
Tempo: A Toolkit for
The Timed Input/Output Automata Formalism

N. Lynch
CSAIL, MIT

The Stata Center, Building 32
32 Vassar Street

Cambridge, MA 02139
lynch@theory.csail.mit.edu

L. Michel
CSE, University of Connecticut

371 Fairfield Way
Storrs, CT 06269-2155
ldm@engr.uconn.edu

A.A. Shvartsman
CSE, University of Connecticut

371 Fairfield Way
Storrs, CT 06269-2155
aas@engr.uconn.edu

ABSTRACT
Tempo is a simple formal language for modeling distributed,
concurrent, and timed systems as collections of interact-
ing state machines, called timed input/output automata.
Tempo provides natural mathematical notations for describ-
ing systems, their intended properties, and intended rela-
tionships between their descriptions at varying levels of ab-
straction. The Tempo Toolkit is an implementation of the
Tempo language and a suite of tools that supports a range
of validation methods for descriptions of systems and their
properties, including static analysis, simulation, and machine-
checked proofs. This paper gives a brief overview of the
Tempo language and illustrates its utility on selected exam-
ples of importance to distributed computing. The focus of
the presentation is on the Tempo tools, and in particular,
the simulator.

Categories and Subject Descriptors
F.4.3 [Formal Languages]: Tempo; D.3 [Programming
Languages]: Application; D.2.4 [Software Engineering]:
Program Verification; C.2.4 [Computer-Communication
Networks]: Distributed Systems

General Terms
Input Output Automata, Timed Input Output Automata,
Distributed Algorithms, Specification, Verification

1. INTRODUCTION
Tempo is a simple formal language for modeling distributed
systems as collections of interacting state machines called
Timed Input/Output Automata [3]. Timed Input/Output
Automata are often referred to as Timed I/O Automata, or
just TIOAs. The distributed systems in question may have
timing constraints, for example, bounds on the time when
certain events may occur, or bounds on the rates of change of
component clocks. They may use time in significant ways,
for example, for timeouts, or for scheduling events to oc-

cur periodically. Timed I/O Automata formalism provides
good support for describing these constraints and capabil-
ities. Timed and untimed I/O Automata formalisms have
been effectively used for specifying numerous distributed and
concurrent algorithms [6]. The Tempo language provides
simple formal notation for describing Timed I/O Automata
precisely, based on the pseudocode notation that has been
used in many research papers. It also allows specification
of properties such as invariant assertions and relationships
between automata at different levels of abstraction. The
Tempo language is supported by an associated integrated
development environment toolkit, also called Tempo, that
provides an extensible framework supporting a range of in-
tegrated analysis and validation tools, including static anal-
ysis, simulation, model-checking, and theorem-proving. Ad-
ditional tools under consideration include optimization of
distributed deployment of systems specified in Tempo, and
generation of distributed code from specifications.

Many distributed systems involve a combination of com-
puter components and real-world, physical entities such as
vehicles, robots, or medical devices. Systems involving in-
teraction between computer and real-world components usu-
ally have strong safety, reliability, and predictability require-
ments, stemming from the requirements of real-world appli-
cations. This makes it especially important to have good
methods for modeling the systems precisely and analyzing
their behavior rigorously. Tempo provides a simple, elegant,
and powerful mathematical foundation for analyzing a wide
variety of systems, and it can be used to model both com-
puter and real-world system components, as well as their
interactions.

Tempo can be used to model practically any type of dis-
tributed system, including (wired and wireless) communi-
cation systems, real-time operating systems, embedded sys-
tems, automated process control systems, and even biolog-
ical systems. The behavior of these systems generally in-
cludes both discrete state changes and continuous state evo-
lution; Tempo is designed to express both kinds of changes.

The Tempo Toolkit was developed by VeroModo Inc., with
support provided by an AFOSR technology transfer grant.
The beta releases of the Tempo Toolkit for Linux, Win-
dows, and Mac OS X platforms are available for download
at www.veromodo.com.



Earlier work on a toolkit supporting specification in (un-
timed) Input/Output Automata was performed at the MIT
Theory of Distributed Systems group [2]. The prototype
toolkit supported a simulator [1], paired automata simula-
tion [8], and simulations of composed automata [9].

