

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 37, No. 4, pp. 977–1013

OBSERVING BRANCHING STRUCTURE THROUGH
PROBABILISTIC CONTEXTS∗

NANCY LYNCH† , ROBERTO SEGALA‡ , AND FRITS VAANDRAGER§

Abstract. Probabilistic automata (PAs) constitute a general framework for modeling and an-
alyzing discrete event systems that exhibit both nondeterministic and probabilistic behavior, such
as distributed algorithms and network protocols. The behavior of PAs is commonly defined using
schedulers (also called adversaries or strategies), which resolve all nondeterministic choices based on
past history. From the resulting purely probabilistic structures, trace distributions can be extracted,
whose intent is to capture the observable behavior of a PA. However, when PAs are composed via an
(asynchronous) parallel composition operator, a global scheduler may establish strong correlations
between the behavior of system components and, for example, resolve nondeterministic choices in
one PA based on the outcome of probabilistic choices in the other. It is well known that, as a result
of this, the (linear-time) trace distribution precongruence is not compositional for PAs. In his 1995
Ph.D. thesis, Segala has shown that the (branching-time) probabilistic simulation preorder is com-
positional for PAs. In this paper, we establish that the simulation preorder is, in fact, the coarsest
refinement of the trace distribution preorder that is compositional. We prove our characterization
result by providing (1) a context of a given PA A, called the tester, which may announce the state
of A to the outside world, and (2) a specific global scheduler, called the observer, which ensures that
the state information that is announced is actually correct. Now when another PA B is composed
with the tester, it may generate the same external behavior as the observer only when it is able to
simulate A in the sense that whenever A goes to some state s, B can go to a corresponding state u,
from which it may generate the same external behavior. Our result shows that probabilistic contexts
together with global schedulers are able to exhibit the branching structure of PAs.

Key words. probabilistic automata, trace distributions, compositionality, simulation preorder,
concurrency theory

AMS subject classifications. 68Q05, 68Q10, 68Q85

DOI. 10.1147/S0097539704446487

1. Introduction. Labeled transition systems (automata) are studied extensively
within concurrency theory as underlying operational models of concurrent systems
[27]: a system is described as a state machine whose transitions are labeled by actions,
where each action describes potential communication with the external environment.
An important aspect of concurrency theory is the study of relationships between sys-
tems, namely equivalence and preorder relations, with the objective of understanding
whether a system can be used in place of another one or as an implementation of some

∗Received by the editors November 8, 2004; accepted for publication (in revised form) December
2, 2006, published electronically September 14, 2007. A preliminary version of this paper appeared
as [24].

http://www.siam.org/journals/sicomp/37-4/44648.html
†Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139 (lynch@

theory.csail.mit.edu). The work of this author was supported by AFOSR contract F49620-00-1-0097,
AFRL award FA9550-04-1-0121, NSF grants CCR-0121277 and CCR-0326277, NSF award CNS-
0614414, NSF/ITR grants CCR-0121277 and CCR-0326277, USAF/AFRL award FA9550-04-1-0121,
and DARPA/AFOSR MURI F49620-02-1-0325.

‡Dipartimento di Informatica, Università di Verona, Italy (roberto.segala@univr.it). This author
was supported by MURST projects MEFISTO and CoVer, MIUR project AIDA, and by Inria project
ProNoBis.

§Institute for Computing and Information Sciences, Radboud University Nijmegen, P.O. Box
9010, 6500 GL Nijmegen, The Netherlands (F.Vaandrager@cs.ru.nl). This author was supported
by PROGRESS project TES4999: Verification of Hard and Softly Timed Systems (HaaST) and by
DFG/NWO bilateral cooperation project Validation of Stochastic Systems (VOSS and VOSS2).

977

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

978 NANCY LYNCH, ROBERTO SEGALA, AND FRITS VAANDRAGER

more abstract description. Several relations are studied in the literature, but the most
important classes of relations are represented by simulations and bisimulations [27]
and by language (trace) inclusion and equivalence [17]. An extensive classification of
existing relations appears in [12], where, in particular, relations are classified as either
branching, which observe the places where nondeterminism is resolved, or linear, which
are insensitive to the actual places where nondeterminism is resolved. For instance,
language inclusion and language equivalence are linear relations, while simulations
and bisimulations are branching relations.

During the last fifteen years there has been a growing interest in the extension
of concurrent models with probabilities, mainly motivated by the fact that several
applications included randomized behaviors. Some of the most relevant proposals of
operational models with probability and nondeterminism are reactive, generative, and
stratified systems [13], concurrent labeled Markov chains [15], alternating automata
[40, 29], probabilistic automata (PAs) [32], and probabilistic reactive modules [10].
Extensive comparative studies that include these models appear in [36, 4, 35].

Simulation, bisimulation, and language inclusion relations have been extended
to the probabilistic case as well. In particular, [22] defines strong bisimulation on
reactive systems, [34] defines strong and weak simulation and bisimulation relations
on PAs, including a notion of branching bisimulation, [15] defines strong bisimulation
on labeled concurrent Markov chains, [29] defines strong and weak bisimulation on
alternating automata, and [2] defines branching bisimulation on alternating automata.
Although the above definitions are quite different, it turns out that they can all be seen
in a uniform way by viewing reactive systems, labeled concurrent Markov chains, and
alternating automata as special cases of PAs [35]. For extensive comparative studies
we refer the reader again to [36, 4, 35].

In this paper we are interested in extensions of language inclusion to the prob-
abilistic case. On ordinary nondeterministic automata the resolution of nondeter-
minism produces sequences of alternating states and actions called executions; then,
by restricting those sequences to visible actions, we obtain the so-called traces. Im-
plementation and equivalence of nondeterministic automata can be defined in terms
of inclusion and equality of sets of traces. This approach was first proposed in the
context of process algebras [17] and is used extensively in the area of I/O automata
[25].

An attempt to extend language inclusion to PAs appears in [31], where it is
proposed that the probabilistic extension of a trace should be a probability measure
over traces. Indeed, the resolution of nondeterminism on PAs produces a stochastic
process that induces a probability measure over executions (a probabilistic execution),
and the restriction of a probabilistic execution to the externally visible actions leads
to a probability measure over traces (a trace distribution). Then, the proposal of
[31] is to compare PAs based on inclusion and equality of sets of trace distributions.
This is consistent with ordinary nondeterministic automata since an execution can be
seen as a probabilistic execution that assigns probability 1 to a single element, and
similarly a trace can be seen as a trace distribution that assigns probability 1 to a
single element.

There are several arguments in favor of the point of view that probabilistic exe-
cutions in PAs should play the role that executions play in ordinary nondeterministic
automata, and thus in favor of the notion of trace distribution as well. One element is
that this point of view leads to the definition of weak transitions, used to extend weak
simulations and bisimulation to the probabilistic case. Another element of evidence
comes from the area of distributed algorithms, where the probability of termination

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OBSERVING BRANCHING THROUGH PROBABILISTIC CONTEXTS 979

of an algorithm is studied under any scheduling policy: in this context a scheduler is
the entity that resolves nondeterminism, for example, by choosing the order in which
processes take steps, and a probabilistic execution is the natural object where the
probability of termination can be computed, as demonstrated by several case studies
[23, 30, 1, 39, 20, 28, 6] and by the ongoing research on automatic verification tools
for probabilistic systems [16]. Finally, again in the area of distributed algorithms, the
approach of [31] to language inclusion turns out to be useful for the modular analysis
of complex algorithms [30].

An important requirement for an implementation relation on systems is com-
positionality, that is, the relation is preserved by parallel composition. For labeled
transition systems, the trace, simulation, and bisimulation preorders are all compo-
sitional [17, 27]. For PAs, various simulation and bisimulation preorders are known
to be compositional [34]. A problem with the trace-based relations proposed in [31]
is that they are not compositional; that is, they are not preserved by parallel com-
position. A typical solution to the problem, followed by [31], is to define a notion of
trace distribution precongruence as the coarsest precongruence included in the trace
distribution inclusion. Unfortunately, such implicit definition does not provide much
insight about the structure of the relation. For this reason, there have been several
attempts to characterize it in more concrete terms. In [32] trace distribution pre-
congruence is characterized in terms of the set of trace distributions observable in a
certain principal context—a rudimentary PA that makes very limited nondetermin-
istic and probabilistic choices; in [33] a testing scenario is proposed. However, these
indirect characterizations still do not provide much insight into the structure of trace
distribution precongruence; for example, they do not explain its branching structure.
Indeed, trace distribution precongruence is not a linear relation since it distinguishes
ordinary nondeterministic automata that are trace equivalent.

In this paper, we provide an explicit characterization of the trace distribution
precongruence, ≤DC , for PAs, which completely explains its branching structure.
Namely, we show that P1 ≤DC P2 iff there exists a weak probabilistic (forward) sim-
ulation relation from P1 to P2. Moreover, we provide a similar characterization of
≤DC for nondeterministic automata in terms of the existence of a weak (nonprob-
abilistic) simulation relation. It was previously known that simulation relations are
sound for ≤DC [32], for both nondeterministic and probabilistic automata; we show
the surprising fact that they are also complete. That is, we show that, for both non-
deterministic and probabilistic automata, probabilistic contexts can observe all the
distinctions that can be expressed using simulation relations.

Our proofs of completeness rely on special contexts for PAs, called testers. The
tester of a PA P, under the action of an appropriate scheduler, can reveal the branch-
ing structure of P via a trace distribution. Such a scheduler is called an observer
scheduler. Informally, the tester C of a PA P announces the outcome of each proba-
bilistic choice of P by performing an action with the name of the state reached, and
flips coins to propose and announce how P should resolve its nondeterministic choices.
The ability of another PA P ′ to comply with the requirements of C, that is, that the
trace distribution induced by the observer scheduler is also a trace distribution of
P ′‖C (the parallel composition of P ′ and C), reveals whether P ′ has at least the same
possibilities for solving nondeterministic choices as P. If P ≤DC P ′, then we extract
a probabilistic forward simulation from P to P ′ by observing how P ′‖C produces the
trace distribution induced by the observer scheduler.

An interesting observation about tester automata is that probabilistic choices
of a PA are observed via nondeterministic choices of the tester automaton, while

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

980 NANCY LYNCH, ROBERTO SEGALA, AND FRITS VAANDRAGER

nondeterministic choices of a PA are observed via probabilistic choices of the tester
automaton. Thus, the branching structure of a PA is observed via a probabilistic
context.

The rest of the paper is structured as follows. Sections 2 and 3 contain basic
definitions and results for nondeterministic and probabilistic automata, respectively,
and for the preorders we consider. These sections contain no new material, but re-
call definitions and theorems from the literature. For a more leisurely introductions
see [25, 26, 38, 36]. Section 4 introduces the concept of tester automaton and the
scheduler for a PA P and its tester that reveals the structure of P. Sections 5 and 6
contain, respectively, our characterization results for nondeterministic and probabilis-
tic automata. Since the proof of the characterization result for the general case of
PAs with internal actions is highly complex, we first present a proof for the special
case of nondeterministic automata without internal actions (section 5.1). Then we
successively show how we can also handle internal actions (section 5.2) and proba-
bilistic choice (section 6.1) before dealing with the general case of PAs with internal
actions (section 6.2). Section 7 contains our conclusions.

2. Definitions and basic results for nondeterministic automata. In this
section we recall definitions and basic results for nondeterministic automata. We
impose a few restrictions to avoid confusion and unnecessary complications in the
rest of the paper. For more information the reader is referred to [25, 26].

2.1. Nondeterministic automata, executions, and traces. A nondetermin-
istic automaton is a tuple A = (Q, q̄, E,H,D), where

• Q is a countable set of states,
• q̄ ∈ Q is a start state,
• E is a countable set of external actions,
• H is a countable set of internal (hidden) actions with E ∩H = ∅, and
• D ⊆ Q× (E ∪H) ×Q is a transition relation.

We denote E∪H by A, and we refer to it as the set of actions. We denote a transition
(q, a, q′) of D by q

a→ q′. We write q → q′ if q
a→ q′ for some a, and we write q → if

q → q′ for some q′.

We assume finite branching: for each state q the number of pairs (a, q′) such

that q
a→ q′ is finite. We denote the elements of a nondeterministic automaton A by

QA, q̄A, EA, HA, DA, AA,
a→A. Often we use the name A for a generic nondetermin-

istic automaton; in this case, we usually omit the subscripts, writing simply Q, q̄, E,
H, D, A, and

a→. We extend this convention to allow indices and primes as well; thus,
the set of states of a nondeterministic automaton A′

i is denoted by Q′
i.

Remark 2.1. In the definition of nondeterministic automaton above, we have
imposed some restrictions that are not strictly necessary for this paper but rather
avoid unnecessary complications. The restriction on the cardinality of the sets of
states and actions is imposed to ensure that a nondeterministic automaton has at most
countably many finite execution fragments (see definition later), which simplifies the
use of measure theory later. The finite branching restriction is imposed to simplify the
construction of the tester automaton in section 4; however, the results of this paper
generalize to countable branching at the cost of adding complexity to the proofs
(cf. Remark 4.5). We have also chosen to define nondeterministic automata with a
single initial state rather than a set of initial states. Sets of initial states do not add
any technical insight, but they complicate notation slightly.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OBSERVING BRANCHING THROUGH PROBABILISTIC CONTEXTS 981

An execution fragment of a nondeterministic automaton A is a finite or infinite
sequence α = q0a1q1a2q2 · · · of alternating states and actions, starting with a state
and, if the sequence is finite, ending in a state, where each (qi, ai+1, qi+1) ∈ D. State
q0, the first state of α, is denoted by fstate(α). If α is a finite sequence, then the last
state of α is denoted by lstate(α). An execution of A is an execution fragment whose
first state is the start state q̄. We let frags(A) denote the set of execution fragments
of A and frags∗(A) the set of finite execution fragments. Similarly, we let execs(A)
denote the set of executions of A and execs∗(A) the set of finite executions.

Execution fragment α is a prefix of execution fragment α′, denoted by α ≤ α′, if
sequence α is a prefix of sequence α′. Finite execution fragment α1 = q0a1q1 · · · akqk
and execution fragment α2 can be concatenated if fstate(α2) = qk. In this case the
concatenation of α1 and α2, α1

�α2, is the execution fragment q0a1q1 · · · akα2. Given
an execution fragment α and a finite prefix α′, α �α′ (read as “α after α′”) is defined
to be the unique execution fragment α′′ such that α = α′ � α′′.

The trace of an execution fragment α of a nondeterministic automaton A, written
traceA(α), or just trace(α) when A is clear from context, is the sequence obtained
by restricting α to the set of external actions of A. For a set S of executions of a
nondeterministic automaton A, tracesA(S), or just traces(S) when A is clear from
context, is the set of traces of the executions in S. We say that β is a trace of a
nondeterministic automaton A if there is an execution α of A with trace(α) = β.
Let traces(A) denote the set of traces of A. We define the trace preorder relation
on nondeterministic automata as follows: A1 ≤T A2 iff E1 = E2 and traces(A1) ⊆
traces(A2). We use ≡T to denote the kernel of ≤T . That is, A1 ≡T A2 iff A1 ≤T A2

and A2 ≤T A1. A similar convention will be adopted to denote the kernels of other
preorder relations used in the paper.

If β ∈ A∗, then q
β
=⇒ q′ iff there exists an execution fragment α such that

fstate(α) = q, lstate(α) = q′, and trace(α) = trace(β). (Here and elsewhere, we abuse
notation slightly by extending the trace function to arbitrary sequences.) We call
q

β
=⇒ q′ a weak transition. If β is the empty sequence, then we write alternatively

q =⇒ q′. Observe that the definition of q
β
=⇒ q′ depends only on the external actions

that occur in β. We have chosen to define weak transitions for any sequence β,
including internal actions as well, for notational convenience in later definitions.

We let tr range over either transitions or weak transitions. For a transition
tr = (q, a, q′), we denote q by source(tr) and q′ by target(tr).

