REACHING APPROXIMATE AGREEMENT IN THE PRESENCE OF FAULTS

Danny Dotev(1)
Nancy A, Lynch(2:3)
Shlomit S. Pinter(4)
Eugene W. Stark(2:3)
William E. Weih1(2,5)

ABSTRACT: This paper considers a variant on the
Byzantine Generals problem, in which processes start
with arbitrary real values rather than boolean values
or values from some bounded range, and in which
approximate, rather than exact, agreement is the
desired goal, Algorithms are presented Lo reach
approximate agrecment in asynchronous, as well as
synchronous systems. The asynchronous agreement
algorithm I3 an interesting contrast to a result of
Fischer, Lynch, and Paterson, which shows that exact
agreement is not attainable in an asynchronous
system with as few ag one faulty process,

1. INTRODUCTION

In designing [fault-tolerant distributed
systems, one often encounters questions of
agreement among processes. In the Byzantine
Generals problem [PSL 80, LSP 82], the objective
is for nonfaulty processes to agree on a value, in
spite of the presence of a small number of
"Byzantine" types of faults ~ completely arbitrary,
even possibly malicious, behavior. Several
variations on the problem can be.considered — the
model can be synchronous, and either exact or
approximate agreement can be demanded. In this
paper, we consider a variant on the traditional
Byzantine Generals problem, in which processes

(1) Hebrew University Terusalem, Israel. This work
has been performed in part at Stanford University,
supported in part by DARPA under Grant No.
MDA903-80-C-0107.

(2) Massachusetts Institute of Technology

Cambridge, Massachusetts. This work was
supported in part by the Office of Naval Research
Contract No. N00014-79-C-0873.

(3) This work was supported also by the NSF under
Grants No. MCS-8302391 and MCS-8306854, and

U.S. Army Research Office Contract No.
DAAG29-79-C-0155.
(4) Boston University Boston, Massachusetts.

Current address: Technion, Haifa, Israel.

(5) This work was supported also by a graduate
fellowship from the Hertz Foundation.

CH1932-3/83/0000/0145801.00 © 1983 IEEE

145

start with arbitrary real values, and in which
approximate, rather than exact, agreement is the’
desired goal. Approximate agreement algorithms
can be used, for example, for clock synchronization
and stabilization of input from sensors.

We assume a model in which processes can
send messages containing arbitrary real values, and
can store arbitrary real values as well. We assume
that each process starts with an arbitrary real
value. For any preassigned &>0 (as small as
desired), an approximate agreement algorithm must
satisfy the following two conditions:

(a) Agreement: All nonfaulty processes
eventually halt with output values that are
within & of each other.

(b) Validity: The value output by each
nonfaulty process must be in the range of
initial values of the nonfaully processes.

Thus, in particular, if all nonfaulty processes
should happen to start with the same initial value, the
final values are all required to be the same as the
common initial value. This is consistent with
traditional requirements for Byzantine agreement
algorithms. However, should the nonfaulty processes
start with different values, we do not require that the
faully processes agree on a unique final value.

‘We consider both synchronous and asynchronous
versions of the probiem. Systems in which there is a

finite bounded delay on the operaticns of the
processes and on their intercommunication are said to
be synchromous. In such systems, unannounced
process deaths, as well as long delays, are considered
to be faults. For synchronous systems, we give a
simple and rather efficient algorithm for achicving
approximate agreement. This algorithm works by
successive approximation with a provable convergence
rate which depends on the ratio between the number
of faults and the total number of processes. The
algorithm is guaranteed to converge in the casc where
the total number of processes is more than three
times the number of possible {aults. Termination is
achieved using a simple binary Byzantine agrcement
on whether to halt.

For asynchronous systems, in which a very slow
process cannot be distinguished from a dead process,
no exact agreement can be achieved [FLP 83], even if
the message system is synchronous and reliable and
no malicious failures occur [DDS 83]. An interesting
contrast to the results in [FLP 83, DDS 83] is our
second approximation algorithm, which enables
processes in an asynchronous system to get as close to
agreement as one chooses. OQur algorithm for the
asynchronous case also works by successive
approximation. In this case, however, the total
number of processes required by the algorithm is
more than five times the number of possible faults.
The results in [FLP 83] suggest that no. binary
decision can be made for terminating the algorithm.
Thus, we use an alternative technique which ensures
that all nonfaulty processes halt, yet diffcrent
processes can terminate at different times.

Our algorithms to obtain approximate agreement
are of a very simple form. Namely, at each round
until termination is reached, each process sends its
latest value to all processes (including itself). On
receipt of a vector R of values, 2 process computes a
certain function f(R) as its next value. The function
f is a kind of averaging function. Here we use two
particular functions which seem appropriate for
handling t faults. Both functions ignore the ¢ fargest
and t smallest values in R. One function computes
the mean of the remaining values, and the other
function computes the midpoint of the range of the

remaining values. We will show that these functions
have particular nice approximation behavior. The
ratio between t, the number of faully processes, and
n, the total pumber of participating processes,
determines which of the functions results in [aster
convergence.

