that
only makes allowed transitions and does not leave
its input variable # 'NULL'. A1l variables are
initialized at 'NULL'.

The reason for this particular choice of
message system interface is that it seems to be
the minimum natural interface needed to make our
soTution work as efficiently as it should. We
have made this interface description part of the
given conditions on the problem solution. The
reader might conceive of an alternate resource
allocation strategy which uses a different mess-
age interface; such a strategy would not be
directly comparable to our solution. In order to
compare two solutions with different message
interfaces, the two problem-solvers must agree on
a common basic interface out of which the two
different interfaces can be built, and then
complexity analysis must be done relative to the
common interface.

The formal correspondence between resources
and resource processes is not intended to imply
that the resources must be "located at" or
"controlled by" the corresponding processes. The
space of allowable solutions includes solutions
in which control over the granting of a resource
is shared by many different resource processes.
It also includes solutions in which one resource
process controls many resources. {In the solution
of this paper, however, the resources are con-
trolled by their respective processes.)

6. Time Measure

The time measure of [PF,P] hypothesizes upper
bounds (but no Tower bounds)} on the time for cer-
tain events to occur during execution. (Thus,
the set of possible execution sequences is not
restricted in any way.) These upper bounds are
used to infer upper bounds on the time for cer-
tain other events to occur. Let P denote a fixed
resource problem. Let S, M, and V denote arbitrary
implementations within our model of a correct
resource allocation system, a correct message Sys-
tem and a correct user for a resource allocation
system, respectively, for P. (Correctness for M
and V involves interface behavior only, while
correctness for S implies also that its set of
processes is U(P) u R{P) with variable access
capabilities as described in Section 5.) Let C
be the system constructed by combining M, S and V.
(In the notation of [LF], the combined system is
consistY,f(S @QMD® V), where

Y = {EXTu: ue UP)} v {INp: p e U(P) u R(P)} u
{OUTp: p e U(P) u R(P), f(EXTu) = 'E' for all
u € U(P) and f(INp) = f(OUTp) = 'NULL' for all

p € U(P) u R(P).) Let e denote an execution se-
quence of C.

Let §ent(e,i,a,g,?1) dennte the number of
times message 'a' is placed in OUTp,
addressed to process p' (including broadcasts in
which p' is included among the addressees), .in
execution sequence e up to and including step i.
Let collected(e,i,a,p,p’') be the number of times
changes are made in variable OUT. from values in

which message 'a' is addressed to process p', up
to and including step i. Let sentfrom(e,i,a,p)
denote Z'sent(e,i,a,p,p‘), and similarly for

p

collectedfrom(e,i,a;p). "Let sertfrom{e,i;p)
enote g sentfrom(e,7,a,p), and similarly for
collectedfrom(e,i,p). Let sentto(e,i,a,p) denote
g,sent(e,i,a,p',p) and similarly for

collectedto(e,i,a,p). Let deliveredto(e,i,a,p) be
the number of times a transition to ‘a‘’ is made in
INp, up to and including step i. Let sentto(e,i,p)

denote I sentto(e,i,a,p), and similarly for

collectedto(e,i,p) and deliveredto(e,i,p).
Finally, Tet sent(e,i) denote E sentto(e,i,p), and

similarly for collected(e,i) and delivered(e,i).

Let requests(e,i,u) (resp. grants{e,i,u),

returns(e,i,u)) denote the number of changes to
AT (resp. to 'G', from 'G") at variable EXT, n

execution sequence e, up to and including step i.

Let requests(e,i,V) = I requests(e,i,u) for

ucV

V < U(P), and similarly for grants(e,i,V) and
returns(e,i,V). Let requests(e,i) =
requests(e,i,U(P)) and similarly for grants{e,i)
and returns(e,i).

74

Let R represent the nonnegative reals. A
timing is a nondecreasing total mapping t: N - R,

Let A = (o,0,7,8) ¢ (R+)4, and let t be a
timing. Then t is A-admissible for e provided
(a) - (d) hold.

(a) o is an upper bound on process step time.

Let p € U(P) u R(P) and Tet the execution
steps involving actions of process p be
PysPos--. . Then t(p]) <o if Py exists.

Also, t(pi+1) - t(pi) < ¢ for each i for

which pi and Pj4] are both defined.

(b) v _is an upper bound on time for a user to
return a granted resource.