In the rest of this paper we overview the Timed I/O Au-
tomata, the Tempo language, and toolset (Section 2), illus-
trate the capabilities of Tempo and its simulator (Sections 3
and 4), and describe the user interface of the Tempo inte-
grated development environment (Section 5).

2. TEMPO OVERVIEW
We now discuss the Timed I/O Automata formalism that is
the basis of the Tempo language, and summarize the capa-
bilities of the Tempo toolkit.

2.1 Timed I/O Automata
The Timed I/O Automata [3] mathematical framework is
an extension of the classical I/O Automata framework [5,
6], which for many years has been successfully used in the
theoretical distributed computing research community to
specify and reason about distributed and concurrent algo-
rithms. I/O Automata are very simple interacting asyn-
chronous state machines, without any support for describing
timing features. Although they are simple, I/O Automata
provide a rich set of capabilities for modeling and analyzing
distributed algorithms. I/O Automata support description
of many properties that distributed algorithms are required
to satisfy, and mathematical proofs that the algorithms in
fact satisfy their required properties. These proofs are based
on methods such as invariant assertions and compositional
reasoning. I/O Automata also support representation of al-
gorithms at different levels of abstraction, and proofs of con-
sistency relationships between algorithm representations at
different levels. Because of these capabilities, I/O Automata
have been used fairly extensively for modeling and analyzing
asynchronous distributed algorithms, and even for proving
impossibility results about computability in asynchronous
distributed settings.

However, ordinary I/O Automata cannot be used to describe
distributed algorithms that use time explicitly, for example,
those that use timeouts or schedule events periodically. And
they do not provide explicit support for describing timing
constraints such as bounds on message delay or clock rates.
Moreover, without support for timing, I/O Automata could
not be used for other applications such as practical com-
munication protocols. These limitations led to the develop-
ment of Timed I/O Automata, which include new features—
most notably, trajectories—specifically designed for describ-
ing timing aspects of systems.

Like ordinary I/O Automata, Timed I/O Automata are sim-
ple interacting state machines and have a well-developed,
elegant theory, presented in [3]. Like I/O Automata, Timed
I/O Automata provide a rich set of capabilities for system
modeling and analysis. Methods used for analyzing timed
I/O automata are essentially the same as those used for or-
dinary I/O automata: invariant assertions, compositional
reasoning, and correspondences between levels of abstrac-
tion.

2.2 The Tempo language and tools
I/O Automata and Timed I/O Automata are fine math-
ematical modeling frameworks for distributed systems and
have been used, by hand, to describe and analyze distributed
algorithms, communication protocols, and embedded sys-
tems. Yet, computer support could make these tasks quite
a bit easier. The Tempo Language and Toolkit is an attempt
at providing a broad set of tools to support these activities.

The Tempo toolkit contains tools to support analysis of sys-
tems. These include a compiler that checks syntax and per-
form static semantic analysis; a simulator to produce and
explore execution traces for an automaton; a translation
module to the Uppaal model-checker [4]; and a transla-
tion module to the PVS interactive theorem-prover [7]. The
overall architecture of the Tempo toolkit has been designed
to facilitate incorporation of other validation tools in the
future.

The Tempo language has a rather minimal syntax, which
closely matches the simple semantics of the Timed I/O Au-
tomata mathematical framework. In fact, the mapping be-
tween a Tempo automaton description and the Timed I/O
Automata that it denotes is pretty transparent. For exam-
ple, an automaton’s discrete transitions and continuous evo-
lutions are described directly in Tempo, by “transitions” and
“trajectories”, respectively. The minimality of the Tempo
language does not limit its expressive power: Tempo is ca-
pable of describing very general systems of Timed I/O Au-
tomata. Of course, many analysis tools—especially auto-
mated ones like model-checkers—are not capable of handling
fully general Tempo programs. In contrast with the con-
ventional approach taken by developers of automated tools,
Tempo does not outright limit the expressive power of the
language and opts instead for the definition of sublanguages
that are suitable for use with particular tools.