In most agreement algorithms an upper bound t
on the total number of processes that become faulty
during the execution of the algorithm is assumed.
The complexity of the algorithm and its correciness
depend on this bound. The algorithms we present
might require several rounds to converge, during
which time processes might become faulty and
recover again, Therefore it is interesting to consider
a bound on the number of concurrent faults rather
than on the total number of faults, Byzantine
agreement algorithms having such resiliency appears
in [R 83]. We will discuss the resiliency of cach
algorithm we present,

The reminder of this paper is organized as
follows: In Section 2 we prove some combinatorial
properties of approximation functions, upon which
our algorithms depend. In Section 3 we introduce the
synchronous model and present the synchronous
approximate agreement algorithm. In Section 4, we
present the asynchronous model and algorithm. In
Section 5 we discuss the resiliency properties of our
algorithms. In Section 6 we conclude with a short
summary and some open questions.

146

2. PROPERTIES OF THE APPROXIMATION
FUNCTIONS

In this section, we will state and prove the
relevant properties of the approximation functions.
First, we require some preliminary deflinitions and
properties of multisets.

We view a finite multiset U of reals as a
function U:& -~ which is nonzero on at most
finitely many re&. Intuitively, the function U
assigns a finite multiplicity to each value re&2. The
cardinality of a multiset U is given by Er mU(r) and
is denoted by |U|. We say that a muﬁ.’lset is empty
if its cardinality is zero; otherwise, il is nonempiv.
The difference U~V ol multisets U and V is the
multiset W defined by

UQ) - V(r) it U@ -V(r) 20
W = { 0 otherwise.

The intersection UnV of maultisets U and V is the
multiset W defined by W(r) = min(U(r),V(r)).

The minimum min(U) of a nonempty multiset U
is defined by min(U) = min{red®: U(r)#0}. The
maximum max(U) is defined gimilarly, Let p{(U) be
the Interval [min(U),max(U)], and let
8(U)=max(U)-min(U). The mean of the multiset U
is defined by

mean(U) = Erewr-U(r)/ |U].

The midpoint of the multiset U is defined by
mid(U)=[max(U)+min(U)]/2.

If U is a nonempty multiset, we deline the
multiset s(U) (intuitively, the multiset obtained by
removing one occurrence of the smallest value in U)
to be the multiset W defined by

_ YU if r #min(U)
W = {U(r) - 1 otherwise.

The multiset /(U) (remove one occurrence of the
largest value in U) is defined similarly, Assume t is a
fixed nonnegative integer. If |U|>2t, then defline
reduce(U) =s'(£1(U)).

Throughout the paper, gX denotes the k-fold
iteration of g; thus g° = g, g° = g.g, cte. In the
sequel, the term "multiset” will always refer to finite
multisets of real numbers as above.

The first lemma shows that the number of
common elements in two nonempty multisets is
reduced by at most 1 when the smallest (or the
largest) element is removed from each.

Lemma 1: Suppose that V and W are nonempty
multisets. Then

(a) |Vn‘w|—|s(V)ns(W)| <€ 1, and

(®) [VaW[=]e0V)n oWyl < 1.

Proof: We prove the first inequality; the argument
for the second is symmetric,. Let M=VaW, and let
N=s(V)ns(W).
Now, N(r)=M(r) if r#v and r#w, so we can write

IM|~IN| =2 M(r)-= N(r). There are
two cases, deper{cfigﬁw\\}/hether Ji\{»}'gl} VEW,

Case v=w: Then

[M| = [N| = M(v) = N(v)
= min(V(v), W(v)) ~

min(V(v) - 1, W(v) - 1) £ 1.

Case v¢w: Then

IM| = IN| = (M(v) + M(w)) — (N(Vv) + N(w))
= (min(V(v),W(V)) + min(V(w),W(w)))

= (min(V(v) - 1,W(¥v)) + min(V(w),W(w) - 1)),
Assume without loss of generality that v<w. Then
W(v)=0, and so

iMI - IN| =

min(V(w),W(w)) - min{V(w),W(w) - 1) < 1. O

The next lemma extends the results of the
previous lemma to removing the t largest and t
smallest elements,

Lemma 2: Suppose that V and W are multisets such
that |V |22t and |W/{22t. Then

| VoW |~ | reduce(V)nreduce(W) | {21_.“_

Proof: Follows from repeated application of
Lemma 1. 0

Lemma 3: Suppose that k is a nonnegative integer
and that U and V are nonempty multisets such that
{V-Ul <kt and [V |>2kt, Then

p(reduceX(V)) € p(U).

Proof: Suppose p(reducek(V))zp(U). Then cither

min(reducek(V))<min(U)
or ‘

max(reduqek(V))>max(U).
Both cases lead to a contradiction. We argue the
first; the second is symmetric.