If grants(e,i,u) = k, if returns(e,j,u) = k
and returns(e,j-1,u) < k, then t(j) - t(i)
< v,

(¢) y_is an upper bound on message collection
time.

If sentfrom(e,i,p) = k, if
collectedfrom(e,j,p) = k and
coliectedfrom(e,j-1,p) < k,
-

then t{j) - t(i)

(d) & is an upper bound on message delivery time.

If sentto(e,i,a,p) = k, if
deliveredto(e,j,a,p) = k and
deliveredto(e,j-1,a,p) < k, then t(j) - t(i)
< 8.

The second, "geographical" locality condition
mentioned in the Introduction is captured formally
by the bound §. § is to be thought of as much
smaller than the worst-case transmission time for
a message system that could send messages between
all processes in the entire distributed network.

We now define the "worst-case response time"
to be measured. Let TC(A,u) denote the supremum,

for all execution sequences e of combined system
C and all A-admissible timings t for e, of the
quantity t(j) - t(i), where requests{e,i,u) = k,
where grants(e,j,u) = k and grants(e,j-1,u) < k.
Let TC(A) denote sgp TC(A,u),

7. The Solution

We consider solutions in which each resource
process maintains a FIFO queue of waiting users.
It is easy to see [G] that deadlock is prevented
in a distributed resource allocation system if
the resources are Tinearly ordered (say by <), if
each user waits on queues for all of his resources
in increasing order of resources, if he only
waits for one resource at a time {i.e. until
reaching the front of the associated queue), and
if he remains on all queues until he is first on
all of them. In fact, if all granted resources
are eventually returned, it is clear that each
user eventually obtains all of his resources.

On closer examination, we note that a
linear ordering of resources is unnecessary. A
partial ordering suffices, provided any two

resources required by the same user are comparable.
Any coloring ¢ of P specifies such a partial order-
ing. We use an arbitrary coloring ¢ and the
strategy described above in our solution. The
complete code for user and resource processes -
appears at the bottom of the page.

The high-level language used is (almost) the
same as that wused in [CH,FLBB]. Computation
occurring within a lock-unlock pair occurs within
a single execution step in the formal model. In
the formal model, every step involves access to
a variable. The local computation appearing in
our language is combined into the previous lock-
unlock pair in the formal model. (In [FLBB], this
computation was combined into the following lock-
unlock pair, an alternative which would change
the complexity analysis of our algorithm slight-
1y.) The construct "waitfor (condition);" is an
abbreviation for "A:lock; if (- condition) then
[unlock;goto Al;". Subscripts are omitted from
EXT, IN and OUT variables.

It is easy to see that deadlock is avoided by
this solution, and that each user eventually ob-
tains his resources (provided all granted re-
sources are eventually returned). In addition, if
|c|] is small, this solution appears to limit the
lengths of chains of waiting processes, thereby
providing an upper bound on running-time. The
remaining sections prove results to this effect.

8. MWorst-Case Performance

We obtain a general theorem giving an upper
bound on performance of our solution, which is not
directly dependent on total network size or total
number of users. Let C(P,c) denote the combined
system composed of our solution for resource
problem P using coloring ¢, and any arbitrary
correct message system and correct resource system
user. Llet A = (o, v, v, 8).

Code for user process u

do forever
if STATUS = 'E'
then [lock; if EXT
else [waitfor (OUT

waitfor (IN = 'G'); IN := 'NULL'; unlock;
lock; EXT := 'G'; unlock;

waitfor (EXT # 'G'); STATUS :
waitfor (OUT = 'NULL'}; OUT :

Code for resource process r

'A' then STATUS := 'A'; unlock]
'NULL'); OUT := (u,{firstp c(u)}); unlock;

EXT; unlock;
('RETURN' , R(P)(u)); unlock];

Theorem 8.1. TC(P,c)(A) _<__(content1’on(P)|c| - T
+ 0(]c|contention(P)’C](o +y + 68)).

Proof. Since processes operate asynchronously,
it is generally the case during execution that
some parts of the system are waiting for work to
be accomplished by other parts. (The waiting
processes might be busy-waiting, or might be per-
forming a considerable amount of work.) In the
analysis, it is crucial that the key parts of

the system be identified at each time during
execution.

