A SIMPLE AND EFFICIENT BYZANTINE
GENERALS ALGORITHM

Nancy A. Lynch, Massachusetts inst. of Tech., Cambridge, MA.
Michael J. Fischer, Yale University, New Haven, CT.
Robert J. Fowler, University of Washington, Seattle, WA.

ABSTRACT

The Byzantine Generals problem involves a system of N
processes, t of which may be unreliable. The problem is for the
reliable processes to agree on a binary value sent by a "general”,
which may itself be one of the N pracesses. If the general sends
the same value to each process, then all reliable processes must
agree on that value, but in any case, they must agree on the same
value. We give an explicit solution for a binary value among N =
3t+ 1 processes, using 2t+ 4 rounds and O(? log 1) message bits,
where t bounds the number of faulty nrocesses. This solution is
easily extended to the general case of N > 3t + 1 to give a solution
using 2t + 5 rounds and O{N + t3log t) message bits.

*This work was supported In part by the Office of Naval
Research NOOO14-80-C-0221
subcontract from the University of Washington, by the Office of
Army Research under Contract DAAG28-79-C-0155, and by the
National Science Foundation under Grants MCS-79-24370,
MCSB0-04111, and MCS81-16678. MCS-79-24370, MCS80-04111,
and MCS81-16678.

under Contract through a

CH1792-1/82/0000/0046300.75 ® 1982 TEEE

46

1. Introduction

The Byzantine Generals problem (or, the problem of "assuring
interactive consistency") is defined in [PSL]. It Is assumed that
there are N isolated processes, of which at most t are faulty. The
processes can communicate by means of two-party messages,
using a medium which is reliable and of negligible delay. The
sender of a message is always identifiable by the receiver. The
problem is for the nonfaulty processes to agree on a value sent by
a "general", which may itself be one of the N processes. |f the
general sends the same value to each process, then all reliable
processes must agree on that value. If the general sends different
values to different processes (i.e. the general is "faulty"), then ali

reliable processes must agree on some value.

Algorithms for solving this probiem are surprisingly difficult to
devise. The difficulty is that faulty processes can provide
conflicting information to different parts of the system. This fact
causes simple solutions based on majority voting to fail, since a
faulty process could cause two nonfaulty processes to decide that

the majority voted in opposite ways.

The algorithms in the earliest papers on this problem [PSL,
LSP] seem to be quite expensive, both in terms of number of
message bits (exponential in t, the number of faulty processes)
and time {t+1 rounds of synchronous message exchange). This
is true even in the presence of certain authentication capabilities.
It is shown in [FL], in the simplest case of non-authenticaled
communication, that t+1 rounds are optimal, for worst-case
algorithm behavior. This lower bound result is extended in [DS,
DLM] to the case in which arbitrary authentication capabilities are
allowed. . Thus, there is no way to improve on the number of

rounds in the earlier algorithms,

The more serious drawback of the earlier algorithms is the
large amount of message traffic which is sent among the

processes. There is essentially no structure to the information

which is exchange_ed in those algorithms; processes repeatedly
broadcast everything they know, and then apply certain decision
functions to the final results, It is obviously desirable to discover
ways of summarizing the information, only sending what is

relevant.

We will concern ourselves with a restricted problem in which
the sender transmits a binary value. Solutions to the bjnary valued
problem can be extended to the case with arbitrary values by
encoding them as bit strings and running multiple copies of the
binary solution in parallei.

The first solution that requires an amount of communication
polynomial in the number of faults appears in [DS]). The authors
summarize the infarmation in clever ways and obtain a solution
which uses 4t+4 rounds and O(N* lag N) message bits. (Their
solution can easily be modified, using the same trick we use in

Section 3., to use 4t + 5 rounds and O(N + t* log t) message bits.)

In the present paper, we use many of the ideas of [DS], plus
several new ones, to devise another solution with polynomial
communication. Our solution uses only 2t + 5 rounds, and O(tN +
2 log t) message bits, thus giving important savings both in time
and amount of communication. In addition, we think that the new
algorithm is considerably simpler than the algorithm of [DS].