2.2. Composition. We define composition of nondeterministic automata by
synchronizing them on common external actions. There are several ways to do this,
but the simplest approach that is followed in several papers is to synchronize nonde-
terministic automata on common actions and impose the restriction that no internal
action of a component is an action of the other component as well. This restriction
can easily be eliminated, for example, by renaming internal actions if necessary.

Nondeterministic automata A1 and A2 are compatible if H1 ∩ A2 = A1 ∩ H2 =
∅. The (parallel) composition of compatible nondeterministic automata A1 and A2,

denoted by A1‖A2, is the nondeterministic automaton A Δ
= (Q1 × Q2, (q̄1, q̄2), E1 ∪

E2, H1 ∪H2, D), where D is the set of triples (q, a, q′) such that, for i ∈ {1, 2},

a ∈ Ai ⇒ (πi(q), a, πi(q
′)) ∈ Di and a /∈ Ai ⇒ πi(q) = πi(q

′),

where πi is the projection function on states of A defined by πi(q1, q2) = qi.
Let α be an execution fragment of A1‖A2, i ∈ {1, 2}. Then πi(α), the ith

projection of α, is the sequence obtained from α by projecting each state onto its

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

982 NANCY LYNCH, ROBERTO SEGALA, AND FRITS VAANDRAGER

ith component, and removing each action not in Ai together with its following state.
Sometimes we denote this projection by α�Ai.

Proposition 2.2. Let A1 and A2 be nondeterministic automata, with A1 ≤T

A2. Then, for each nondeterministic automaton C compatible with both A1 and A2,
A1‖C ≤T A2‖C.

2.3. Simulation relations. We define two kinds of simulation relations: for-
ward simulations, which provide a step-by-step correspondence, and weak forward
simulations, which are insensitive to the occurrence of internal steps. Namely, rela-
tion R ⊆ Q1 ×Q2 is a forward simulation (resp., weak forward simulation) from A1

to A2 iff E1 = E2 and both of the following hold:
1. q̄1 R q̄2.
2. If q1 R q2 and q1

a→ q′1, then there exists q′2 such that q2
a→ q′2 (resp.,

q2
a=⇒ q′2) and q′1 R q′2.

We write A1 ≤F A2 (resp., A1 ≤wF A2) when there is a forward simulation (resp., a
weak forward simulation) from A1 to A2. It is easy to prove that both ≤F and ≤wF

are preorders, that is, reflexive and transitive. Since all simulation relations in this
paper are forward simulations, we often omit the word “forward.”

Proposition 2.3. Let A1 and A2 be nondeterministic automata. Then
1. if A1 ≤F A2, then A1 ≤wF A2;
2. if H1 = H2 = ∅, then A1 ≤F A2 iff A1 ≤wF A2;
3. if A1 ≤wF A2, then A1 ≤T A2.

Proof. The proof is standard; for instance, see [26].

2.4. Tree-structured automata. We say that a nondeterministic automaton
is tree-structured if each state is reached via (i.e., occurs as a final state of) a unique
execution.

The unfolding of nondeterministic automaton A, denoted by Unfold(A), is the
tree-structured nondeterministic automaton B obtained from A by unfolding its tran-
sition graph into a tree. Formally,

• QB = execs∗(A),
• q̄B = q̄A,
• EB = EA,
• HB = HA, and
• DB = {(α, a, αaq) | (lstate(α), a, q) ∈ DA}.

Proposition 2.4. A ≡F Unfold(A).
Proof. See [26]. It is easy to check that the relation R, where α R q iff lstate(α) =

q, is a forward simulation from Unfold(A) to A and that the inverse relation of R is
a forward simulation from A to Unfold(A).

Proposition 2.5. A ≡T Unfold(A).
Proof. The proof follows by Proposition 2.4 and Proposition 2.3, parts 1 and

3.

3. Definitions and basic results for probabilistic automata.

3.1. Preliminaries and notation on measure theory. We recall a few basic
definitions and notation for measure theory that can be retrieved from any standard
book on the subject (e.g., [11]).

A σ-field over a set X is a set F ⊆ 2X that contains the empty set and is
closed under complement and countable union. A pair (X,F), where F is a σ-field
over X, is called a measurable space. A measure on a measurable space (X,F) is a
function μ : F → [0,∞] such that μ(∅) = 0 and μ is countably additive: for each

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OBSERVING BRANCHING THROUGH PROBABILISTIC CONTEXTS 983

countable family {Ci}i of pairwise disjoint elements of F , μ(∪iCi) =
∑

i μ(Ci). A
probability measure on (X,F) is a measure μ on (X,F) such that μ(X) = 1. A
subprobability measure on (X,F) is a measure μ on (X,F) such that μ(X) ≤ 1. A
discrete probability measure on a set X is a probability measure μ on (X, 2X). A
discrete subprobability measure on X is a subprobability measure μ on (X, 2X). We
denote the set of discrete probability measures and discrete subprobability measures
on X by Disc(X) and SubDisc(X), respectively. We denote the support of a discrete
measure μ, that is, the set of elements of X that have nonzero measure, by supp(μ).
We let δ(q) denote the Dirac measure for q, the discrete probability measure that
assigns probability 1 to {q}. Finally, if X is nonempty and finite, then U(X) denotes
the uniform distribution over X, the discrete measure that assigns probability 1/|X|
to each element of X. Given two discrete probability measures μ1, μ2 on (X, 2X) and
(Y, 2Y), respectively, we denote by μ1 × μ2 the product measure, that is, the measure
on (X × Y, 2(X×Y)) such that μ1 × μ2((x, y)) = μ1(x)μ2(y) for each x ∈ X, y ∈ Y .

Sometimes it is useful to know the probability μ of some event C, knowing that
some other event C ′ takes place. We call this the measure of C conditional on C ′

and denote it by μ(C | C ′). Such probability is defined to be 0 if μ(C ′) = 0, and
μ(C ∩ C ′)/μ(C ′) otherwise.

A function f : X → Y is said to be measurable from (X,FX) to (Y,FY) if the
inverse image of each element of FY is an element of FX , that is, for each C ∈ FY ,
f−1(C) ∈ FX . In such a case, given a measure μ on (X,FX), the function f(μ)
defined on FY by f(μ)(C) = μ(f−1(C)) for each C ∈ FY is a measure on (Y,FY) and
is called the image measure of μ under f .

Given a countable collection of measures {μi}i on (X,FX) and a countable
collection {pi}i of real numbers in [0,∞), denote by

∑
i piμi a new function μ such

that, for each element C ∈ FX , μ(C) =
∑

i piμi(C). We state a few elementary
properties.

Proposition 3.1. The following hold:

1.
∑

i piμi is a measure on (X,FX).
2. If each μi is a (sub)probability measure and

∑
i pi = 1, then

∑
i piμi is a

(sub)probability measure.
3. If f is a measurable function from (X,FX) to (Y,FY), then f(

∑
i piμi) =∑

i pif(μi).

3.2. PAs, executions, and traces. A probabilistic automaton (PA) is a tu-
ple P = (Q, q̄, E,H,D), where all components are exactly as for nondeterministic
automata, except that the following holds:

• D, the transition relation, is a subset of Q× (E ∪H) × Disc(Q).

We define A as before. Also, we use the name P for a generic PA, and we refer to its
components by writing simply Q, q̄, E, H, D, A, and

a→. We extend this convention
to allow indices and primes as well; thus, the set of states of a PA P ′

i is denoted by Q′
i.

We denote a transition (q, a, μ) by q
a→ μ. We assume finite branching: for each state

q the number of pairs (a, μ) such that q
a→ μ is finite. Given a transition tr = (q, a, μ),

we denote q by source(tr) and μ either by target(tr) or by μtr .

Thus, a PA differs from a nondeterministic automaton in that a transition leads
to a probability measure over states rather than to a single state. A nondeterministic
automaton can be viewed as a special case of a PA, where the last component of
each transition is a Dirac measure. Conversely, we can associate a nondeterministic
automaton with each PA by replacing transition relation D by the relation D′ given

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

984 NANCY LYNCH, ROBERTO SEGALA, AND FRITS VAANDRAGER

by

(q, a, q′) ∈ D′ ⇔ (∃μ)[(q, a, μ) ∈ D ∧ μ(q′) > 0].

Using this correspondence, notions such as execution fragments and traces carry over
from nondeterministic automata to PAs.1 For instance, an execution fragment of a
PA is simply an execution fragment of its associated nondeterministic automaton.
Along the same lines we write q

a→ q′ whenever there exists a measure μ such that
q

a→ μ and q′ ∈ supp(μ).
An execution fragment of a PA is the result of resolving nondeterministic as well as

probabilistic choices; however we are interested also in the outcome of the resolution of
nondeterministic choices only. We can think of resolving nondeterminism by unfolding
the transition relation of a PA and then choosing only one transition at each point.
From the formal point of view it is more convenient to define a function, called a
scheduler, that chooses transitions based on the past history (i.e., the current position
in the unfolding of the transition relation).

A scheduler for a PA P is a function σ : frags∗(P) → SubDisc(D) such that tr ∈
supp(σ(α)) implies source(tr) = lstate(α). A scheduler σ is said to be deterministic
if for each finite execution fragment α either σ(α)(D) = 0 or else σ(α) = δ(tr) (the
Dirac measure for tr) for some tr ∈ D. A scheduler σ is memoryless if it depends
only on the last state of its argument, that is, for each pair α1, α2 of finite execution
fragments, if lstate(α1) = lstate(α2), then σ(α1) = σ(α2).

Informally, σ(α) describes the rule for choosing a transition after α has occurred.
The rule itself may be randomized. Since σ(α) is a subprobability measure, it is pos-
sible that with some nonzero probability no transition is chosen, which corresponds
to terminating the computation (with what in nondeterministic automata is called
a finite execution fragment). Deterministic schedulers are not allowed to use ran-
domization in their choices, while memoryless schedulers are not allowed to look at
the past history in their choices. Deterministic and memoryless schedulers are easier
to analyze compared to general schedulers, and several properties (e.g., reachability)
can be studied by referring to deterministic memoryless schedulers only. Note that
a deterministic memoryless scheduler can be represented alternatively as a partial
function from Q to D.

A scheduler σ and a discrete probability measure over states μ induce a measure
ε on the σ-field generated by cones of execution fragments as follows. If α is a finite
execution fragment, then the cone of α is defined by Cα = {α′ ∈ frags(P) | α ≤ α′}.
The measure ε of a cone Cα is defined to be μ(q) if α = q for some state q ∈ Q, and
if α is of the form α′a′q′, it is defined by the recursive equation

ε(Cα) = ε(Cα′)
∑

tr∈D(a′)

σ(α′)(tr)μtr (q
′),(1)

where D(a′) denotes the set of transitions of D that are labeled by a′. Roughly
speaking, the measure of a cone Cα equals the probability of doing α when using σ
to resolve nondeterminism. Standard measure theoretical arguments ensure that ε is
well defined. We call the measure ε a probabilistic execution fragment of P, and we
say that ε is generated by σ and μ. We also denote by εσ,μ the probabilistic execution
fragment generated by σ and μ.

1The correspondence between nondeterministic automata and PAs is worked out in great detail
in [4].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OBSERVING BRANCHING THROUGH PROBABILISTIC CONTEXTS 985

Proposition 3.2. Let σ be a scheduler and μ be a discrete probability measure
over states. Then fstate(εσ,μ) = μ.

Proof. The proof follows immediately by definition of εσ,μ after observing that
the inverse image under fstate of a state q is the set Cq.

We call the measure fstate(ε) the first state of ε. If fstate(ε) is the Dirac measure
over the start state q̄, then ε is called a probabilistic execution. We often write εσ,q
for εσ,δ(q), and we say that εσ,q is generated by σ and q.

Example 3.1 (the cone construction is rich). The cone construction produces a
very rich set of measurable events. The event “action a occurs at least once,” that is,
the set of execution fragments where an action a occurs at least once, is measurable
since it can be expressed as a union of cones and there are at most countably many
cones in a PA. Similarly the event “action a occurs at least n times” is measurable
for any natural number n. The event “action a occurs exactly n times” is measurable
since it is the intersection of “action a occurs at least n times” with the complement
of “action a occurs at least n + 1 times.” Also the event “action a occurs finitely
(infinitely) many times” is measurable since it is the countable union (intersection) of
“action a occurs exactly (at least) n times.” Similar arguments hold for occurrences
of states rather than actions.

Any singleton set is measurable since for an infinite execution fragment α the set
{α} is the intersection of the cones of all its finite prefixes, while for a finite execution
fragment α the set {α} is the intersection of Cα with the complement of the union of
the cones of the extensions of α. Thus, also the set of finite execution fragments is
measurable, and the set of infinite execution fragments is measurable as well.

Observe that the probability of a finite execution fragment α is the probability
that α occurs and then the computation terminates. Thus, the probability of the set of
finite execution fragments represents the probability of termination in a probabilistic
execution fragment. This leads to the idea that a probabilistic execution fragment
should be called finite if the probability of the set of finite execution fragments is 1.

We now show how to obtain a probability measure over traces from a probabilistic
execution fragment. The measurable space is the pair (E∗∪Eω,F), where F is the σ-
field generated by cones of traces. More precisely, the cone of a finite trace β is defined
by Cβ = {β′ ∈ E∗ ∪Eω | β ≤ β′}, where ≤ denotes the prefix ordering on sequences.
It is easy to check that the trace function is measurable since the inverse image of a
cone Cβ is a union of cones, specifically those cones Cα such that β ≤ trace(α), and
since there are countably many finite execution fragments in a PA.

Given a probabilistic execution fragment ε, we define the trace distribution of
ε, tdist(ε), to be the image measure of ε under trace. We denote the set of trace
distributions of probabilistic executions of a PA P by tdists(P). We define the trace
distribution preorder relation on PAs by P1 ≤D P2 iff E1 = E2 and tdists(P1) ⊆
tdists(P2).

An example of a measurable set of traces that is used extensively throughout the
paper is the set E∗a(E∗∪Eω) of traces in which a specific action a occurs. We denote
this set by �a. The inverse image under trace of �a can be expressed as a disjoint
union of cones of executions, namely the cones of the minimal executions with trace
in �a. Thus, we have the following proposition, whose elementary proof is omitted.

Proposition 3.3. Let η be the trace distribution of a probabilistic execution ε
of a PA P, and let Θa be the set of finite executions of P with a single occurrence of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

986 NANCY LYNCH, ROBERTO SEGALA, AND FRITS VAANDRAGER

action a whose last transition is labeled by a. Then

(2) η(�a) =
∑
α∈Θa

ε(Cα).

3.3. Combined, weak, and hyper transitions. We define three new kinds of
transitions that play crucial roles in the paper. Informally, a combined transition is a
convex combination of transitions that are labeled by the same action, a weak com-
bined transition abstracts from internal computation and is obtained by performing
several, possibly zero, combined transitions, while a hyper-transition is a generaliza-
tion of combined transitions and weak combined transitions where the starting point
is a measure over states rather than a single state.

3.3.1. Combined transitions. Let {q a→ μi}i∈I be a collection of transitions
of a PA P, and let {pi}i∈I be a collection of probabilities such that

∑
i∈I pi = 1. Then

the triple (q, a,
∑

i∈I piμi) is called a combined transition of P.

3.3.2. Weak transitions. Consider a probabilistic execution fragment ε of a
PA P, with first state δ(q), that assigns probability 1 to the set of all finite execution
fragments with trace trace(β) for some β ∈ A∗. Let μ be the discrete measure on Q
defined by μ(q′) = ε({α | lstate(α) = q′}). Then q

β
=⇒ μ is a weak combined transition

of P. We refer to ε as a representation of q
β
=⇒ μ. Observe that the measure μ can be

seen alternatively as the image measure of ε under lstate. This is an abuse of notation
because lstate is not defined for infinite execution fragments; however, since ε assigns
measure 1 to the set of finite execution fragments, we can extend the definition of
lstate to infinite execution fragments for this purpose: for instance, we define the last
state of any infinite execution fragment to be q̄.