3. THE DRIVING EXAMPLE.
To illustrate the capabilities of Tempo and its simulator,
we will be using the Fischer Timed Mutual Exclusion Al-
gorithm. It has become famous as a standard test example
for formal methods for modeling and analyzing timed sys-
tems. An informal description of the example appears in [6],
Chapter 24.

3.1 The Tempo specification
This example illustrates most of the basic constructs needed
for writing a Tempo program for a single Timed I/O Au-
tomaton modeling a shared-memory system. The example
also demonstrates how to express invariants using Tempo,
including invariants that involve time.

The Tempo model shown in Code 1,2 describes the entire
system as a single Timed I/O Automaton. The vocabulary

section declares the data types used in the algorithm, namely,
the abstract data type process and the program counter ab-
stract data type PcValue (an enumerated type) to represent
the exact location of each process in its program. Each pro-
cess could be in its remainder region (program counter =
pc rem), where it is not engaged in trying to enter the crit-
ical region. Or, it could be about to test, set, or check the
turn variable. Or, it could be in various stages of entering or
leaving the critical region—the model uses separate program



vocabulary fischer types
types process,
PcValue : Enumeration [pc rem, pc test, pc set, pc check,

pc leavetry, pc crit, pc reset, pc leaveexit]
end

automaton fischer(l check, u set: Real)
where u set < l check ∧u set ≥0 ∧l check ≥0
imports fischer types

signature
output try(i: process)
output crit(i: process)
output exit(i: process)
output rem(i: process)
internal test(i: process)
internal set(i: process)
internal check(i: process)
internal reset(i: process)

states
turn: Null[process] : = nil;
pc: Array[process, PcValue] : = constant(pc rem);
now: Real : = 0;
last set: Array[process, AugmentedReal] : = constant(∞);
first check: Array[process, DiscreteReal] : = constant(0);

transitions
output try(i)

pre pc[i] =pc rem;
eff pc[i] : = pc test;

internal test(i)
pre pc[i] =pc test;
eff if turn =nil then

pc[i] : = pc set;
last set[i] : = (now + u set);

fi;
internal set(i)

pre pc[i] =pc set;
eff turn : = embed(i);

pc[i] : = pc check;
last set[i] : = ∞;
first check[i] : = now + l check;

Code 1: Tempo spec. of the Fischer algorithm (I)

counter values to represent situations where the process has
successfully completed the trying protocol, where it is actu-
ally in the critical region, where it is about to reset the turn

variable upon leaving, and where it has successfully com-
pleted the exit protocol.

The actual automaton description begins with the name of
the automaton, with formal parameters l check and u set.
These are real numbers representing, respectively, a lower
bound on the time between setting and checking, and an
upper bound on the time between checking and setting. The
where clause specifies restrictions imposed on the parame-
ters saying (most importantly) that u set must be strictly
less than l check. The automaton imports the vocabulary to
make its definition available to the remainder of the specifi-
cation.

The automaton’s signature, describe its actions. Actions
are classified as input, output, or internal. Here, no input
actions are used, i.e., the system is “closed”. Since the en-
tire system is being modelled by a single automaton, each

internal check(i)
pre pc[i] =pc check ∧first check[i] ≤now;
eff if turn =embed(i) then

pc[i] : = pc leavetry;
else

pc[i] : = pc test;
fi;
first check[i] : = 0;

output crit(i)
pre pc[i] =pc leavetry;
eff pc[i] : = pc crit;

output exit(i)
pre pc[i] =pc crit;
eff pc[i] : = pc reset;

internal reset(i)
pre pc[i] =pc reset;
eff pc[i] : = pc leaveexit;

turn : = nil;
output rem(i)

pre pc[i] =pc leaveexit;
eff pc[i] : = pc rem;

trajectories
trajdef traj

stop when
∃i: process (now =last set[i]);

evolve
d(now) =1;

Code 2: Tempo spec. of the Fischer algorithm (II)

type of action is parameterized by the name of the process
that performs it. In this model, the internal actions are as-
sociated with shared-variable accesses—the steps that test,
set, check, and reset the turn variable. The output actions
are those that mark processes’ progress through the various
high-level regions of their code: The try(i) action describes
process i moving from its remainder region to its trying re-
gion, in which it executes a protocol to try to reach the
critical region. The crit(i) action describes passage from the
trying region to the critical region, and the exit(i) action
describes passage from the critical region to the exit region,
where process i performs its exit protocol. Finally, the rem(i)

action describes passage from the exit region back to the re-
mainder region.