We do not know if our algorithm is optimal; in particular, we
have so far been unsuccessful at removing the factor of 2 which
separates the number of rounds used by our algorithm from the

known minimum,

2. The Model
Let [N] denote {1,...N}.

We model a Byzantine Generals algorithm as a synchronous
system of automata. Such a system S is described by the

following:

N — the number of processes;

Q= (Q,,...,QN) — the state sets of each
of the N processes;

q0 = (q01,...,q0N)— initial states for each process
indicating the general’s value is "0",

g1 = (g1,....91,) — initial states
for each process indicating the general's value is "1",

47

F = (F,,....,Fy), where each F;, C Q,—
accepting states for each process,

M = (M1,....MN) — the sets of possible messages
which each process might send,

[Q= M, i € [N]— '

the message generation functions,
{where p, ; describes messages sent from
process Mo process |)

and

8’: Q XM, X. X M, — Ql.j € [N] — the state
transition functions.

Let T C [N], and let v € {0,1,7}. (T is the set of rellable
processes or "truthtellers”, and v is the general's value, A value
of '? indicates that the general himself is unreliable.) A sequence
of state vectors q(0), q(1), ..., q(R) is an R-round (T ,v)-computation
if there exist messages mi'l(r) EM,LIEINLO<ST<CR, such that

1. INITIALIZATION:
Ifv = 0then q(0) = qO.
Ifv = 1then q(0) = q1.
Ifv = ?then q(0) € {q0,
q1.}, foralli € tN].

2. CORRECT MESSAGES:
Foreachr,0<r<Randeachi€T,

j E [N]r mm(r) =‘ P‘Ll(ql(r))'

3. CORRECT TRANSITIONS:
Foreachr,0 <r<R,andeachj€ T, ql(r+ 1) =

8(qyr), my (1), s My (r)).

The interpretation of the final states is that if a reliable process
is in a final state in round R then it has chosen 1 as the agreed
upon value. Otherwise, it has chosen 0. We therefore say that S
solves the Byzantine Generals problem in R rounds if for every T
C [N] with [T] > N-t, every v € {0,1,?}, and every R-round (T,v)-
computation q(0),....q(R), the final state vector q{R) satisfies the

following:

1. AGREEMENT: Iif i,j € T, then q;(R) € F, iff q](R)
€ F].

2. VALIDITY: Ifv = '"?,thenforalli € T, a,(R) € Fi
iffv=1.

Intuitively, a step or round of the computation takes place in

two phases. First, every process sends a message to every other.
Secondly, each process changes state based on its old state and
the messages it receives. Unreliable processes can send arbitrary
messages, so there are in general many possible computations, all
of which mu-t satisty the agreement and validity conditions above.

We assume about the general only that it is a possibly-
unreliable data source that communicates a (binary) value to each
of the N processes in the system before the algorithm begins.
Thus, the general might be one of the N processes, or it mightbe a
sensor or /O device that all processes can read. In our
formalization, the general's value is encoded by each process’s
start state. In other treatments of this problem, the general is
identified with ane of the N processes which carry out the
algorithm, and each other process starts in the same state
regardless of the general's value. Our version is slightly stronger,
for a solution to our problem solves the other version by simply
adding an initial round in which the general sends his value to
each other process. The converse, however, is not in general
true, for an algorithm might make use of the fact that at most 1-1
unreliable processes remain when the general has been

determined to be unreliable and is a known one of the processes.

3. A Simplification

We give an explicit construction for the case N = 3t+1. To
handle the case of N > 3t+ 1, just run the given algorithm on any
subset A with |A] = 8t+1. Alfter the last round, a designated
subset B C A, Bl = 2t+1, broadcasts its answers to all N
processes. Since all the (t+1 or more) reliable processes in B
agree, a simple majority vote gives all the other reliable processes
consistent answers. This takes only one additional round and
O(tN) additional message ‘bits above and beyond the basic

algorithm,

4. Basic Solution

Now assume N = 3t+ 1. Let LOW = t+1and HIGH = 2t+1.
We formally describe a system S. A more intuitive discussion