Classify the resource processes into levels,
each resource process r at level c(r). For
1 <1< |e], 1< < contention(P), let G; ;

denote the supremum, over all execution sequences
e and A-admissible timings t, of the time from
when any user u reaches position j from the front
of a level > i resource process QUEUE, until the
resources are next granted to u. A system of
recurrences is obtained.

First, consider arbitrary i and j > 2. Let
i] be an execution step in which u reaches po-

sition j from the front of the QUEUE of a level
> i process, r. Let u' be u's immediate prede-
‘cessor on r's QUEUE. By induction, within time
at most Gi,j-] from t(i])(as measured by timing

t), u' is granted his resources. Then within
time at most v, u' returns the resources (because
of A-admissibility), and then within time o,

user process u' detects the return. Also, within
time y of t(i;), the value (u', {firstp’c(u')})

arising from this u' request is removed from
OUTu.. Thereafter, within time o, u' broadcasts

a 'RETURN' message, and then within & the

local: STATUS init 'E'

local: QUEUE init @, MSG init 'NULL',

J init 'NULL', STATUS init 'E’

do forever

Jock; if IN # *NULL' then [MSG := IN; IN := *NULL'J]; unlock;

if MSG £ U then append MSG to QUEUE;
if MSG = 'RETURN' then delete front of QUEUE;

if MSG € U and |QUEUE| = 1 or MSG = 'RETURN' and |QUEUE| > 1

then [STATUS := 'A'; J := front(QUEUE)];
if STATUS = 'A’
then [lock; if QUT = "NULL' then OUT := if nextP

J,r) is defined then

(J,nextP C(J,r‘)) else ('G',J); unlock; STATUS’:= ']

MSG := 'NULL';

'"RETURN' reaches IN . Within o, the 'RETURN' is
read by r and u' is removed from r's QUEUE, making
u first. Then within Gi 1> U is granted his re-

sources. We see that G, j 2 max(y, G. IRV o)

1 :-j"
+ 20+ 68+ Gi 1 for j > 2.

Next, consider i > 2 and j = 1. Consider an
execution step in which u reaches the front of
the QUEUE of a level > i process, r. Within time
Y + 20, a value ('G', u) or (u, nexty C(u,r)) is

placed in OUT,. If the value is ('G', u), then

within § + 20, u is granted his resources. If the
value is (u, nextp C(u,r)), then within 8 + 20, u
k]

is appended to the QUEUE of a Jevel > i + 1 pro-
cess, r'. At that moment, u is in position <
contention(P) + 1 on r' 's QUEUE; each contender
for resource r' can appear at most once, with

the single exception that the first user on r' 's
QUEUE might appear twice. (This is because the
first user might have his resources granted,
return them, and then request them again. The new
request might arrive at r' before the 'RETURN'
message.) However, within time § + o, u reaches

a position < contention(P) on r' 's QUEUE. Then
within Gi+1,contention(P)’ u is granted his

resources. We see that G, , <y + 20 +

max(8 + 20, 6 + 20 + & + o+ G1'+1,content1'on(P))’
That is, Gy | <y + 26 + 50 +

for 1 < |cf.

i< cl.

Gi+1,content1’on(P)’

Next, note that Glc[12Y+t20+td+ 2 =
Yy + 8§ + 4o.

Finally, consider TC(P,c)(A)‘ Let 11 be an

execution step in which u makes a request. With-
in time ¢ from t(i]), the request is detected by

user process u. Also, within time y from t(i1),
OUTu becomes 'NULL'. Thus, within time

max(y, o) + o of t(i1), the value (u, {firstp’c(u)})
is placed in OUTu. Then (as above) within

8§ + 20 + § + o, u reaches position < contention(P)
on some QUEVE. Thus, Tp(p c)(A) <

max({y, o) + o+ 6+ 20+ 8 +0+ G
That iS, TC(P,C)

G],contention(P)’
To summarize the inequalities, let o' denote

1,contention(P)"
(A) < max(y, o) + 28 + 4o +

i+1,contention(P)

g+ v+ 8. Then for some constant k, we have
Gi,j.i ko' + v + G].,J._1 + 64 for j > 2, G].,1 <
ko' + G for i < |cf, G]cl 13 ka's

and TC(P,c)(A) S ko' # G1,content1‘on(P)' Letting

a denote contention(P), we have Gi j <
t]

(G - 1)(ks" +v) +3 G1 1 for ail i, j, and so

6, ;< (2a-1)(ke') +{a-1v+ak

i, for

i+1,a

i< |e|l. Also, Gl a s {2a - 1)(ke') + (@ - 1)u.

