
I/O Automaton Models and Proofs forShared-Key Communication SystemsNancy LynchMIT Laboratory for Computer Science545 Technology SquareCambridge, MA 02139, USAlynch@lcs.mit.eduTechnical Report MIT/LCS/TR-789MIT Laboratory for Computer ScienceAugust 9, 1999AbstractThe combination of two security protocols, a simple shared-key communication pro-tocol and the Di�e-Hellman key distribution protocol, is modeled formally and provedcorrect. The modeling is based on the I/O automaton model for distributed algorithms,and the proofs are based on invariant assertions, simulation relations, and compositionalreasoning. Arguments about the cryptosystems are handled separately from argumentsabout the protocols.
0

1 IntroductionSecurity protocols must satisfy important correctness requirements, which means that it isimportant to be able to think about them clearly and precisely. But they can also be largeand complicated, which makes such reasoning di�cult. Ways of decomposing the reasoningtask into clearly separable pieces are needed. This includes separating di�erent types ofconcerns, for example, distributed algorithms issues, cryptosystem computability issues,probabilistic issues, and issues of accurate modeling of reality. It also includes decomposingthe protocols using the normal techniques for decomposing distributed algorithms, basedon levels of abstraction and parallel composition of interacting components.This paper describes an experiment in modeling and analyzing security protocols, usingI/O automata [26, 23] and the usual techniques that go along with them|a combinationof invariant assertions, simulation relations, and compositional reasoning using traces. Theaim of the experiment is to explore how these methods can help in decomposing the taskof reasoning about security protocols. This model and these methods have been usedsuccessfully for decomposing the reasoning about many standard distributed algorithms(see, e.g., [23, 32, 25]), and about several distributed system designs (see, e.g., [13, 14, 17,20]), so it is worth discovering what they can do for security protocols.The experiment involves combining simple shared-key communication and key distri-bution protocols to implement private communication. In the case we describe in detailhere, simple Di�e-Hellman key distribution [10] is used, the protocols tolerate only passiveeavesdroppers, and only safety properties are considered. In another case in progress, dis-cussed brie
y here, the more complex Di�e-van Oorschot-Weiner key distribution protocol[11], which tolerates adversaries that can intrude more actively, is studied. Later work willinclude liveness guarantees, formulated in terms of timing properties.Our main guideline in studying these protocols is to try to decompose the reasoning asmuch as possible, identifying sub-problems that can be treated separately. (Although theexamples in this paper are simple enough to be understood informally, understanding how todecompose them is a good �rst step toward understanding how to decompose more complexexamples.) The handling of each piece should be appropriately abstract. For example, indiscussing protocol issues, cryptosystem computability issues should be summarized byassumptions saying that certain values are not \easily computable" from others; number-theoretic arguments about why these values are not (likely to be) easily computable shouldbe treated at a lower level, as mechanisms to achieve the more abstract non-computabilityguarantees. Probabilistic issues should be treated separately, as far as possible. Afterdividing up the problems in this way, we expect that the main bene�t of the I/O automaton-based methods will be in clarifying the distributed algorithm issues. Cryptosystem issues,for example, may be better treated by other means, for example, the inductive techniquesof Paulson [30] or the strand space techniques of Fabrega, et al. []. However, a generalframework should provide a rigorous way of combining the di�erent types of issues.Similarly, we try to decompose the distributed algorithms themselves as much as possi-ble, by:1. Treating sub-protocols separately, then combining them using general theorems aboutautomaton composition. 1

2. Giving very high level automaton speci�cations for services, giving separate, detaileddescriptions of implementing algorithms, and showing, by means of simulation rela-tions, that the algorithms implement the services.3. First studying a protocol using a natural, simple cryptosystem, and later trying toshow that its correctness properties extend to modi�ed versions that use more elabo-rate cryptosystems.4. Combining adversaries that interact with separate protocols into a single \colluding"unit.Because I/O automata are composed by means of shared actions, and because we areconsidering only safety properties in this paper, it is natural to describe external behavior ofautomata in terms of sets of traces (i.e., sequences of external actions). The simple trace se-mantics yields simple and powerful projection and pasting theorems (see, e.g., [23], p. 211),for the behavior of compositions of automata. However, in order to enable compositionalreasoning about particular kinds of properties, the traces must contain all the informationrelevant for those properties. For example, in treating fault-tolerance properties such aswait-free termination and f -failure termination compositionally, in terms of traces, it isconvenient to include in traces special fail input actions that signal the occurrence of fail-ure events (see, e.g., [23, 25]). Sometimes it is convenient to consider di�erent strengths offailure actions (e.g., the good , bad , and ugly failure actions in [14]). Also, in order to treattiming properties compositionally, it is useful to include timing information into traces.In the case of security protocols, some important properties involve lack of knowledge.To treat this compositionally, one should include something about knowledge in the traces.Our approach here is to give explicit learn input actions and reveal output actions by whicha component can learn new information and reveal its knowledge, and to constrain thecomponent's behavior in terms of these actions.Speci�cally, the paper contains the following. Section 2 presents a model for cryptosys-tems, which describe the data types encountered in the protocols, including messages, keys,and lower-level data from which keys are constructed. This data model also describes thefunctions that manipulate data, and the reachability (computability) relationships that saywhich values can be computed easily from which others. The data model is similar to othersin the literature. Section 3 contains a brief review of the I/O automaton model. Section 4describes some \standard" types of automata that model certain components appearing inmany systems: service environments, insecure channels, and eavesdroppers.Section 5 gives I/O automaton speci�cations for the two main security services con-sidered in this paper|private communication and key distribution. The speci�cation forprivate communication is abstract: it talks only about communication and revealed informa-tion, and not, for example, about keys. Section 6 models and analyzes the implementationof private communication using an abstract key distribution service, and Section 7 treatsthe Di�e-Hellman implementation of key distribution. These protocols use particular cryp-tosystems, and the protocol proofs assume the limitations on easy computability expressedby those cryptosystems. The proofs are based on invariant assertions, and on simulationrelations relating the protocols to the speci�cations for the services they are intended toimplement. 2

Section 8 shows what is involved in moving from a description of each of the two in-dividual protocols in terms of its own natural cryptosystem to a description in terms of acommon, richer cryptosystem. For example, the shared-key protocol is initially analyzedin terms of abstract, unstructured keys taken from a simple \shared-key cryptosystem".However, when one combines this protocol with Di�e-Hellman, it is necessary to considera version that uses structured keys, taken from a richer \structured-key cryptosystem".Section 9 puts the pieces together, to get an implementation of private communicationthat uses shared-key communication together with Di�e-Hellman key distribution. Mostof this is accomplished automatically from the general projection and pasting theorems forI/O automata. Special arguments must be made for combining the insecure channels usedin the two protocols, and for combining the two adversaries into one. Section 10 gives a�nal discussion.Related work:The I/O automaton model is similar to the labeled transition system models underlyingprocess algebras. However, notation and proof techniques typically used for I/O automatadi�er greatly from the usual process algebraic notations and methods; notably, work basedon I/O automata uses explicit, structured representations of automaton states.Many researchers have stated and proved invariant assertions for security protocols (see,for example, [19, 36, 33, 30]). On the other hand, simulation relations have not been usedmuch in prior work on reasoning about security protocols. An example of work usingsimulation relation ideas is the work on \safe simplifying transformations" by Hui andLowe [18]. Also, Abadi and co-workers have used simulation relation notions in provingequivalences for components of secure systems (see, e.g., [1, 3]).Our strategy of including in traces explicit information about what can be learned andwhat can be revealed is a key to our approach to compositional reasoning about security pro-tocols. Including this information makes simple traces rich enough to express at least someinteresting security properties. A similar strategy, called \negative constraints", is used byCavalca and Segala in analyzing authentication protocols [8, 9]. This strategy di�ers fromthe \zero-knowledge" approach to proving secrecy properties (e.g., [16]) by specifying theparticular information that can be learned and revealed, rather than assuming that noth-ing is learned or revealed. This extra
exibility makes it easier to compose speci�cations.Another di�erence between our work and work on zero-knowledge is that zero-knowledgeproofs include probabilistic considerations, which we have so far avoided.Bellare and Rogaway have developed a framework for composing security protocols [6, 7].Their approach is less formal than ours, but it takes probabilities into account. Lincoln,Mitchell, Mitchell, and Scedrov [21] present a formal approach to studying the interactionsbetween protocols and cryptographic primitives, again taking probabilities into account.This work can be regarded as a more formal version of the work of Bellare and Rogaway.It is based on a form of �-calculus [29] and probabilistic polynomial time process models.Our work di�ers from work on formal logics for security for example, the BAN logicof Burrows, Abadi, and Needham [2], in that ours is carried out entirely at the level ofautomaton semantics. However, our work is compatible with work on security logics, inthat it should be possible to express our proof methods using formal logics. Also, it shouldbe possible to interpret some security logics in terms of I/O automata; the e�ort would be3

similar to Abadi and Tuttle's construction of an automaton semantics for a derivative ofthe BAN logic [4].Our work makes extensive use of inductive proofs, mainly for verifying invariants andsimulation relations. Paulson [30] has developed an extensive collection of methods for rea-soning inductively about cryptographic protocols, all supported by the Isabelle interactivetheorem prover [31]. His approach includes some methods for proving secrecy properties,which involve showing that certain values are not reachable from other values within cryp-tosystems. We think that such methods may be useful for constructing formal proofs ofcryptosystem unreachability results like the ones needed in this paper. Other approachesthat should be useful in proving cryptosystem reachability results include the rank functionapproach of Schneider [33] and the strand space techniques of Fabrega et al.All of the related work mentioned above adopts a model where the adversary may beactive, not just an eavesdropper. We believe that this is not a fundamental di�erence, inthat our general approach can be extended to model more active adversaries.Sheyner and Wing [34] have formalized much of the approach of this paper using con-servative extensions to theories supplied with the theorem prover Isabelle. In particular,they have formalized shared-key cryptosystems, private communication, and essentially allthe automata appearing in Section 6 of this paper. They have carried out interactive proofsusing Isabelle for the fact that S1 simulates PC , for the invariants in Section 6.3, and forseveral other invariants useful in the simulation argument. They are continuing to modelother security protocols using the same approach.An earlier version of the present paper appeared in the 12th IEEE Computer SecurityFoundations Workshop [24].12 Data ModelThis section presents a basic model for the data types used in the protocols.2.1 CryptosystemsWe use � to denote the empty string.A cryptosystem signature S consists of:� TNS , a set of type names .� FN S , a set of function names .� domainS , a mapping from FN S to (TNS)�.� rangeS , a mapping from FN S to TN S .� EN S � FN S , a set of easy function names.A constant name is a function name f such that domainS(f) = �. Let CNS � FN S denotethe set of constant names of C. We omit the subscript S where no confusion seems likely.A cryptosystem C consists of:1Unfortunately, subsection numbers are messed up in that version. A corrected copy of that paper appearsat URL http://theory.lcs.mit.edu/tds/papers/Lynch/CSFW.html.4