The notion of weak combined transition that we have just defined for PAs is
a conservative extension of the corresponding notion defined for nondeterministic
automata. Indeed, it is routine to check that whenever q

β
=⇒ q′ is a weak transition

of a nondeterministic automaton A, then q
β
=⇒ δ(q′) is a weak combined transition

of A viewed as a PA.
Proposition 3.4. Let {tr i = (q, a, μi)}i∈I be a collection of weak combined

transitions of a PA P, and let {pi}i∈I be probabilities such that
∑

i∈I pi = 1. Then
(q, a,

∑
i∈I piμi), written

∑
i∈I pitr i, is a weak combined transition of P.

Proof. For each i ∈ I, let εi be a representation of tr i, and σi be a scheduler that,
together with state q, induces εi. We omit the index set I in the rest of the proof. For

each finite execution fragment α, let N(α)
Δ
=

∑
i piεi(Cα). Define a new scheduler σ

as follows:

σ(α) =

⎧⎨
⎩

∑
i

piεi(Cα)

N(α)
σi(α) if N(α) > 0,

arbitrary otherwise.

Informally, the weight that σ(α) gives to the choice σi(α) is the normalized probability
with which σi contributes to the generation of α. Let ε be the probabilistic execution
fragment induced by σ and q. Let α be a finite execution fragment of P. We first prove
by induction on the length of α that ε(Cα) = N(α). The base case is trivial since
ε(Cq) = 1 and for each i, εi(Cq) = 1, which implies N(q) =

∑
i piεi(Cq) = 1; similarly,

for each state q′ �= q, ε(Cq′) = 0 and for each i, εi(Cq′) = 0. For the inductive step,
let α = α′a′q′. If ε(Cα′) = 0, then, by induction, N(α′) =

∑
i piεi(Cα′) = 0, which

implies that for each i, piεi(Cα′) = 0. By the definition of the measure of a cone,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OBSERVING BRANCHING THROUGH PROBABILISTIC CONTEXTS 987

in (1), ε(Cα) = 0. Furthermore, for each i, if pi = 0, then piεi(Cα) = 0 trivially, and
if pi > 0, then εi(Cα′) = 0, and by definition of measure of a cone, in (1), εi(Cα) = 0,
which implies piεi(Cα) = 0. Thus, N(α) = 0 as needed. If ε(Cα′) > 0, then, by the
definition of the measure of a cone, in (1),

ε(Cα) = ε(Cα′)
∑

tr∈D(a′)

σ(α′)(tr)μtr (q
′).

By the induction hypothesis, N(α′) > 0. Thus, by expanding σ(α′)(tr) with the
definition of σ, we obtain

ε(Cα) = ε(Cα′)
∑

tr∈D(a′)

(∑
i

piεi(Cα′)

N(α′)
σi(α

′)(tr)

)
μtr (q

′).

By standard algebraic manipulations (exchanges of sums and rearrangements of con-
stants) we obtain

ε(Cα) =
ε(Cα′)

N(α′)

∑
i

∑
tr∈D(a′)

piεi(Cα′)σi(α
′)(tr)μtr (q

′).

By induction, ε(Cα′) = N(α′). Thus, by simplifying (removing) the leftmost term
and rearranging constants, we obtain

ε(Cα) =
∑
i

pi

⎛
⎝εi(Cα′)

∑
tr∈D(a′)

σi(α
′)(tr)μtr (q

′)

⎞
⎠ .

Finally, by the definition of the measure of a cone, in (1), we get the desired equation

ε(Cα) = N(α) =
∑
i

piεi(Cα).

Thus, ε =
∑

i piεi. Since each εi assigns probability 1 to the set of finite execution
fragments of P with trace trace(a), then so does ε. Furthermore, by Proposition 3.1.3,
lstate(ε) =

∑
i pi lstate(εi). That is, ε is a representation of a weak combined transition

(q, a,
∑

i pi lstate(εi)), which, since lstate(εi) = μi, is the triplet (q, a,
∑

i pi μi). Hence,∑
i pitr i is a weak combined transition of P.

3.3.3. Hyper-transitions. Let P be a PA with a ∈ A, and let μ ∈ Disc(Q).

For each q ∈ supp(μ), suppose that q
a→ μq is a combined transition of P. Let μ′ be∑

q∈supp(μ) μ(q)μq. Then μ
a→ μ′ is called a hyper-transition of P. Also, let β ∈ A∗,

and for each q ∈ supp(μ), suppose that q
β
=⇒ μq is a weak combined transition of P.

Let μ′ be
∑

q∈supp(μ) μ(q)μq. Then μ
β
=⇒ μ′ is called a weak hyper-transition of P.

We now prove two technical properties of weak hyper-transitions. The first prop-
erty gives an alternative definition of weak hyper-transition and is used to prove the
second property; the second property states that weak hyper-transitions can be con-
catenated. It will be used in section 6.2.

Proposition 3.5. There is a weak hyper-transition μ
β
=⇒ μ′ iff there is a

scheduler σ such that εσ,μ assigns probability 1 to the set of finite execution fragments
with trace β, and lstate(εσ,μ) = μ′. We say that εσ,μ represents μ

β
=⇒ μ′.

Proof. Let {qi}I be an enumeration of the states in supp(μ). We prove the two
implications separately.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

988 NANCY LYNCH, ROBERTO SEGALA, AND FRITS VAANDRAGER

⇒ For each i let σi be a scheduler such that εσi,qi represents qi
β
=⇒ μi and

μ′ =
∑

I μ(qi)μi. Let σ be a new scheduler defined as follows:

σ(α) =

{
σi(α) if fstate(α) = qi for some i ∈ I,

0 otherwise.

We first prove that εσ,μ =
∑

i μ(qi)εσi,qi by demonstrating that εσ,μ(Cα) =∑
i μ(qi)εσi,qi(Cα) for each finite execution fragment α. The proof is by in-

duction on the length of α. For the base case, let α = q for some state q.
By the definition of the measure of a cone, εσ,μ(Cα) = μ(q), and, for each i,
εσi,qi(Cα) is 1 if q = qi and 0 otherwise. Thus, εσ,μ(Cq) =

∑
i μ(qi)εσi,qi(Cq)

trivially. For the inductive step, let α be α′aq. If fstate(α′) �∈ supp(μ),
then trivially εσ,μ(Cα) = 0 and, for each i, εσi,qi(Cα) = 0. Thus, εσ,μ(Cα) =∑

i μ(qi)εσi,qi(Cα). If fstate(α′) ∈ supp(μ), then let j be the index of
fstate(α′). By the definition of the measure of a cone, εσ,μ(Cα) = εσ,μ(Cα′)∑

tr∈D(a) σ(α′)(tr)μtr (q). By induction and the definition of σ,

εσ,μ(Cα) =
∑
i

μ(i)εσi,qi(Cα′)
∑

tr∈D(a)

σj(α
′)(tr)μtr (q).

Since only εσj ,qj (Cα′) may be different from 0, we get

εσ,μ(Cα) = μ(qj)εσj ,qj (Cα′)
∑

tr∈D(a)

σj(α
′)(tr)μtr (q) = μ(qj)εσj ,qj (Cα).

For the same reason,
∑

i μ(qi)εσi,qi(Cα) = μ(qj)εσj ,qj (Cα). Thus, εσ,μ(Cα) =∑
i μ(i)εσi,qi(Cα), as needed.

Since each εσi,qi assigns probability 1 to the set of finite execution fragments
with trace β, then also εσ,μ assigns probability 1 to the set of finite execution
fragments with trace β. Furthermore, by Proposition 3.1.3, lstate(εσ,μ) =∑

i μ(qi)lstate(εσi,qi) = μ′. Thus, lstate(εσ,μ) represents μ
β
=⇒ μ′.

⇐ Let σ be a scheduler that represents μ
β
=⇒ μ′. For each i, let σi = σ. Observe

that for each finite execution fragment α,

εσ,μ(Cα) = μ(fstate(α))εσ,fstate(α)(Cα).

Thus, as in the previous case, εσ,μ =
∑

i μ(i)εσi,qi . Let qi
β
=⇒ μi be the

weak transition represented by εσi,qi . Since μ′ = lstate(εσ,μ) and for each i,
μi = lstate(εσi,qi), by Proposition 3.1.3, μ′ =

∑
i μ(qi)μi. This suffices.

Proposition 3.6. Suppose that μ1
β1
=⇒ μ2 and μ2

β2
=⇒ μ3 are weak hyper-

transitions of a PA P. Then μ1
β1β2
=⇒ μ3 is a weak hyper-transition of P.

Proof. Let ε1 and ε2 be the probabilistic execution fragments that represent
μ1

β1
=⇒ μ2 and μ2

β2
=⇒ μ3, respectively, and let σ1 and σ2 be the schedulers that

generate ε1 and ε2, respectively. Let N(α)
Δ
= ε1(Cα)+

∑
α′<α ε1(α

′)ε2(Cα�α′ | Cα′�α′),
where we recall that ε2(Cα�α′ | Cα′�α′) denotes the probability of Cα�α′ conditional
on Cα′�α′ . Define a new scheduler σ as follows:

(3) σ(α) =

{
ε1(Cα)σ1(α)+

∑
α′≤α ε1(α

′)ε2(Cα�α′ |Cα′�α′)σ2(α�α
′)

N(α) if N(α) > 0,

0 otherwise.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OBSERVING BRANCHING THROUGH PROBABILISTIC CONTEXTS 989

Informally, σ is a scheduler that represents a concatenation of ε1 and ε2. A finite
execution fragment α can be reached in the concatenation of ε1 and ε2 either because
ε1 reaches it or because ε1 terminates at a prefix of α from which ε2 continues. The
scheduler σ from α should behave according to σ1 whenever α is reached in ε1, and
according to σ2, with the appropriate argument, whenever α is reached in ε2. The
schedules from α must be weighted by the probabilities with which ε1 and ε2 lead
to α. The term N(α) is a normalization factor whose computation is just technical.
In the formal proof we have to show that σ is indeed a scheduler (in other words,
the value of N is correct), and that σ generates the representation of μ1

β1β2
=⇒ μ3.

These proofs are mainly detailed algebraic manipulations. An interesting point of
the proof is (4), which expresses the probability of a finite execution fragment in the
concatenation of ε1 and ε2 in terms of the probabilities of finite execution fragments
of ε1 and ε2.

We show that σ is a scheduler. That is, for each finite execution fragment α,
σ(α)(D) ≤ 1, or equivalently, ε1(Cα)σ1(α)(D)+

∑
α′≤α ε1(α

′)ε2(Cα�α′ | Cα′�α′)σ2(α�
α′)(D) ≤ N(α), where the left-hand term is the numerator of the definition of σ
applied to D. Since σ2 is a scheduler, we know that σ2(α � α′)(D) ≤ 1. Also, observe
that ε1(Cα)σ1(α)(D) = ε1(Cα − {α}). Thus, it suffices to show that ε1(Cα − {α}) +∑

α′≤α ε1(α
′)ε2(Cα�α′ | Cα′�α′) ≤ N(α). We separate from the sum the term with

α′ = α and observe that ε2(Cα�α | Cα�α) ≤ 1. The new inequality, which suffices for
our purposes, is ε1(Cα − {α}) + ε1({α}) +

∑
α′<α ε1(α

′)ε2(Cα�α′ | Cα′�α′) ≤ N(α).
However, since ε1(Cα−{α})+ε1({α}) = ε1(Cα), the inequality above is N(α) ≤ N(α),
which is trivially true.

Let ε be the probabilistic execution fragment generated by σ and μ1. We show
that ε represents μ1

β1β2
=⇒ μ3 in three steps. First we show by induction on the length

of a finite execution fragment α that ε(Cα) = N(α). The base case is trivial since
N(q) = ε1(Cq) by definition of N , and ε1(Cq) = ε(Cq) = μ1(q) by definition of ε1 and
ε since both measures are generated by μ1. For the inductive step, let α = α′a′q′. If
ε(Cα′) = 0, then by the definition of the measure of a cone, in (1), ε(Cα) = 0. We
show that N(α) = 0 as well. By induction, since ε(Cα′) = 0, N(α′) = 0. By definition
of N , ε1(Cα′) = 0, and ε1(α

′′)ε2(Cα′�α′′ | Cα′′�α′′) = 0 for each α′′ < α′. Then, by
the definition of a conditional measure and of a measure of a cone, ε1(Cα) = 0 and
ε1(α

′′)ε2(Cα�α′′ | Cα′′�α′′) = 0 for each α′′ < α′. By ε1(Cα′) = 0, also ε1(α
′) = 0, and

hence ε1(α
′)ε2(Cα�α′ | Cα′�α′) = 0. We have shown that all the terms of the definition

of N(α) are 0, and thus N(α) = 0 as needed. If ε(Cα′) > 0, then by expanding σ with
its definition in (1), the definition of the measure of a cone, we get that ε(Cα)/ε(Cα′)
equals

∑
tr∈D(a)

ε1(Cα′)σ1(α
′)(tr) +

∑
α′′≤α′ ε1(α

′′)ε2(Cα′�α′′ | Cα′′�α′′)σ2(α
′ � α′′)(tr)

N(α′)
μtr (q

′).

By induction, ε(Cα′) = N(α′), and thus the two terms can be simplified in the equa-
tion above. Then, by rearranging terms algebraically, we get

ε(Cα) =
∑

tr∈D(a)

ε1(Cα′)σ1(α
′)(tr)μtr (q

′)

+
∑

α′′≤α′

ε1(α
′′)

∑
tr∈D(a)

ε2(Cα′�α′′ | Cα′′�α′′)σ2(α
′ � α′′)(tr)μtr (q

′).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

990 NANCY LYNCH, ROBERTO SEGALA, AND FRITS VAANDRAGER

By the definition of the measure of a cone, the first term above is ε1(Cα). With a simi-
lar argument, after applying the definition of a conditional measure and distinguishing
the cases where ε2(Cα′′�α′′) = 0, the second term above is

∑
α′′≤α′ ε1(α

′′)ε2(Cα�α′′ |
Cα′′�α′′). Thus, we get

ε(Cα) = ε1(Cα) +
∑

α′′≤α′

ε1(α
′′)ε2(Cα�α′′ | Cα′′�α′′).

Then it is enough to observe that the right-hand side of the equation above is N(α)
since α′′ ≤ α′ iff α′′ < α.

Second we show that for each finite execution fragment α,

(4) ε(α) =
∑
α′≤α

ε1(α
′)ε2(α � α′ | Cα′�α′).

Observe that, by the definition of the cone σ-field, ε(α) = ε(Cα)−
∑

a∈A,q∈Q ε(Cαaq).
By replacing the ε measures of cones with the definition of N in the equation above,
we get

ε(α) = ε1(Cα) +
∑
α′<α

ε1(α
′)ε2(Cα�α′ | Cα′�α′)

−
∑

a∈A,q∈Q

⎛
⎝ε1(Cαaq) +

∑
α′<αaq

ε1(α
′)ε2(Cαaq�α′ | Cα′�α′)

⎞
⎠ .

We now use the terms ε1(Cα) and −
∑

a∈A,q∈Q ε1(Cαaq) in the equation above to
derive ε1(α), and similarly we use part of the other two terms to derive the following:

ε(α) = ε1(α) +
∑
α′<α

ε1(α
′)ε2(α � α′ | Cα′�α′) −

∑
a∈A,q∈Q

ε1(α)ε2(Cαaq�α | Cα�α).

Observe that the third term in the equation above is ε1(α)ε2((Cα�α−{α�α}) | Cα�α).
Thus, by adding and subtracting the term ε1(α)ε2(α � α | Cα�α) and rearranging
algebraically, we get

ε(α) =
∑
α′≤α

ε1(α
′)ε2(α � α′ | Cα′�α′) + ε1(α) (1 − ε2(Cα�α | Cα�α)) .

If ε1(α) = 0, then (4) follows trivially. If ε1(α) > 0, then, since ε1 represents μ1
β1
=⇒

μ2, μ2(q) > 0, where q is lstate(α). Since ε2 is generated by σ2 and μ2, ε2(Cq) =
μ2(q) > 0. By definition of �, α � α = q, and thus ε2(Cα�α) > 0. By the definition of
the conditional measure, ε2(Cα�α | Cα�α) = 1, which leads again to (4).

Third we show that ε represents μ1
β1β2
=⇒ μ3. Let α be such that ε(α) > 0.