follows,

The only pieces of information sent in messages are process
indices and one special value 'x'. Formaily, let | (the set of
message ltems) = {"®'} U [N]. Messages are sets of message

items; thus, each M, = 2!,

A process state consists of a set of "data entities" together
with a number (representing the current round) . A data entity is
either the single value 0 or 1 {representing a value of O or 1
received from the general) or else a pair consisting of a message
item and a process from which that item has been received. Each
process remembers the initial value and all the message items it

has ever received from any process. Formally, a data entity is an
element of D={0,1} U (I X [N]).
(data(q), round{q)), where data(q) C D and 0 < round(qg) < R.
Thatis, each Q; = 2° X R. The initial states are q0, = ({0},0) and
al, = ({1},0). The transition function simply records all new
messages received, together with their senders, and increments
the round number. That is,

Bi(q,mv...,mN) = (data(q) U {(x,)) €ED|x € mj},

round(q) + 1).
Thus, the data component of the process state behaves
"monotonically” — new data entities can get added during the
caurse of an execution, but nothing is ever deleted.

We require some notation faor characterizing process states,

Let q be any process state and let x € |. We define

W,(a) = {i € [N]| (x.)) € data(a)},
the witnesses to x, and we let w. (q) = IWX(q)l. We define

C(a) = {k €[N]|w,(q) = HIGH]},
the contirmed processes, and we let c¢(q) = |C(q)|]. Process i
initiates in q if either

1.1 € data(g),

Processtcommits in q if c(q) > HIGH,

The heart of the algorithm is the message generation function.
The function is defined to be monotonic in the data component of :
the state — more data entities can only cause more message items
to be sent.
monotonically, this definition implies that any message item, once
sent, will be sent on all subsequent rounds. This is an obvious
inefficiency which is removed by a trivial optimization.
Section 6.)
however, since the monotonic algorithm is easier to reason about
than its optimized version.

We define 1 j(q) to be the smallest set satisfying the following

rules:

48

12.¢(q) 2 LOW + Tround(q)/27—1, or

13.1 € W, ().

M1. (Initiation) If i initiates in q, then '& ' € [i(q).
M2, (Direct witness) W*(q) c y”(q);

M3. (Indirect witness) If w, (q) = LOW, then k €

A process state q is a pair

Since the data component of the state behaves

(See
It is useful to describe the algorithm in this way,

V’i.j(Q) foreach k € [N].

Finally, F; = {q € Q|i commits in q}.
Thearem 1: Let R = 2t + 4. Then S solves the
Byzantine Generals problem in R rounds.

The correctness of this algorithm is somewhat subtle and s
proved in the next section. However, the following informal and

intuititive description should help the reader’s understanding.

4.1 AnIntuitive Discussion

When N=3t+1, then process i € [N] executes the following
meta-program:
program BG(t);
begin
<{The general initiaYizes q to
elther ({1},0) or ({0},0)>;
for r := 1 to 2t+4 do
begin {These are the actions
taken on each round.}
for § € [N] do
<Send ;1.1_j(q)
to process J.>;
<Receive Myyovn,myd;
q := (data(q) U {(x,]}) €
D] x € mJ}, r);
end;
it ¢(q) > HIGH { f.e, 1 commils }
then <Decide "v=1".>
else <Decide "v=0".)>,
end,

When a reliable process initiates it means that it knows that the
general has sent a 'I' to-some reliable process and that it is
1).
announces initiation by sending a 'x' to the other processes.

therefore proposing to accept (agree that v = A process
During the course of execution, reliable processes initiate from
time to time. Unreliable processes, however, may also send ' 's
to some processes. A mechanism is therefore necessary to

validate the initiation of processes.

A process i € [N] receiving a '%' from k € [N] becomes a
It informs all processes of that fact,
(The

sending process will thus record itself as a witness at the same

witness to k's initiation.
including itself, by broadcasting the message item k.

time as all other processes do.) A process receiving a message
item k € [N] from process j records the fact that j claims to be a
witness to k's initiation. A process can also become a witness
indirectly if at least LOW other processes are witnesses, since at

least one of them must be reliable. If LOW reliable processes

49

become witnesses to k, then in' another round all reliable

processes will have become witnesses.
A process confirms k when it records that at least HIGH

distinct J's claim to be witnesses to k. The confirming process
then knows one of two things must be true: Either k is reliable and
indeed has initiated, or k is unreliable but nevertheless at least
LOW reliable processes have agreed to regard it as having
initiated.