� A cryptosystem signature sigC . We write TN C as shorthand for TN sigC , etc.� setC, a mapping from TN C to disjoint sets.� funC , a mapping from FN C to functions; We require that if domainC(f) = (t1; : : : ; tk)and rangeC(f) = t then funC(f) : setC(t1)� � � � � setC(tk)! setC(t).We write setC for St2TNC setC(t). We omit the subscript C where no confusion seems likely.If X[fyg � setC, we say that y is easily reachable fromX in C provided that y is obtainablestarting from elements of X , by applying only functions denoted by function names in EN C.2.2 Term CryptosystemsIf S is a cryptosystem signature, then the terms of S, and their types, are de�ned recursively,as follows:1. If c 2 CN S and rangeS(c) = t, then c is a term and typeS(c) = t.2. If f 2 FN S , domainS(f) = t1; t2; : : : ; tk, where k � 1, rangeS(f) = t, and e1; : : : ; ekare terms of types t1; : : : ; tk, respectively, then the expression e = f(e1; : : : ; ek) is aterm, and typeS(e) = t.Let TermsS(t) denote the set of terms of S of type t. Let TermsS denote the set of allterms of S.Some of the cryptosystems we consider are best understood as term algebras derivedfrom cryptosystem signatures. In these cases, the values of the various types are, formally,equivalence classes of terms: An equivalence relation R on TermsS is said to be a congruenceprovided that the following hold.1. If eRe0 then typeS(e) = typeS(e0).2. Suppose that f 2 FN S , domainS(f) = t1; t2; : : : ; tk, where k � 1, rangeS(f) = t,e1; : : : ; ek are terms of types t1; : : : ; tk, respectively, e01; : : : ; e0k are terms of typest1; : : : ; tk, respectively, and for all i, 1 � i � k, eiRe0i. Then f(e1; : : : ; ek)Rf(e1; : : : ; ek).Let S be a cryptosystem signature and R a congruence on TermsS . Then the term cryp-tosystem C for S and R is the unique cryptosystem satisfying:� sigC = S.� If t 2 TN C , then setC(t) is the set of all R-equivalence classes of terms of type t inTermsC .� If f 2 FN C, domainC(f) = (t1; : : : ; tk) and rangeC(f) = t then funC(f) is the functionfrom setC(t1)� � � �� setC(tk) to setC(t) de�ned as follows. Suppose that ei 2 setC(ti)for all i, 1 � i � k. Then funC(f)([e1]R; : : : ; [ek]R) is de�ned to be [f(e1; : : : ; ek)]R.(Since R is a congruence, this is well-de�ned.)We use the notation RC for the congruence relation R of C. If e 2 TermsC , then we write[e]C for the equivalence class of e with respect to RC. Also, if E � TermsC then we write[E]C for the set of equivalence classes [e]C for e 2 E.5

2.3 Cryptosystem ExamplesIn this subsection we give the speci�c kinds of cryptosystems used later in this paper.These are: shared-key cryptosystems, used in shared-key communication; base-exponentcryptosystems, used in Di�e-Hellman key distribution; and structured-key cryptosystems,which are essentially combination of shared-key and base-exponent cryptosystems, and areused when shared-key communication and Di�e-Hellman key distribution protocols arecombined.2.3.1 Shared-key cryptosystemsA shared-key cryptosystem C is a term cryptosystem. The signature S = sigC is de�nedas follows. TN S consists of two type names: \M" for messages and \K" for keys. FN Sconsists of:� enc, with domain(enc) = (\M"; \K") and range(enc) = \M".� dec, with domain(dec) = (\M"; \K") and range(dec) = \M".� MConstS , a set of message constant names, with range(m) = \M" for all m 2MConstS .� KConstS , a set of key constant names, with range(k) = \K" for all k 2 KConstS .EN S = fenc; decg. The relation R is de�ned by means of all equations of the form:� dec(enc(m; k); k) = m, where m; k 2 TermsS , type(m) = \M", type(k) = \K".Speci�cally, we de�ne R to be the smallest congruence relation on TermsS that groupstogether all terms that are related by the given equations.The following lemma gives some basic properties of a shared-key cryptosystem, usedlater in the proof of an invariant for a shared-key communication protocol (Lemma 6.3).Many properties of this sort are needed in this paper. However, we will not continue to beas explicit as we are here, but will revert to simply citing \properties of the cryptosystem".A careful treatment of such properties is a separate e�ort, and would bene�t from the useof other methods, as discussed in the Introduction.Lemma 2.1 Let C be a shared-key cryptosystem, S its signature and R its congruencerelation.1. Suppose that e1 and e2 are terms of type \M" with e1Re2. Let enci and deci denotethe respective number of occurrences of enc and dec in ei, i 2 f1; 2g.Then enc1 � dec1 = enc2 � dec2.2. For all m1; m2 2 MConstS, k 2 KConstS :enc(m1; k) is not R-related to m2.Proof: Part 1 is proved by induction on the number of substitutions required to relateone term to the other. Since there is only one kind of substitution, and it preserves thisdi�erence, the result holds. Part 2 follows from Part 1.6

2.3.2 Base-exponent cryptosystemsA base-exponent cryptosystem C is a term cryptosystem in which, letting S = sigC: TN Sconsists of two type names, \B" for bases and \X" for exponents, and FN S consists of:� exp, with domain(exp) = (\B"; \X") and range(exp) = \B".� BConstS , a set of base constant names, with range(b) = \B" for all b 2 BConstS .� XConst1S andXConst2S , two disjoint sets of exponent constant names, with domain(x) =� and range(x) = \X" for all x 2 XConst1S [XConst2S .EN S = fexpg [BConstS . The relation R is de�ned by means of all equations of the form:� exp(exp(b; x); y) = exp(exp(b; y); x), where b; x; y 2 TermsS , type(b) = \B", type(x) =type(y) = \X".De�ne B2S to be the set of all terms of the form exp(exp(b; x); y), where b 2 BConstS ,x 2 XConst1S and y 2 XConst2S . An augmented base-exponent cryptosystem is a base-exponent cryptosystem together with a distinguished element b0S of BConstS .2.3.3 Structured-key cryptosystemsA structured-key cryptosystem is a combination of a shared-key cryptosystem and a base-exponent cryptosystem, where certain terms of the base-exponent cryptosystem are iden-ti�ed with the keys. A structured-key cryptosystem C is a term cryptosystem in which,letting S = sigC : TNS consists of the type names \M", \B", and \X", and FN S consistsof: � enc, with domain(enc) = (\M"; \B") and range(enc) = \M".� dec, with domain(dec) = (\M"; \B") and range(dec) = \M".� exp, with domain(exp) = (\B"; \X") and range(exp) = \B".� MConstS , a set of message constant names, with range(m) = \M" for all m 2MConstS .� BConstS , a set of base constant names, with range(b) = \B" for all b 2 BConst.� XConst1S andXConst2S , two disjoint sets of exponent constant names, with range(x) =\X" for all x 2 XConst1S [XConst2S .EN S = fenc; dec; expg [BConstS . The relation R is de�ned by means of all equations ofthe forms:� dec(enc(m; b); b) = m, where m; b 2 TermsS , type(m) = \M", type(b) = \B".� exp(exp(b; x); y) = exp(exp(b; y); x), where b; x; y 2 TermsS , type(b) = \B", type(x) =type(y) = \X".Once again, we write B2 C for the set of terms of the form exp(exp(b; x); y), where b 2BConstC , x 2 XConst1C, and y 2 XConst2C. An augmented structured-key cryptosystemis a structured-key cryptosystem together with a distinguished element b0S of BConstS .7

3 Input/Output AutomataWe use I/O automata as de�ned in [23]. Brie
y, an I/O automaton A is a state machinehaving a signature consisting of a set of actions , classi�ed as input, output , and internalactions. A also has a set of transitions , which are (state, action, state) triples. It is assumedthat every input action is enabled in every state. Since we do not deal with liveness in thispaper, the tasks de�ned in [23] are irrelevant.An execution fragment of A is an alternating (state, action, state,...) sequence, wheresuccessive triples correspond to transitions of A. An execution is an execution fragmentthat begins with a start state. The external behavior of A is modelled by the set of traces ,which are the sequences of external actions arising from the executions.If A and B are I/O automata with the same external signature, then we say that Aimplements B provided that every trace of A is also a trace of B. Parallel compositionof automata is de�ned by identifying external actions with the same name in di�erentautomata. We use notions of invariants and simulation relations in the usual ways; forde�nitions, see, for example [23].In particular, a simulation relation from A to B is a relation F from states(A) tostates(B) satisfying the following two properties:1. Each start state of A is F -related to some start state of B.2. For each step (sA; �; s0A) of A and each state sB of B with (sA; sB) 2 F , there is a\corresponding" execution fragment of B: it has the same trace as the given step,and spans from sB to some state s0B , where (s0A; s0B) 2 F .The key fact about a simulation relation is expressed by:Theorem 3.1 If there is a simulation relation from A to B then A implements B.4 Some Generally-Useful AutomataIn this section, we give automaton models for some system components that will be usedfrequently in modeling security protocols, namely, environments for security services, inse-cure channels, and eavesdroppers. They are presented in a parameterized fashion so thatthey can be used in di�erent contexts. We model these components as automata (ratherthan, for example, by using trace properties) for uniformity with the way we will modelalgorithms and system speci�cations, and because this makes it possible to reason aboutthem assertionally.4.1 Environment AutomataIn this subsection we assume that U is a universal set of data values, A is a nonempty�nite set of adversary ports (that is, locations where information can be communicatedto an adversary), and N � U . The environment automaton Env(U;A;N) models anyentities other than the channels from which an eavesdropper may learn information. Thespeci�cation says that the environment is theoretically capable of communicating elementsof U at any adversary port a 2 A, but in fact does not communicate any elements of N .8