By (4) there exists a prefix α′ of α such that ε1(α
′) > 0 and ε2(α

′ � α) > 0. Then
trace(α′) = β1 and trace(α � α′) = β2. Thus, trace(α) = β1β2. Let μ be lstate(ε).
We are left to show that μ = μ3. Consider a state q of Q. By the definition of an
image measure and (4), μ(q) =

∑
α|lstate(α)=q

∑
α′≤α ε1(α

′)ε2(α � α′ | Cα′�α′). The
sum above can be restructured as follows:

μ(q) =
∑
α′

∑
α|fstate(α)=lstate(α′),lstate(α)=q

ε1(α
′)ε2(α | Cα′�α′).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OBSERVING BRANCHING THROUGH PROBABILISTIC CONTEXTS 991

b c

a

c

d

1/2a 1/2

feb

a

s3 t5

t3

s1

s2

s4

t2

t4

t1

P2 CP1

Fig. 3.1. Trace distribution inclusion is not preserved by composition (without communication).

We further partition the sums over lstate(α′), thus getting

μ(q) =
∑
q′∈Q

∑
α′|lstate(α′)=q′

∑
α|fstate(α)=q′,lstate(α)=q

ε1(α
′)ε2(α | Cq′).

Observe that, since μ2 = lstate(ε1), if μ2(q
′) = 0, then there is no α′ with last state q′

such that ε1(α
′) > 0. Thus we can restrict the first sum to those q′ such that μ2(q

′) >
0. Also, if μ2(q

′) > 0, we have already concluded before that ε2(Cα′�α′) = μ2(q
′).

Thus, we get

μ(q) =
∑

q′∈Q|μ2(q′)>0

∑
α′|lstate(α′)=q′

∑
α|fstate(α)=q′,lstate(α)=q

ε1(α
′)ε2(α)/μ2(q

′).

Observe that the two inner sums can be exchanged. By definition of μ2 it follows that∑
α′|lstate(α′)=q′ ε1(α

′) = μ2(q
′). Thus, we get

μ(q) =
∑

q′∈Q|μ2(q′)>0

∑
α|fstate(α)=q′,lstate(α)=q

ε2(α).

Following the same argument that we used to restrict the sum over q′, we can remove
such restriction, and thus we can remove the most external sum, leading to μ(q) =∑

α|lstate(α)=q ε2(α), which is the definition of μ3(q).

3.4. Composition. Two PAs, P1 and P2, are compatible if H1∩A2 = A1∩H2 =
∅. The (parallel) composition of two compatible PAs P1 and P2, denoted by P1‖P2,
is the PA P = (Q1 ×Q2, (q̄1, q̄2), E1 ∪ E2, H1 ∪H2, D), where D is the set of triples
(q, a, μ1 × μ2) such that, for i ∈ {1, 2},

a ∈ Ai ⇒ (πi(q), a, μi) ∈ Di and a /∈ Ai ⇒ μi = δ(πi(q)).

Let ε be a probabilistic execution (fragment) of P1‖P2 and let i ∈ {1, 2}. Define πi(ε),
the ith projection of ε, to be the image measure under πi of ε. It is easy to verify that
the projection function is measurable. When convenient, we denote a projection by
ε�Pi, where Pi is the PA that appears in the ith position.

Proposition 3.7. Let P1 and P2 be compatible PAs, and let ε be a probabilistic
execution (fragment) of P1‖P2. Then for each i ∈ {1, 2}, πi(ε) is a probabilistic
execution (fragment) of Pi.

Proof. The proof follows by Propositions 4.3.4 and 4.3.5 of [32].
The trace distribution preorder is not preserved by composition [34, 37], as is

shown by the following example.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

992 NANCY LYNCH, ROBERTO SEGALA, AND FRITS VAANDRAGER

1/2 1/2

d

e, f

feb c cb

a aa
e, f

e, f e, f

e, f

e, f

e, fe, f

e, f

P2 CP1

Fig. 3.2. Trace distribution inclusion is not preserved by composition (with communication).

Example 3.2 (failure of compositionality). Consider the two (nondeterministic)
automata P1 and P2 of Figure 3.1. The two automata are trace equivalent, and it is
easy to see that they are also trace distribution equivalent. Now consider the com-
positions P1‖C and P2‖C, where C is the PA of Figure 3.1 and we assume that the
actions of C are not shared with P1 and P2. It is possible to build a probabilistic
execution of P1‖C as follows: first a is scheduled followed by d; then e or f is sched-
uled, depending on the outcome state of the transition labeled by d; finally, b or c
is scheduled, depending on whether e or f was scheduled. Formally, we consider the
probabilistic execution induced by the deterministic memoryless scheduler specified
by the following partial function, where a transition is denoted by the unique action
labeling it:

Q1 QC DP1‖C
s1 t1 a
s2 t1 d
s2 t2 e
s2 t3 f
s2 t4 b
s2 t5 c

Thus, in the resulting trace distribution there is a total correlation between e, b
and f, c, respectively. The same trace distribution cannot be obtained from P2‖C
because after scheduling the transition labeled by a we are already bound to b or c,
and thus the occurrence of b or c cannot be correlated to e or f in this case.

Example 3.2 may appear pathological since, in the probabilistic execution of P1‖C
that correlates the choices between e and f and between b and c, a nondeterministic
choice of P1 is resolved based on information that is not available to P1. This may lead
us to propose a naive solution to the nonpreservation of trace distribution inclusion
by parallel composition, where we require that each PA in a parallel composition be
able to resolve its nondeterministic choices based on local knowledge only. However,
a more elaborate example shows that this naive idea also does not work.

Example 3.3 (failure of compositionality). Consider the two automata P1 and
P2 of Figure 3.2, which are essentially the automata of Example 3.2 where self-loop
transitions labeled by e and f are added to each state. In this case the context C
synchronizes with P1 and P2 on actions e and f , and P1 is able to learn which of e
or f occurs, thus determining the correlation with b and c based on local knowledge
only.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OBSERVING BRANCHING THROUGH PROBABILISTIC CONTEXTS 993

The solution of resolving nondeterminism based on local knowledge is adopted in
[10] for a probabilistic extension of reactive modules; however, the idea of [10] cannot
be extended easily to PAs because of key structural differences in the models: in PAs
there is a total interleaving of the transitions taken by different PAs in a parallel
composition, while in probabilistic reactive modules there are several independent
atoms that are not forced to interleave. A direct adaptation of the idea of [10] to
PAs would require drastic modifications of the model that go beyond the scope of this
paper: transitions would have to be labeled by sets of actions and be structured in
such a way that each action affects different parts of the state.

An alternative approach, followed in [32] and adopted in this paper, consists
of defining a new trace distribution precongruence relation, denoted by ≤DC , as the
coarsest precongruence (for parallel composition) that is included in the trace distribu-
tion preorder ≤D, and finding alternative characterizations of ≤DC . It is known from
[32] that there exists a simple context, called the principal context, that is sufficiently
powerful to distinguish all PAs that are not in the trace distribution precongruence
relation; alternatively, a testing scenario is proposed in [33].

In this paper we characterize ≤DC in terms of probabilistic simulation relations.
Another simple alternative characterization of ≤DC that is useful for our study is
given by the following proposition.

Proposition 3.8. Let P1 and P2 be PAs. Then P1 ≤DC P2 iff for every PA C
that is compatible with both P1 and P2, P1‖C ≤D P2‖C.

Proof. Define relation � such that P1 � P2 iff for every PA C that is compatible
with both P1 and P2, P1‖C ≤D P2‖C.

Let P1 ≤DC P2 and let C be a PA compatible with both P1 and P2. Since ≤DC

is a precongruence by definition, then P1‖C ≤DC P2‖C. Since, again by definition,
≤DC is included in ≤D, then P1‖C ≤D P2‖C. Thus, P1 � P2, which implies that
≤DC is included in �.

Conversely, observe that � is reflexive and transitive, and thus a preorder relation.
Observe also that, by using a trivial context C with no external actions and no tran-
sitions, � is included in ≤D. Finally, using the associativity of parallel composition,
observe that � is preserved by parallel composition, and thus is a precongruence.
This means that � is a precongruence included in ≤D. Since ≤DC is the coarsest
precongruence included in ≤D, we get that � is included in ≤DC .

3.5. Simulation relations. The definitions of forward simulation and weak
forward simulation in section 2 can be extended naturally to PAs [34]. However,
Segala has shown [31] that the resulting simulations are not complete for ≤DC , and has
defined new candidate simulations. These new simulations relate states to probability
measures on states.

In order to define the new simulations formally, we need two new concepts. First
we show how to lift a relation between sets to a relation between measures over
sets [18]. Let R ⊆ X × Y . The lifting of R is a relation R′ ⊆ Disc(X) × Disc(Y)
such that μX R′ μY iff there is a function w : X × Y → [0, 1] that satisfies the
following:

1. If w(x, y) > 0, then x R y.
2. For each x ∈ X,

∑
y∈Y w(x, y) = μX(x).

3. For each y ∈ Y ,
∑

x∈X w(x, y) = μY (y).
We abuse notation slightly and denote the lifting of a relation R by R as well. Second,
we define a flattening operation that converts a measure μ in Disc(Disc(X)) into a
measure flatten(μ) in Disc(X). Namely, we define flatten(μ) =

∑
ρ∈supp(μ) μ(ρ)ρ.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

994 NANCY LYNCH, ROBERTO SEGALA, AND FRITS VAANDRAGER

s0

s1

s2

s6

s5

s4

s3 s

s

s

s

7

8

9

10

a

b

c

d

τ

τ

τ

τ

τ

τ

1/2

1/2

1/2

1/2

1/2

1/2

’

’

’

’ ’

’

’

’

’

7

8

9

10

a

b

c

d

τ

τ

τ

τ

1/4

1/4

1/4

1/4

0

3

4

5

6

s

s

s

s

s

s

s

s

s
P1 P2

Fig. 3.3. A forward probabilistic simulation between two PAs.

We now define simulations for PAs. A relation R ⊆ Q1×Disc(Q2) is a probabilistic
forward simulation (resp., weak probabilistic forward simulation) from PA P1 to PA
P2 iff E1 = E2 and both of the following hold:

1. q̄1 R δ(q̄2).

2. For each pair q1, μ2 such that q1 R μ2 and each transition q1
a→ μ′

1, there

exists a measure ξ′2 ∈ Disc(Disc(Q2)) such that μ′
1 R ξ′2 and such that μ2

a→
flatten(ξ′2) (resp., μ2

a=⇒ flatten(ξ′2)) is a hyper-transition (resp., a weak
hyper-transition) of P2.

We write P1 ≤PF P2 (resp., P1 ≤wPF P2) whenever there is a probabilistic forward
simulation (resp., a weak probabilistic forward simulation) from P1 to P2.

Example 3.4 (forward probabilistic simulation). Figure 3.3 gives an example of
two PAs that are in the kernel of probabilistic forward simulation. However, there
would be no simulation from P1 to P2 if we did not allow states to be related to
measures over states. The probabilistic forward simulation R from P1 to P2 relates
each state of P1 with the Dirac measure over its primed version of P2, relates s1

with the uniform measure over s′3 and s′4, and relates s2 with the uniform measure
over s′5 and s′6. The transition from s0 can be simulated from s′0 by scheduling the
only transition enabled. Indeed, the target measure U(s′3, s

′
4, s

′
5, s

′
6) is the flattening of

U(U(s′3, s
′
4),U(s′5, s

′
6)), and it is easy to check that U(s1, s2) R U(U(s′3, s

′
4),U(s′5, s

′
6)).

Note that a forward simulation between nondeterministic automata is a proba-
bilistic forward simulation between the two automata viewed as PAs, as described
next.

Proposition 3.9. Let A1 and A2 be nondeterministic automata. Then
1. A1 ≤F A2 iff A1 ≤PF A2, and
2. A1 ≤wF A2 iff A1 ≤wPF A2.

Proof. The left-to-right inclusions are easy since, given a (weak) forward simula-

tion R from A1 to A2, it is routine to check that the relation R′ Δ
= {(q1, δ(q2)) | q1 R q2}

is a (weak) probabilistic forward simulation from A1 to A2.
For the converse implication, let R be a (weak) probabilistic forward simulation

from A1 to A2. Define a relation R′ Δ
= {(q1, q2) | ∃μq1 R μ, q2 ∈ supp(μ)}. We show

that R′ is a (weak) forward simulation from A1 to A2.
The start condition is trivial since q̄1 R δ(q̄2), and thus q̄1 R′ q̄2. For the step

condition, let q1 R′ q2, and let q1
a→ q′1. By the definition of R′, there exists a measure

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OBSERVING BRANCHING THROUGH PROBABILISTIC CONTEXTS 995

μ such that q1 R μ and q2 ∈ supp(μ). Since R is a (weak) forward simulation,

there exists a hyper-transition μ
a→ μ′ (a weak hyper-transition μ a=⇒ μ′), where

μ′ is the flattening of some measure μ′′ such that δ(q′1) R μ′′. By the definition of

hyper-transition, there is a combined transition q2
a→ μ2 (a weak combined transition

q2
a=⇒ μ2) such that supp(μ2) ⊆ supp(μ′). For the strong case, let q2

a→ q′2 be one

of the transitions of D2 that are combined in q2
a→ μ2. Then, q′2 ∈ supp(μ2). For

the weak case, consider a scheduler σ that generates q2
a=⇒ μ2, and build a new

scheduler σ′ that on input α stops (does not return any transition) if σ(α) stops with
some nonzero probability and chooses any transition in supp(σ(α)) that reduces the
distance from a stopping point otherwise. This leads to a weak transition q2

a=⇒ q′2,
where q′2 ∈ supp(μ2). We now show that q′1 R′ q′2, which suffices. Since q′2 ∈ supp(μ2),
and since supp(μ2) ⊆ supp(μ′), then q′2 ∈ supp(μ′). Since μ′ = flatten(μ′′), then q′2
is also in the support of some measure ρ ∈ supp(μ′′). Thus, q′1 R ρ, and, by the
definition of R′, q′1 R′ q′2, as needed.

Proposition 3.10. Let P1 and P2 be PAs. Then the following hold:
1. If P1 ≤PF P2, then P1 ≤wPF P2.
2. If H1 = H2 = ∅, then P1 ≤PF P2 iff P1 ≤wPF P2.
3. If P1 ≤wPF P2, then P1 ≤DC P2.

Proof. The first item follows from the fact that a combined transition is a special
case of a weak combined transition; the second item follows from the fact that in the
absence of internal actions a weak combined transition is a combined transition. The
proof of the third item is quite involved, and we refer the reader to Proposition 8.7.1
of [32]. The main idea is to use the weak probabilistic forward simulation from P1

to P2 to build, for each probabilistic execution of P1, a corresponding probabilistic
execution of P2 with the same trace distribution.

3.6. Tree-structured PAs. A path of a PA P is a finite sequence γ = q0a1

μ1q1a2μ2q2 . . . qn of alternating states, actions, and distribution over states, starting

with the start state of P such that for each nonfinal i, qi
ai+1→ μi+1 and qi+1 ∈

supp(μi+1). We write lstate(γ) to denote qn and paths(P) for the set of all paths
of P. We say that P is tree-structured if each state is reached via a unique path.
Tree-structured PAs are characterized uniquely by the property that all states are
reachable, the start state does not occur in the target of any transition, and each
of the other states occurs in the target of exactly one transition. Tree-structured
nondeterministic automata are also characterized uniquely by this property, albeit for
a different notion of transition.

If a PA is tree-structured, then its underlying nondeterministic automaton is also
tree-structured. The following example shows that the converse does not hold.

Example 3.5 (non–tree-structured PAs). Figure 3.4 shows a PA that is not
tree-structured, as state q′ can be reached via two different paths. The underlying
nondeterministic automaton is tree-structured, however, since the only way to reach
state q′ is via the execution qaq′.