If ‘
min(reduceX(V))<min(U),
then

=)V(r) 2kt + 1.

r<min(U

Let v=min(V) and w=min(W),

147

Hence, |V-U]2kt+1,
hypothesis. 0

which contradicts a

Let V be a finite multiset of reals with |V |>2t.
The two approximation functions we use in the paper
are:

midpoint function:
mean function:

(V)
FALV)

mid(reduce(V));
mean(reduce(V)).

o

The above three lemmas describe properties of
multisets that are useful for both approximation
functions. In the following subsections we describe
specific properties of each one of them.

2.1 The Midpoint Function
The next three lemmas describe properties of

fyge Lemma 4 verifies the validity properties;
Lemmas 5 and 6 are used in verifying convergence.

Lemma 4: Suppose that U and V are nonemply
multisets such that |V-U| <t and |V|>2t. Then
fm (V) ep(U).

Proof: Follows easily from Lemma 3. O

The following lemma presents the basic reason
for <choosing the midpoint function as an
approximation function.

Lemma 5: Suppose, U, M, and N are nonempty

multisets such that [MaN|[>0, p(M)Ep(U), and

p(N) €p(U). Then | mid(M)-mid(N) | <8(U)/2.

Proof: From the definition of mid, we see that
|mid(M) - mid(N)] =

| max(M) + min(M) — max(N)—min(N) | /2

| (max(M)-min({N))~(max(N}-min(M)) | /2

There are two cases, depending on whether the
quantity inside the absolute value sign on the
previous line is nonnegative or nonpositive. Without
loss of generality assume it is nonnegative. Then

{mid(M) - mid(N) | =
[(max(M) - min{N)) - (max(N) -~ min(M)}1/2

< [max(U) - min(U)1/2 = 6(U)/2,
where the inequality is obtained by noting that
max(M) — min(N) £ max(U) - min(UJ},
and, since [MpN|>0, it must be the case that
max(N) > min{M). |

Lemma 5 describes the essential properties
needed for convergence: if U is the multiset of the
correct processes’ values, and M and N are the
reduced multisets of two correct processes, then we

must show that the range of U bounds M and N, and
that M and N intersect in at least one point. The
earlier lemmas suggest how to establish these
properties.

Lemma 6: Suppose that U, V, and W are nonempty
multisets such that:

|W-U| < t,and
|V nW| > 2t

Then |fp (V)= (W) | £8(U)/2.

Proof: Let M=reduce(V) and N=reduce(W). By
Lemma 2, {MnN|2|VaW|[-2t. By hypothesis,
|VaW|>2t, so |MnN|>0. By Lemma 3 (with
k=1), p(M)Sp(U) and p(N)Ep(U). Thus, (he
hypotheses of Lemma 5 are satisfied, and the result
follows. [

2.2 The Mean Function

Anzlogous to the preceding approximation
function, the following Jlemmas present the
corresponding properties of the mean functicn.

Lemma 7: Suppose that U and V are nonempty
multisets such that |V-U| <t and IV]>2t. Then
fA(V)ep(U).

Proof: Follows easily from Lemma 3. 0
Lemma 8: Suppose U, M, and N are nonempty

multisets and m and i are nonnegative integers such
that:

IM[= [Nl =m,
IMoN| > i,
p(M) € p(U), and
p(N) € p(U) .

Then |mean(M)-mean(N) | £6(U)Y(m—i)/m.

Proof: Let L=MaN, and let M'=M-I and N'=N-L.
Then
| mean(M) — mean(N) | =
IEre%r-M(r) - Ere'%r-N(r) | /m
=12 pr@L@® + M) -

2 egt LM+ N'(1)] /m

= |>:I€Qr-M’(r) - zrewr-N’(r) |/m.

148

Without loss of generality assume
’ !
Ere%r M (r) —Ere%r N(r) 20,

then
| mean(M) — mean(N) | =

(2 "M () -2 _ HrN'(0)/m

IA

(max(M)T__ mM'(r) -

min(N)ErE‘%,N'(r))/n

(max(M)(IM| - |L]|) -
min(N)(IN| = |L|))/m

= (max(M) ~ min(N))(m - {L!)/m
Now the hypotheses that p(M)sp(U), p(N)sp(U),
and |M n N| 2 i, imply

{ mean(m) - mean(N) |

g §(U)(m =~ [L[)/m

€ ((m-1)/m. O

Lemma 9: Suppose U, V, and W are nonempty
multisets and m and { are positive integers such that:

IVI = |W[=m+2t,

| VAW | 2 i+ 2t,
|V--U| £t and
[W-U| <t.

Then [, (V)~f5 (W)] £6(U)(m~i)/m.