The automaton’s state is specified in the states section. The
shared variable turn has type Null[process], which indicates
that its value can either be a process or the special value
nil to indicate the absence of value. turn is initially set to
nil. The variable pc, represents the program counters for
all of the processes in an array of PcValue indexed by pro-
cesses. Initially, all of the program counter values are set
to pc rem, which means that all of the processes start out in
the remainder region.

The remaining three variables are introduced solely to ex-
press the needed timing constraints. First, the variable now

is used to represent the real time. It is initialized at 0.

Second, the variable last set is an array containing absolute
real time upper bounds (deadlines) for the processes to per-
form set actions. A deadline will be in force for a process
i only when its program counter is equal to pc set, that is,
when it is in fact ready to set the turn variable. In this case,
the value of last set[i] will be a nonnegative real number; oth-



erwise, that is, if the program counter is anything other than
pc set, the value will be ∞, representing the absence of any
such deadline. The elements of the last set array are defined
to be of typeAugmentedReal: a type that includes all (positive
and negative) real numbers, plus two values corresponding
to positive and negative infinity. Initially, since none of the
program counters is pc set, the values in the array are all ∞.

Third and finally, the variable first check is an array con-
taining absolute real time lower bounds (earliest times) for
the processes to perform check actions, when their program
counters are equal to pc check. The elements of first check are
of type DiscreteReal, which means that they always have Real

values, and moreover, they do not change between discrete
actions.

The detailed description of the transitions of the automaton
follows in the transitions section. Transitions are (state, ac-
tion, state) triples. The transitions are described in guarded
command style, using small pieces of code called transition
definitions. Each transition definition denotes a collection
of transitions, all of which share a common action name.

Each transition has a name, list of parameters, a precondition

that indicates when the action is enabled and finally, an ef-
fect clause that describes the changes to the state when that
accompany the action. Input actions are always enabled, re-
flecting the assumption that Timed I/O Automata are input-
enabled. Notionally, input actions have no preconditions, as
a shorthand for the precondition being true.

The try(i) transition represents an entrance by process i into
its trying region. The transition is allowed to occur when-
ever pc[i] =pc rem, that is, whenever process i is in its re-
mainder region. The effect is simply to advance the program
counter to pc test to indicate that process i is ready to test
the turn variable.

The test(i) transition represents process i testing the turn

variable. It is allowed to occur whenever pc[i] =pc test. The
transition can either find the turn variable equal to nil at
which point it moves to take the turn (by setting the pro-
gram counter to pc set) and saves in last set[i] the deadline
for the set action to occur at the latest in u set time steps
in the future (away from now). The transition can also find
that turn is not nil and simply takes no action to remain in
the state, ready to test again.

The set(i) transition represents process i setting the turn

variable to its own index. This is allowed to occur whenever
pc[i] =pc set. The effects are given as straight-line code in
which process i simply sets turn to its own index (the embed

call is necessary to store the value into an object of type
Null[process]). The code then sets the program counter to
pc check to enable the check(i) transition that will verify the
turn variable. Now that the set(i) action has occurred, the
last set[i] deadline is reset to its default value, ∞. The code
also records the earliest time when process i could recheck
the turn variable based on the current clock now and the
lower bound l check.

The check(i) transition is enabled when process i’s program
counter is set to pc check and its earliest checking time has

passed (first check[i] ≤now). When the transition executes,
two interesting cases may arise: If process i finds that turn

is still equal to i, it leaves the trying region and enters the
critical region. On the other hand, if it finds the turn variable
equal to anything else, it gives up the current attempt and
goes back to the testing step. In either case, first check[i] is
reset to its default, 0.

The subsequent transitions are quite straightforward. A
crit(i) transition represents process i moving into the critical
region, and an exit(i) transition represents process i leaving
the critical region. A reset(i) transition represents process i

resetting the turn variable to its default value nil, and a rem(i)

transition represents process i returning to its remainder re-
gion.