cl,

76

Thus, Gy , < (1 +a+ at 4. ICI-Z)
((2a - 1)(ka'} + {(a - 1){u)) +a G]cl,a =

Mra+a?+...+all N2 - 1)(ke') +

(a -~ 1Y(L)). Then TC(P,c)(A)-i ko' +
2

(G +a+a?+ ... +alcl (2 - k') +
(a - 1){v)) < 2k |c| alclc' + (al®l- 1), as

required. o

Since we do not hypothesize any lower bounds
on time for events to occur, there is no limit on
the number of times competing users can get ahead
of a particular user. However, Theorem 8.1 shows
that the only way large numbers of processes can
get ahead is by going fast; there is still a
Timit on the total time any particular user waits.

Corollary 8.1. For some ¢, T (A) <
colors(P) c(P.c) -
(contention(P) -1) v+ 0 (colors(P) *

contention(P)c°1°rs(P) (o +vy + 8)).

Ex. 8.1.
Recall the colorings ¢ and c¢' from Ex. 2.1. ¢
yields a worst-case running time of (2" - T +

o(n2"(c + v + 8)), while ¢' yields the much better
running time 7v + 0(c + v + §). Intuitively, the
ordering yielded by ¢ allows length n waiting
chains to form, but ¢' does not allow chains of
Tength greater than 3.

Ex. 8.2. k-Fork Philosophers

A worst-case bound of (kk+1-1)u + 0(kk+2
(o0 + v + 8)) is obtained. 1If, however, the
coloring c(ri) = i is used, one obtains a bound

Dining Philosophers

of (k" - 1ju + onk™(o + v + §)).

Ex. 8.3. 2-Dimensional Philosophers
The bound is 0{u + o + v + &8).

Ex. 8.4,

k-Tree

The bound is (kX = 1)u + 0(kK(c + v + &)).
Ex. 8.5. k-Nested Sets

The bound is (kX - 1)v + 0(kX(s + v + 6)).

9. Realizing the Upper Bound

It is not always clear how to produce "bad"
execution sequences and "bad" A-admissible timings
for which the bound derived in Theorem 8.1 is
(approximately) realized. For instance, it does
not seem possible to exhibit exponential depen-

dence on n in Ex. 8.1 (Dining Philosophers). In
this section, we sketch how to construct bad
execution sequences and timings for k-Trees,
k-Nested Sets and k-Fork Philosophers. In Section

10, we prove an alternative upper bound theorem
which implies that such bad execution sequences
and timings cannot be constructed for Ex. 8.1.

Ex. 9.1.

Consider an execution sequence for a request
from user u K in which, whenever a user u k-]1]
a ia

k-Tree

arrives on the QUEUE for a resource ris all of the

other contenders for r; have just arrived very

shortly before. This execution involves u K wait-
a

ing for kk - 1 other users to obtain (sequentially)

their resources. Thus, if a timing is constructed
to maximize waiting times, a response time of at

least (kk - 1)u is realized. Note that whenever
the specified users arrive on the specified
QUEUEs, it is possible that the other contenders
can all arrive as required. This is because these
other contenders are only being required to

arrive at their first resources, which they can do
independently.

Ex. 9.2. k-Nested Sets
Let c(ri) =i, 1 < i< k. Construct an exe-

cution sequence for a request for user Uy in
which whenever a user uj arrives on the QUEUE for
a resource rj, j > i, it is the case that uj has

just arrived very shortly before. This execution

involves Uy waitiné for Zk'1 - 1 other requests

to be granted; unlike Ex. 9.1, many of these
requests are repeats, however. (For instance,
for k = 5, the order of granted requests is given
by u5u4u5u3u5u4u5u2u5u4u5u3u5u4u5u1.) Thus, if a
timing is constructed to maximize waiting times,

a response time of at least (2k - 1) is
realized. Again, the required arrivals are
possible because we are only requiring contenders
to arrive at their first resources.

In both of these examples above, a permuta-
tion of the values of ¢ will make it impossible
to construct execution sequences and timings with
exponential dependence on k. (For instance, for
Ex. 9.2, simply reversing the order of the re-
sources will make the dependence on k quadratic,
as we will show in Section 10.)