The unfolding of a PA P, denoted by Unfold(P), is the tree-structured PA Q
obtained from P by unfolding its transition graph into a tree. Formally,

• QQ = paths(P),
• q̄Q = q̄P ,
• EQ = EP ,
• HQ = HP , and
• DQ = {(γ, a, μ) | (∃μ′)[(lstate(γ), a, μ′) ∈ DP ∧ (∀q ∈ supp(μ′))[μ′(q) =

μ(γaμ′q)]]}.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

996 NANCY LYNCH, ROBERTO SEGALA, AND FRITS VAANDRAGER

q

q’

p p’

aa

1/2

1/2

1/2

1/2

a a

a

p’q

q’

p

Fig. 3.4. The PA on the left is not tree-structured even though its underlying nondeterministic
automaton on the right is.

Proposition 3.11. P ≡PF Unfold(P).
Proof. It is easy to check that the relation R, where α R δ(q) iff lstate(α) = q is

a probabilistic forward simulation from Unfold(P) to P and that the “inverse” of R,
that is, the relation R′ such that q R′ δ(α) iff lstate(α) = q, is a probabilistic forward
simulation from P to Unfold(P).

Proposition 3.12. P ≡DC Unfold(P).
Proof. The proof follows by Proposition 3.11 and Proposition 3.10, parts 1 and

3.

3.7. Truncations and continuations. We now define two simple constructions
on probabilistic execution fragments that will be useful for our proofs. Specifically,
we define the truncation of a probabilistic execution fragment, which is the result
of stopping the computation at some designated points, and the continuation of a
probabilistic execution fragment, which represents the rest of a probabilistic execution
fragment after some finite execution fragment has occurred.

Let ε be a probabilistic execution fragment of a PA P, generated by some scheduler
σ, and let Θ be a set of finite execution fragments of P. Define the truncation of ε at
Θ to be the same as ε except that no transition is scheduled from all the Θ places, that
is, the probabilistic execution fragment ε′, with the same start state as ε, generated
by a new scheduler σ′ such that σ′(α) = σ(α) if α �∈ Θ and σ′(α)(D) = 0 if α ∈ Θ.

Proposition 3.13. The definition of truncation of a probabilistic execution frag-
ment ε is independent of the choice of the inducing scheduler.

Proof. Let μ be the first state of ε, and let σ1, σ2 be two schedulers that, together
with μ, induce ε. Let Θ be a set of finite execution fragments of P, and let σ′

1, σ
′
2 be the

schedulers built from σ1, σ2, respectively, according to the definition of truncation. Let
ε1, ε2 be the induced probabilistic execution fragments, and suppose by contradiction
that ε1 �= ε2. Then there exists a finite execution α such that ε1(Cα) �= ε2(Cα).
Consider such a finite execution α of minimum length. Observe that |α| > 0 since
ε(Cq) = ε1(Cq) = ε2(Cq) = μ(q) for each state q ∈ Q. Thus, α = α′a′q′ for some
α′, a′, q′, where ε1(Cα′) = ε2(Cα′). We distinguish two cases.

Case 1. If α′ ∈ Θ, then, by the definitions of σ′
1 and σ′

2, σ
′
1(α

′)(D) = σ′
2(α

′)(D) =
0. Thus, ε1(Cα) = ε2(Cα) = 0, a contradiction.

Case 2. If α′ �∈ Θ, then, by the definitions of σ′
1 and σ′

2, σ
′
1(α

′) = σ1(α
′) and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OBSERVING BRANCHING THROUGH PROBABILISTIC CONTEXTS 997

σ′
2(α

′) = σ2(α
′). Then,

ε1(Cα) = ε1(Cα′)
∑

tr∈D(a′) σ
′
1(α

′)(tr)μtr (q
′) (by (1))

= ε2(Cα′)
∑

tr∈D(a′) σ1(α
′)(tr)μtr (q

′)

(by σ′
1(α

′) = σ1(α
′), ε1(Cα′) = ε2(Cα′))

= ε2(Cα′)
∑

tr∈D(a′) σ2(α
′)(tr)μtr (q

′) (by σ1 and σ2 induce ε)

= ε2(Cα′)
∑

tr∈D(a′) σ
′
2(α

′)(tr)μtr (q
′) (by σ′

2(α
′) = σ2(α

′))

= ε2(Cα) (by (1)),

again a contradiction.
Let ε be a probabilistic execution fragment of a PA P, generated by a scheduler

σ, and let α be a finite execution fragment with fstate(α) ∈ supp(fstate(ε)). Define
ε � α, the continuation of ε after prefix α, to be the probabilistic execution fragment
generated by the following scheduler σ′ from lstate(α):

σ′(α′) =

{
σ(α � α′) if fstate(α′) = lstate(α),
0 otherwise,

where by 0 we denote the identically 0 function.
Proposition 3.14. The definition of ε � α is independent of the choice of the

inducing scheduler.
Proof. The proof proceeds in a manner similar to that of Proposition 3.13. Let μ

be the first state of ε, and let σ1, σ2 be two schedulers that, together with μ, induce
ε. Let q′ be lstate(α). Let σ′

1, σ
′
2 be the schedulers built from σ1, σ2, respectively,

according to the definition of ε � α. Let ε1, ε2 be the induced probabilistic execution
fragments from q′, and suppose by contradiction that ε1 �= ε2. Then there exists a
finite execution α′ such that ε1(Cα′) �= ε2(Cα′). Consider such a finite execution α′

of minimum length. Observe that |α′| > 0 since ε(Cq′) = ε1(Cq′) = ε2(Cq′) = 1 and,
for each state q′′ �= q′, ε(Cq′′) = ε1(Cq′′) = ε2(Cq′′) = 0. Thus, α′ = α′′a′′q′′ for some
α′′, a′′, q′′, where ε1(Cα′′) = ε2(Cα′′). We distinguish two cases.

Case 1. If fstate(α′′) �= q′, then, by the definitions of ε1 and ε2, ε1(Cα′) =
ε2(Cα′) = 0, a contradiction.

Case 2. If fstate(α′′) = q′, then, by the definitions of σ′
1 and σ′

2, σ′
1(α

′′) =
σ1(α

� α′′) and σ′
2(α

′′) = σ2(α
� α′′). Then,

ε1(Cα′) = ε1(Cα′′)
∑

tr∈D(a′′) σ
′
1(α

′′)(tr)μtr (q
′′) (by (1))

= ε2(Cα′′)
∑

tr∈D(a′′) σ1(α
� α′′)(tr)μtr (q

′′)

(by σ′
1(α

′′) = σ1(α
� α′′) and ε1(Cα′′) = ε2(Cα′′))

= ε2(Cα′′)
∑

tr∈D(a′′) σ2(α
� α′′)(tr)μtr (q

′′) (by σ1 and σ2 induce ε)

= ε2(Cα′′)
∑

tr∈D(a′′) σ
′
2(α

′′)(tr)μtr (q
′′) (by σ′

2(α
′′) = σ2(α

� α′′))

= ε2(Cα′) (by (1)),

again a contradiction.
The following proposition relates the continuation of ε after some prefix α with ε

itself. In practice it states that ε � α is closely related to ε | Cα.
Proposition 3.15. Let ε be a probabilistic execution fragment of a PA P, and

let α be a finite execution fragment of P. Then, for each finite execution α′ with
lstate(α) = fstate(α′), ε(Cα�α′) = ε(Cα) · (ε � α)(Cα′).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

998 NANCY LYNCH, ROBERTO SEGALA, AND FRITS VAANDRAGER

Proof. The proof follows easily by induction on the length of α′ from the definition
of the probability of a cone.

4. Tester automata and observer schedulers. The proofs of our complete-
ness results rely on a special context for a PA, which we call its tester PA. The tester
automaton, tester(P), of a PA P can observe the states that P goes through and
the transitions that are scheduled during a probabilistic execution. This information
is revealed by means of externally visible transitions of tester(P) with the help of a
specific scheduler, called the observer, which synchronizes P with its tester. In this
section we present the constructions of the tester and observer and prove some results
about the resulting trace distributions.

Informally, the tester of a PA P is a PA C whose states include a distinguished
start state, all the states of P, and all the transitions of P. Automaton C has a special
transition from its own start state, q̄C , to the start state of P, q̄P , labeled by q̄P . Also,
from every state q of P, C has a uniform transition labeled by ch (“choose”) to the
set of transitions of P that begin in state q. Finally, for every transition tr of P and
every state q in the support of μtr , C has a transition labeled by q from tr to q.

Definition 4.1. The tester PA of a PA P, denoted by tester(P), is a PA
C = (QC , q̄C , EC , HC , DC), where

• QC = {q̄C} ∪QP ∪DP ,
• EC = QP ∪ {ch},
• HC = ∅, and
• DC = {(q̄C , q̄P , δ(q̄P))}∪

{(q, ch,U({tr ∈ DP | source(tr) = q})) | q ∈ QP ∧ q →}∪
{(tr , q, δ(q)) | tr ∈ DP , q ∈ supp(μtr)}.

Observe that the tester of an ordinary nondeterministic automaton enables at
most one transition from each state, and dually, the tester of an automaton that en-
ables at most one transition from each state is a nondeterministic automaton. This
observation, together with the results that we prove later in the paper, imply that a
fully probabilistic context is enough to observe the branching structure of a nonde-
terministic automaton.

Proposition 4.2. The following hold:
1. The tester of a nondeterministic automaton is fully probabilistic; that is, it

enables at most one transition from each state.
2. The tester of a fully probabilistic automaton is a nondeterministic automaton;

that is, it contains only transitions whose target measures are Dirac.
Proof. For the first item, observe that the only states of tester(P) that may

enable more than one transition are of the form tr ∈ DP , which enable one transition
for each state in supp(μtr); however, the size of supp(μtr) is 1 in a nondeterministic
automaton.

For the second item, observe that the only states of tester(P) that may enable
non-Dirac transitions are of the form q ∈ QP , which may enable a transition labeled
by ch to a uniform measure over the set of transitions enabled from q in P; however,
there is at most one transition enabled from q in a fully probabilistic automaton.

We assume without loss of generality that a PA P and its tester do not have any
actions in common (otherwise we can simply rename states of P to achieve our goal),
and thus P and its tester are compatible.

Since tester(P) and P share no actions, merely composing tester(P) with P does
not ensure that tester(P) faithfully emulates the behavior of P. However, an appro-
priate scheduler can synchronize the two automata and ensure such an emulation,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OBSERVING BRANCHING THROUGH PROBABILISTIC CONTEXTS 999

which will be sufficient for our purposes. Given a PA P, we define a specific scheduler
σ for P‖tester(P), called the observer of P, that synchronizes the two automata so
that the internal structure of P is visible in the trace. Specifically, the scheduler σ
starts by scheduling the transition of tester(P) from the start state of tester(P) to
the start state of P, leading to state (q̄, q̄), which is of the form (q, q). Then σ repeats
the following as long as q →:

1. Schedule the ch transition of tester(P), thus choosing a transition tr of P.
2. Schedule transition tr of P, leading P to a new state q′.
3. Schedule the transition of tester(P) labeled by the state q′, resulting in the

state (q′, q′), which is again of the form (q, q).
Definition 4.3. The observer of a PA P, which we denote by observer(P), is a

deterministic (almost memoryless) scheduler for P‖tester(P) that bases its decisions
on the last state and sometimes the last action of its argument according to the follow-
ing table. Here, C denotes tester(P), q is any state such that q →, tr is any transition
in DP , and q′ is any state in μtr .

QP Qtester(P) Last action DP‖tester(P)

q̄P q̄tester(P) q̄P -labeled transition of tester(P)
q q ch-labeled transition of tester(P)
q tr ch transition tr of P
q′ tr not ch q′-labeled transition of tester(P)

Scheduler observer(P) and start state (q̄P , q̄tester(P)) induce a trace distribution
for P‖tester(P) where all states and external actions of P appear explicitly.

Definition 4.4. The observation of a PA P, denoted by observation(P), is the
trace distribution induced by observer(P) and (q̄P , q̄tester(P)).

Remark 4.5. The ch-labeled transitions of a tester are defined to lead to uni-
form measures over states of tester(P) that represent transitions of P. This is well
defined since we have assumed that nondeterministic and probabilistic automata are
finite branching. From the technical point of view, however, the proofs of this paper
rely on the fact that the transitions labeled by ch assign nonzero probability (not
necessarily the same probability) to each one of the options that are available in a
nondeterministic choice. Thus, it would be possible to remove the finite branching
restriction from the definition of automata and modify the definition of a tester au-
tomaton so that, whenever there are countably many transitions from a state q, the
corresponding ch-labeled transition of the tester assigns a nonuniform measure to
the transitions enabled from q, for example, a Poisson distribution after enumerating
all possible transitions enabled from q. We have chosen not to deal with countable
branching automata in this paper because it would complicate proofs without adding
much insight.

We state and prove some properties of observation(P). The first property, given in
(5), says that the cone of traces beginning with the starting state of P has probability
1. The second property, (6), says that for any state q of P from which some transition
is enabled and for each finite trace β of P‖tester(P), the probability of the cone
of traces beginning with βq is the same as the probability of the cone beginning
with βq ch; that is, once βq occurs, the probability that ch follows is 1. The third
property, (7), says that for any state q of P and for each finite trace β of P‖tester(P),
the probability of the cone of traces beginning with βq ch is the same as the sum of the
probabilities of the cones beginning with βq ch β′, where β′ represents one single step
of P from q; that is, once ch occurs, one of the transitions of P that are enabled from
q is exposed. The right-hand side of (7) consists of two parts dealing with external

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1000 NANCY LYNCH, ROBERTO SEGALA, AND FRITS VAANDRAGER

and internal transitions, respectively.

Proposition 4.6. The trace distribution η = observation(P) induced by the
observer of a PA P satisfies the following three properties, for all finite traces β of
P‖tester(P) and for all states q of P:

η(Cq̄) = 1,(5)

q → =⇒ η(Cβq) = η(Cβq ch),(6)

η(Cβq ch) =
∑

(a,q′)|a∈E,q
a→q′

η(Cβq ch aq′) +
∑

q′|(∃a)a∈H,q
a→q′

η(Cβq ch q′).(7)

Proof. Equation (5) follows from the fact that observer(P) schedules action q̄
immediately. Equation (6) follows from the fact that, after scheduling action q, thus
leading to a state of the form (q, q), observer(P) immediately schedules action ch
if q enables at least one transition. Equation (7) follows from the fact that, after
scheduling ch, observer(P) schedules one of the transitions of P that are enabled from

q, say q
a→ μ, followed by a transition of tester(P) labeled by a state in supp(μ).

The following technical properties will be needed in the proofs of section 6. The
first property, in (8), says that the probability of observing a state q′ reachable in
a tree-structured PA P with a single transition, say tr , from another state q is the
probability of observing q, divided by the number of transitions enabled from q, and
multiplied by the probability of reaching q′ in tr , the only transition that may lead
to q′ since P is tree-structured. Indeed, q′ can be observed only if q is observed
(probability of observing q), the transition tr is chosen (factor 1/k since transitions
are chosen uniformly), and the chosen transition leads to q′. The second property,
(9), is similar to the first one, where the probability of observing q and scheduling the
transition tr is replaced by the probability of observing any state in the target of tr .

Proposition 4.7. Let P be a tree-structured PA, and let η be observation(P).
Let tr = (q, a, μ) be a transition of P. Let k be the number of transitions that are
enabled from q in P, and let q′ be a state in supp(μ). Then the following properties
hold:

η(�q′) =
η(�q)
k

μ(q′),(8)

η(�q′) =

⎛
⎝ ∑

q′′∈supp(μ)

η(�q′′)

⎞
⎠μ(q′).(9)

Proof. Let σ be the observer of P, and let εσ be the probabilistic execution
induced by σ. Since P is tree-structured, the set Θq contains a single execution α.
Indeed, by the definition of tree-structured, there is only one execution in P ending
with state q, and σ simply interleaves this execution with transitions labeled by ch,
by the names of the transitions of P that are needed to reach q, and by the names of
the states that are reached. Similarly, Θq′ contains a single execution α′.