Proof: Let M=reduce(V), and let N=reduce(W).
Note that |{M|=[N|=m. By Lemma 3, p(M)cp(U)
and p(N)Sp(U). By Lemma 2, {MnN| > IVaW [=2t
By hypothesis, |VaW|2i+2t, so IMnN | 2i. Thus,
the hypotheses of Lemma & are satisfied, and the
result follows. [:

3. THE SYNCHRONOUS PROBLEM

An approximation protocol P is a system of n
processes, n21. Each process p has a set of states,
including a subset of states called initial states and a
subset called halting states. There is a value mapping
which assigned a real number as the value of each
state. For each real number r, there is exaclly one
initial state with value r. Each process acts
deterministically according to a transition function
and a message generation Sfunction, The transition
function takes a non-halting process state and a
vector of messages received from all processes (one
message per process) and produces a new process
state. The message generation function takes a
non-halting state and produces a vector of messages
to be sent to all processes (one per process).

We assume that the system acts synchronously,
using a reliable communication medium. Each
process Is able to send messages to all processes
(including itself), and it is assumed that the sender of
each message is identifiable by the receiver.

A configuration consists of a state for each
process. An initial configuration consists of an initial
state for each process. Let T be any subset of the
processes. A sequence of configuration (called
rounds), Co, Cy, Cy, ... is a T-computation provided
there exist messages such that: (a) Cg is an initial
configuration; (b) for every i, and cvery peT, the
messages sent out by p after C; are exactly those
spacified by p’s message generation function, applied
to p's state In €y, and (c) for every i, and every peT,
p's state In C;, is exaclly the one specified by p's
transition function applied to p’s state in C; and the
messages sent to p after G,

For the rest of the paper, assume a fixed small
value e, a fixed number of processes n, and a fixed
maximum number of faultst.

An approximation protocol is said to be t-correct
provided that for every subset T of processes with
|T| > n—t, and every T-computation, the [ollowing
ig true: Every peT enters a halting state at the same
round, and the following two conditions hold for the
values of those halting states.

(a) Apreement: If two processes in T enter
halting states with values r and r,
respectively, then |r-r'| < e.

Validity: If a process in T enters a halting
state with value r, then there exist
processes in T having r’ and '’ as initial
values, such that r' <rgr’’.

(b)

We will prove the following theorem.

Theorem 1: If n23t+1, then there exists a {-correct
approximation protocol with n processes.

Before we present our algorithm, note that the
following strategy suffices for obtaining Th.eorem 1.
Namely, the processes could run n executions of a
general (unlimited value set) Byzantin‘e Generals
algorithm such as the one in [DS 82], in order to
obtain common estimates for the initial values of all
the processes. After this algorithm con}pletes, all
processes in T will have the same multiset, V, of
values for all the processes. Then each process'halts
with value f(V), where f is either f, or fg but is the
same for all the processes. This algorithm -actually
achieves exact real-valued agreement, with Fhe
required validity condition. However, the solution
presented below seems more elegant, and moreox.'cr
extends directly to the asynchronous case, for which

exact agreement is impossible.

149

We now present our synchronous approximation
protocol. Assume that n > 3t+1. Let the function f
be either f, or fypg- These two functions have
different convergence properties, which will be noted
below. First, we describe 2 nonterminating algorithm,
then we discuss how termination is achieved. At each
round, each nonfaulty process p performs the
following steps:

Synchronous Approximation Algorithm:

1. Process p broadcasts its current value to all
processes, including itself.

2. Process p collects all the values sent to it at that
round into a multiset V. If p does not receive a
single correct value from some particular other
process (which means, in the synchronous
model, that the other process is faulty), then p
simply picks some arbitrary default value to
represent that process in the multiset. The
multiset V will therefore always contain exactly
n values.

3. Process p applies the function f to the multiset
V to obtain its new value.

The following lemma states the convergence
properties of the above algorithm.

Lemma 10: Assume that n>3t+1. Let P be a
synchronous approximation protocol in which each

process uses the Synchronous Approximation
Algorithm above. Suppose that T is a set of
processes, with |T| 2 n-t. Let C be a

T-computation of P and let k be a round number.
Let U be the multiset of values held by processes in T
immediately before round k in C, and let U’ be the
multiset of values held by processes in T immediately
after round k in C. Then

(1) IIf = fythen 8(U') < 8(UY/2.
(b) Iff = f,, then 8(U") < t8(U)/(n-21).

() If either [= f, or [= fy, then p(U") is
contained in p(U). -
Proof: Let p and q be arbitrary processes in T. Let
V and W be the multisets of values (including default
values) received by p and g, respectively, at round k.
Since there are at most t faulty prOf:esses,
{V-U| < tand |W-U| < t. Morcover, since A"
and W contain identical entries for all the processes

in T, we know that VoW 2 n-t>2L

a) U, V, and W satisfy the hypotheses of
Lemma &, which therefore shows that
|IM(V)—fM(W)| < §(U)/2. Since P and q
were chosen arbitrarily, the result follows.

[

() Let m=n-2t and i=n-3t. Then U, V, W, ‘m,
and i satisfy the hypotheses of Lemma 9, which
therefore shows that

| (V-fA (W] < t8§(U)/ (n=21).

As in (a), the result follows because p and g
were chosen arbitrarily.