Env(U;A;N) :Signature:Input:None Output:learn(u)a, u 2 U , a 2 AStates:No variablesTransitions:learn(u)aPrecondition:u =2 NE�ect:none4.2 Insecure Channel AutomataIn this subsection we assume that U is a universal set of data values, P is a nonempty�nite set of client ports, and A is a nonempty �nite set of adversary ports. The insecurechannel admits send and receive actions for all elements of U . It also has eavesdrop outputactions, by which information in transit passes to an outsider. The insecure channel allowsany message in transit to be communicated to an outsider.IC (U; P; A):Signature:Input:IC-send(u)p;q , u 2 U , p; q 2 P , p 6= q Output:IC-receive(u)p;q , u 2 U , p; q 2 P , p 6= qeavesdrop(u)p;q;a, u 2 U , p; q 2 P , p 6= q, a 2 AStates:for every p; q 2 P , p 6= q:bu�er(p; q), a multiset of U , initially emptyTransitions:IC-send(u)p;qE�ect:add u to bu�er(p; q)IC-receive(u)p;qPrecondition:u 2 bu�er(p; q)E�ect:remove one copy of u from bu�er(p; q) eavesdrop(u)p;q;aPrecondition:u 2 bu�er(p; q)E�ect:none9

4.3 Eavesdropper AutomataIn this subsection we assume that C is a cryptosystem, P is a nonempty �nite set of clientports, and A is a nonempty �nite set of adversary ports. We de�ne a model for an eaves-dropper, as a nondeterministic automaton Eve(C; P; A). Eve simply remembers everythingit learns and hears, and can reveal anything it has, at any time. It does this by maintaininga variable has , initially ;. The value of has may change only in restricted ways: Wheneavesdrop(u)p;q;a or learn(u)a occurs, u gets added to has . Also, when an internal computeaction occurs, the value resulting from applying an easy function (one in EN C) to valuesin has may be added to has . We restrict the reveal(u) output so that u 2 has , that is,Eve can only report a value that it \has". Similar treatments of known information appearelsewhere in the literature, for example, in [12, 19, 28, 27].Eve(C; P; A):Signature:Input:eavesdrop(u)p;q;a, u 2 setC, p; q 2 P , p 6= q, a 2 Alearn(u)a, u 2 setC, a 2 AOutput:reveal(u)a, u 2 setC, a 2 A Internal:compute(u; f)a, f 2 EN C, a 2 AStates:has � setC, initially ;Transitions:eavesdrop(u)p;q;aE�ect:has := has [fuglearn(u)aE�ect:has := has [fug reveal(u)aPrecondition:u 2 hasE�ect:nonecompute(u; f)aPrecondition:fu1; : : : ; ukg � s:hasu = f(u1; : : : ; uk)E�ect:has := has [fug5 The ServicesIn this section, we describe the two services that are implemented by the protocols in thispaper. They are described as automata, which is convenient for assertional reasoning. Theuse of input and output actions provides convenient ways of composing these automata withothers, and of describing what is preserved by implementation relationships. For simplicity,we write these speci�cations to describe only safety properties, although the same methodscan be used to handle liveness properties, formulated as time bounds (see, e.g., [22, 23]).10

5.1 Private CommunicationThis section contains a speci�cation of the problem of achieving private communicationamong the members of a �nite collection P of clients. The speci�cation expresses threeproperties: (1) only messages that are sent are delivered, (2) messages are delivered atmost once each, and (3) none of the messages is revealed at any \adversary port". Wedescribe the problem using a high-level I/O automaton speci�cation PC (U; P;M;A), whereU is a universal set of data values, P is a nonempty �nite set of client ports, M � U isa set of messages, and A is a nonempty �nite set of adversary ports. This speci�cationmakes no mention of distribution or keys; these aspects will appear in implementationsof this speci�cation, but not in the speci�cation itself. The speci�cation simply describesthe desired properties, as an abstract machine. As usual for automaton speci�cations, theproperties, listed separately above, are intermingled in one description.PC (U; P;M;A):Signature:Input:PC-send(m)p;q, m 2M , p; q 2 P , p 6= q Output:PC-receive(u)p;q , u 2 U , p; q 2 P , p 6= qreveal(u)a, u 2 U , a 2 AStates:for every pair p; q 2 P , p 6= q:bu�er(p; q), a multiset of MTransitions:PC-send(m)p;qE�ect:add m to bu�er(p; q)PC-receive(u)p;qPrecondition:u 2 bu�er(p; q)E�ect:remove one copy of u from bu�er(p; q) reveal(u)aPrecondition:u =2ME�ect:noneProperties 1 and 2 above, which express at-most-once delivery of messages that were actuallysent, are expressed by the transition de�nitions for PC-send and PC-receive. Property 3,secrecy, is expressed by the constraint for reveal .5.2 Key DistributionThis is a drastically simpli�ed key distribution service, which distributes a single key toseveral participants. We do not model requests for the keys, but assume that the servicegenerates the key spontaneously. The service does not grant any other values, and doesnot reveal any key in K at any adversary port. The simpli�ed key distribution service isspeci�ed by the automaton KD(U; P;K;A), where U is a universal set of data values, P is11

a nonempty �nite set of client ports, K � U is a set of keys, and A is a nonempty �nite setof adversary ports.KD(U; P;K;A):Signature:Input:noneOutput:grant(u)p, u 2 U , p 2 Preveal(u)a, u 2 U , a 2 A Internal:choose-keyStates:chosen-key, an element of K [f?g, initially ?noti�ed � P , initially ;Transitions:choose-keyPrecondition:chosen-key = ?E�ect:chosen-key := choose k where k 2 Kgrant(u)pPrecondition:chosen-key 6= ?u = chosen-keyp =2 noti�edE�ect:noti�ed := noti�ed [fpg
reveal(u)aPrecondition:u =2 KE�ect:none

6 Implementing Private Communication using Shared KeysThis section describes a straightforward shared-key communication protocol. The protocolsimply uses a shared key, obtained from a key distribution service, to encode and decodemessages. Throughout the section, we assume that C is a shared-key cryptosystem, P is aset (of clients) with at least 2 elements, and A is a nonempty �nite set (of adversaries).6.1 The Encoder and DecoderWe de�ne parameterized encoder and decoder automata, parameterized by the shared-keycryptosystem C, the set P of clients, and elements p; q 2 P , p 6= q. The encoder encryptsmessages from client p using the granted key, and sends the encrypted messages on theinsecure channel from p to q. Note that, in the code for IC-send(u), we are using theabbreviation enc for funC(enc) { that is, we are suppressing mention of the particularcryptosystem C.Enc(C; P)p;q, where p; q 2 P , p 6= q :Signature: 12

Input:PC-send(m)p;q, m 2 [MConstC]grant(u)p, u 2 setC Output:IC-send(u)p;q , u 2 setCStates:bu�er, a multiset of elements of [MConstC], initially emptyshared-key 2 [KConstC] [f?g, initially ?Transitions:PC-send(m)p;qE�ect:add m to bu�erIC-send(u)p;qPrecondition:m is in bu�ershared-key 6= ?u = enc(m; shared-key)E�ect:remove one copy of m from bu�er grant(u)pE�ect:if u 2 [KConstC] thenshared-key := uThe decoder receives messages from the insecure channel from p to q, decrypts them, anddelivers the decrypted messages to q.Dec(C; P)p;q, where p; q 2 P , p 6= q :Signature:Input:IC-receive(u)p;q , u 2 setCgrant(u)q, u 2 setC Output:PC-receive(u)p;q , u 2 setCStates:bu�er, a multiset of elements of setC(\M"), initially emptyshared-key 2 [KConstC] [f?g, initially ?Transitions:IC-receive(u)p;qE�ect:if u 2 setC(\M") thenadd u to bu�erPC-receive(u)p;qPrecondition:m is in bu�ershared-key 6= ?u = dec(m; shared-key)E�ect:remove one copy of m from bu�er
grant(u)qE�ect:if u 2 [KConstC] thenshared-key := u

13

IC

Eve

Env

Dec
2,1

reveal
4

eavesdrop

IC-send
1,2

reveal
3

learn
3

IC-send
1,2

IC-receive
 2,1

KD

Enc
1,2
 Dec
1,2

PC-send
2,1
PC-receive
 2,1

PC-send
1,2
 PC-receive
 1,2

Enc
2,1

grant
1
 grant
2

Figure 1: S1; P = f1; 2g, A = f3g; A0 = f4g6.2 The Complete ImplementationIn the rest Section 6, we assume that U = setC, M = [MConstC], K = [KConstC], N =M [K, U 0 is a set with K � U 0, and A0 is a nonempty �nite set, disjoint from A.The implementation consists of encoder and decoder components, an insecure chan-nel, eavesdropper, and environment, plus a key distribution service. More precisely, theimplementation, S1(C; P; A; U 0; A0), is constructed by composing the following automata:� Enc(C; P)p;q, Dec(C; P)p;q, p; q 2 P , p 6= q.� IC(U; P; A), Eve(C; P; A), Env(U;A;N).� KD(U 0; P;K;A0), a key distribution service.and then hiding all the eavesdrop, IC-send , IC-receive, grant , and learn actions, and all thereveala actions for a 2 A0. That is, we hide all but the external actions of PC (U; P;M;A),which are the PC-send and PC-receive actions, and the reveala actions for a 2 A. Wesometimes omit explicit mention of parameters of S1 (and of other systems and components),when we think that confusion is unlikely. Figure 1 contains an interaction diagram for S1.Note that, in this system, the eavesdropper Eve does not acquire any information directlyfrom the KD component. Later, in Section 9, we will combine this eavesdropper withanother that arises in the key distribution service implementation.Our system model says that the eavesdropper learns no elements of N = M [K fromoutside sources. This choice of N is �ne for this protocol, but we do not have a generalprescription for how to choose useful sets N for all protocols. \Useful" here means that the14