The final part of the automaton description is the set of
trajectories, that is, the functions from time to states that
describe how the state is permitted to evolve between dis-
crete steps. This model specifies one trajectory definition,
named traj. This definition describes the evolution of the
state in a way that allowed the current time now to increase
at rate 1. All of the other state variables are of types that are
defined to be discrete; these, by default, are not allowed to
change during trajectories. The stop when condition says
that a trajectory must stop if the state ever reaches a point
where the current time now is equal to a specified deadline
last set[i], for any i. That is, time is not “allowed to pass”
beyond any deadline currently in force.

This stop when condition is an example of a phenomenon
whereby an automaton can prevent the passage of time.
This may look strange (at first) to some programmers, since
programs of course cannot prevent time from passing. How-
ever, appearances can be deceiving and the Fischer automa-
ton is not exactly a program; it is a descriptive model that
expresses both the usual sort of behavior expressed by a
program, plus additional timing assumptions that might be
expressed in other ways.

3.2 Properties of the algorithm
Tempo can be used to describe not just algorithms, but also
properties that we would like the algorithms to satisfy. For
example, the Fischer algorithm is supposed to satisfy the
mutual exclusion property, saying that no two processes can
simultaneously reside in their critical regions. This is a claim
that the mutual exclusion is an invariant of the Fischer al-
gorithm, that is, that it is true in all reachable states of the
fischer automaton. This claim can be expressed in Tempo
with a block

invariant of fischer:
∀i: process ∀j: process

(i 6=j ⇒(pc[i] 6=pc crit ∨pc[j] 6=pc crit));

This invariant definition claims that, in any reachable state
of the automaton, any two processes cannot simultaneously
be in the critical section. This formal statement must, of
course, be verified with a tool in order to formally prove
that the algorithm is correct. For instance, one could use
an interactive theorem prover such as PVS, a model-checker
like UPPAAL, or run simulations of the protocol and require
the simulator to check the assertions after every single step
of the simulations.



4. SIMULATION
In this section we illustrate the use of the Tempo simula-
tor on the Fischer Mutual Exclusion example. We also de-
scribe language extensions designed to enable simulations
of Tempo specifications: schedules, simulations, and simu-
lation relations.

4.1 Schedules
Timed Input/Output automata are non-deterministic ma-
chines. Indeed, at any point in time, multiple transitions
may be enabled and ready to fire. The simulation of a non-
deterministic computation is delicate as the simulator must
resolve the non-determinism and produce a total ordering
over the events by deciding which enabled action to run
next. A priori, a simulator may not be able to determine
which total ordering among all the possible options is worth
executing.

The Tempo simulator addresses this issue by putting the
modeler in charge of resolving the non-determinism with a
schedule. A Tempo schedule is an imperative code fragment
that programmatically specifies the sequence of actions that
the automaton should undergo. Schedules can have local
state, can observe the state of the automaton and are re-
sponsible for deciding the duration of trajectories, sequence
of transitions as well as the actual arguments for these tran-
sitions. Schedules are not required to completely eliminate
all non-determinism, but can limit themselves to reducing
it and still rely on randomization for specific decision (e.g.,
the duration of a trajectory).

The code fragment in Figure 1 depicts a particular schedule
for the fischer automaton. The local variable dur stores the
duration of a trajectory segment. The schedule body is an
imperative program that iterates through all the processes.
Iteration i focuses on process i and starts by choosing, uni-
formly at random from the range [1..10], the amount of time
that should pass for the system before process i initiates the
sequence of transitions to acquire the lock and enter the
critical section.

schedule
states

dur : AugmentedReal;
do

while (true) do
for i in process do

dur : = choose n where 1 ≤n ∧n ≤10;
follow traj duration dur;
fire output try(i);
fire internal test(i);
fire internal set(i);
follow traj duration 100;
fire internal check(i);
fire output crit(i);
fire output exit(i);
fire internal reset(i);
fire output rem(i);

od
od

od

Figure 1: A schedule for the fischer automaton

A fire statement triggers the named action and provides the

actual values. When a fire event occurs, the Tempo sim-
ulator identifies all the transitions that match the event.
Indeed, several transitions could apply and the simulator
must determine which transitions are enabled (their pre-
conditions are true). Once selected for execution the tran-
sition effects clause runs to update the state variable of the
automaton. When all the transitions have fired, the control
is returned to the schedule.