Once state q is reached, σ schedules action ch, reaching state tr of tester(P)
with probability 1/k. Then, σ schedules transition tr , reaching state q′ in P with
probability μ(q′), and finally σ schedules the transition of tester(P) labeled by q′.
Thus, εσ(Cα′) = εσ(Cα)(1/k)μ(q′). Then (8) follows by (2).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OBSERVING BRANCHING THROUGH PROBABILISTIC CONTEXTS 1001

By summing over supp(μ) in (8), we get

(10)
∑

q′′∈supp(μ)

η(�q′′) =
η(�q)
k

∑
q′′∈supp(μ)

μ(q′′).

Observe that
∑

q′′∈supp(μ) μ(q′′) = 1. Hence, (10) simplifies to

(11)
∑

q′′∈supp(μ)

η(�q′′) =
η(�q)
k

.

Substitution of (11) into (8) gives us (9), as needed.

5. Characterizations of ≤DC for nondeterministic automata. In this sec-
tion, we present our characterization theorems for ≤DC for nondeterministic au-
tomata: Theorem 5.2 characterizes ≤DC in terms of ≤F , for nondeterministic au-
tomata without internal actions, and Theorem 5.4 characterizes ≤DC in terms of
≤wF , for arbitrary nondeterministic automata. In each case, we prove the result first
for tree-structured nondeterministic automata and then extend it to the non–tree-
structured case via unfolding. The interesting direction for each of these results is the
completeness direction, showing that A1 ≤DC A2 implies the existence of a simulation
relation from A1 to A2.

The strategy that we use to prove our completeness results is also applied in
many other full abstraction results; see, for example, [5, 14]. By Proposition 3.8,
A1 ≤DC A2 implies that A1 ≤D A2 for all contexts C. Thus it suffices to construct a
specific context C with the property that the trace distributions of A1‖C contain all
information about A1 that is preserved by the simulation preorder. More specifically,
we compose A1 with the context C = tester(A1) and consider just a single trace
distribution of the composed system, namely observation(A1), the one generated by
observer(A1). We show, for any other nondeterministic automaton A2, that if the
composition A2‖tester(A1) generates the trace distribution observation(A1), then
A2 actually simulates A1 in a strong sense. Namely, whenever A1 reaches some state
q1, A2 can reach a corresponding state q2 from which it generates the same trace
distribution. The formalities of the proof are intricate, in part because states of A1 also
show up as states of tester(A1) and within the trace distribution of observation(A1).
In the proof we try to be very explicit about the roles of states of A1, but we also
warn the reader to be alert to this potential source of confusion.

5.1. Nondeterministic automata without internal actions. We begin by
considering nondeterministic automata without internal actions. We first consider
tree-structured nondeterministic automata.

Proposition 5.1. Let A1, A2 be nondeterministic automata without internal
actions such that A1 is tree-structured. Then A1 ≤DC A2 implies A1 ≤F A2.

Proof. Assume that A1 ≤DC A2. Let C be tester(A1) and η be observation(A1),
that is, the trace distribution of A1‖C induced by the scheduler observer(A1). Since
A1 ≤DC A2 implies A1‖C ≤D A2‖C, Proposition 3.8 implies that η is also a trace
distribution of A2‖C. That is, there exists a probabilistic execution ε of A2‖C, induced
by some scheduler σ2, such that tdist(ε) = η.

For each state q1 in Q1, let Θq1 be the set of finite executions of A2‖C whose last
transition is labeled by q1. For each state q2 of A2, let Θq1,q2 be the set of executions
in Θq1 whose last state is the pair (q2, q1).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1002 NANCY LYNCH, ROBERTO SEGALA, AND FRITS VAANDRAGER

Define a relation R on Q1×Q2 as follows: q1 R q2 iff there exists a finite execution
α in Θq1,q2 such that ε(Cα) > 0. We claim that R is a forward simulation from A1 to
A2.

For the start condition, we must show that q̄1 R q̄2. Consider the start state
(q̄2, q̄C) of A2‖C. Since there are no internal actions in A2 or C, and since, by (5) from
Proposition 4.6, η(Cq̄1) = 1, the only action that is scheduled initially by σ2 is q̄1,
leading to state (q̄2, q̄1). Thus, the finite execution α = (q̄2, q̄C)q̄1(q̄2, q̄1) is an element
of Θq̄1,q̄2 such that ε(Cα) > 0, as needed.

For the step condition, assume q1 R q2 and let q1
a→1 q′1 be a transition of A1,

which we denote by tr for convenience. We exhibit a matching transition q2
a→2 q′2.

By the definition of R, there exists a finite execution α in Θq1,q2 such that ε(Cα) >
0. Since Θq1,q2 is a subset of Θq1 , by definition of Θq1 , trace(α) = βq1 for some finite
trace β. Therefore, η(Cβq1) > 0. Since q1 enables at least one transition in A1,
specifically transition tr , (6) from Proposition 4.6 implies that η(Cβq1 ch) = η(Cβq1).
Then, since A2 and C have no internal actions, σ2 schedules action ch from α with
probability 1.

By the definition of tester(A1), the transition labeled by ch leaving from state q1
of C leads to state tr with probability > 0. Hence, ε(Cα ch (q2,tr)) > 0. By (7) from
Proposition 4.6, where only the first term of the right-hand side is nonzero due to
the absence of internal actions, η(Cβq1 ch) =

∑
(a,q′)|a∈E,q1

a→q′ η(Cβq1 ch aq′). Hence,

σ2 must extend α ch (q2, tr) with two steps labeled by an action and a state of A1,
respectively, where the action and the state are compatible with one of the transitions
of A1 that are enabled from q1. Since state tr of C enables only action q′1, and since,
by the tree-structure of A1, a is uniquely determined by q′1, the action and state
scheduled by σ2 are a and q′1. Therefore, there exists a state q′2 of A2 such that
the execution α′ = α ch (q2, tr)a(q′2, tr)q′1(q

′
2, q

′
1) is an execution in Θq′1,q

′
2

such that

ε(Cα′) > 0. Then q′1 R q′2 and q2
a→ q′2, as needed.

Now we present our result for general (non–tree-structured) nondeterministic au-
tomata without internal actions.

Theorem 5.2. Let A1, A2 be nondeterministic automata without internal ac-
tions. Then A1 ≤DC A2 iff A1 ≤F A2.

Proof. First we prove soundness of forward simulations:

A1 ≤F A2 ⇒ A1 ≤PF A2 (Proposition 3.9.1)
⇒ A1 ≤wPF A2 (Proposition 3.10.1)
⇒ A1 ≤DC A2 (Proposition 3.10.3).

Next we establish completeness:

A1 ≤DC A2 ⇒ Unfold(A1) ≤F A1 ≤DC A2 (Proposition 2.4)
⇒ Unfold(A1) ≤DC A1 ≤DC A2 (as in soundness proof)
⇒ Unfold(A1) ≤DC A2 (≤DC is transitive)
⇒ Unfold(A1) ≤F A2 (Proposition 5.1)
⇒ A1 ≤F Unfold(A1) ≤F A2 (Proposition 2.4)
⇒ A1 ≤F A2 (≤F is transitive).

5.2. Nondeterministic automata with internal actions. Next we extend
the results of section 5.1 to nondeterministic automata that may include internal
actions. The proofs are analogous to those in section 5.1. The difference is that,
in several places in the proof of Proposition 5.3, we need to reason about multistep

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OBSERVING BRANCHING THROUGH PROBABILISTIC CONTEXTS 1003

extensions of executions instead of single-step extensions. Again, we begin with tree-
structured nondeterministic automata.

Proposition 5.3. Let A1, A2 be nondeterministic automata such that A1 is
tree-structured. Then A1 ≤DC A2 implies A1 ≤wF A2.

Proof. Assume that A1 ≤DC A2. Let C be tester(A1) and η be observation(A1),
that is, the trace distribution of A1‖C induced by the scheduler observer(A1). Define
the scheduler σ2, the probabilistic execution ε, and the Θ sets as in the proof of
Proposition 5.1.

The definition of R is slightly different: q1 R q2 iff there exists a state q′2 such
that q2 =⇒ q′2 and there exists α ∈ Θq1,q′2

such that ε(Cα) > 0. We claim that R is a
weak forward simulation from A1 to A2.

For the start condition, we must show that q̄1 R q̄2. By Item 1 of Proposition 4.6,
η(Cq̄1) = 1. This means that there exists a finite execution fragment α of A2‖C with
trace q̄1 that ends with action q̄1 such that ε(Cα) > 0. By definition of C, the last
state of α is (q2, q̄1) for some state q2 satisfying q̄2 =⇒ q2. By definition of R, q̄1 R q̄2,
as needed.

For the step condition, assume q1 R q2 and let q1
a→1 q′1 be a transition of A1,

which we denote by tr . We exhibit a matching weak transition q2
a=⇒ 2 q′2.

By definition of R, there exists a state q′′2 of A2 such that q2 =⇒ q′′2 , and there
exists a finite execution α in Θq1,q′′2

such that ε(Cα) > 0. Since Θq1,q′′2
is a subset

of Θq1 , by definition of Θq1 , trace(α) = βq1 for some finite trace β. Therefore,
η(Cβq1) > 0. Since q1 enables at least one transition in A1, specifically transition
tr , (6) from Proposition 4.6 implies that η(Cβq1 ch) = η(Cβq1). Thus, there exists an
execution fragment α′ of A2‖C with trace ch such that ε(Cα�α′) > 0. Furthermore,
since, by definition of C = tester(A1), the transition of C labeled by ch that leaves
from state q1 leads to state tr with nonzero probability, we can assume that the last
state of α′ is of the form (q′, tr) for some state q′ of A2.

Recall from above that η(Cβq1 ch) > 0. By (7) from Proposition 4.6, η(Cβq1 ch) =∑
(a,q′)|a∈E,q

a→q′ η(Cβq1 ch aq′)+
∑

q′|(∃a)a∈H,q1
a→q′ η(Cβq1 ch q′). Hence, σ2 must extend

α � α′ in such a way that the first or the first two external actions are compatible
with one of the transitions of A1 that are enabled from q1. (The number of external
actions depends on whether the compatible transition of A1 is labeled by an internal
or external action.) Since state tr of C enables only action q′1, and since, by the tree-
structure of A1, a is uniquely determined by q′1, the first or first two external actions
of A2‖C scheduled by σ2 are either q′1 or aq′1, depending on whether a is internal or
external. Thus, there exists an execution fragment α′′ of A2‖C, with trace trace(aq′1),
such that ε(Cα�α′�α′′) > 0. Furthermore, we can assume that the last transition of
α′′ is labeled by q′1 (simply truncate α′′ otherwise).

Let (q′2, q
′
1) be the last state of α′′. Then, α � α′ � α′′ ∈ Θq′1,q

′
2
, thus showing

that q′1 R q′2. It remains to show that q2
a=⇒ q′2. For this, it suffices to recall that

q2 =⇒ q′′2 and observe that q′′2
a=⇒ q′2 since the execution fragment (α′ � α′′)�A2 has

trace trace(a), first state q′′2 , and last state q′2.

Using the same approach as before, we may eliminate the assumption in Propo-
sition 5.3 that A1 is tree-structured.

Theorem 5.4. Let A1, A2 be nondeterministic automata. Then A1 ≤DC A2 iff
A1 ≤wF A2.

Proof. This proof is analogous to that of Theorem 5.2. First we prove soundness

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1004 NANCY LYNCH, ROBERTO SEGALA, AND FRITS VAANDRAGER

of weak forward simulations:

A1 ≤wF A2 ⇒ A1 ≤wPF A2 (Proposition 3.9.2)
⇒ A1 ≤DC A2 (Proposition 3.10.3).

Now we prove completeness:

A1 ≤DC A2 ⇒ Unfold(A1) ≤F A1 ≤DC A2 (Proposition 2.4)
⇒ Unfold(A1) ≤DC A1 ≤DC A2

(as in proof Theorem 5.2, soundness part)
⇒ Unfold(A1) ≤DC A2 (≤DC is transitive)
⇒ Unfold(A1) ≤wF A2 (Proposition 5.3)
⇒ A1 ≤F Unfold(A1) ≤wF A2 (Proposition 2.4)
⇒ A1 ≤wF Unfold(A1) ≤wF A2 (Proposition 2.3.1)
⇒ A1 ≤wF A2 (≤wF is transitive).

6. Characterizations of ≤DC for PAs. Now we present our characterization
theorems for ≤DC for PAs: Theorem 6.3 characterizes ≤DC in terms of ≤PF , for PAs
without internal actions, and Theorem 6.5 characterizes ≤DC in terms of ≤wPF , for
arbitrary PAs. Again, we give the results first for tree-structured PAs and extend
them by unfolding. As before, the interesting direction is the completeness direction,
showing that P1 ≤DC P2 implies the existence of a simulation relation from P1 to
P2. Our proofs of completeness for PAs are analogous to those for nondeterministic
automata.

6.1. PAs without internal actions. We first consider tree-structured PAs.
Proposition 6.1. Let P1, P2 be PAs without internal actions such that P1 is

tree-structured. Then P1 ≤DC P2 implies P1 ≤PF P2.
Proof. Assume that P1 ≤DC P2. Let C be tester(P1) and η be observation(P1),

that is, the trace distribution of P1‖C induced by the scheduler observer(P1). Define
the scheduler σ2, the probabilistic execution ε, and the Θ sets as in the proof of
Proposition 5.1.

Define a relation R as follows: q1 R μ2 iff
∑

α∈Θq1
ε(Cα) > 0 and for each state

q2 ∈ Q2,

(12) μ2(q2) =

∑
α∈Θq1,q2

ε(Cα)∑
α∈Θq1

ε(Cα)
.

That is, the measure μ2 describes probabilities of the various Θq1,q2 ’s relative to Θq1 .
Note that the equation above is well defined since, by the tree-structure of P1, all the
cones represented by Θq1 are disjoint, and thus

∑
α∈Θq1

ε(Cα) ≤ 1. We claim that R

is a probabilistic forward simulation from P1 to P2.
Before proving that R is a probabilistic forward simulation we make several ob-

servations:
1. Relation R is a function from Q1 to Disc(Q2). Indeed, if

∑
α∈Θq1

ε(Cα) > 0,

then there exists exactly one measure that satisfies (12). Furthermore, given
the construction of η and the fact that P1 is tree-structured (i.e., all states
are reachable), every state q1 of Q1 occurs with some positive probability in
η. Thus, since η is induced by ε,

∑
α∈Θq1

ε(Cα) > 0 for all states q1 of Q1.

2. If q1 R μ2, then, for each state q2 ∈ Q2 and each execution α ∈ Θq1,q2 ,

(13) ε(Cα) > 0 ⇒ q2 ∈ supp(μ2).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OBSERVING BRANCHING THROUGH PROBABILISTIC CONTEXTS 1005

That is, the execution α occurs with nonzero probability in ε only if μ2 assigns
nonzero probability to q2. This property is a direct consequence of (12).

3. For each transition q1
a→ μ′

1 of P1, the following equation holds:

(14) μ′
1(q

′
1) =

∑
α∈Θq′1

ε(Cα)∑
q∈supp(μ′

1) , α∈Θq
ε(Cα)

.

That is, the relative probabilities of the states of supp(μ′
1) in ε are given by

μ′
1. This result follows by instantiating (9) from Proposition 4.7 with q1

a→ μ′
1

to derive the probability of a state q′1 in the support of μ′
1, and by replacing

the diamond expressions according to (2) from Proposition 3.3.