set should have a simple de�nition, should be large enough to include all values that theadversary could use to break the protocol, and should be small enough to exclude valuesproduced by other protocols with which the given protocol is to be composed. The work ofcoming up with a good choice of N seems to be something of an art, similar to coming upwith a useful invariant.6.3 InvariantsIn system S1, we use Encp;q, Decp;q, IC , Eve, and KD as \handles" to help in naming statevariables in the composed state. This handle naming device for state variables is takenfrom [35]. The �rst invariant says that the keys granted by the key distribution service areconsistent.Lemma 6.1 In all reachable states of S1, the following are true:1. If Encp;q:shared-key 6= ? then Encp;q:shared-key = KD :chosen-key.2. If Decp;q:shared-key 6= ? then Decp;q:shared-key = KD :chosen-key.Proof: By a simple induction on the length of an execution leading to a state.The next invariant says that all elements that appear in the insecure channel are of type\M".Lemma 6.2 In all reachable states of S1, the following are true:1. If u is in IC :bu�erp;q then u 2 setC(\M").The next invariant says that no element of N (= M [K; recall that M = [MConstC])appears in the insecure channel.Lemma 6.3 In all reachable states of S1, the following are true:1. For all p; q 2 P , p 6= q, and all u 2 N , u =2 IC :bu�er(p; q).Proof: By induction on the length of an execution.Base: The claim is true in the initial state, because the channel is initially empty.Inductive step: Consider a step (s; �; s0) of the implementation, where s satis�es the invari-ant. The interesting case is:1. IC-send(u)p;q, where u = enc(m; k)The precondition and type considerations imply thatm 2 [MConstC] and k 2 [KConstC].Som\MConstC 6= ;; letm0 be any element in m\MConstC . Similarly, k\KConstC 6=;; let k0 be any element in k \KConstC . Then enc(m0; k0) 2 u.We claim that u =2 [MConstC]. Suppose it is and letm00 be any element in u\MConstC.Then [enc(m0; k0)] = u = [m00]. But Lemma 2.1 implies that enc(m0; k0) and m00 arenot equivalent terms. It follows that u =2 [MConstC], which implies that this eventdoes not add an element of M = [MConstC] to the channel IC .The fact that this event does not add an element of K = [KConstC] to the channel iseasy to see, because the type of any element in any equivalence class in [KConstC] is\K", the type of any element in enc(m; k) is \M", and elements of one equivalenceclass all have the same type. 15

As a corollary to the previous invariant, we can show that no N elements appear in Eve:has.Lemma 6.4 In all reachable states of S1, the following are true:1. If u 2 N then u =2 Eve:has.Proof: By induction.Base: The claim is true in the initial state, because the Eve:has is initially empty.Inductive step: Consider a step (s; �; s0) of the implementation, where s satis�es the invari-ant. The interesting cases are:1. � = eavesdrop(u)p;q;aThe fact that this preserves the claim follows from Lemma 6.3, applied to state s.2. � = learn(u)a, a 2 AThe precondition (in Env(U;A;N)) says that u =2 N , so this cannot cause a violation.3. � = compute(u; f)a, a 2 ASince the claim is true in s, it must be that no element of N is in s:Eve:has . But thismeans that no equivalence class of type \K" is included in s:Eve:has (because theonly such classes are the ones in [KConstC]). But then � cannot be enabled, becauseboth easy functions, enc and dec, depend on a key class being in has .6.4 Implementation ProofWe show that S1 implements PC (U; P;M;A) using a simulation relation from S1 to PC (U; P;M;A).The relation F is de�ned by saying that (s; t) 2 F provided that the following holds:For each p; q 2 P , p 6= q, t:bu�er(p; q) is the multiset union of three multisets, A1; A2; A3,of U , where:1. A1 = s:Encp;q:bu�er .2. A2 = dec(s:IC :bu�er(p; q); s:KD :chosen-key) if s:KD :chosen-key 6= ? else ;.3. A3 = dec(s:Decp;q:bu�er ; s:KD :chosen-key) if s:KD :chosen-key 6= ? else ;.That is, each high-level multiset of messages in transit is obtained from the messages in thebu�ers at the encoder and decoder, plus those in transit in the low-level insecure channels.The messages in the insecure channels and in the decoder bu�er must be decoded for thecorrespondence.Theorem 6.5 F is a simulation relation.Proof: We check the two conditions required in the de�nition of a simulation relation:Start condition: This is easy, because all the relevant multisets are empty.Step condition: Consider (s; �; s0) in the implementation, and (s; t) 2 F , where both s andt are reachable states. The interesting cases are:16

1. � = IC-send(u)p;q, where u = enc(m; k)This maps to the trivial one-state execution fragment t of PC (U; P;M;A). We mustargue that (s0; t) 2 F . This follows because this event removes m from Encp;q:bu�eras it adds the encoded version u to the insecure channel, and because of the equationsrelating enc and dec. Lemma 6.1 is also used here, to ensure that the keys used forencoding and decoding are the same.2. � = IC-receive(u)p;qThe key point is that u is accepted by Dec, because it is of type \M". This followingfrom Lemma 6.2.3. � = PC-receive(u)p;qThis corresponds to the same action in the speci�cation automaton. In this step,u = dec(m; s:KD :chosen-key) for some m 2 s:Decp;q:bu�er (we use Lemma 6.1 here).Thus, by de�nition of the correspondence F , u 2 t:bu�er(p; q), which means that �is enabled in the speci�cation automaton, in state t. Let t0 be the unique resultingstate.To show that (s0; t0) 2 F , the key facts are that one copy of m is removed froms:Decp;q:bu�er while a copy of u is removed from the abstract channel t:bu�er(p; q).Since u = dec(m; s:KD :chosen-key), this preserves the correspondence between themultisets.4. � = reveal(u)aThis corresponds to reveal(u)a in the speci�cation. We must show that u =2 M . Theprecondition for reveal(u)a (in Eve) implies that u 2 s:Eve:has . Lemma 6.4 impliesthat u =2 N , which implies that u =2M .Theorem 6.6 S1(C; P; A; U 0; A0) implements PC (U; P;M;A).Proof: By Theorem 6.5 and Theorem 3.1.(An expanded version of) the results of this section have been checked by Sheyner and Wingusing the Isabelle theorem prover.7 Di�e-Hellman Key Distribution ProtocolThis section describes the Di�e-Hellman key distribution protocol. Throughout the section,we assume that C is an augmented base-exponent cryptosystem, P = fp1; p2g, and A is anonempty set. 17

7.1 The Endpoint AutomataWe de�ne two symmetric automata, for the two elements of P . The automaton for p1chooses an exponent x from the set XConst1 , raises the distinguished base element b0 tothe power x, and sends the result to p2. When it receives a corresponding value from p2, itraises that value to the power x and grants the result to the client as a key.DH (C; P)p1:Signature:Input:IC-receive(b)p2;p1 , b 2 setC(\B")Output:IC-send(b)p1;p2 , b 2 setC(\B")grant(b)p1, b 2 setC(\B") Internal:choose-expp1States:chosen-exp 2 [XConst1C] [f?g, initially ?base-sent, a Boolean, initially falsercvd-base 2 setC(\B") [f?g, initially ?granted, a Boolean, initially falseDerived variables:chosen-base 2 setC(\B") [f?g, given by:if chosen-exp 6= ? then exp([b0C];chosen-exp) else ?Transitions:choose-expp1Precondition:chosen-exp = ?E�ect:chosen-exp := choose xwhere x 2 [XConst1C]IC-send(b)p1;p2Precondition:chosen-exp 6= ?b = chosen-basebase-sent = falseE�ect:base-sent := true
IC-receive(b)p2;p1E�ect:rcvd-base := bgrant(b)p1Precondition:chosen-exp 6= ?rcvd-base 6= ?b = exp(rcvd-base; chosen-exp)granted = falseE�ect:granted := trueThe automaton for p2 is the same, but interchanges uses of p1 and p2, and uses XConst2instead of XConst1 .DH (C; P)p2:Signature: 18

Input:IC-receive(b)p1;p2 , b 2 setC(\B")Output:IC-send(b)p2;p1 , b 2 setC(\B")grant(b)p2, b 2 setC(\B") Internal:choose-expp2States:chosen-exp 2 [XConst2C] [f?g, initially ?base-sent, a Boolean, initially falsercvd-base 2 setC(\B") [f?g, initially ?granted, a Boolean, initially falseDerived variables:chosen-base 2 setC(\B") [f?g, given by:if chosen-exp 6= ? then exp([b0C];chosen-exp) else ?Transitions:choose-expp2Precondition:chosen-exp = ?E�ect:chosen-exp := choose xwhere x 2 [XConst2C]IC-send(b)p2;p1Precondition:chosen-exp 6= ?b = chosen-basebase-sent = falseE�ect:base-sent := true
IC-receive(b)p1;p2E�ect:rcvd-base := bgrant(b)p2Precondition:chosen-exp 6= ?rcvd-base 6= ?b = exp(rcvd-base; chosen-exp)granted = falseE�ect:granted := true7.2 The Complete ImplementationIn the rest of Section 7, we assume that U = setC, K = [B2 C] (the set of doubly-exponentiated bases), X = [XConst1C][[XConst2C], and N = K [X .The implementation consists of two endpoint automata, an insecure channel, an eaves-dropper and an environment. Speci�cally, implementation S2(C; P; A) is constructed bycomposing the following automata:� DH (C; P)p, p 2 P , endpoint automata.� IC(U; P; A), Eve(C; P; A), Env(U;A;N).and then hiding all the eavesdrop, IC-send, IC-receive, and learn actions. That is, wehide all but the external actions of KD(U; P;K;A), which are the grant and reveal actions.Figure 2 contains an interaction diagram for S2.19

DH
1
 IC

Eve

Env

DH
2

IC-receive
 2,1

grant
1

IC-send
1,2
 IC-receive
 1,2

IC-send
2,1

grant
2

eavesdrop
 4

reveal
4

learn
4
Figure 2: S2; P =f1,2g; A =f4g7.3 InvariantsIn system S2, we use DH (p) for p 2 P , IC , and Eve as handles to help in naming statevariables in the composed state. The �rst invariant says that messages that have beenreceived or are in transit are correct.Lemma 7.1 In all reachable states of S2, the following are true:1. If DH (p):rcvd-base 6= ? and q 6= p then DH (q):chosen-exp 6= ?, and DH (p):rcvd-base =DH (q):chosen-base.2. If u 2 IC :bu�er(p; q), then DH (p):chosen-exp 6= ?, and u = DH (p):chosen-base.The next invariant says that no N elements ever appear in Eve:has or in the insecurechannel.Lemma 7.2 In all reachable states of S2, the following are true:1. For all p; q 2 P , p 6= q, and all u 2 N , u =2 IC :bu�er(p; q).2. If u 2 N then u =2 Eve:has.Proof: Analogous to the proof of Lemma 6.4.20