Neither of the examples above is of the
"Tocal" type for which this algorithm is intended.
However, one can easily construct an example with
a "local" flavor which approaches the upper bound,
by patching together multiple instances of
Ex. 9.1 or 9.2.

Ex. 9.3. k-Fork Philosophers
Let c(ry) =1, 1 <1 <n, as in Ex. 8.3. Me

construct an execution sequence for a request of
Ups using only U el ey Whenever a user

uj» 1 <1 < n-k, arrives on the QUEUE for a re-
source Ty, i<J<n-k+1, it is the case that
uj has just arrived. Then, for example, if k = 3
and n = 7, the order of granted requests is
UgligUgUgUigll UnUcUaUglisly . In general, if f(k,n)
is the number of requests for which u

waits,
then one can calculate f(k,n) as follows.

77

Consider a slightly modified resource problem P'
having R(P') = {r1,...,rn}, u(p') = {u1,...,un},

and U(P')(ri) = {uj: -k +1<j<i}. (Thus,

modular arithmetic is eliminated and so the first
few resources have fewer than k users if k > 1).
Let c(ri) = ji. We construct an execution

sequence for a request of UE whenever Uss

1 <1 < n-1, arrives on the QUEUE for a resource
rj, i<J<n, it is the case that uj has just

arrived. If g(k,n) denote the total number of
requests granted in this execution up to and
including the initial U request, then

f(k,n) = g(k,n-k+1) - 1 for n > 2k ~ 1. Then
n-1
we can see that g(k,1) = 1, g(k,n) = g(i,i) + 1
i=1
n-1
for n < k, and g(k,n) = =
i=n-k+1
This Fibonacci-style bound shows that

g(k,i) + 1 for
n > k.
f(k,n) is Q(k"/k), so that a response time of

Q(kn/k)(u)’is reatized.

10. A Special Case

A case analysis for the coloring ¢ of the
Dining Philosophers Ex. 2.1 shows (in contrast
with Ex. 9.3) that no execution exhibiting ex-
ponential dependence on |c|is possible. Also,
for example, changing only the ordering of the
colors in Ex. 9.2 changes the dependence on |c|
from exponential to quadratic. Thus, while
Theorem 8.1 yields the required independence of
network size, it does not tell the entire story.

Theorem 8.1 allows for the possibility that
a user will have to wait for the maximum number
of competing processes on each queue. However,
if two users contend for two different resources,
then neither will ever have to wait for the other
for the second of the two resources. Moreover,
Theorem 8.1 does not take into account any
limitations on the resources needed by any par-
ticular user. The second theorem takes these
factors into account.

Define a tree waittree(P,c,u) for a resource
problem P, a coloring ¢ and u € U(P) as follows.

(1) pretree(P,c,u)

The root node has a single son labelled by
the resource first, C(u). The edge joining the

the root node to this son is labelled by u.

For any node x labelled by any r, and any
u' e U(P){r) with next, c(u',r‘) defined, there

is a son of node x labelled by next, C(u',r). If

nextp c(u',r) is undefined, there is a son of

node x which is a dummy node. In either case,
the edge joining x to this son is labelled by u'.

Ex. 10.1. Dining Philosophers
Let n = 4. Pretree(p,c,U;) is as follows.

Ex. 10.2. k-Nested Sets
Let k = 4 and c'(ri) =5. i,

Pretree(P,c',U3) is as follows.

(2) waittree(P,c,u)

The non-dummy nodes of pretree(P,c,u) are
assigned tags consisting of sets of processes.
If node x has label r, then the tag, Ay, for x
is the set of all u' e U(P)(r) with the follow-~
ing property. For all ancestors y of x, where y
is labelled by r', if u' € U(P)(r') then u'
Tabels the out-edge leaving y in the direction
of node x. The resulting tagged tree is then
pruned so that the only edges leaving any node
are those labelled by processes included in the
tag of that node.

Ex. 10.3. Dining Philosophers
Waittree(P,c,u4), for Ex. 10.1, is as follows.

78

The only user omitted from a tag is Ugs omitted
from the tag of the double circied node.
omitted because Uy € u(P)(r]) and uy does not

label the edge leaving the root in the direction
of the double circled node.

is
Uy

Ex. 10.4. k-Nested Sets

Naittree(P,c',u3) is as follows.

A considerable amount of pruning occurs for
this tree.