A process initiates on the first round if it receives a '1' from the
general. In a manner analagous to the witnessing of nitiation, we
would like to allow a process to initiate indirectly if it appears as If
at least LOW processes have initiated and by implication that at
least one reliable process really has. Unfortunately, this does not
work because an unreliable process can prevent agreement by
appearing to have initiated in the last round of the protocol to
some reliable processes buit not to others. We deny this strategy
to the unreliable processes by using a variable threshold number
for initiation that starts out at LOW and increases by one every two
rounds until it reaches HIGH. By that time, either at least LOW
reliable processes will have initiated or it is no longer possible for
a reliable process to initiate. In the former case, after three more
rounds every reliable proress will commit, In the [atter case, no
reliable process can commit. The delicate part of the algorithm
concerns these last two facts; namely, initiating and committing
are easy enough so that as soon as LOW reliable processes
initiate, then an avalanche of initiation begins which resuits in all
reliable processes initiating and committing a small number of
rounds later. On the other hand, committing is hard enough so
that no process commits in the fast three rounds except as a resuit
of an avalanche started earlier,

The use of an Increasing threshold for initiation is the critical
detail necessary to make the algorithm work. This idea derives
from the notion of "proof of progress” that was first introduced in
[DS] along with the idea that the size of the set of processes that
claim to witness an event can be used to infer whether the event
actually occured and whether all reliable processes can also make
that inference, Our algorithm uses much smaller and simpler sets
of process states and messages than the algorithm presented in
[DS]. This has the effect of making it both faster and (we believe)
easier to understand. |

5. Proof of Correctness

The following lemmas prove Theorem 1 and establish the
correctness of the algorithm. All refer to a fixed (T,v}-computation
q(0), ..., q(R), R = 2t + 4, with associated messages mi'i(r), ij €
[NLOo<r<R.

Lemma 2 formalizes the monotonicity properties of process

sfates,

Lemma 2: Let0 < r'g r<R,IET. ThenW, (q(r))
C W.(q) for all x € I, and C(qrf) C C(g,n).
Mereover, if i initiates (commits) in q,(v}, then i initiates
(commits} in g(r).

Proof: If r" = r, then there is nothing to prove. So
assume r'< r. Monotonicity of W and C are obvious;
hence, if I commits in g;(r}, then it commits in aq,(r).
Suppose i initiates in qirf. Then'x'E€ mm(ri, soi €
W*(qi(r'+ 1)), and by monotonicity of W, i € W (q,n).
Thus, i initiates in g;(r) by Rule 3.

O

The next lemma says that whenever a truthteller initiates, it is
confirmed at all truthtellers two rounds later.
Lemma 3: Leti, j €T. Ilfiinitiatesin qo<r<
R-2, theni € C(qj(r+ 2)).
Proof: Let k € T. Theni € W_ (g,(r+1)) by Rule
M1, Similarly, k € Wi(qi(r+2)) by Rule M2, Hence,
Wl(qj(r+2)) 2D T. The lemma follows since |T| > HIGH.
O

Next, we show that whenever all truthtellers initiate, they all
commit two rounds later.
Lemma 4: Let0 <r < R-2. If alli € Tinitiate in
a,(r), then all j € T commit in qj(r +2).
Proof:Letj € T. ByLemma3,i € C(ql(r+2)) for all
i € T; hence, c(qj(r+ 2)} 2 HIGH, so j commits in
q,(r+ 2).
a

The next lemma describes some information that the views of
different truthtellers at the same round must have in common.
Lemma 5: Leti,j, k€ T,x€1. Thenk € W, (g,(r)
iffk € Wx(qj(r)).
Proof: Follows from an easy induction on r using
the fact that reliable processes always broadcast their
messages {0 every process.

50

Next, we show the important fact that any process which gets
confirmed at one truthteller, wili be confirmed at all truthtellers
one round later.