4. For each transition tr = q1
a→ μ′

1 of P1, the following equation holds:

(15)
∑

α∈Θq1

ε(Cα) = k
∑

q∈supp(μ′
1) , α∈Θq

ε(Cα),

where k is the number of transitions of P1 enabled from q1. That is, the
probability of reaching q1 in ε is k times the probability of reaching q1 and
scheduling tr . Informally, transition tr is scheduled only if state q1 is reached
and the outcome of the following transition labeled by ch is tr , which hap-
pens with probability 1/k. The reason why

∑
q∈supp(μ′

1) , α∈Θq
ε(Cα) is the

probability of reaching q1 and scheduling tr is that states from supp(μ′
1)

can occur only after q1 has occurred and tr is reached (see the definition of
tester automaton and of observer of a tester automaton), and furthermore
states from supp(μ′

1) occur with probability 1 once tr is reached (see (7) from
Proposition 4.6).
This follows by instantiating (8) from Proposition 4.7 with tr , replacing the
diamond expressions according to (2) from Proposition 3.3, summing over
supp(μ′

1), observing that
∑

q′1∈supp(μ′
1)
μ′

1(q
′
1) = 1, and deriving

∑
α∈Θq1

ε(Cα)

from the resulting equation.
We are now ready to show that R is a probabilistic forward simulation. For the

start condition, we must show that q̄1 R δ(q̄2).
Consider the start state (q̄2, q̄C) of P2‖C. Since there are no internal actions in

P2 or C, and since, by (5) from Proposition 4.6, η(Cq̄1) = 1, the only action that is
scheduled initially by σ2 is q̄1, leading to state (q̄2, q̄1) with probability 1. Thus, the
finite execution α = (q̄2, q̄C)q̄1(q̄2, q̄1) is an element of Θq̄1,q̄2 such that ε(Cα) = 1, and,
by definition of R, q̄1 R δ(q̄2), as needed.

For the step condition, assume that q1 R μ2 and let q1
a→1 μ′

1 be a transi-
tion of P1, which we denote by tr . We must exhibit a probability measure ξ′2 ∈
Disc(Disc(Q2)) and a hyper-transition μ2

a→2 μ′′
2 , matching the given transition,

where μ′′
2 = flatten(ξ′2) and μ′

1 R ξ′2. We do this by deriving a transition trα of P2

for each execution α of Θq1 and by combining the trα’s appropriately into transitions
trq, for each state q ∈ supp(μ2), that are the basis for the required hyper-transition.
The trα transitions are derived from η; the construction considers only those α’s for
which ε(Cα) > 0. The other α’s can be treated arbitrarily.

Consider an execution α of Θq1 such that ε(Cα) > 0. By property (13), α ∈ Θq1,q2

for some state q2 in supp(μ2). Since Θq1,q2 is a subset of Θq1 , by definition of Θq1 ,
trace(α) = βq1 for some finite trace β. Therefore, η(Cβq1) > 0. Since q1 enables at
least one transition in P1, specifically transition tr , (6) from Proposition 4.6 implies

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1006 NANCY LYNCH, ROBERTO SEGALA, AND FRITS VAANDRAGER

that η(Cβq1 ch) = η(Cβq1). Then, since P2 and C have no internal actions, σ2 schedules
action ch from α with probability 1.

By definition of C= tester(P1), the transition labeled by ch leaving from state q1
of C leads to state tr with probability > 0. Hence, ε(Cα ch (q2,tr)) > 0. By (7) from
Proposition 4.6, where only the first term of the right-hand side is nonzero due to
the absence of internal actions, η(Cβq1 ch) =

∑
(a,q′)|a∈E,q1

a→q′ η(Cβq1 ch aq′). Hence,

σ2 must extend α ch (q2, tr) with two steps labeled by an action and a state of P1,
respectively, where the action and the state are compatible with one of the transitions
of P1 that are enabled from q1. Since state tr of C enables only actions in supp(μ′

1),
and since, by the tree-structure of P1, a is uniquely determined by μ′

1, the action
that is scheduled is a, and the state that is scheduled is a state in supp(μ′

1). Thus,
σ2(α ch (q2, tr)) returns a probability measure over transitions labeled by a. This
measure identifies a combined transition of P2 labeled by a that leaves from q2, which
we denote by trα.

Now, using the trα transitions, we define a combined transition from each state
in the support of μ2. Namely, for each state q ∈ supp(μ2), let trq be the combined
transition of P2 defined by

(16) trq
Δ
=

∑
α∈Θq1,q

ε(Cα)∑
α′∈Θq1,q

ε(Cα′)
trα.

Informally, each element of Θq1,q is an execution that contributes to the emulation

of transition q1
a→1 μ′

1 from q. Equation (16) computes trq, the overall contribution
to the emulation from q, by averaging over all elements of Θq1,q. We could prove that
Θq1,q contains only one element α′ such that ε(Cα′) > 0 and simplify (16) accordingly.
However, this simplification is not necessary for the proof. Now we define the measure
μ′′

2 ∈ Disc(Q2):

(17) μ′′
2

Δ
=

∑
q∈supp(μ2)

μ2(q)μtrq .

Then, by construction, μ2
a→ μ′′

2 is a hyper-transition of P2.
It remains to define a probability measure ξ′2 ∈ Disc(Disc(Q2)) such that μ′′

2 =
flatten(ξ′2) and μ′

1 R ξ′2.
For each q ∈ supp(μ′

1), let μq be the unique measure such that q R μq. We can
identify μq because R is a function. Define ξ′2 ∈ Disc(Disc(Q2)) such that, for each
q ∈ supp(μ′

1), ξ
′
2(μq) =

∑
q′∈supp(μ′

1)|μq′=μq
μ′

1(q
′). Then μ′

1 R ξ′2 by the definition of

ξ′2.
It remains to show that μ′′

2 = flatten(ξ′2), that is, that μ′′
2 =

∑
ρ∈supp(ξ′2)

ξ′2(ρ)ρ.

From the definition of ξ′2 and of the flatten operator, it suffices to show that for every
q2 ∈ Q2,

(18) μ′′
2(q2) =

∑
q∈supp(μ′

1)

μ′
1(q)μq(q2).

To prove (18) we first claim that the following equation is valid for each pair of states
q1, q2 of P1 and P2, respectively, if k denotes the number of transitions of P1 that are
enabled from q1:

(19)
∑

α∈Θq1

ε(Cα)μtrα
(q2) = k

∑
q∈supp(μ′

1) , α∈Θq,q2

ε(Cα).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OBSERVING BRANCHING THROUGH PROBABILISTIC CONTEXTS 1007

Informally, the left-hand side of (19) represents the probability of scheduling q1 and
then reaching q2 according to the transition trα, without considering the outcome of
the transition labeled by ch. The right-hand side, on the other hand, computes the
probability of scheduling q1, scheduling ch and reaching μ′

1, and then scheduling trα

and reaching q2. State μ′
1 is reached by ch with probability 1/k, which justifies the k

factor in the right-hand side.
To prove (19), consider an execution α ∈ Θq,q2 , where q ∈ supp(μ′

1). Since
q always occurs after q1, execution α can be split into α′ � α′′, where α′ ∈ Θq1 .
Furthermore, trace(α′′) = ch aq, and since there are no internal actions in P2 and C,
α is the unique extension of α′ that is in Θq,q2 . In particular,

α′′ = (q′, q1) ch (q′, tr)a(q2, tr)q(q2, q)

for some state q′ of P2, and ε(Cα) = ε(Cα′)(1/k)μtrα′ (q2). Thus, each summand
on the right-hand side of (19) has a corresponding summand on the left-hand side
that differs by a factor of k, and the correspondence relation is an injection. If the
correspondence is not a bijection, then the α terms that are left out on the left-hand
side are such that μtrα(q2) = 0 (otherwise an extension in Θq,q2 for some q exists).
This suffices.

We now consider the left-hand side of (18). Consider the definition of μ′′
2 given

by (17). By expanding μ2(q) according to the definition of μ2 given by (12), and
expanding μtr (q2) according to the definition of μtr given by (16), we obtain

μ′′
2(q2) =

∑
q∈supp(μ2)

∑
α∈Θq1,q

ε(Cα)∑
α∈Θq1

ε(Cα)

∑
α∈Θq1,q

ε(Cα)μtrα(q2)∑
α∈Θq1,q

ε(Cα)
.

By cross-simplifying the top-leftmost and bottom-rightmost factors, and by factoring
the left denominator out of the sum, we obtain

μ′′
2(q2) =

∑
q∈supp(μ2)

∑
α∈Θq1,q

ε(Cα)μtrα(q2)∑
α∈Θq1

ε(Cα)
.

By property (13), we can rewrite the numerator as follows:

μ′′
2(q2) =

∑
α∈Θq1

ε(Cα)μtrα(q2)∑
α∈Θq1

ε(Cα)
.

By multiplying numerator and denominator by k, applying (19) to the numerator,
and applying (15) to the denominator, we obtain

(20) μ′′
2(q2) =

∑
q∈supp(μ′

1) , α∈Θq,q2
ε(Cα)∑

q∈supp(μ′
1) , α∈Θq

ε(Cα)
.

We now consider the right-hand side of (18). By applying (14) and (12) to the two
factors of the right-hand side of (18), and by simplifying common factors algebraically,
we obtain

(21)
∑

q∈supp(μ′
1)

μ′
1(q)μq(q2) =

∑
q∈supp(μ′

1) , α∈Θq,q2
ε(Cα)∑

q∈supp(μ′
1) , α∈Θq

ε(Cα)
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1008 NANCY LYNCH, ROBERTO SEGALA, AND FRITS VAANDRAGER

Now (18) follows by direct combination of (20) and (21).
Interestingly, the probabilistic forward simulation that we constructed in the

above proof is functional. Functional simulations are usually called refinement map-
pings [21, 26]. Write P1 ≤PR P2 if there exists a functional probabilistic forward
simulation from P1 to P2. Then we can state the following new proposition, which is
a probabilistic version of Proposition 3.12 in [26].

Proposition 6.2. Let P1, P2 be PAs without internal actions such that P1 is
tree-structured. Then P1 ≤PF P2 iff P1 ≤PR P2.

Proof. It is enough to observe that each state q1 of P1 occurs with some positive
probability in the trace distribution η of the proof of Proposition 6.1.

As usual, we may eliminate the assumption that P is tree-structured.
Theorem 6.3. Let P1, P2 be PAs without internal actions. Then P1 ≤DC P2 iff

P1 ≤PF P2.
Proof. First we prove the soundness of probabilistic forward simulations:

P1 ≤PF P2 ⇒ P1 ≤wPF P2 (Proposition 3.10.1)
⇒ P1 ≤DC P2 (Proposition 3.10.3).

Now we prove completeness:

P1 ≤DC P2 ⇒ Unfold(P1) ≤DC P1 ≤DC P2 (Proposition 3.12)
⇒ Unfold(P1) ≤DC P2 (≤DC is transitive)
⇒ Unfold(P1) ≤PF P2 (Proposition 6.1)
⇒ P1 ≤PF Unfold(P1) ≤PF P2 (Proposition 3.11)
⇒ P1 ≤PF P2 (≤PF is transitive).

6.2. PAs with internal actions. Again, we start with tree-structured PAs.
Proposition 6.4. Let P1, P2 be PAs with P1 tree-structured. Then P1 ≤DC P2

implies P1 ≤wPF P2.
Proof. Assume that P1 ≤DC P2. Define the tester PA C of P1, the observer

σ1, the trace distribution η, the scheduler σ2, the probabilistic execution ε, and the
Θ sets as in the proof of Proposition 5.1. Define relation R according to (12) as in
the proof of Proposition 6.1. Observe that formulas (13), (14), and (15) hold for the
same reasons as before. Define a new relation R′ as follows: q1 R′ μ2 iff there exists a
measure μ′

2 such that μ1 =⇒ μ′
2 and q1 R μ′

2. Observe that trivially R⊆R′. We show
that R′ is a weak probabilistic forward simulation from P1 to P2.

For the start condition, we must show that q̄1 R′ δ(q̄2). By Item 1 of Propo-
sition 4.6, η(Cq̄1) = 1. This means that

∑
α∈Θq̄1 |trace(α)=q̄1

ε(Cα) = 1. Let Θ′
q̄1 be

the set of elements of Θq̄1 with trace q̄1, and let ε′ be the truncation of ε to Θ′
q̄1 .

Then ε′ assigns probability 1 to the set of finite execution fragments with trace q̄1.
Furthermore, observing that all elements of Θ′

q̄1 are not prefixes of each other, we
derive ε′(Cα) = ε′({α}) for each α ∈ Θ′

q̄1 . Finally, observing that each element of
Θq̄1 − Θ′

q̄1 is not a prefix of any element of Θ′
q̄1 , we derive ε′(Cα) = ε′({α}) = 0

for each α ∈ Θq̄1 − Θ′
q̄1 . Let μ′

2 be lstate(ε′). By the definition of a weak hyper-

transition, δ(q̄2) =⇒ μ′
2. We show that q̄1 R μ′

2, which suffices. Consider a state
q2 of P2. By definition of μ′

2, definition of Θq̄1,q2 , and the fact that supp(ε′) ⊆ Θq̄1 ,
μ′

2(q2) =
∑

α∈Θq̄1,q2
ε′({α}). Then the result follows immediately by observing that

this equation corresponds to (12) since ε′({α}) = ε′(Cα) when α ∈ Θq̄1 and since∑
α∈Θq̄1

ε(Cα) = 1.

For the step condition, assume that q1 R′ μ2, and let q1
a→1 μ′

1 be a transition
of P1, which we denote by tr . By definition of R′, there exists a measure μ′

2 such

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OBSERVING BRANCHING THROUGH PROBABILISTIC CONTEXTS 1009

that μ2 =⇒ μ′
2 and q1 R μ′

2. We now show that there exists a measure ξ′2 and a
measure μ′′

2 = flatten(ξ′2) such that μ1 R ξ′2 and μ′
2

a=⇒ μ′′
2 . Then μ1 R′ ξ′2, and by

Proposition 3.6, μ2
a=⇒ μ′′

2 .

The proof of existence of ξ′2 and μ′′
2 proceeds exactly as in the case of Proposi-

tion 6.1 except for the definition of the trα transitions. Thus, in the rest of the proof
we construct the trα’s and prove that (19) still holds.

We introduce a special conditional construction that is needed for the definition

of the trα’s. Let Ctr be the same as C except that the transition q1
ch→ μ, where

μ is uniquely determined by q1, is replaced by q1
ch→ δ(tr). Given a scheduler σ for

P2‖C, define the scheduler σ | tr for P2‖Ctr that is the same as σ except that transition

q1
ch→ δ(tr) of Ctr is chosen whenever σ chooses q1

ch→ μ. Given a probabilistic execution
fragment ε′ of P2‖C, generated by some scheduler σ, define ε′ | tr to be the result of
σ | tr applied to P‖Ctr from the start state of ε′. The intuition behind ε′ | tr is that

we study ε′ under the condition that tr is the outcoming state of C whenever q1
ch→ μ

is scheduled. Then, the following two properties are valid:

1. (ε′ | tr)�P2 is a probabilistic execution fragment of P2.
2. For each finite execution fragment α of P2‖C where state tr occurs and such

that fstate(α) is not of the form (·, tr), (ε′ | tr)(Cα) = kε(Cα), where k is the
size of supp(μ).

The first item follows immediately from Proposition 3.7, given that ε′ | tr is a prob-
abilistic execution fragment of P2‖Ctr . The second item follows directly from the
definition of probability of a cone, since in ε′ the probability associated with the edge
q ch (·, tr) is 1/k while in ε′ | tr the probability of the same edge is 1.

We now define the trα’s. Consider an execution α of Θq1 such that ε(Cα) > 0.
Let ε1 be the truncation of ε at all the points in ∪q∈supp(μ′

1)
Θq, which is a probabilistic

execution of P2‖C by definition. Let ε1α be ε1 � α, which is a probabilistic execution
fragment of P2‖C by definition. Finally, let ε2α be (ε1α | tr)�P2, which is a probabilistic
execution fragment of P2 by Property 1.

By definition of Θq1 , trace(α) = βq1 for some finite trace β. Therefore, η(Cβq1) >
0. Since q1 enables at least one transition in P1, specifically transition tr , (6) from
Proposition 4.6 implies that η(Cβq1 ch) = η(Cβq1). Thus, action ch occurs as the first
external action with probability 1 in μ1

α.

By (7) from Proposition 4.6, if the occurrence of action ch leads C to state tr , then
an action in supp(μ′

1) occurs eventually in ε with probability 1, leading C to a state
in supp(μ′

1), which is a truncation point according to the definition of ε1. Thus, the
probability of termination in ε1α | tr is 1, as well as the probability of termination in
ε2α; that is, ε2α assigns probability 1 to the set of finite executions. Furthermore, given
that action a is uniquely determined by μ′

1 (P1 is tree-structured), again by (7) from
Proposition 4.6 all finite executions α′ with ε2α(α′) > 0 have trace trace(a). Thus,
ε2α is a representation of a weak combined transition labeled by a from lstate(α)�P2.
Denote such transition by trα.