(¢) U and V satisfy the hypotheses of Lemma 4 and
Lemma 7, and hence fm(V)ep(U) and
fA(V)ep(U). This means that p's value just
after round k is an element of p(U). Since p is
an arbitrary element of T, it follows that all
values in U’ are elements of p(U), and hence
p(U') is contained in p(U). O

Lemma 10 therefore shows that, at each round,
the range of values of nonfaulty processes decreases
by a factor of 1/2 in case f = fp» and by a factor of
t/(n—2t) in case f = fao. Thus the algorithm
eventually converges; that is, the range of valucs held
by nonfaulty processes eventually decreases to e or
better. If 3t+1<n<4t, then fpm produces faster
convergence, if n> 4t, then f5 produces faster
convergence, and if n=4t, then both functions yield
the same rate of convergence. Repeated application
of part (c) of Lemma 10 shows that, at each round
kz1, the value held by nonfaully processes
immediately before round k are all in the range of
initial values of nonfaulty processes, This shows that
the algorithm satisfies the validity condition.

The above algorithm is still not complete, for as
stated, it never terminates. Termination is achieved
by the [ollowing strategy: At the first round, each
nonfaulty process uses the range of all the values it
has received at that round to compuie a round
number at which it is sure that the value of any two
nonfaulty processes will be at most & apart. FEach
process can do this because it knows the value of e,
the guaranteed rate of convergence (1/2 if =TIy, and
t/(n—-2t) if f={,), and furthermore, it knows that
the range of values it receives on the first round
includes the initial values of all nonfaulty processes.

Each process can infer, after the first round, a
round number at which the range of values of
nonfaulty processes will be at most &. In general,
however, different processes will obtain different
round numhbers. Since all processes must halt at the
same round in a synchronous approximation protocol,
we must have some method of synchronizing the
- processes so that they agree to halt at the same
round. This can be done using known solutions to the
binary-valued Byzantine Generals problem as follows:
After certain (a priori) selected rounds of the
approximate agreement algorithm, all processes run a
Byzantine Generals algorithm to decide whether the
algorithm should continue. A process p will vote to

halt only if the round number has reached the round

number the p computed after the first round. Voting
to halt implies that p knows that the range of values
of nonfaulty processes is at most «.

The proof of Theorem 1 is complete.

150

4. THE ASYNCHRONOUS PROBLEM

In this section, we reformulate the problem in
an asynchronous model adapted from the one in
(FLP 83]. Here, we assume that processes have
states as before, but now the operation of the
processes is described by a transition function which
in one step tries to receive a message, gets back either
“null" or an actual message, and based on the
message, changes state and sends out a [inite number
of other messages. Nonfaulty processes always {ollow
the protocol. Faulty processes, on the other hand, are
constrained so that their steps at least follow the
standard form — in each step, they try to receive a
message with the same outcome as for nonfaulty
processes, However, they can change state arbitrarily
(not necessarily according to the given protocol), and
can send out any finite set of messages . (not
necessarily the ones specified by the protocol). A
T-computation of an asynchronous system is one in
which the processes in T always follow the protocol,
all processes (faulty and nonfaulty) continue to take
steps until they reach a halting state, and any process
which fails to enter a halting state eventually receives
all messages sent to it.

As asynchronous approximation protocol is said
to be t-correct provided for every subset T of
processes with |T| 2 n-t, in every T-computation,
every process in T eventually halts, and the same
agreement and validity conditions hold as for the
synchronous case.

It seems simplest here to insist on the standard
form being followed by all processes. The
requirement that faulty processes keep taking steps
until they enter halting states is not a restriction,
since they are free to enter halting states at any time
they wish. Similarly, the requirement that faulty
processes continue trying to receive messages is not a
restriction, since they are free to do whatever they
like with the messages received. Finally, the
requirement that faulty processes only send finitely
many messages at each step is needed so that faulty
processes are unable to flood the message system,
preventing messages from other processes f[rom
getting through.

We assume that processes take steps at
completely arbitrary rates, so that there is no way to
distinguish a faulty process from one which is simply
slow in responding. Also, we assume that the
message system takes arbitrary lengths of time to
deliver messages, and delivers them in arbitrary order,

We will prove the following theorem:

Theorem 2: If n>5t+1, then there exists a t-correct

asynchronous approximation protocol with n
processes.

We now describe the asynchronous
approximation protocol. As in the synchronous case,
we first describe a nonterminating algorithm in which
processes compute better and betier approximations,
then we discuss how teérmination is achieved. Assume
that n 2 S5t+1. Let the function f be either fpg or
fp. At round k, each nonfaulty process p performs
the following steps:

Asynchronous Approximation Algorithm:

1. Process p labels its current value with the
current round number k, and then broadcasts
this labeled value to all processes, including
itself,

2. Process p waits to receive exactly n—t round k
values, and collects these values into a multiset
V. Since there can be at most t [aulty
processes, process p will eventually receive at
Ieast n—t round k values. Note that process p
does not choose any default values, in contrast
to the synchronous case.