Let weight(P,c,u,x,B), where B S«AX’ denote

the number of edges in waittree(P,¢,u) below node
X, along paths whose first edge below x is

labelled by an element of B. Let weight(P,c,u,x)
denote weight(P,c,u,x,Ax), and let weight(P,c,u
denote weight({P,c,u,x), where x is the son of the
root.

Theorem 10.7. TC(P C)(A,u) = 0((weight(P,c,u)) -
(o +v+y+3)).
Proof Sketch. Each request generates a set of

QUEUE entries which persist until 'RETURN' mess-
ages are received. A QUEUE entry is said to be

active at step i of execution sequence e provided
the request which generated it has not yet been
granted at (i.e. immediately after) step i. Step
i of execution sequence e is consistent with node
x of waittree(P,c,u) provided each user which
labels an edge above x has an entry which is
active on the QUEUE of the resource Tabelling the
lower (son) endpoint of that edge, at step i.
(There can be at most one such active entry for
each QUEUE.)

Claim 1. At any step i of an execution sequence
e, any user u' who has an entry active on the
QUEUE for any resource r also has an entry which
is first on the QUEUEs for all r' e R(PJ(u') with
c(r') < c(r).

Claim 2. Let x be a node of waittree(P,c,u)
labelled by resource r. Assume step i of execu-
tion sequence e is consistent with x. Let u' be
a user with an active entry on r's QUEUE at step
i. Then u' ¢ Ax'

Proof of Claim 2. Assume u' ¢ Ax‘ Then there is

an ancestor y of x, labelled by a resource r',
with u' ¢ U(P)(r') and u" the Tabel of the out-
edge leaving y in the direction of node x,

u" # u'. By consistency, u" has an entry active
on the QUEUE for some resource with a higher
number than c(r'), at step i. By Claim 1, u" has
an entry which is first on r' 's QUEUE at step i.
However, Claim 1 also implies that u' has an en-
try which is first on r'-'s QUEUE at step i, a
contradiction.

Now write ¢' = o +vu + v + 6.

Claim 3. Let x be a node of waittree(P,c,u)
labelled by resource r. Let u' be the label of
the edge immediately above x. Assume step i of
execution sequence e is consistent with x, and
that u" is a user having an active entry a (not
necessarily proper) predecessor of u''s active
entry on r's QUEUE at step i. Let B be the set
of users having active entries which are prede-
cessors of this entry of u" (including u" itself)
at step . (By Claim2, B c A.) Let J be the

step at which the request of u" which generated
this active entry is granted. Let t be an A-
admissible timing for e. Then t{j) - t(i) is
O({(weight(P,c,u,x,B)){c')).

Proof of Claim 3. We use induction on the nodes

x of waittree(P,c,u), starting at the Towest nodes
and working towards the root. For each node x,

we use induction on subsets B of Ax’ ordered by

containment.
are as above.

Assume e, i, X, ry u', u" and B

There are three cases.

(1) The given active entry of u" is the first
active entry on r's QUEUE at step i, and
nextP c(u“,r) is undefined.

L]

Then within time 0{(c'), u" 's request is
granted, as needed.

(2) The given active entry of u" is the first
active entry on r's QUEUE at step i, and
nextP c(u”,r‘) = p',

79

Then within time 0(c'), a step i' is reached
which is consistent with node y, where y is
the son of x reached by following the edge
labelled by u". Thereafter, by induction on
nodes and by Claim 2, the time until u"'s
request is granted is
0({weight(P,c,u,y)){c')). The total time is
0{(weight(P,c,u,y) + 1){(c')), as needed.

(3) The first active entry on r's QUEUE at step
i is generated by u™ # u".

Then, by induction on subsets, within time
0((weight(P.c,usx,{u™D)(c')), a step i' is
reached at which u™ 's request is granted,
making the given u" entry inactive. Step i'
is still consistent with x, and

B' = B - {u"™} is the set of users having
active entries which are predecessors of the
given entry of u" at step i'. Then, by
induction on subsets, u" 's request is
granted within time

0({weight{P,c,u,x,B'))}{c')). The total time
is 0({weight(P,c, usx,{u™}) +
weight(P,c,u,x,B8'))(c')) =
0({weight(P,c,usx,B))(c')), as needed.

Now consider any request of u. Within time
0(c') of initiation, a step i is reached at which
u obtains an active entry on the QUEUE for
first, C(u). Step i is consistent with the son

’

Claim 3 yields
a

of the root of waittree(P,c,u).
the result.