When simulating a composite automaton, the fire event may
correspond to a handshake between an output transition of
a component and one or more input transitions of other
components. The simulator will execute all the matching
transitions starting with the output and unify the arguments
to pass actual values from the output to the inputs. For
instance, in the model

automaton A
signature output foo(n:Int)
states x : Int : = 10;
transitions

output foo(n)
eff

n : = x;

automaton B(k : Int)
signature input foo(n:Int)
states y : Int : = 0;
transitions

input foo(n)
eff

y : = n + k;

automaton C
components a:A; b1:B(0);b2:B(4);
schedule

states n : Int : = 5;
do

fire output a.foo(n);
print n;

od

the automaton C has three components a, b1 and b2. When
the schedule of C executes, it declares a local variable n,
sets it to 5 and fires the foo output action of component
a. Given that the two other components (b1 and b2) have
matching input actions, all three are scheduled for execution
starting with the output action. The output of component
a copies the value of its state variable in the output formal
n. The matching input executes next (in any order) and
the handshake passes the value of the formal into the input
action. Consequently, the input action of b1 alters b1’s state
variable y and sets it to 10 + 0. Similarly, when the input of
b2 executes, it sets its own state variable y to 10+4. Finally
the control returns to the schedule, which prints the value
of variable n, now bound to 10.

A Timed Input/Output automaton trace should feature a
strict alternation of transitions and trajectories, yet, tra-
jectories can be instantaneous (0 duration) and the Tempo
simulator automatically inserts such a 0-duration trajectory
between transitions as needed.

4.2 Simulations
Tempo supports parametric automata definitions. For in-
stance, in the code fragment 1, the fischer automaton is pa-
rameterized with the lower bound on the waiting delay and



the upper bound on trajectory durations. Parametric defini-
tions are convenient to define an entire family of automata,
and once again, a simulator must bind these parameters to
specific values to execute a simulation. From a simulation
standpoint, it may even be desirable to execute many simu-
lations with different parameter instantiations. Tempo ad-
dresses both needs with a scripting capability in the form of
a simulate block.

For instance, to execute a single simulation of the Fischer
automaton, one can write

simulate do
run fischer(4,2);

od

and Tempo will execute the schedule associated to the fischer

automaton with l check bound to 4 and u set bound to 2.

Simulate blocks have a simple structure and can use condi-
tionals, loops and run statements to construct scripts that
perform several simulations. The scripts are not limited to
a single automaton and can use multiple run statements to
instantiate and simulate several automata. For instance, the
fragment

simulate do
for i in {1..4} do

run fischer(4,i);
od

od

performs a sequence of four simulations with an increasingly
larger upper-bounds. Note that the last simulation will be
aborted prematurely given that the actual arguments passed
in do not satisfy the where restriction imposed by the fischer

automaton.

4.3 Forward Simulation Relation
An automaton A is said to implement an automaton B pro-
vided that A and B have the same input and output actions
and that every trace of A is also a trace of B. In order to
show that A implements B, one can use a simulation relation
between states of A and states of B.

Suppose that A and B have the same input and output
actions. A relation R between the states of A and B is a
forward simulation if

• every start state of A is related (via R) to some start
state of B,

• for every state s of A and every state u of B such that
R(s, u), and for every discrete step (s, π, s′) of A, there
is an execution fragment α of B starting with u, that
has the same trace as π and that ends with a state u′

such that R(s′, u′), and

• for every state s of A and every state u of B such that
R(s, u), and for every trajectory τ of A starting with
s, there is an execution fragment α of B starting with
u that has the same trace as τ and that ends with a
state u′ such that R(s′, u′).

A general theorem is that A implements B if there is a for-
ward simulation from A to B (see Chapter 4 of [3]).

The specification of a forward simulation begins with the
keywords forward simulation, followed by a name for the
simulation relation, optional formal parameters and possi-
bly a where clause constraining these parameters. It con-
tinues with descriptions of the two automata involved in the
simulation. The “lower-level” automaton (A in the forward
simulation definition above) is specified using the keyword
from, followed by a short name for the automaton, a colon
and a description of the automaton. Similarly, the “higher-
level” automaton (B above) is specified using the keyword
to, followed by a short name, a colon, and a description of
the automaton.