3. Process p applies the function { to the multisetl
VY to obtain its new value.

In analogy with Lemma 10, we have the
following result, which states the convergence
properties of the above algorithm.

J.emma 11: Assume that n2>5t+1. Let P be an
asynchronous approximation protocol in which each
process uses the Asynchronous Approximation
Algorithm above. Suppose that T is a set of
processes, with |T| 2 n-t. Let C be a
T-computation of P and let k be a positive integer.
Let U be the multiset of values held by processes in T
immediately before round k in C, and let U’ be the
multiset of values held by processes in T immediately
alter round k in C, Then

(a) If f = fpy, then 8(U") < 6(U)/2.
(b) Iff = f,,then 8(U") < 2t8(U)/(n-31).

(¢) If either f = f, or f = fy, then p(U") is
contained in p(U).

i

Proof: Let p and q be arbitrary processes in T. Let
V and W be the multisets of values received by p and
q, respectively, at round k. Since there are at most t
faulty processes, |V-U| < tand fW-U| <€ t.
Moreover; since V and W both contain identical
entries for all the processes in T from which both p
and q heard, we know that |VnW | 2 n-3t>2t.

(a) U, V, and W satisfy the hypotheses of
Lemma 6, which therefore shows that
[EpW)-I(W) | < 5(U)/2. Since p and q
were chosen arbitrarily, the result follows.

(b} Let m=n-3t and i=n—5t. Then U, V, W, m,
and 1 satisfy the hypotheses of Lemma 9, which
therefore shows that

HAMW-fA(W) L < 2t8(U)/(n-31).

As in (a), the result follows because p and q
were chosen arbitrarily.

(¢) This part is identical to the proof of Lemma 10,
part (c). [

Lemma 11 shows that, at each round, the range
of values of nonfaulty processes decreases by a factor
of 1/2 in case f = fy4, and by a factor of 2t/(n-3t)
in case f = f,. Thus the algorithm eventually
converges. If 5t+1<n<7t, then fy,; produces faster
convergence, if n> 7t, then [, produces faster
convergence, and if n=7t, then both functions yield
the same rate of convergence. Repeated application
of part (¢) of Lemma 11 shows that, at each round
k>1, the value held by nonfaulty processes
immediately before round k are all in the range of
initial values of nonfaulty processes. This shows that
the algorithm satisfies the validity condition.

The only remaining problem is termination. In
the asynchronous ecase we cannot use simple
Byzantine agreement on halting. Instead, we will use
the following trick. We add an initialization round at
the beginning of the algorithm., In this initialization
round (round 0), each nonfaulty process p performs
the following steps:

Initializaiion Round for Asynchronous Agreement:

1. Process p labels its current value with the
current round number O, and then broadcasts
this labeled value to all processes, including

itself.

2. Process p waits to receive exactly n—t rounfi o
values, and collects these values into a multiset
Vi

3. Process p chooses an arbitrary element of

p(reducez(V }) (for definiteness, say
mid(reduce’-(&))) as its initial value for use in
round 1. Let Xy be this chosen value.

Suppose that p and q are arbitrary nonfault.y
processes. Then since IVPI >41 and le"Vq | €2t, it
follows that V_ and V,, satisfy the hypotheses for t‘he
multisets V and U, respectively, in Lemma 3 (with
k=2). An application of this result therefor.e §hows
that, for any nonfaulty processes p and q, it is the
case that x € p(Vq). That is, the v_ahfe X compute.d
by process D as the result of the initialization ?ound is
contained in the range of all values received by
process ¢ in the initialization round. Since each
nonfaulty process q knows: (1) that its range p(Vq)
contains all the values X, for nonfaulty processes p}

(2) the value &; and (3) the guaranteed rate o.i
convergence (1/2 if f = fy,, and 2&/(11-?!‘.) if
f = f,), it can compute, before the beginning of
round 1, a round number at which it is sure that the
values of any two nonfaulty processes will be at most

& apart.

Finally, we must do something about the fact
that different processes will calculate different round
numbers at which they would like to halt, To handle
this, we modify the Asynchronous Agreement
Algorithm in a simple way. Any process that reaches
a round at which it wishes to halt, simply halts, and
sends its value out with a special "halting" tag.
When any process, say p, receives a value with a
"halting" tag, it knows to use the enclosed value not
only for the designated rodund, but also for
all future rounds (until p itself decides to halt, based
on p's original estimate), Although nonfaulty
processes might obtain different estimates of the

round at which the range of the values of nonfaulty
processes is guaranteed to be sufficiently small, it is
clear that the smallest such estimate is correct. Thus,
at the time the first nonfaulty process halts, the range
is already sufficiently small. At subsequent rounds,
the range of values of nonfaulty processes is never
increased (although we can no longer guarantee that
it decreases). Observe that a process can halt after it
finds out that at least t+1 other processes had sent
values with "halting" tags. The following lemma
presents the above arguments in a precise way.