7.4 Implementation ProofWe show that S2 implements KD(U; P;K;A) using a simulation relation. The relation F isde�ned by saying that (s; t) 2 F provided that:1. t:chosen-key = exp(s:DH (p1):chosen-base; s:DH (p2):chosen-exp) if s:DH (p1):chosen-exp 6=? and s:DH (p2):chosen-exp 6= ?; t:chosen-key = ? otherwise.2. t:noti�ed = fp 2 P : s:DH (p):grantedg.Condition 1 says that the chosen key in KD is obtained by doubly-exponentiating b0 withboth the chosen exponents in the Di�e-Hellman protocol. If it is not the case that bothexponents have been chosen, then the chosen key is unde�ned.Theorem 7.3 F is a simulation relation.Proof: Start condition: Easy.Step condition: Consider (s; �; s0) and t as usual, and consider cases. The most interestingcases are:1. � = choose-expp.If s:DH (q):chosen-exp = ?, where q 6= p then this maps to the trivial one-stateexecution fragment t. The correspondence is trivially preserved (Part 1 is vacuous).Otherwise, this corresponds to choose-key , with a chosen value ofexp(s0:DH (p1):chosen-base; s0:DH (p2):chosen-exp).Enabling is straightforward, as is the preservation of the simulation relation.2. � = grant(b)pThis corresponds to grant(b)p in the speci�cation. The interesting fact to show hereis the enabling condition, in particular, that b = t:chosen-key . The precondition of �in the implementation implies that b = exp(s:DH (p):rcvd-base; s:DH (p):chosen-exp).But Lemma 7.1 implies that b = exp(s:DH (q):chosen-base; s:DH (p):chosen-exp),and properties of the cryptosystem imply that this is equal toexp(exp([b0]; s:DH(p1):chosen-exp); s:DH (p2):chosen-exp). Then the de�nition of Fsays that this is equal to t:chosen-key , as needed.3. � = reveal(u)aThis corresponds to reveal(u)a in the speci�cation. We must show that u =2 K. Theprecondition for reveal(u)a (in Eve) implies that u 2 s:Eve:has . Lemma 7.2 impliesthat u =2 N , which implies that u =2 K, as needed.Theorem 7.4 S2(C; P; A) implements KD(U; P;K;A).Proof: By Theorems 7.3 and 3.1. 21

8 Algorithms Using Structured-Key CryptosystemsIn this section, we modify the implementations of private communication and of key dis-tribution, S1 and S2, so that they use a common structured-key cryptosystem, rather thanseparate shared-key and base-exponent cryptosystems. We show that the resulting systemsare still correct. The proofs use simulation relations to the original systems.Throughout this section, and for the rest of the paper, we �x C to be any augmentedstructured-key cryptosystem.8.1 Private CommunicationWe show that moving from a shared-key cryptosystem to a structured-key cryptosystemdoes not disturb the correctness of the simple shared-key communication protocol. Thekey idea is that the new mechanisms added to the cryptosystem do not contribute any newways of computing messages of the original shared-key cryptosystem.8.1.1 Notation and assumptionsStarting from the �xed augmented structured-key cryptosystem C, we derive a shared-keycryptosystem C 0, by de�ning MConstC0 = MConstC and KConstC0 = B2 C . That is, we usethe B2 terms in C as \names" for keys in C 0.In this subsection we assume that P is a set with at least 2 elements, A is a nonempty�nite set, U = setC , M = [MConstC], K = [B2 C], and X = [XConst1C][[XConst2C].We also de�ne W to be the set of all elements w 2 setC(\M") that can be obtained asfollows. In cryptosystem C, w is obtained from an element m 2 setC0(\M") by applyingsome number (possibly 0) of enc operations with second arguments in setC(\B") � K.Informally speaking, w is obtained by \wrapping" some message of the derived shared-keycryptosystem in a series of encryptions based on keys not in B2 . Finally, we assume thatN = W [K [X , U 0 = U = setC, and A0 is a nonempty �nite set, disjoint from A.The set W is used to describe the elements of type \M" that the eavesdropper is notallowed to learn. We have chosen this particular set W because it has a simple de�nition,because it includes all elements of type \M" that could help the eavesdropper to computeelements that are supposed to remain unknown (the MConsts), and because it excludesvalues produced by other protocols with which the given protocol is to be composed. Otherchoices of W besides ours are possible.8.1.2 New implementationThe formal de�nitions of Enc3 and Dec3 are nearly identical to those of Enc and Dec. Thedi�erence is that the new automata use elements of type \B" in place of KConsts. Also,the parameters have new meanings, as de�ned just above.Enc3 (C; P)p;q where p; q 2 P , p 6= q :Signature: 22

Input:PC-send(m)p;q, m 2 [MConstC]grant(u)p, u 2 setC Output:IC-send(u)p;q , m 2 setCStates:bu�er, a multiset of elements of [MConstC], initially emptyshared-key 2 setC(\B") [f?g, initially ?Transitions:PC-send(m)p;qE�ect:add m to bu�erIC-send(u)p;qPrecondition:m is in bu�ershared-key 6= ?u = enc(m; shared-key)E�ect:remove one copy of m from bu�er grant(u)pE�ect:if u 2 setC(\B") thenshared-key := u
Dec(C; P)p;q, where p; q 2 P , p 6= q :Signature:Input:IC-receive(u)p;q , u 2 setCgrant(u)q, u 2 setC Output:PC-receive(u)p;q , u 2 setCStates:bu�er, a multiset of elements of setC(\M")shared-key 2 setC(\B") [f?g, initially ?Transitions:IC-receive(u)p;qE�ect:if u 2 setC(\M") thenadd u to bu�erPC-receive(u)p;qPrecondition:m is in bu�ershared-key 6= ?u = dec(m; shared-key)E�ect:remove one copy of m from bu�er

grant(u)qE�ect:if u 2 setC(\B") thenshared-key := u
We de�ne S3 to be the system from Section 6, but implemented using the structured-key cryptosystem C rather than a shared-key cryptosystem. That is, S3(C; P; A; U 0; A0) isconstructed by composing: 23

� Enc3(C; P)p;q and Dec3 (C; P)p;q, p; q 2 P , p 6= q.� IC(U; P; A), Eve(C; P; A), Env(U;A;N).� KD(U 0; P;K;A0).and then hiding all the eavesdrop, IC-send , IC-receive, grant , and learn actions, and thereveala actions for a 2 A0. That is, we hide all actions except the external actions ofPC (U; P;M;A), which are the PC-send and PC-receive actions and the reveala actions fora 2 A. We want to show that S3(C; P; A; U 0; A0) implements PC (U; P;M;A).8.1.3 InvariantsLemma 8.1 In all reachable states of S3, the following are true:1. For all p, Enc3p;q:shared-key 2 K [f?g.2. For all p, Dec3 p;q:shared-key 2 K [f?g.Proof: By induction; the only interesting case is grant , but this is straightforward from theprecondition of grant in KD .Lemma 8.2 In all reachable states of S3, the following are true:1. For all p; q, if u 2 IC :bu�er(p; q) then u = enc(m; k), where m 2M and k 2 K.2. For all p; q, all x 2 X, x =2 IC :bu�er(p; q).Proof: Part 1 is proved by induction, using Lemma 8.1. The interesting case is IC-sendp;q;this follows because the precondition (in Enc3) implies that the message sent is of theindicated form. Part 2 follows from Part 1.Lemma 8.3 In all reachable states of S3, the following are true:1. No element of X is in Eve:has.Proof: By induction. The interesting cases are:1. eavesdrop(u)p;q;aLemma 8.2 implies that u = enc(m; k) for some m 2M and k 2 K. This is not in X ,which shows that the invariant is preserved.2. learn(u)aThe precondition (in Env) implies that u =2 X , so this cannot cause a violation of theclaim.3. compute(u; f)aSince no element of X can be computed in cryptosystem C, the claim is preserved.24

The following lemma, Lemma 8.4, has a di�erent style from the other invariants we havestated so far. It does not say that no element of W may appear in has . Rather, it saysthat if such an element, w, appears in has , then any element m of setC0(\M") that is easilyreachable from w, for example, the \unwrapped" element of setC0(\M") from which w isconstructed, must also be in has.Also note that we do not give any invariants here saying that K or M elements do notappear in Eve:has , as we did in Section 6.3. This is because (in the spirit of modularity)we prefer to avoid re-proving facts for S3 that have already been proved for S1.Lemma 8.4 In all reachable states of S3, the following are true:1. Assume that (M [K) \ Eve :has = ;. If w 2 W \ Eve:has and m 2 setC0(\M") iseasily reachable from fwg [(setC(\B")�K) in C, then m 2 Eve:has.Proof: By induction. Fix (s; �; s0) as usual. The interesting cases are:1. eavesdrop(u)p;q;aNote that the form of u, as described in Lemma 8.2, implies that u 2 W . Theinteresting situation is where w, the element in the statement of the invariant, isequal to u, the element newly inserted into has . So suppose that m 2 setC0 is easilyreachable from fug [(setC0(\B")�K) in C. Then properties of the cryptosystems Cand C 0 imply that m = u. But u is explicitly put into Eve:has by this step, as needed.2. learn(u)aThe precondition (in Env) implies that u =2 W , so this cannot cause a violation of theclaim.3. compute(u; f)aThe interesting case is where the new element u being computed is in W , so assumethat u 2 W . Suppose that (M [K) \ s0:Eve:has = ; and that m 2 setC0 is easilyreachable from fug [(setC(\B")�K) in C. It follows that (M [K)\ s:Eve:has = ;.If the function f is exp, then some element of X must be in s:Eve:has . But Lemma8.3 implies that there is no such element. So f must be either enc or dec. Since noelement of K is in s:Eve:has , the second argument in the application of f must be insetC(\B")�K. The �rst argument is some u0 2 s:Eve:has. It follows that m is easilyreachable from fu0g [(setC(\B") � K) in C. Also, since u 2 W , properties of thecryptosystem C imply that also u0 2 W . But then the inductive hypothesis impliesthat m 2 s:Eve:has. Therefore, m 2 s0:Eve:has, as needed.8.1.4 Implementation proofWe prove the correctness of S3 as a consequence of that of S1(C 0; P; A; U 0; A0). By ourprevious result about S1, Theorem 6.6:Lemma 8.5 S1(C 0; P; A; U 0; A0) implements PC (setC0 ; P;M;A).25

