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Abstract

This paper presents an algorithm that emulates atomic read/write shared objects in a dy-
namic network setting. To ensure that the data is highly available and long-lived, each object is
replicated at several network locations. To ensure atomicity, reads and writes are performed us-
ing quorum configurations, each of which consists of a set of members plus sets of read-quorums
and write-quorums. The algorithm is reconfigurable: the quorum configurations are allowed to
change during computation, and such changes do not cause violations of atomicity. Any quorum
configuration may be installed at any time—no intersection requirement is imposed on the sets
of members or on the quorums of distinct configurations. The algorithm tolerates processor
stopping failures and message loss.

The algorithm performs three major activities, all concurrently: (1) reading and writing
objects, (2) choosing new configurations and notifying members, and (3) identifying and re-
moving (“garbage-collecting”) obsolete configurations. The algorithm is composed of two sub-
algorithms: a main algorithm, which handles reading, writing, and garbage-collection, and a
reconfiguration algorithm, which handles the selection and dissemination of new configurations.

The algorithm guarantees atomicity in the presence of arbitrary patterns of asynchrony and
failures. The algorithm satisfies a variety of conditional performance properties, based on a
variety of timing and failure assumptions. In particular, if participants gossip periodically in
the background, if garbage-collection is scheduled periodically, if reconfiguration is not requested
too frequently, and if quorums of active configurations do not fail, then read and write operations
complete within time 8d, where d is the maximum message latency.
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1 Introduction

This paper presents an algorithm that can be used to implement atomic read/write shared memory
in a dynamic network setting, in which participants may join or fail during the course of computa-
tion.! Examples of such settings are mobile networks and peer-to-peer networks. One use of this
service might be to provide long-lived data in a dynamic and volatile setting such as a military
operation.

In order to achieve availability in the presence of failures, the objects are replicated at several
network locations. In order to maintain memory consistency in the presence of small and transient
changes, the algorithm uses configurations, each of which consists of a set of members plus sets of
read-quorums and write-quorums. In order to accommodate larger and more permanent changes,
the algorithm supports reconfiguration, by which the set of members and the sets of quorums are
modified. Such changes do not cause violations of atomicity. Any quorum configuration may be
installed at any time—mno intersection requirement is imposed on the sets of members or on the
quoruis of distinct configurations.

We first provide a formal specification for reconfigurable atomic shared memory as a global
service. We call this service RAMBO, which stands for “Reconfigurable Atomic Memory for Basic
Objects”. (Here “Basic” means “Read/Write”.) The rest of the paper presents our algorithm and
its analysis. The algorithm carries out three major activities, all concurrently: (1) reading and
writing objects, (2) choosing new configurations and notifying members, and (3) identifying and
removing (“garbage-collecting”) obsolete configurations.

The algorithm is composed of a main algorithm, which handles reading, writing, and garbage-
collection, and a global reconfiguration service, Recon, which provides the main algorithm with a
consistent sequence of configurations. Reconfiguration is only loosely coupled to the main read-
write algorithm, in particular, several configurations may be known to the algorithm at one time,
and read and write operations can use them all without any harm.

The main algorithm performs read and write operations requested by clients using a two-phase
strategy, where the first phase gathers information from read-quorums of active configurations
and the second phase propagates information to write-quorums of active configurations. This
communication is carried out using background gossiping, which allows the algorithm to maintain
only a small amount of protocol state information. Each phase is terminated by a fized point
condition that involves a quorum from each active configuration. Different read and write operations
may execute concurrently: the restricted semantics of reads and writes permit the effects of this
concurrency to be sorted out afterwards.

The main algorithm also includes a facility for garbage-collecting old configurations when their
use is no longer necessary for maintaining consistency. Garbage-collection also uses a two-phase
strategy, where the first phase communicates with an old configuration and the second phase
communicates with a new configuration. A garbage-collection operation ensures that both a read-
quorum and a write-quorum of the old configuration learn about the new configuration, and that
the latest value from the old configuration is conveyed to a write-quorum of the new configuration.

The reconfiguration service is implemented by a distributed algorithm that uses distributed
consensus to agree on the successive configurations. Any member of the latest configuration ¢
may propose a new configuration at any time; different proposals are reconciled by an execution
of consensus among the members of ¢. Consensus is, in turn, implemented using a version of the

We do not explicitly consider participants leaving, but treat that case in the same way as a failure.



Paxos algorithm [30], as described formally in [14]. Although such consensus executions may be
slow—in fact, in some situations, they may not even terminate—they do not cause any delays for
read and write operations.