We are left to show that (19) still holds. That is,

∑
α∈Θq1

ε(Cα)μtrα(q2) = k
∑

q∈supp(μ′
1) , α∈Θq,q2

ε(Cα).

We consider first the term μtrα(q2). From the definition of trα and of weak

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1010 NANCY LYNCH, ROBERTO SEGALA, AND FRITS VAANDRAGER

combined transition we get

μtrα(q2) =
∑

α′|lstate(α′)=q2

ε2α(α′).

By applying the definition of projection, and using the fact that ε1α | tr assigns prob-
ability 1 to the set of finite executions, we get

μtrα(q2) =
∑

α′|lstate(α′	P2)=q2

(ε1α | tr)(α′).

Given that the truncation points of ε1 are all at the ∪q∈supp(μ′
1)

Θq points, the only
finite executions α′ that have nonzero probability are such that α � α′ is in some
set Θq. Furthermore, given that no execution in ∪q∈supp(μ′

1)
Θq is a prefix of another

(our PAs are tree-structured and all actions in supp(μ′
1) occur in different branches),

the probabilities of the finite executions can be replaced by the probabilities of their
cones, thus getting

μtrα
(q2) =

∑
q∈supp(μ′

1)

∑
α′|α�α′∈Θq,q2

(ε1α | tr)(Cα′).

By property 2 we can get rid of the conditional on tr by introducing a k factor, thus
getting

(22) μtrα(q2) =
∑

q∈supp(μ′
1)

∑
α′|α�α′∈Θq,q2

kε1α(Cα′).

By replacing μtrα
(q2) according to (22) in the left-hand side of (19) and by rearranging

terms algebraically, we obtain∑
α∈Θq1

ε(Cα)μtrα
(q2) = k

∑
q∈supp(μ′

1)

∑
α∈Θq1

∑
α′|α�α′∈Θq,q2

ε(Cα)ε1α(Cα′).

By using that ε1α = ε1 �α (by definition) and Proposition 3.15, the two probabilities in
the equation above can be grouped into ε(Cα�α′). By observing that all elements in
Θq,q2 , with q ∈ supp(μ′

1), have a prefix in Θq1 , the intermediate sum can be removed,
thus getting ∑

α∈Θq1

ε(Cα)μtrα
(q2) = k

∑
q∈supp(μ′

1)

∑
α∈Θq,q2

ε(Cα),

which is (19), as needed.
Theorem 6.5. Let P1, P2 be PAs. Then P1 ≤DC P2 iff P1 ≤wPF P2.
Proof. Soundness of weak probabilistic forward simulations follows immediately

from Proposition 3.10. Completeness is established as follows:

P1 ≤DC P2 ⇒ Unfold(P1) ≤DC P1 ≤DC P2 (Proposition 3.12)
⇒ Unfold(P1) ≤DC P2 (≤DC is transitive)
⇒ Unfold(P1) ≤wPF P2 (Proposition 6.4)
⇒ P1 ≤PF Unfold(P1) ≤wPF P2 (Proposition 3.11)
⇒ P1 ≤wPF Unfold(P1) ≤wPF P2 (Proposition 3.10)
⇒ P1 ≤wPF P2 (≤wPF is transitive).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OBSERVING BRANCHING THROUGH PROBABILISTIC CONTEXTS 1011

7. Concluding remarks. We have characterized the trace distribution precon-
gruence for nondeterministic and probabilistic automata, with and without internal
actions, in terms of four kinds of simulation relations, ≤F , ≤wF , ≤PF , and ≤wPF .
In particular, this shows that probabilistic contexts are capable of observing all the
distinctions that can be expressed using these simulation relations. Our main tech-
nical contribution is the definition of special contexts, called testers, that, under the
action of an appropriate scheduler, can reveal the branching structure of a PA via a
trace distribution. Some technical improvements are possible. For example, our finite
branching restriction can be relaxed to countable branching, simply by replacing uni-
form distributions in the tester automata by other distributions such as exponential
distributions. In that case, however, calculations become more complicated. We have
also considered nondeterministic and probabilistic automata with countably many
states and actions. Again, this restriction can be relaxed at the cost of complicating
the definition of the σ-field of execution fragments: the generators would be arbi-
trary unions of cones, and the measure of a union of cones would be just the sum of
the measures of each single cone. Indeed, discrete transitions and discrete schedulers
ensure that there are at most countably many cones with nonzero measure.

Although in this paper we reach a point where we have a full understanding of
trace distribution precongruence as a branching relation, a natural question is whether
it is possible to define linear probabilistic extensions of language inclusion. A poten-
tial approach is to consider ordinary traces paired with their maximal or minimal
probabilities under all schedulers, but the induced preorder relations do not appear
to be interesting. Another approach, followed in [19], is to extend classical testing
preorders by considering the maximal and minimal probabilities of success of a test;
however, even in such case the resulting precongruence is characterized in terms of
simulation relations that, although weaker than the relations studied in this paper,
are still branching relations. Other approaches ensure compositionality of trace dis-
tribution inclusion by restricting parallel composition so that the nondeterminism of
each component is resolved based only on externally visible behavior of the other
components. This approach is investigated in [10] in a synchronous model. In [8, 7],
an asynchronous switched probabilistic input/output automaton model (PIOA) is
presented, which uses a token structure to eliminate global nondeterministic choices.
This token structure ensures that, at any point in time, there is at most one active
component in a system and this unique component determines the next active com-
ponent. Thus, global scheduling is performed jointly by all local schedulers, which
have access to local information only. A notion of switched probabilistic systems is
defined, which are switched PIOAs paired with sets of acceptable I/O schedulers. A
trace-style semantics for switched probabilistic systems is given, using the notion of
likelihood assignments. This semantics is shown to be compositional with respect to a
parallel operator that combines local I/O schedulers into a joint I/O scheduler. Thus,
the approach of [8, 7] can be characterized as schedule-and-compose, where local non-
deterministic choices are resolved before the components are placed in parallel. In
[7] also a similar strategy is pursued, but without the token structure. Instead, sev-
eral axioms are imposed on the reactive and generative transition structures, so that
branching occurs only when it is meant to be globally visible (i.e., the branches carry
different visible action labels). These axioms capture a local-oblivious assumption
on adversaries, which is well known in the area of randomized consensus [9, 3]. The
model is proven to be compositional with respect to a schedule-and-compose operator
similar to that in [8].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1012 NANCY LYNCH, ROBERTO SEGALA, AND FRITS VAANDRAGER

Acknowledgment. We are grateful to Erik de Vink for numerous detailed ob-
servations and suggestions for improvements.

REFERENCES

[1] S. Aggarwal, Time Optimal Self-Stabilizing Spanning Tree Algorithms, Master’s thesis, De-
partment of Electrical Engineering and Computer Science, Massachusetts Institute of Tech-
nology, Cambridge, MA, 1994; also available as Technical Report MIT/LCS/TR-632.

[2] S. Andova and T. Willemse, Branching bisimulation for probabilistic systems: Characteris-
tics and decidability, Theoret. Comput. Sci., 356 (2006), pp. 325–355.

[3] Y. Aumann and M. A. Bender, Efficient low-contention asynchronous consensus with the
value-oblivious adversary scheduler, Distrib. Comput., 17 (2005), pp. 191–207.

[4] F. Bartels, A. Sokolova, and E. de Vink, A hierarchy of probabilistic system types, Theoret.
Comput. Sci., 327 (2004), pp. 3–22.

[5] J. A. Bergstra, J. W. Klop, and E.-R. Olderog, Readies and failures in the algebra of
communicating processes, SIAM J. Comput., 17 (1988), pp. 1134–1177.

[6] L. Cheung, Randomized wait-free consensus using an atomicity assumption, in Principles
of Distributed Systems (Proceedings of OPODIS 2005, Pisa, Italy), J. H. Anderson, G.
Prencipe, and R. Wattenhofer, eds., Lecture Notes in Comput. Sci. 3974, Springer, New
York, 2006, pp. 47–60.

[7] L. Cheung, Reconciling Nondeterministic and Probabilistic Choices, Ph.D. thesis, Faculty of
Science, Radboud University, Nijmegen, The Netherlands, 2006.

[8] L. Cheung, N. A. Lynch, R. Segala, and F. W. Vaandrager, Switched PIOA: Parallel
composition via distributed scheduling, Theoret. Comput. Sci., 365 (2006), pp. 83–108.

[9] B. Chor, A. Israeli, and M. Li, Wait-free consensus using asynchronous hardware, SIAM J.
Comput., 23 (1994), pp. 701–712.

[10] L. de Alfaro, T. A. Henzinger, and R. Jhala, Compositional methods for probabilistic
systems, in Proceedings of CONCUR 01, Aalborg, Denmark, 2001, K. G. Larsen and
M. Nielsen, eds., Lecture Notes in Comput. Sci. 2154, Springer, New York, 2001, pp. 351–
365.

[11] W. Feller, An Introduction to Probability Theory and Its Applications. Volume 1, John Wiley
& Sons, New York, 1950.

[12] R. J. van Glabbeek, The linear time-branching time spectrum I. The semantics of concrete,
sequential processes, in Handbook of Process Algebra, J. A. Bergstra, A. Ponse, and S. A.
Smolka, eds., North–Holland, Amsterdam, 2001, pp. 3–99.

[13] R. J. van Glabbeek, S. A. Smolka, and B. Steffen, Reactive, generative, and stratified
models of probabilistic processes, Inform. and Control, 121 (1995), pp. 59–80.

[14] J. F. Groote and F. W. Vaandrager, Structured operational semantics and bisimulation as
a congruence, Inform. and Comput., 100 (1992), pp. 202–260.

[15] H. A. Hansson, Time and Probability in Formal Design of Distributed Systems, Real-Time
Safety Critical Systems 1, Elsevier, New York, 1994.

[16] A. Hinton, M. Z. Kwiatkowska, G. Norman, and D. Parker, Prism: A tool for automatic
verification of probabilistic systems, in TACAS, H. Hermanns and J. Palsberg, eds., Lecture
Notes in Comput. Sci. 3920, Springer-Verlag, New York, 2006, pp. 441–444.

[17] C. A. R. Hoare, Communicating Sequential Processes, Prentice–Hall, Englewood Cliffs, NJ,
1985.

[18] B. Jonsson and K. G. Larsen, Specification and refinement of probabilistic processes, in
Proceedings of the 6th Annual Symposium on Logic in Computer Science, Amsterdam,
IEEE Press, Piscataway, NJ, 1991, pp. 266–277.

[19] B. Jonsson and W. Yi, Testing preorders for probabilistic processes can be characterized by
simulations, Theoret. Comput. Sci., 282 (2002), pp. 33–51.

[20] M. Z. Kwiatkowska and G. Norman, Verifying randomized byzantine agreement, in FORTE,
D. Peled and M. Y. Vardi, eds., Lecture Notes in Comput. Sci. 2529, Springer-Verlag, New
York, 2002, pp. 194–209.

[21] L. Lamport, Specifying concurrent program modules, ACM Trans. Prog. Lang. Syst., 5 (1983),
pp. 190–222.

[22] K. G. Larsen and A. Skou, Bisimulation through probabilistic testing, Inform. and Comput.,
94 (1991), pp. 1–28.

[23] N. A. Lynch, I. Saias, and R. Segala, Proving time bounds for randomized distributed al-
gorithms, in Proceedings of the 13th Annual ACM Symposium on the Principles of Dis-
tributed Computing, Los Angeles, CA, 1994, ACM, New York, 1994, pp. 314–323.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OBSERVING BRANCHING THROUGH PROBABILISTIC CONTEXTS 1013

[24] N. A. Lynch, R. Segala, and F. W. Vaandrager, Compositionality for probabilistic au-
tomata, in Proceedings of the 14th International Conference on Concurrency Theory
(CONCUR 2003), Marseille, France, R. Amadio and D. Lugiez, eds., Lecture Notes in
Comput. Sci. 2761, Springer-Verlag, New York, 2003, pp. 208–221.

[25] N. A. Lynch and M. R. Tuttle, An introduction to input/output automata, CWI Quarterly,
2 (1989), pp. 219–246.

[26] N. A. Lynch and F. W. Vaandrager, Forward and backward simulations, I: Untimed systems,
Inform. and Comput., 121 (1995), pp. 214–233.

[27] R. Milner, Communication and Concurrency, Prentice–Hall, Englewood Cliffs, NJ, 1989.
[28] G. Norman, Analysing randomized distributed algorithms, in Validation of Stochastic Systems,

C. Baier, B. R. Haverkort, H. Hermanns, J.-P. Katoen, and M. Siegle, eds., Lecture Notes
in Comput. Sci. 2925, Springer-Verlag, New York, 2004, pp. 384–418.

[29] A. Philippou, I. Lee, and O. Sokolsky, Weak bisimulation for probabilistic systems, in
Proceedings of CONCUR 2000, University Park, PA, C. Palamidessi, ed., Lecture Notes
in Comput. Sci. 1877, Springer-Verlag, New York, 2000, pp. 334–349.

[30] A. Pogosyants, R. Segala, and N. A. Lynch, Verification of the randomized consensus al-
gorithm of Aspnes and Herlihy: A case study, Distributed Computing, 13 (2000), pp. 155–
186.

[31] R. Segala, Compositional trace-based semantics for probabilistic automata, in Proceedings of
CONCUR 95, Philadelphia, PA, I. Lee and S. A. Smolka, eds., Lecture Notes in Comput.
Sci. 962, Springer-Verlag, New York, 1995, pp. 234–248.

[32] R. Segala, Modeling and Verification of Randomized Distributed Real-Time Systems, Ph.D.
thesis, Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, MA, 1995; also available as Technical Report
MIT/LCS/TR-676.

[33] R. Segala, Testing probabilistic automata, in Proceedings of CONCUR 96, Pisa, Italy, 1996,
U. Montanari and V. Sassone, eds., Lecture Notes in Comput. Sci. 1119, Springer, New
York, 1996, pp. 299–314.

[34] R. Segala and N. A. Lynch, Probabilistic simulations for probabilistic processes, Nordic J.
Comput., 2 (1995), pp. 250–273.

[35] R. Segala and A. Turrini, Comparative analysis of bisimulation relations on alternating and
nonalternating probabilistic models, in Proceedings of the Second International Conference
on the Quantitative Evaluation of Systems (QEST 2005), Torino, Italy, IEEE Computer
Society, Piscataway, NJ, 2005, pp. 44–53.

[36] A. Sokolova and E. P. de Vink, Probabilistic automata: System types, parallel composi-
tion, and comparison, in Validation of Stochastic Systems—A Guide to Current Research,
C. Baier, B. R. Haverkort, H. Hermanns, J.-P. Katoen, and M. Siegle, eds., Lecture Notes
in Comput. Sci. 2925, Springer-Verlag, New York, 2004, pp. 1–43.

[37] M. I. A. Stoelinga, Alea Jacta Est: Verification of Probabilistic, Real-Time, and Parametric
Systems, Ph.D. thesis, Faculty of Science, University of Nijmegen, Nijmegen, The Nether-
lands, 2002.

[38] M. I. A. Stoelinga, An introduction to probabilistic automata, Bull. European Assoc. Theoret.
Comput. Sci., 78 (2002), pp. 176–198.

[39] M. I. A. Stoelinga and F. W. Vaandrager, Root contention in IEEE 1394, in Proceed-
ings of the 5th International AMAST Workshop on Formal Methods for Real-Time and
Probabilistic Systems, Bamberg, Germany, J.-P. Katoen, ed., Lecture Notes in Comput.
Sci. 1601, Springer-Verlag, New York, 1999, pp. 53–74.

[40] M. Y. Vardi, Automatic verification of probabilistic concurrent finite-state programs, in Pro-
ceedings of the 26th IEEE Symposium on Foundations of Computer Science, Portland,
OR, 1985, IEEE Press, Piscataway, NJ, pp. 327–338.