Lemma 12: Assume that n>5t+1, Let P be an
asynchronous approximation pratocol in which each
process uses the modified Asynchronous

Approximation Algorithm above. Suppose that T is a
set of processes, with |[T| » n-t. Let C be a
T-computation of P and let k be a positive integer
such that some process in T has halted prior to the
start of round k. Let U be the multiset of values held
by processes in T immediately before round k in C,
and let U’ be the multiset of values held by processes
in T immediately after round k in C. If either
f = fporf = fme then p(U’) is contained in p(U).

Proof: Let p be an arbitrary processes in T. Let v
and v’ be the values held by p immediately before and
after round k, respectively. It suffices, since p is
arbitrary, to show that V'Ep(U). Il p has terminated
prior to the start of round k, then v'=vep(U). If p
has not halted prior to the start of round k, then let
V be the multiset of values recejved by p in round k.
Then V and U satisfy the hypotheses of Lemma 4 and
Lemma 7, and since either v'=fM(V) or v'=[A, it
’
follows that v’ e p(U). |

Thus the range of values of nonfaulty processes
never increases once some nonfaulty process has
halted. The proof of Theorem 2 is complete.

152

5. On Resiliency of the Approximation Algorithms

Because the number of rounds required for
convergence of the above approximation algorithms
depends on the values of all the processes at the [irst
round, faulty processes can force a large numhc_r of
rounds. Processes may fail and recover several times
throughout the algorithm; consequently, it may bhe
unduly cautious to require that t be the upper bound
on the total number of faulty processes during the
entire algorithm. To sustain more than t total faults,
it is desirable that a recovered process be able to
reintegrate into the algorithm as a nonfaulty process.
In particular, it should be able to resume correctly
within a few rounds.

In the sequel we do nol give n very precise and
formal model for resiliency and reintegration.
Rather, we discuss the issue of reintegration and
indicate how to obtain better resiliency. Observe
that when a recovered process is reintegrated and is
nonfaulty, another process may {all without
Increasing the bound on the number of processes that
are concurrently faulty,

We say that a process p at configuration C;is in
a faulty mode il either the transition from Cito Ciei
is not according to the transition function, or the
messages it generates after C; are notl according to
the message gencration function. The deflinition of a
T-computation can be. refined to distinguish at eyery
round between [aulty and nonfaulty processes. After
a process switches from faulty to nonfaulty mode, it
is called recovered.

In general the transition of a process in a fanlty
mode is completely unpredictable, Allowing a faulty
process Lo enter arbitrary states may imply limitations
on the reintegration of faulty processes. Since we
require that a process stay in a final state once such a
state is reached and since faulty transitions Ioto [inal
states are not excluded, no algorithm can guarantee
that processes which are only temporarily faulty will
always be reintegrated later, A faulty process that
incorrectly enters a halting state must be considered
faulty for the rest of the algorithm.

Since a previously faulty process might not be
able to reconstruct its state, the reintegration of a
recovered process can present a problem. Ideally, a
previously fanlty process returns to some new state
from which it can continue to function as a nonfaulty
process. In our algorithms a process is considered
reintegrated if it returns to such a state with a value
in the range of values of the nonfaulty processes. If
this happens we say that the recovered process
resumes in a nonfaulty state. In our algorithms a
recovered process needs must be able to participate
correctly ' in an ongoing Byzantine agreement
algorithm. In particular, it must decide on a round
from which it will support halting,: .

5.1. The synchronous case

First consider approximation algorithms for the
synchronous case. If such an algorithm uses only the
Synchronous Approximation Algorithm repeatedly, a
recovered process can resume in a nonfaulty state
only one round after recovery. Since, during that
round its value may influence the convergence of the
approximation functions., It should be counted as one

of the faulty processes with respect to the upper
bound t.

Let U be a multiset with | U] >2t, and define
I,‘(U) = min(s*(U)). Assume that at every round
each process is required to send not only its value but
also its estimate of the number of rounds that still
remain. One can prove that by using f, a recovered
process can obtain a correct estimate for the number
of rounds remaining. Moreover, at every round
(slarting at the second round) each process can use {
to obtain a new estimate for the number of rounds
that still remain. If U is the multiset of estimates of
the number of remaining rounds, then, {,(U)~1 is the
new estimate that a process can use. It can be shown
that by using this method we do not increase the total
number of rounds beyond that given in Section 3.

None of the known Byzantine agreement
algorithms can permit a failed process to become
nonfaulty only one round after recovery. Since our
synchronous approximation algorithm requires the use
of a Byzantine agreement algorithm for its
termination, it inherits this deficiency. The
Byzantine agreement algorithm introduced in [R 83}
can be used to allow a process to resume in a
nonfaulty state within three rounds of recovery;
however, this algorithm guarantees only that all
nonfaulty processes halt within two consecutive
rounds. Use of this algorithm to achieve termination
therefore results in a synchronous approximation
algorithm that is not t-correct according to our
original definition, but which satisfies the somewhat
weaker termination condition stated below.