The specification of a forward simulation continues with the
keyword mapping, followed by a first-order predicate involv-
ing the formal parameters of the forward simulation and the
state variables of the two automata. The mapping states
an invariant property that must be true at every step of the
forward simulation.

The proof section specifies the correspondence between the
transitions and trajectories of the low-level and high-level
automata. It is used by the simulator to drive the transition
in the “high-level” automaton in response to the execution
of transition and trajectories in the “low-level” automaton.
Each correspondence clause can alter the parameters and
remap the transition as necessary.

Consider the example in Figure 2. It features a forward sim-
ulation between two instances of TimedChannel with different
actuals for the deadline argument that bounds the amount
of time that elapses between the placement of a packet in
the queue and its removal. Clearly, any trace with a dead-
line of 2 is a valid implementation for a TimedChannel with
a looser deadline (e.g., 3) in which packets are allowed to
remain in the queue for up to 3 time units. This imple-
mentation relationship can be proved (say with PVS) by
showing the existence of a forward simulation relation from
TimedChannel(2) to TimedChannel(3).

The Tempo simulator is used here for a paired simulation
of two automata, a “lower-level” implementation automaton
and a “higher-level” specification automaton.

The simulator starts, as usual, in the simulate block and
proceeds with the paired simulation of F. To drive this
simulation, it uses the schedule associated with the from

automaton. This schedule simply repeats a sequence of five
transitions. Each transition is chosen uniformly at random
with the x : =choose k:Bool statement. If x is true, the sched-
ule fires the input transition send to insert a message into
the channel. Otherwise, it fires the output transition receive

to retrieve a message m. When a transition fires in the
source automaton, the proof specification is used to find the
matching transition in the to automaton. Once identified,
the transition is fired there as well. Finally, the assertion
in the mapping is verified and, provided that it is satisfied,
the simulation resumes in the source automaton. The same
logic is used when a trajectory is followed in the source au-
tomaton (the matching trajectory is identified and followed



vocabulary Message(M: Type)
types Packet : Tuple[message: M, deadline: Real]

end

automaton TimedChannel(b: Real) where b ≥0
imports Message(Type String)
signature

input send(m:String)
output receive(m:String)

states
queue: Seq[Packet] : = ∅;
now: Real : = 0;

transitions
input send(m)

eff queue : = queue `[m,now+b];
output receive(m)

pre queue 6=∅∧head(queue).message =m;
eff queue : = tail(queue);

trajectories
trajdef traj

stop when queue 6=∅∧now =head(queue).deadline;
evolve d(now) =1;

schedule states x: Bool;m : String : = "helo"; do
for i in (1..5):Set[Nat] do

x : = choose k:Bool;
if x =true
then fire input send("helo");
else fire output receive(m);

fi
follow traj duration 20;

od
od

forward simulation F
from TC1 : TimedChannel(2)
to TC2 : TimedChannel(3)

mapping
TC1.now =TC2.now
∧len(TC1.queue) =len(TC2.queue)
∧∀i:Nat (1 ≤i ≤len(TC1.queue)

∧TC1.queue[i].deadline ≤TC2.queue[i].deadline
∧TC1.queue[i].message =TC2.queue[i].message);

proof
for input send(m) do

fire input send(m);
od
for output receive(m) do

fire output receive(m);
od
for trajectory traj duration k do

follow traj duration k;
od

end

simulate do
run F;

od

Figure 2: Forward Simulation Example.

in the target automaton).

5. USER INTERFACE
The Tempo simulator is embedded in a graphical user inter-
face implemented on the Eclipse Rich Client Platform. The
simulator presents a debugger-like interface where end-users
can set breakpoints within simulate blocks, schedules or even
transitions. The users can then execute the simulation as a
whole or until the control hits a breakpoint. When it does,
an inspector panel presents a view showing the state vari-
ables of the automata involved as well as local variables or
formals of routines or transitions currently executing. The
execution can be resumed through single stepping, stepping
over instructions or executing until the next breakpoint.