In order to prove correctness of S3(C; P; A; U 0; A0), we would like to demonstrate asimulation relationship from S3(C; P; A; U 0; A0) to S1(C 0; P; A; U 0; A0). To do this, we �rstmake the interfaces consistent, by de�ning S 03(C; P; A; U 0; A0) from S3 by hiding the actionsreveal(u)a, u 2 U � setC0 , a 2 A.Lemma 8.6 If � is a trace of S3(C; P; A; U 0; A0) then � with all reveal(u) actions removed,u 2 U � setC0, is a trace of S 03(C 0; P; A; U 0; A0).Now we de�ne the relation F from S 03(C; P; A; U 0; A0) to S1(C 0; P; A; U 0; A0): (s; t) 2 Fprovided:1. For all components except Eve, the states are identical in s and t.2. s:Eve:has \ setC0 � t:Eve:has.Theorem 8.7 F is a simulation relation.Proof: Start condition: Easy.Step condition: Consider (s; �; s0) and t as usual.We claim �rst that no element u 2M [K appears in s:Eve:has. For, if such an elementdid appear in s:Eve:has, the fact that (s; t) 2 F would imply that u 2 t:Eve:has . But thiswould contradict Lemma 6.4, an invariant for S1.The most interesting cases are:1. � = reveal(u)a, a 2 AWe consider two subcases:(a) u 2 setC0Then the corresponding fragment consists of a single step, with the same action.The precondition of � in S 03 implies that u 2 s:Eve:has. Since (s; t) 2 F , we havealso that u 2 t:Eve:has. Therefore, � is enabled in t. Since reveal actions haveno e�ect on the state, the relation F is preserved.(b) u 2 U � setC0Then the corresponding fragment consists of the single state t. Since � is aninternal action of S 03, the external behavior corresponds as needed.2. � = compute(u; f)(a) u 2 setC0Then since f 2 EN C, f must be exp, enc, dec, or an element of BConst. Weconsider cases:i. f = enc or f = dec, with the second argument in K.Then the precondition implies that this K element, say k, must be ins:Eve:has. But this contradicts a claim at the beginning of the proof, whichmeans that this case cannot occur.26

ii. f = enc, with the second argument in setC(\B")�KThen properties of the cryptosystem C imply that f yields a result u 2(U � setC0), contradicting the requirements of this case.iii. f = dec, with the second argument in setC(\B")�KThen the corresponding fragment consists of the single state t. We must showthat the correspondence is preserved. By properties of the cryptosystem C,the �rst argument of f must be some element w 2 W . By the preconditionof �, w 2 s:Eve:has . Then Lemma 8.4, together with the fact that (M [K) \ s:Eve:has = ;, implies that u 2 s:Eve:has, that is, u is already in thehas set, before the current step. Therefore, since (s; t) 2 F , we have alsou 2 t:Eve:has. It follows that (s0; t) 2 F , that is, the correspondence ispreserved.iv. f = expThen f must be applied with a second argument x 2 X , and x 2 s:Eve:has.But this violates an invariant for S 03, Lemma 8.3, which means that this casecannot occur.v. f 2 BConstC0This yields a result u 2 (U � setC0), contradicting the requirements of thiscase.(b) u 2 U � setC0Then the corresponding fragment consists of the single state t. Since u =2 setC0,the correspondence is preserved.3. � = learn(u)a(a) u 2 setC0Then the corresponding fragment consists of a single step, with the same action.To see that this is enabled, note that u =2 N , by the precondition in S 03. Inparticular, u =2 M [K. This implies that learn(u) is enabled in S1. Since thesame element is added to both has sets, the correspondence is preserved.(b) u 2 U � setC0Then the corresponding fragment consists of the single state t. Since u =2 setC0,it is easy to see that the correspondence is preserved.4. � = eavesdrop(u)p;q;aThe precondition of � in S 03 implies that u 2 s:IC :bu�erp;q. Since (s; t) 2 F , we havethat also u 2 t:IC :bu�erp;q. Therefore, � is enabled in t. Since the same element isadded to both has sets, the correspondence is preserved.Theorem 8.8 S 03(C; P; A; U 0; A0) implements S1(C 0; P; A; U 0; A0).Proof: By Theorems 8.7 and 3.1. 27

Lemma 8.9 If � is a trace of S3(C; P; A; U 0; A0) then � with all reveal(u) actions removed,for u 2 U � setC0, is a trace of S1(C 0; P; A; U 0; A0).Proof: By Theorem 8.8 and Lemma 8.6.Theorem 8.10 S3(C; P; A; U 0; A0) implements PC (U; P;M;A).Proof: Let � be a trace of S3(C; P; A; U 0; A0). Then Lemma 8.9 implies that �1 is a traceof S1(C 0; P; A; U 0; A0), where �1 is equal to � with all reveal(u) actions removed, for u 2U � setC0 . Then Lemma 8.5 implies that �1 is a trace of PC (setC0 ; P;M;A). It follows that�1 is a trace of PC (setC ; P;M;A). Now, since � di�ers from �1 only by including somereveal actions for elements in U � setC0 , it follows that � is a trace of PC (setC; P;M;A).The proofs of the results in this and the next subsection deal with speci�c cryptosystems.It would be interesting to extract general theorems that could be applied to get such results.Such theorems would involve some kind of notion of \embedding" of one cryptosystem inanother, and statements articulating when a protocol that works with a cryptosystem alsoworks with any cryptosystem in which that cryptosystem is embedded.8.2 Key DistributionIt is not hard to see that moving from a base-exponent cryptosystem to a structured-keycryptosystem does not disturb the correctness of the Di�e-Hellman protocol. The key ideais that the new mechanisms added to the cryptosystem involve the new message type \M",and do not contribute any new ways of computing bases or exponents.We proceed formally as in the previous subsection. Starting from the �xed augmentedstructured-key cryptosystem C, we derive an augmented base-exponent cryptosystem C 0by de�ning BConstC0 = BConstC, XConst1C0 = XConst1C , XConst2C0 = XConst2C, andb0C0 = b0C. In this subsection we assume that P = fp1; p2g, A is a nonempty �nite set,U = setC, K = [B2 C], X = [XConst1C] [[XConst2C], and N = K [X .The new endpoint automata are syntactically the same as the old endpoint automata.The only di�erence is that the subscript C now refers to a structured-key cryptosystem.We de�ne S4 to be the system from Section 7, but implemented using the structured-key cryptosystem C rather than a base-exponent cryptosystem. That is, S4(C; P; A) isconstructed by composing:� DH (C; P)p, p 2 P .� IC(U; P; A), Eve(C; P; A), Env(U;A;N).and then hiding the eavesdrop, IC-send, IC-receive, and learn actions. That is, we hideall actions except the external actions of KD(U; P;K;A), which are the grant and revealactions. We want to show that S4(C; P; A) implements KD(U; P;K;A). We show this as aconsequence of the correctness of S2(C 0; P; A). By our previous result about S2, Theorem7.4:Lemma 8.11 S2(C 0; P; A) implements KD(setC0 ; P;K;A).28

In order to prove correctness of S4(C; P; A), we would like to demonstrate a simulationrelationship from S4(C; P; A) to S2(C 0; P; A). We de�ne S 04(C; P; A) from S4 by hiding theactions reveal(u)a, u 2 U � setC0 , a 2 A.Lemma 8.12 If � is a trace of S4(C; P; A) then � with all reveal(u) actions removed, foru 2 U � setC0, is a trace of S 04(C 0; P; A).Now we de�ne the relation F from S 04(C; P; A) to S2(C 0; P; A): (s; t) 2 F provided:1. For all components except Eve, the states are identical in s and t.2. s:Eve:has \ setC0 � t:Eve:has.Theorem 8.13 F is a simulation relation.Proof: Analogous to that of Theorem 8.7.Start condition: Easy.Step condition: Consider (s; �; s0) and t as usual. The most interesting cases are:1. � = reveal(u)aAnalogous to the reveal case in the proof of Theorem 8.7.2. � = compute(u; f)(a) u 2 setC0Then properties of the structured-key cryptosystem imply that f must be eitherexp or an element of BConst. Moreover, any arguments required by f are also insetC0. Since such arguments must be in s:Eve:has (by the enabling condition),the de�nition of F implies that they are also in t:Eve :has. It follows that � isenabled in t.Thus, we may allow the corresponding fragment to consist of a single step, withthe same action. Since the same element is added to both has sets, the corre-spondence is preserved.(b) u 2 U � setC0Analogous to the corresponding case for the compute action in the proof ofTheorem 8.7.3. � = learn(u)a(a) u 2 setC0Then the corresponding fragment consists of a single step, with the same action.To see that this is enabled, note that u =2 N = K [X , by the precondition in S 04.This implies that learn(u) is enabled in S2. Since the same element is added toboth has sets, the correspondence is preserved.(b) u 2 U � setC0Then the corresponding fragment consists of the single state t. Since u =2 setC0,it is easy to see that the correspondence is preserved.29