Ex. 10.5. Dining Philosophers

Generalizing Ex. 10.3, we see that coloring
c provides a running time of O(n{c + v + vy + &)),
because of the size of the waittrees. This is in
contrast to the exponential bound of Ex. 9.3.

Ex. 10.6. k-Nested Sets

Generalizing Ex. 10.4, we see that the
coloring c' provides a running time of

O(nz(c + v+ v+ 6)). This is in contrast to
Ex. 9.2

There are, of course, cases in which Theorem
10.1 does not provide improvement over Theorem
8.1. For example, for a k-tree, the waittree for
coloring ¢ of Ex. 2.4 and user u K follows the
a

structure of the k-tree itself. (Seg the example
for k = 3 in Ex. 2.4.) Thus, the waittree has

more than kk edges. We also note that the given
upper bound proportional to the size of the
waittree cannot always be realized; by some com-
plicated arguments, it is often po§s1b1e to
eliminate still more possible waiting.

11. Throughput and Limited Concurrency Bounds

The material of this section is presented in
outline; many details are reserved for a longer
version of this paper. One might be interested
in measures other than worst-case response time.
For example, one can obtain an upper bound on
"worst-case throughput" by measuring the rate at
which requests are granted, assuming that each
user always initiates a new request within some

time ¢ after the preceding request is returned.

Roughly, if A = (o, Vs v 8, €) & (R1)°, then a
timing is A-admissible provided o, v, v, and §
are as before and, in addition, the first request
of each user is within ¢ of the beginning, and
each subsequent request is within time £ of the
previous return by that user. Then let T'C(A) de-

-) t(i
note the supremum of the quantity];£EUP§FEH%§%§:TY

for all execution sequences e of C and all A-
admissible timings t for e. An easy corollary to
Theorem 8.1 says that T'C(P ¢) is

0(1glcontention(P)|;’(c T+ y+38)+ £) if

JU(P)] = n, This rate seems to compare favorably
with other alternatives.

Another interesting measure is worst-case
performances under assumptions of limited con-
currency. If at most k requests are concurrent
with a given request, then worst-case response
time for the given request might be better than
worst-case with unlimited concurrency, for small
values of k. Analysis techniques for deriving
such bounds are quite different from those used
for Theorems 8.1 and 10.1. For the problem
treated in this paper, locality is important.
Therefore, we seek a worst-case bound in the
presents of at most k concurrent "nearby" requests.
For u e U(P), define pred(u) to be the set of
users appearing as edge labels and res{u) to be
the set of resources appearing as node labels, in
waittree(P,c,u). (Thus, pred(u) represents all
users which could delay the granting of a request
of u.) let A= (o, U, v, 8) and use the defini-
tion of A-admissibility in Section 6. Let
T“C(a,u,k) denote the supremum, for all execution

sequences e and A-admissible timings t, of the
quantity t(j) - t(i), where u makes a request at
step 1 which is granted at step j, and where
requests(e, j, pred(u)) < k + returns(e,i,pred(u)).
It is not difficult to verify

the following claim about our system c(P,c): if at
any step of any execution sequence there is a
request of user u pending, and if there is no
request of a user in pred(u) currently granted,
then within time 0(|c|(c + y + §)), some request
by a user in pred(u) gets granted. Therefore, if
there is a bound of k on such requests, the total
time to grant the request of u is

(k- T + 0klc[(o + v + 8)).

A refinement on the analysis outlined above
might attempt to use the fact that the message
system might also be guaranteed to perform at
better than its worst-case performance under the
Timited usage deducible from the given limit on
user requests. The message system is performing
a significant part of the work of the entire sys-
tem, and its improved performance under 1ight
usage conditions might be expected to have a sig-
nificant impact on the calculated bounds. In
order to obtain such a sharpened analysis, one
needs to include more detailed bounds on the
behavior of the message system in the admissibil-
ity vector, rather than just y and §. let A =

(05 Us Y5 8, 1) € (R+)5, and redefine a timing t

80

to be A-admissible for an execution sequence e
provided o, v, vy and § are as in Section 6, and
u satisfies the following. For all k > 1 and all
p, if sentto(e,j,p) < k + min(deliveredto(e,i,p),
collectedto(e,i,p)) and if for no £, i < £ < j

is the case that sentto(e,f,p) =
collectedto(e,£,p) = deliveredto(e,£,p), then
t(j) - t(i) < ku. That is, we bound the length
of an interval during which there are at most k
messages to one process p, provided that some
message to process p is being processed at
each intermediate step. For simplicity, we
assume a bound of the form ku, where u is to be
thought of as much smaller than y and §. Let
T"'C(A,u,k) be defined to be the same as
T“(;A,u,k), except that the new definition of
A-admissibility is used. We require a lemma in
order to analyze our system C(P,c).