We specify all services and algorithms, and their interactions, using I/O automata. We show
correctness (atomicity) of the algorithm for arbitrary patterns of asynchrony and failures. On the
other hand, we analyze performance conditionally, based on certain failure and timing assumptions.
For example, assuming that gossip and garbage-collection occur periodically, that reconfiguration
is requested infrequently enough for garbage-collection to keep up, and that quorums of active
configurations do not fail, we show that read and write operations complete within time 8d, where
d is the maximum message latency.

One possible application for the RAMBO service is for maintaining reliable information in a
military mission. Data objects might represent the latest status information for various real-
world entities, such as friendly and unfriendly vehicles and soldiers. Although all participants
might need to read or write the values of such a data object, a small number of participants,
for example, those currently operating in the geographical vicinity of the real-world entity, might
assume respounsibility for maintaining the object’s integrity. In this case, it would be reasonable
to change the configuration from time to time, based on which participants are currently in the
vicinity.

Comparison with other approaches. Consensus algorithms can be used directly to implement
an atomic data service, by allowing participants to agree on a global total ordering of all operations,
as suggested by Lamport [30]. In contrast, we use consensus to agree only on the sequence of
configurations and not on the individual read and write operations. Since reaching consensus is
costly, our approach leads to better performance for reads and writes. Also, in our algorithm,
the termination of consensus affects the termination of reconfiguration attempts, but not of read
and write operations: reads and writes are guaranteed to complete, provided that currently active
configurations are not disabled by failures.

Group communication services (GCSs) [1] can also be used to implement an atomic data service
in a dynamic network. This can be done, for example, by implementing a global totally ordered
broadcast service on top of a view-synchronous GCS [19] using techniques of Amir, Dolev, Keidar,
Melliar-Smith and Moser [28, 29, 5]. Our approach compares favorably with these implementations:
In most GCS-based implementations, forming a new view following a crash takes a substantial
amount of time, and client-level operations are delayed during the view-formation period. In
contrast, although reconfiguration can be slow in our algorithm, reads and writes continue to make
progress during reconfiguration. Also, in some standard GCS implementations, performance is
degraded even if only one failure occurs. For example, in ring-based implementations like that of
Cristian and Schmuck [10] a single failure triggers the formation of a new view. In contrast, our
algorithm uses quorums to tolerate small numbers of failures.

De Prisco, Fekete, Lynch, and Shvartsman [13] introduced the notion of primary configurations
and defined a dynamic primary configuration group communication service. They also showed how
to implement dynamic atomic memory over such a service, using a version of the algorithm of
Attiya, Bar-Noy, and Dolev [7] within each configuration. That work restricts the set of possible
new configurations to those satisfying certain intersection properties with previous configurations,
whereas we impose no such restrictions—we allow arbitrary new configurations to be installed. Like
other solutions based on group communication, the algorithm of [13] delays reads and writes during



reconfiguration.

In earlier work on atomic memory for dynamic networks, [34, 18], we considered single recon-
figurer approaches, in which a single designated participant initiates all reconfiguration requests.
This approach has the disadvantage that the failure of the single reconfigurer disables future recon-
figuration. In contrast, in our new approach, any member of the latest configuration may propose
the next configuration, and fault-tolerant consensus is used to ensure that a unique next configu-
ration is determined. For well-chosen quorums, this approach avoids single points of failure: new
configurations can continue to be produced, in spite of the failures of some of the configuration
members. Another difference is that, in [34, 18], garbage-collection of an old configuration is tightly
coupled to the introduction of a new configuration. Our new approach allows garbage-collection
of old configurations to be carried out in the background, concurrently with other processing. A
final difference is that, in [34, 18], information about new configurations is propagated only dur-
ing the processing of read and write operations. A client who does not perform any operations
for a long while may become “disconnected” from the latest configuration, if older configurations
become disabled. In contrast, in our new algorithm, information about configurations is gossiped
periodically, in the background, which permits all participants to learn about new configurations
and garbage-collect old configurations.

Other related work. Upfal and Wigderson produced the first general scheme for emulating
shared memory in message-passing systems by using replication and accessing majorities of times-
tamped replicas [39]. Attiya, Bar-Noy, and Dolev developed a majority-based emulation of atomic
read/write memory [7]. Their algorithm introduced a two-phase paradigm in which the first phase
gathers information from a majority of participants and the second phase propagates information
to a majority.