Lemma6: LetOL<r<R-1,j,i€T, lfk € Clgy(rh)
thenk € C(qj(r +1)).

Proof: Since k € Clgr), there is a set
AL TN W (g(n) with |A] = LOW. Letj’€ T. Then by
Lemma 5, AC Wk(q]..(r)). Thus. k € mm(r). by Rule M3,
Hence, j€ Wk(q’(r +1)). Thus,k € C(q,(r+ 1.

]
Lemma 7: Let0 < r<R,,jET Ificommitsin
g;(r), then j commits in ql(r+ 1),
Proof: by Lemma 8,
O

The next lemma says that if there are sufficiently many
witnesses for a truthteller, then that truthteller has actually
initiated.

Lemma 8: Leti,j€T. If wl(qj(r)) 2 LOW, thenr >
2 and . initiates in qi(r-2).

Proof: We proceed by induction on r, for r 2 0
Suppose the lemmais true for all r; 0<r&r, and suppose
w[(qj(r)) 2 LOW. Then there issomék € TN W‘(q,(r)).
Butthenr > 1 and i € mk‘j(r-1), and this is either
because of M2 or M3. If it is because of M2, then
i EW* (q,(r-1)), so that r > 2 and *»’ € mi'k(r~2) and
hence i initiates in q,(r-2). If it is because of M3, then
wi(qk(r-1)) 2 LOW. Then by induction, r-1 >2andli
initiates in qi(r—a). Application of Lemma 2 shows that i
initiates in q,{r-2).

The following lemma follows easily from Lemma 8.

Lemma 9: Leti € T, and suppose i commits in
q,(r). Thenr > 2 and there is a set A C T with [A] =
LOW such that evury j € A initiates in ql(r-2).

Proof: e(g(r)) = HIGH, so there is a set
ACTN Clq,(r)) with |Al = LOW. Each | € A has
w](qi(r)) 2 HIGH; hence, by Lemma &, r > 2 and |
initiates in q‘(r-2).

The following key lemma saya that whenever LOW truthtellers
initiate, then all truthtellers commit four rounds later. This is the
"avalanche" described in the intuitive discussion of the algorithm,

Lemma 10: Let 0 <r < R-4. lfthereisaset A C
T, |A] = LOW, such that all i € A initiate in g,(r), then all
j € T commitin qj(r+4).

Proof: Let r'be the least number such that all i € A
initiate in q,(r J. By Lemma 3, A C C(ql(r'+ 2)) forallj €
T. We now argue that j initiates in q].(r'+ 2)). It will then
follow by Lemma 4 that j commits in q’(r'+ 4), and hence
alsoin q](r+ 4} by Lemma 2.

F(r+2)/27 - 1. Thus, j initiates in qj(r’+ 2) by Rule 12, If
r’> 0, then there is some k € A such that k initiates in
q,(rf and k does not Initiate in q,(r1). Then k initiates
in q,(r] using Rule 12, so c(q,(r")> LOW + '/27 - 1.
fk € C(qk(r)), then Lemma 8 implies that Kk initiates in
q,(r'2), a contradiction (using Lemma 2). Thus, k 3
C(qk(r)). By Lemmas 2 and 6, C(qi(r'+ 2D C(qk(r)) for
allj € T. By Lemma 3, k € C(q](r'+ 2)), Hence,
c(q,(r'+2)) > c(qk(r)) + 12> LOW + r-/27 = LOW-+
r{r'+2)/21- 1. Thus, j initiates in q,(r'+ 2) by Rule |12 as
desired.

fr = 0, then c(q,(r’+2)) > Al = LOW +

We are now ready to prove the properties required for

Theorem 1 — agreement and validity.

Lemma 11: Ifany i € T commits in g(R), then all i
€ T commit in qj(R):

Proof: Assume i € T commits in q(R). By Lemma
9, there is a set A C T with |A| = LOW such that every j
€ Alinitiates in q,(R-2).