An approximation algorithm is called
semi-synchronous if it satisfies all the conditions of a
synchronous algorithm which is t-correct except for
the condition that all nonfaulty processes halt at the
same round. The approximation algorithm obtained
by sending the estimates for the remaining round,
using the above f,, and using the algorithm of [R 83]
to achieve termination is -a semi-synchronous
t-correct approximation algorithm. In that algorithm
a recovered process can resume in a nonfaulty state
and become nonfaulty within three rounds. Thus, for
each round t is an upper bound for the total number
of processes that are faulty at that round together
with processes that have recovered within the
previous two rounds.

153

5.2, The asynchronous case

We are using a very general model for the
asynchronous case. The asynchronous nature of the
communication medium prevents us from using
incoming messages to reintegrate recovered processes
within a constant number of rounds. The
nondeterministic behavior of the communication
medium can increase arbitrarily the time it takes a
recovered process to reintegrate. - To obtain bounded
results a2 more restricted model of the communication
medium must be used. We are currently analyzing
the tradeoff between the restriction on the model and
the resiliency of the approximation algorithm. These
results will appear in a future version of this paper.

6. SUMMARY AND OPEN QUESTIONS

A problem of approximate agreement on real
numbers by processes in a distributed system has been
defined. In addition, two simple approximation
functions have been integrated into two
simple-to-implement algorithms for achieving
approximate agreement — one for a synchronous
distributed system, and the other for an asynchronous

distributed system. The algorithm for an
asynchronous system encapsulates new ideas for the

design .of algorithms that are not vulnerable to delays
and never wait indefinitely.

This paper presents two examples of
approximation functions, which yield dilfering
convergence factors for different values of n and L.
In the synchronous case, the function fy is preferable
over the range 3t+1<n<4t, where it produces a
convergence factor of 1/2, and the function {, is
preferable over the range n>4t+1, where it produces
a convergence factor of t/(n—2t), For n=4{, both
functions produce a convergence factor of 1/2. The
situation is similar in the asynchronous case: If
5t+1<sn<7t, then fy produces faster convergence; if
n> 7t, then fA produces faster convergence; if n=7t,
then both functions produce a convergence factor of
1/2.

An interesting question is whether any -other
approximation functions can produce faster
convergence than the above functions. We have been
able to prove that, among a large class of functions,
the single-round convergence factor of 1/2 produced
by the function f, is optimal over the range
3t+1<n<4t for the synchronous case and
5t+1<n<7t for the asynchronous case. Also, the
single-round convergence factor of t/(n-2t) produced
by the function f, is optimal in the synchronous case
when n=kt, where k>4, Similarly, the single-round
convergence factor of 2t/(n-3t) produced by f, is
optimal in the asynchronous case when n=(2k+1)t,
where k23.

It seems that the ideas of this paper can be
applied to the problem of clock synchronization
LM 82].

We do not yet know if the requirement that n
be at least 5t+1 is necessary for the asynchronous
case. For the synchronous case we can show that
3t+1 is necessary if there is no authentication
scheme. The proof is an adaptation of the lower
bound proof in [LSP 82].

We conjecture that there is no t-correct
synchronous approximation. algorithm with no
assumptions about recovered processes in which
recovered processes become nonfaulty within one
round. We also conjecture that to obtain synchronous
halting one will need additional halting condition,
such as: there exists some k consecutive rounds with
at most k~1 faulty processes in all of them.

Other open questions involve upper and lower
bounds on the complexity of the approximate
agreement problem, where the complexity measures
are time, number of messages, and total number of
bits transmitted.

REFERENCES
[DDS] D. Dolev, C. Dwork and L. Stockmeyer,
"On the Minimal Synchronism Needed for
Distributed Consensus,"” 24th Annual
Symposium on Foundations of Computer
Science, Nov. 1983.

154

[DS]

[FLP]

(LM]

[LSP]

[PSL]

[R]

D. Dolev and H. R. Strong, "Polynomial
Algorithms for Multiple Processor
Agreement," Proceedings of the 14th ACM
SIGACT Symposium on Theory of
Computing, pp. 401-407, May 1982.

M. J. Fischer, N. A, Lynch, and

M. S. Paterson, '"Impossibility of
Distributed Consensus with one faulty
process,” proceedings, the 2nd ACM
Symposium on Principles of Database
Systems, 1983,

L. Lamport and P, M, Melliar-Smith,
"Synchronizing Clocks in the Presence of

Faults," Technical Report, Computer
Science ILaboratory, SRI International,
March 1982,

L. Lamport, R. Shostak, and M. Pcase,

"The Byzantine Generals Problem,"” ACM
Trans. on Programming Languages and
Systems, Vol. 4, No. 2, pp. 382-401 (1982).

M. Pease, R. Shostak, and L. Lamport,
"Reaching Agreement in the Presence of
Faults," J4ACM, Vol, 27, No. 2,
Pp- 228-234 (1980).

R. Reischuk, "A New Solution for the
Byzantine Generals Problem,” proceedings,
Symposium on Foundations of Computer
Science, Sweden, Aug, 1983,