4. � = eavesdrop(u)p;q;aAnalogous to the eavesdrop case in the proof of Theorem 8.7.Theorem 8.14 S 04(C; P; A) implements S2(C 0; P; A).Proof: By Theorems 8.13 and 3.1.Lemma 8.15 If � is a trace of S4(C; P; A) then � with all reveal(u) actions removed, foru 2 U � setC0, is a trace of S2(C 0; P; A).Proof: By Theorem 8.14 and Lemma 8.12.Theorem 8.16 S4(C; P; A) implements KD(U; P;K;A).Proof: Let � be a trace of S4(C; P; A). Then Lemma 8.15 implies that �1 is a trace ofS2(C 0; P; A), where �1 is equal to � with all reveal(u) actions removed, for u 2 U � setC0.Then Lemma 8.11 implies that �1 is a trace of KD(setC0 ; P;K;A). It follows that �1 isa trace of KD(setC; P;K;A). Now, since � di�ers from �1 only by including some revealactions for elements in U � setC0 , it follows that � is a trace of KD(setC ; P;K;A).9 Putting the Pieces TogetherNow we describe how to put the previous results together, to get an implementation ofprivate communication that uses the shared-key communication protocol in combinationwith the Di�e-Hellman key distribution service. The �rst step combines the two protocolsusing ordinary composition, but still keeps the insecure channels, eavesdroppers, and envi-ronments for the two algorithms separate. The second step combine the two channels intoone and likewise for the eavesdroppers and the environments.9.1 Composing Di�e-Hellman and Shared-Key Communication to getPrivate CommunicationRecall that we have already �xed C to be an augmented structured-key cryptosystem. Wenow assume, for the rest of the paper, that U = setC , P = fp1; p2g, P 0 = fp10; p20g, Ais a nonempty �nite set, M = [MConstC], K = [B2 C], X = [XConst1C] [[XConst2C], Wis the set of elements of setC(\M") that can be obtained from elements of setC0(\M") [(setC(\B")�K) in C using enc, N = W [K [X , and A0 is a nonempty �nite set, disjointfrom A.The combined system S5 is constructed by composing:� Enc3(C; P)p;q, Dec3 (C; P)p;q, p; q 2 P , p 6= q.� DH5 p, p 2 P ; each of these is a renamed version of DH (C; P)p, with the subscripts inIC-sendp;q and IC-receiveq;p actions renamed to their primed versions.30

IC
DH
1
 DH
2

Eve

Env

Eve

Env

IC

Dec
1,2

Enc
2,1

eavesdrop
 4

reveal
4
learn
4

grant
2

eavesdrop
 3

reveal
3

learn
3

Enc
1,2

Dec
2,1

grant
1

Figure 3: S5� IC(U; P; A), Eve(C; P; A), Env(U;A;N).� IC(U; P 0; A0), Eve(C; P 0; A0), Env(U;A0; N 0).and hiding all actions except for the external actions of PC (U; P;M;A), which are thePC-send , PC-receive, and reveala actions for a 2 A. Figure 3 contains an interactiondiagram for S5.Theorem 9.1 S5 implements PC (U; P;M;A).Proof: This follows from Theorems 8.16 and 8.10, using general projection and pastinglemmas for I/O automata. Let � be an execution of S5. We produce an execution �0 ofPC (U; P;M;A) such that trace(�0) = trace(�).De�ne T1 = Enc3p1;p2�Dec3 p1;p2�Enc3 p2;p1�Dec3 p2;p1�IC(U; P; A)�Eve(C; P; A)�Env(U;A;N) and T2 = DH5 p1 � DH5 p2 � IC(U; P 0; A0)� Eve(C; P 0; A0)� Env(U;A0; N 0).De�ne �1 = �jT1 and �2 = �jT2. By I/O automaton projection lemmas, �1 and �2 areexecutions of T1 and T2, respectively. (See [23], Chapter 8.)Let T3 be the same as T2 but with all actions except for the grant actions and revealactions hidden; �2 is also an execution of T3. Then T3 is exactly the same as S4(C; P; A0)except for renaming of elements of P , everywhere except in grant actions, to correspondingelements of P 0. By Theorem 8.16, S4(C; P; A0) implements KD(U; P;K;A0). Since all therenaming happens internally, this implies that T3 implements KD(U; P;K;A0).It follows that there exists an execution �3 of KD(U; P;K;A0) that agrees with �2, andso also with �, on the external actions of KD(U; P;K;A0), that is, on the grant(u)p actions,u 2 U , p 2 P and reveal(u)a actions, u 2 U , a 2 A0.31

Now I/O automaton pasting lemmas (see [23]) yield an execution �4 of T1�KD(U; P;K;A0)such that �4jT1 = �1 and �4jKD(U; P;K;A0) = �3. Thus, �4 agrees with � on T1 and onthe external actions of KD(U; P;K;A0).Now de�ne T4 = T1 � KD(U; P;K;A0), with all except the PC-send , PC-receive andreveal(a), a 2 A actions hidden. Note that T4 = S3(C; P; A; U; A0). Now Theorem 8.10implies that S3(C; P; A; U;A0) implements PC (U; P;M;A); therefore, there is an execution�0 of PC (U; P;M;A) that agrees with �4 on all external actions of PC (U; P;M;A). Hence,�0 agrees with � on all external actions of PC (U; P;M;A). This is as needed.9.2 Merging Channels, Adversaries, and EnvironmentsThe �nal implementation, S6, is obtained from S5 by merging the two separate insecurechannels into one, and likewise for the two adversaries and the two environments. To dothis, and yet keep the same interfaces, we extend the de�nitions of IC and Eve to allowtwo types of ports, primed and unprimed. S6 consists of:� Enc3(C; P)p;q, Dec3 (C; P)p;q, p; q 2 P , p 6= q.� DH5 p, p 2 P .� IC(U; P; A; P 0; A0), Eve(C; P; A; P 0; A0).� Env(U;A[A0; N [N 0).Here, the extended IC is the same as IC(U; P [P 0; A [A0) but only has actions withsubscripts p; q; a where either p; q 2 P , a 2 A or p; q 2 P 0, a 2 A0. Similarly for theextended Eve. Also, S6 hides all actions except for the PC-send , PC-receive, and revealaactions for a 2 A, that is, the external actions of PC (U; P;M;A).The combined eavesdropper eavesdrops and learns on all adversary ports in A[A0, andcan use all this information in calculating its has information, which resides in a single statecomponent. The combined environment avoids communicating any information in N [N 0.We claim that S6 implements S5, which implies that S6 implements PC (U; P;M;A). Toprove this result, we de�ne S7, which is just like S5 except that it combines the eavesdroppers(but not the channels or environments). We de�ne a simulation relation F from S7 to S5,where (s; t) 2 F exactly if:1. For all except the Eve components, the states are identical in s and t.2. s:has � t:Eve(C; P; A):has.3. s:has � t:Eve(C; P 0; A0):has.This relation says, essentially, that any information that the combined eavesdropper canacquire, in the context of the given protocols, is something that each of the individualeavesdroppers could acquire anyway.Theorem 9.2 F is a simulation relation. 32

Proof: The initial condition is immediate, because s:has is empty. For the step condi-tion, the interesting cases are as follows. Let b and b0 be arbitrary elements of A and A0,respectively.1. reveal(u)a, a 2 AWe know that u 2 s:has . So by de�nition of F , we have that u 2 t:Eve(C; P; A):has.Let this step correspond to a single step, with the same reveal(u)a action. Sinceu 2 t:Eve(C; P; A):has, this action is enabled in S5.2. reveal(u)a, a 2 A0Analogous to the previous case.3. learn(u)a, a 2 A [A0The execution fragment corresponding to this step consists of two steps, with actionslearn(u)b; learn(u)b0. By the precondition, u 2 U � (N [N 0). So u 2 (U � N) andu 2 (U �N 0). It follows that the two learn actions are enabled in S5. Since the sameelement u is added to all three has sets, the correspondence is preserved.4. compute(u; f)a, a 2 A [A0The execution fragment corresponding to this step consists of two steps, with ac-tions compute(u; f)b; compute(u; f)b0. The precondition implies that all the argumentsneeded for this computation of f are in s:has . Since (s; t) 2 F , these areguments arealso in t:Eve(C; P; A):has and in t:Eve(C; P 0; A0):has. It follows that the two computeactions are enabled in S5. Since the same element u is added to all three has sets, thecorrespondence is preserved.5. eavesdrop(u)a, a 2 AThen Lemma 8.2 implies that u is of the form enc(m; k), m 2 M , k 2 K. There-fore, u 2 U � N 0. The corresponding fragment consists of two steps, with actionseavesdrop(u)a; learn(u)b0 . The eavesdrop action is enabled in S5 because the chan-nel states are identical in states s and t. The learn action is enabled in S7 becauseu 2 U � N 0. Again, since the same element u is added to all three has sets, thecorrespondence is preserved.6. eavesdrop(u)a, a 2 A0Then u is of the form exp(b0; x) 2 U �N . The corresponding fragment consists of twosteps, with actions eavesdrop(u)0a; learn(u)b. The eavesdrop action is enabled in S5because the channel states are identical in states s and t. The learn action is enabledin S7 because u 2 U �N . Since the same element u is added to all three has sets, thecorrespondence is preserved.Theorem 9.3 S7 implements S5.Proof: By Theorems 9.2 and 3.1. 33

The essence of Theorems 9.2 and 9.3 is a relationship between Eve(C; P; A; P 0; A0) andthe composition Eve(C; P; A)�Eve(C; P 0; A0). The reason that this relationship is describedin terms of the complete systems S7 and S5 (rather than just the eavesdroppers) is that therelationship depends on assumptions about the contexts in which the eavesdroppers run.The key facts used about the contexts appear in the arguments for the eavesdrop cases inthe proof of Theorem 9.2. Basically, these facts say that any message that can appear inthe insecure channel of either protocol could also be generated by the environment in theother protocol. It is possible to extract a general combining theorem for eavesdroppers,using abstract models of the environments and protocols that express just this type ofnoninterference. Since this involves some notational complexities, we leave this for futurework.Lemma 9.4 S6 implements S7.The fact that S6 implements S7 is easy, based on the following two lemmas:Lemma 9.5 Env(U;A[A0; N [N 0) implements Env(U;A;N)� Env(U;A0; N 0).Lemma 9.6 IC (U; P; A; P 0; A0) implements IC(U; P; A)� IC (U; P 0; A0).This all yields:Lemma 9.7 S6 implements S5.Proof: By Lemma 9.4 and Theorem 9.3.Theorem 9.8 S6 implements PC (U; P;M;A).Proof: By Lemmas 9.7 and Theorem 9.1.10 DiscussionIn this paper, we have modeled and analyzed the combination of simple shared-key commu-nication with Di�e-Hellman key distribution, in the presence of an eavesdropper adversary.Even though this example is very simple, we have studied it using many kinds of decompo-sition, including:1. Separating distributed algorithms issues from other issues, like cryptosystem reacha-bility issues.2. Treating the two sub-protocols separately, then combining them using general theo-rems about automaton composition.3. Giving high level service speci�cations, giving detailed descriptions of implementingalgorithms, and using simulation relations to show that the algorithms implement theservices. 34