When the execution completes, the user-interface also pro-
vides a slider to inspect prior computation states. This can
become particularly handy to review the execution trace in
a more intuitive way.

Figure 3 shows the editor window with the control stopped
at the first line of the effect of the test(i) transition. The
bottom panel contains a textual trace of the execution. The
snapshot was obtained when on the third step of the sim-
ulation. The visible part of the console shows all the state
variables of the automaton which clearly indicates that the
program counter is set to pc set for process P1.

Figure 4 displays the state variables interactively when the
control stops at a breakpoint. If the top slider is used, previ-
ous states of the computation can be restored and inspected.
Displays like [P1]:pc_test,*:pc_rem provide a condensed
representation of the array. The entry for P1 is pc_test

while all the other entries are set to pc_rem.

6. CONCLUSION
In this paper we overviewed the language Tempo based on
Timed Input/Output Automata formalism, and the inte-
grated toolkit that supports the specification, simulation,
and analysis of distributed, concurrent, and timed systems
expressed as Tempo specifications. The Tempo simulator is
a powerful tool designed to simulate executions of Tempo
specifications and to provide linked simulations of pairs of
specifications, where one specification gives an abstract def-
inition and the other is a more concrete specification that
is supposed to implement the abstract definition. Together
with interfaces to model-checking and theorem-proving tools,
the Tempo toolset provides a comprehensive integrated de-
velopment environment for complex distributed systems. Cur-
rent work on future extensions for the toolset is funded by
AFOSR and NSF, and includes automated distributed code
generation from Tempo specifications and optimization of
distributed system deployment in target network platforms.

7. ACKNOWLEDGMENTS
The work described in this paper was funded by a grant from
AFOSR and partially supported by NSF award #0702670.
Earlier work on a prototype simulator was performed by
Anna Chefter, Stephen Garland, Dilsun Kaynar, Panayiotis
Mavrommatis, Antonio Ramirez, and Edward Solovey. Ma-
jor parts of the Tempo Toolkit were developed by Carleton
Coffrin and Peter Musial.



Figure 3: The Editor window

8. REFERENCES
[1] Anna E. Chefter. A simulator for the IOA language.

Master’s thesis, MIT Department of Electrical
Engineering and Computer Science, 1998

[2] S. Garland, N. Lynch, Joshua Tauber, and M. Vaziri.
IOA User Guide and Reference Manual. MIT
Computer Science and Artificial Intelligence
Laboratory, Cambridge, MA, 2003. Available at
http://theory.lcs.mit.edu/tds/ioa.html.

[3] Dilsun K. Kaynar, Nancy A. Lynch, Roberto Segala,
and Frits W. Vaandrager. The Theory of Timed I/O
Automata. Synthesis Lectures on Computer Science,
Morgan and Claypool Publishers, 123 pages, 2006.
ISBN 159829010X.

[4] Kim G. Larsen, Paul Pettersson and Wang Yi.
UPPAAL in a Nutshell. In Springer International
Journal of Software Tools for Technology Transfer
1(1+2), pp. 134–152, 1997.

[5] Nancy A. Lynch and Mark R. Tuttle. An introduction
to input/output automata. CWI-Quarterly,
2(3):219–246, September 1989. Centrum voor
Wiskunde en Informatica, Amsterdam, The
Netherlands. Technical Memo MIT/LCS/TM-373,

Figure 4: The variables window

Laboratory for Computer Science, Massachusetts
Institute of Technology, Cambridge, MA 02139,
November 1988.

[6] Nancy Lynch. Distributed Algorithms. Morgan
Kaufmann Publishers, Inc., San Mateo, CA, 1996.

[7] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and
M. Srivas. PVS: Combining specification, proof
checking, and model checking. In CAV ’96, LNCS
1102, pages 411–414. Springer Verlag, 1996.

[8] J. Antonio Ramirez-Robredo. Paired simulation of I/O
automata. Master’s thesis, MIT Department of
Electrical Engineering and Computer Science, 2000.

[9] Edward Solovey. Simulation of composite I/O
automata. Master’s thesis, MIT Department of
Electrical Engineering and Computer Science, 2003