Lemma 11.1. If r ¢ res(u) and u' e U(P)(r), then
u' € pred(u).
Proof. Let x be the highest node on the path

from the root of waittree(P,c,u) to any node
labelled by r, such that Tabel(x) e R(P)(u'}.
Then u' ¢ AX.

D

T C(P,C)(A,u,k) can be bounded as follows.

First, there may be an initial interval of

0(c + v + 8) before all old 'RETURN' messages
from non-concurrent requests have been collected,
delivered and processed. We analyze the remain
interval I until u's request is granted. First
imagine that all messages overlapping I which are
addressed to users in pred(u) or to resources in
res(u) take time zero until collection and
delivery. With this assumption, the time for I
is at most (k ~ 1)u + O(k|clo). (The analysis

is the wmeastMtfm*Tb(mcﬂAm,H.) We

must add to this bound the total time spent
waiting for all the relevant messages to be
coliected and delivered, which we calculate as
follows.

The given requests concurrent with the
original request of u produce a set of at most
k(Z?cl + 1) messages, all addressed either to
users in pred(u) or to resources in res(u).
Moreover, all messages which overlap interval I
and are addressed to these users and resources
are among this set of messages. This is because
the only messages addressed to a user process are
'G' messages originating from his own requests,
and also the only messages addressed to a resource
process are 'RETURN' messages and requests from
its users and from lower numbered resources of
its users. But all of these types of messages
must originate from requests by users in pred(u),
by Lemma 11.1. Because I does not begin until
the initial interval has elapsed, these requests
must all be among the given concurrent requests.

Now consider any particular destination
process p, and assume £ of the messages above
are addressed to p. By admissibility, the total
time for the £ messages to p is at most Zu.
Summing over all of the relevant processes yields

a total message waiting time of k(2|c| + 1)u.
Thus, the total time is at most
(k - 1)u+0(c +v +6) + 0(klc| (o + n)).

This work is part of two larger projects - a
joint project with Professor Michael J. Fischer on
theory of asynchronous systems and a Georgia Tech
project for design of distributed computing sys-
tems. Thanks for many ideas and discussions go to
the members of both projects, especially Mike
Fischer, Nancy Griffeth, and Jim Burns.

References

[B] Burns, J.E., PhD Thesis, School of Inform-
ation and Computer Science, Georgia
Institute of Technology, in progress.

[cl Chang, E., n-philosophers: "An Exercise in
Distributed Control", University of Toronto,
unpublished manuscript, 1978.

[CH] Cremers, A.B. and Hibbard, T.N.,
"Arbitration and Queueing Under Limited
Shared Storage Requirements", University of
Dortmund Technical Report, 1979.

[p] Dijkstra, E.W., "Hierarchical Ordering of
Sequential Processes", Acta Informatica 1:
115-138, 1971.

[FLBB] Fischer, M., Lynch, N., Burns, J. and
Borodin, A., "Resource Allocation with
Immunity to Limited Process Failure",
20th Annual Symposium on Foundations of
Computer Science, 234-254, 1979.

[G] Garcia-Molina, H., "Performance of Update -
Algorithms for Replic4ted Data in a Dis~
tributed Database", PhD Thesis, Stanford
University, 1979.

[LF] Lynch, N. and Fischer, M., "On Describing
the Behavior and Implementation of Dis-
tributed Systems", GIT-1CS-79/03.

See also Lecture Notes in Computer Science,
Semantics of Concurrent Computation, Pro-
ceedings, Evian, France, 147-171, 1979.
Also submitted for publication in
Theoretical Computer Science.

[Pl Peterson, G., PhD Thesis, Computer Science
Department, University of Washington, 1979.

[PF] Peterson, G., and Fischer, M., "Economical
Solutions to the Critical Section Problem
in a Distributed System", Proceedings of the
Ninth Annual ACM Symposium on Theory of Com-
puting, 91-97, 1977.

8l