We consider two cases. First, assume all j € A
initiate in q'(R-4). In this case, Lemma 10 implies the
result. Second, assume that some j € A initiates in qj(r)
but not in q'(r-1), for some r € {R-3, R-2}. Then j
initiates by 12. Then c(q](r)) > LOW + e/27 -1 2
LOW + t = HIGH, so j commits in qj(r). Then Lemmas
7 and 2 imply the result.

(]

51

Lemma 1‘2: Leti€ T,
(@) fv = 0, then q(R) € F,.

(b} Ifv = 1, then q,(R) EF,.

Proof: (a) v = 0. Suppose i commits in qI(R). Then
by Lemma 9, there is an element j € T that initiates in
qi(R-2). Consider the least r for which some j € T
initiates in ql(r). Clearly r > 0 by the initial conditions,
Hence, j initiates by Rule 12, so c(qj(r)) > LOW, Thus,
thereisak € T N C(ql(r)). S0 wk(qi(r))_>_ HIGH, But
then it follows from Lemma 8 that k initiates in qk(r-2).
contradicting the choice of r. We congclude that ql(FI) ¢
Fy

(b)v = 1. Eachi€ T initiates in q,(0) by Rule 1, By
Lemma 4, each i € T commits in q(2). Thus, g(R} € Fy

[m]
6. Complexity Analysis
Since || = N+ 1, each message item can be encoded by O(lag

N) bits, and a message m.consisting of k message items can be
encoded in length O(k log N). The algorithm of the previous
section sends N? messages on each round, and each message
potentially contains N + 1 message items; hence an upper bound
on the number of message bits sent is O(N2 R (N+1) log N) =
O(t* log 1). (Recall that N=3t+1 and that R=2t+4.) (The log
factor can be eliminated by a enceding the message as a bit
string, each position of which indicates the presence or absence

of a particular message item.)

A minor modification of the algorithm however tesuits In &
saving of the factor of R, As presented, the algorithm is monotonic
in the sehse that once a procesor includes a message item in a
message it will include that item in all succeeding messages. It is
also monotonic in the sense that data entities are never deleted
from the data part of the state, and incoming messages have no
effect except to be added into the state, Thus, the algorithm
would operate exactly the same if each message item were sent
from i tg | at most once. The only change to the algorithm would
be that each process would have to remember in its state which
messages had previously been sent out and to whom, and to omit
sending a previously-sent message. The result is that each
process i would send a maximum of |I] message items to each
process | during the entire course of the algorithm. The total
number of message bits then would be O(NZ (N+1) log N) =

o(t® log 1).

To extend our algorithm from the case in which the values sent

by the General are binary values we use the observation that if V,
the set of possible values, is of size |V|, then each value can be
encoded in Tlog(lV]}T bits. We can therefore run Tlog(|V])1
copies of the binary value algorithm in parallel and combine the
results at the end of the computation. Note that [V] may depend

on N,

Combining the ideas of the previous paragraph with those of
Section 3, we obtain:
Theorem 13: There is an algorithm which solves
the Byzantine Generals problem with |V| possible
values for t unreliable processes out of a total of N >
8t+1, uses 2t+ 5 rounds of information exchange, and
sends O({t®log t + 1N) log |V|) message bits.

Acknowledgements

The authors would like to thank Paris Kanellakis for help in
understanding the key ideas in [DS), and Eugene Stark for help in
improving the presentation.

References

[DLM] DeMillo, R., Lynch, N.and Merritt, M. Cryptographic
Protocots. Broc. 14th ACM Symp. on Theory of
Computing (1982), 383-400.

[DS] Dolev, D.and Strong, S. Polynomial Algorithms for
Multiple Processor Agreement. Proc. 14th ACM Symp. on :
Theory of Computing {1982), 401-407. |

[FL] Fischer, M. and Lynch, N. A Lower Bound on the Time to
Reach Interactive Consistency. To appear in
Ini. Proe. Letiers.

[LSP] Lamport, L., Shostak, R. and Pease, M. The Byzantine
Generals Problem. Manuscript,

[PSL] Pease, M. Shostak, R.and Lamport, L. Reaching
Agreement in the Presence of Faulls. J. ACM 27, 2 (April
1980), 228-234,

52