4. First studying the protocols using simple cryptosystems and later extending them touse more elaborate cryptosystems.5. Combining separate adversaries into one.We believe that understanding these decomposition methods in a simple context is animportant �rst step toward extending them to more complicated protocols.It appears possible to decompose the presentation in this paper even more. For example,one might de�ne a notion of embeddings of cryptosystems and obtain the results of Section8 as consequences of general theorems about such embeddings. Or, one might formulateand prove a general combining theorem for eavesdroppers and use it in the proof of Lemma9.4.In work in progress, we are extending these ideas to more complex protocols like thatof Di�e, van Oorschot, and Weiner [11], which tolerate more active adversaries. So far, itappears that the modeling/analysis ideas of this paper scale well to the more complicatedexamples. Some issues that arise in modeling the protocol of [11] are: The cryptosystemsare more complicated, so more complicated arguments must be made about reachability;for example, the analogues of the set W de�ned in Section 8.1.1 become more complicated.Also, because the adversary has more active control of the communication system, it isappropriate to combine the adversary and communication system into a single automatonmodel. (The has component of that automaton is now used to decide what may be deliveredto the client, as well as what may be revealed.) Also, the correctness guarantees are weaker|for instance, repeated deliveries of the same message, and deliveries to the wrong recipient,are allowed. A more complicated key distribution service speci�cation will also be needed,including key requests and granting of multiple keys.The work of this paper has not addressed liveness properties. For the simple case ofthis paper, with a passive eavesdropper, liveness claims are certainly possible. They can beincorporated easily into the model in the form of time bounds, and proved using the usualassertional methods for timing analysis, such as those appearing in [5, 22]. For more activeadversaries, more sophisticated algorithms can guarantee liveness properties, which couldalso be formulated as time bounds and proved similarly.Another interesting research direction is the modular introduction of probabilistic con-siderations. A great deal of reasoning about security protocols can be carried out in aframework in which it is assumed that certain low probability \bad" events simply do notoccur. Such events might then be introduced separately, and general theorems used to limittheir impact on system behavior. Such general theorems remain to be developed.Acknowledgments: I thank Ron Rivest for getting me started on this project and forsome very helpful discussions. Martin Abadi, Oleg Sheyner, Alessandro Gencarelli, But-ler Lampson, Victor Luchangco, Anna Lysyanskaya, Dahlia Malkhi, Mike Reiter, RobertoSegala, and Jeannette Wing provided useful comments and encouragement.35

References[1] Mart�in Abadi. Protection in programming-language translations. In Automata, Lan-guages and Programming: 25th International Colloquium (ICALP'98), pages 868{883,July 1998. Also, Digital SRC Research Report 154 (April 1998), Palo Alto, CA.[2] Mart�in Abadi, Michael Burrows, and Roger Needham. A logic of authenti�cation. InProceedings of the Royal Society, A,426,1871, pages 233{271, December 1989. Alsoappeared as SRC Research Report 39 and, in shortened form, in ACM Transactionson Computer Systems, 8, 1 (February 1990), 18-36.[3] Mart�in Abadi, C�edric Fournet, and Georges Gonthier. Secure implementation of chan-nel abstractions. In Proceedings of the Thirteenth Annual IEEE Symposium on Logicin Computer Science, pages 105{116, June 1998.[4] Mart�in Abadi and Mark R. Tuttle. A semantics for a logic of authenti�cation. In Pro-ceedings of the Tenth Annual ACM Symposium on Principles of Distributed Computing,pages 201{216, Montreal, Quebec, Canada, August 19-21 1991.[5] Hagit Attiya and Nancy A. Lynch. Time bounds for real-time process control in thepresence of timing uncertainty. Information and Computation, 110(1):183{232, April1994.[6] M. Bellare and P. Rogaway. Entity authenti�cation and key distribution. Advances inCryptology - CRYPTO'93, 773, 1994.[7] M. Bellare and P. Rogaway. Provably secure session key distribution - the three partycase. In Proceedings of the 27th ACM Symmposium on the Theory of Computing, 1995.[8] A. Cavalca. Tecnica dei vincoli negativi: un nuovo metodo per l'analisi di protocolli diautenticazione. Master's thesis, University of Bologna, October 1997.[9] A. Cavalca and R. Segala. Negative constraints for the analysis of authenticationprotocols. Technical report, University of Bologna. To appear.[10] W. Di�e and M. Hellman. New directions in cryptography. IEEE Transactions onInformation Theory, IT-22(6):644{656, November 1976.[11] Whit�eld Di�e, Paul C. van Oorschot, and Michael J. Wiener. Authenti�cation andauthenticated key exchanges. Designs, Codes and Cryptography, 2:107{125, 1992.[12] Danny Dolev and Andrew C. Yao. On the security of public key protocols. IEEETransactions on Information Theory, IT-29(12):198{208, March 1993.[13] Alan Fekete, M. Frans Kaashoek, and Nancy Lynch. Implementing sequentially con-sistent shared objects using broadcast and point-to-point communication. Journal ofthe ACM, 45(1):35{69, January 1998. 36

[14] Alan Fekete, Nancy Lynch, and Alex Shvartsman. Specifying and using a partitionablegroup communication service. In Proceedings of the Sixteenth Annual ACM Symposiumon Principles of Distributed Computing, pages 53{62, Santa Barbara, CA, August 1997.Expanded version in [15].[15] Alan Fekete, Nancy Lynch, and Alex Shvartsman. Specifying and using a partitionablegroup communication service. Technical Memo MIT-LCS-TM-570, Laboratory forComputer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139,1997. Also, submitted for journal publication.[16] Sha� Goldwasser, Silvio Micali, and Charles Racko�. The knowledge complexity ofinteractive proof systems. SIAM Journal of Computing, 18(1):186{208, February 1989.[17] Jason Hickey, Nancy Lynch, and Robbert van Renesse. Speci�cations and proofs forEnsemble layers. In Rance Cleaveland, editor, Tools and Algorithms for the Construc-tion and Analysis of Systems (Fifth International Conference, TACAS'99, Amsterdam,the Netherlands, March 1999, volume 1579 of Lecture Notes in Computer Science, pages119{133. Springer-Verlag, 1999.[18] Mei Lin Hui and Gavin Lowe. Safe simplifying transformations for security protocols ornot just the Needham Schroeder public key protocol. In 12th IEEE Computer SecurityFoundations Workshop (CSFW12), pages 32{43, Mordano, Italy, June 28-30 1999.[19] Richard A. Kemmerer. Analyzing encryption protocols using formal veri�cation tech-niques. IEEE Journal on Selected Areas in Communications, 7(4):448{457, May 1989.[20] Butler Lampson and Alex Shvartsman. POCS Course Notes (Principles of ComputerSystems). Available online at ftp://theory.lcs.mit.edu/pub/classes/6.826/www/6.826-top.html, 1997.[21] P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time frame-work for protocol analysis. In 5th ACM Conference on Computer and CommunicationsSecurity, pages 112{121, San Francisco, CA, USA, November 1998.[22] Victor Luchangco. Using simulation techniques to prove timing properties. Master'sthesis, Department of Electrical Engineering and Computer Science, MassachusettsInstitute of Technology, Cambridge, MA 02139, June 1995.[23] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San Mateo,CA, March 1996.[24] Nancy Lynch. I/O automaton models and proofs for shared-key communication sys-tems. In 12th IEEE Computer Security Foundations Workshop (CSFW12), pages 14{29, Mordano, Italy, June 28-30 1999.[25] Nancy Lynch and Sergio Rajsbaum. On the Borowsky-Gafni simulation algorithm.In Proceedings of the Fourth ISTCS: Israel Symposium on Theory of Computing andSystems, pages 4{15, Jerusalem, Israel, June 1996. IEEE Computer Society. Also, shortversion appears in Proceedings of the Fifteenth Annual ACM Symposium on Principlesof Distributed Computing, Philadelphia, PA, page 57, May 1996.37

[26] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata.CWI-Quarterly, 2(3):219{246, September 1989. Centrum voor Wiskunde en Informat-ica, Amsterdam, The Netherlands. Technical Memo MIT/LCS/TM-373, Laboratoryfor Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139,November 1988.[27] Catherine Meadows. A system for the speci�cation and analysis of key managementprotocols. In Proceedings of the 1991 IEEE Symposium on Research in Security andPrivacy, pages 182{195, 1991.[28] Jonathan K. Millen, Sidney C. Clark, and Sheryl B. Freedman. The Interrogator:Protocol security analysis. IEEE Transactions on Software Engineering, SE-13(2):274{288, February 1987.[29] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Part I. Informa-tion and Computation, 100(1):1{40, 1992.[30] L. C. Paulson. The inductive approach to verifying cryptographic protocols. J. Com-puter Security, 6:85{128, 1998.[31] Lawrence C. Paulson. The Isabelle reference manual. Technical Report 283, Universityof Cambridge, Computer Laboratory, 1993.[32] Tsvetomir P. Petrov, Anna Pogosyants, Stephen J. Garland, Victor Luchangco, andNancy A. Lynch. Computer-assisted veri�cation of an algorithm for concurrent times-tamps. In Reinhard Gotzhein and Jan Bredereke, editors, Formal Description Tech-niques IX: Theory, Applications, and Tools (FORTE/PSTV'96: Joint InternationalConference on Formal Description Techniques for Distributed Systems and Communi-cation Protocols, and Protocol Speci�cation, Testing, and Veri�cation, Kaiserslautern,Germany, October 1996), pages 29{44. Chapman & Hall, 1996.[33] Steve Schneider. Verifying authentication protocols with CSP. In 10th ComputerSecurity Foundations Workshop, pages 3{17. IEEE Computer Society Press, 1997.[34] Oleg Sheyner and Jeannette Wing, 1999. Personal communication.[35] Mandana Vaziri. Naming state variables of composite automata in IOA. Manuscript,Nov. 9, 1998.[36] Thomas Y. C. Woo and Simon S. Lam. A semantic model for authentication protocols.pages 178{194, 1993.
38