Quorums [21] are generalizations of majorities. A quorum system is a collection of quorum sets
such that any two quorums intersect [20]. Another approach is to classify quorums as read-quorums
and write-quorums such that any read-quorum intersects any write-quorum, and (sometimes) such
that any two write-quorums intersect. Quorums have been used to implement data replication
protocols [2, 8, 9, 11, 16, 17, 22, 23].

Consensus algorithms have been used as building blocks in other work, e.g, [27].

Paper organization. The rest of the paper is organized as follows. Section 2 describes some data
types used by our algorithms. Section 3 contains our specification for the RAMBO reconfigurable
atomic memory service. Section 4 contains the specification for the Recon reconfiguration service.
Section 5 contains the main algorithm, assuming the Recon service, and Section 6 contains the
proof that the algorithm satisfies the RAMBO specification. Section 7 contains the algorithm to
implement the Recon specification, using consensus. Section 8 contains the analysis of latency
under “normal” timing and failure assumptions, and Section 9 contains the analysis of latency
when normal behavior begins at some point in the execution. Finally, Section 10 contains our
conclusions.

2 Data Types

We assume two distinguished elements, | and £, which are not in any of the basic types. For any
type A, we define new types A} = AU{L}. and Ax = AU{L,+}. If Ais a partially ordered set,



we augment its ordering by assuming that 1 < a < £ for every a € A.
We assume the following specific data types, distinguished elements, and functions.

1, the totally-ordered set of locations.
T, the set of tags, defined as N x I.
M, the set of messages.

X, the set of object identifiers, partitioned into subsets X;, 2 € I. X; is the set of identifiers
for objects that may be created at location i. For any z € X, (ip), denotes the unique i such
that = € Xj.

For each z € X:

— V,, the set of values that object x may take on.

— (vo)z € Vg, the initial value of z.

C, the set of configuration identifiers. We assume only the trivial partial order on C, in which
all elements are incomparable; in the resulting augmented partial ordering of C'y, all elements
of C are still incomparable.

For each z € X, (¢p), € C, the initial configuration identifier for x.
For each ¢ € C' we define:

— members(c), a finite subset of I.
— read-quorums(c), a set of finite subsets of members(c).

— write-quorums(c), a set of finite subsets of members(c).
We assume the following constraints:

— members((co)z) = {(ip)z}- That is, the initial configuration for object = has only a single
member, who is the creator of x.
— For every ¢, every R € read-quorums(c), and every W € write-quorums(c), RNW # (.

update, a binary function on Cy, defined by update(c,c’) = max(c,d’) if ¢ and ¢’ are compa-
rable (in the augmented partial ordering of C4), update(c, ') = ¢ otherwise.

extend, a binary function on Cy, defined by eztend(c,’) = ¢ if ¢ = L and ¢ € C, and
extend(c,c') = ¢ otherwise.

CMap, the set of configuration maps, defined as the set of mappings from N to Cy, N — Cy.
We extend the update and extend operators elementwise to binary operations on CMap.

truncate, a unary function on CMap, defined by truncate(cm)(k) = L if there exists £ < k
such that cm(¢) = L, truncate(cm)(k) = ¢m(k) otherwise. This truncates configuration map
c¢m by removing all the configuration identifiers that follow a L.

Truncated, the subset of CMap such that cm € Truncated if and only if truncate(cm) = cm.



e Usable, the subset of CMap such that c¢m € Usable iff the pattern occurring in ¢m consists
of a prefix of finitely many =s, followed by an element of C', followed by an infinite sequence
of elements of C'; in which all but finitely many elements are L.

Lemma 2.1 If em € Usable then:

1. If k,t €N, k < /¢, and cm(f) = £, then em(k) = +£.

2. c¢m contains finitely many + entries.

3. c¢m contains finitely many C entries.

4. If ke N, em(k) = %, and cm(k + 1) # £, then em(k+1) € C.

The following lemma says that various operations preserve the “usable” property:
Lemma 2.2 1. If cm,cm' € Usable then update(cm, cm’) € Usable.

2. If em € Usable, k € N, c € C, and cm/ is identical to cm except that cm’(k) = update(cm(k),c),
then c¢cm' € Usable.

3. If cm, cm' € Usable then extend(cm,cm’) € Usable.
4. If em € Usable then truncate(cm) € Usable.

Proof. Part 1 is shown using a case analysis based on which of ¢m and c¢m' has a longer prefix of
+s. Part 2 uses a case analysis based on where £k is with respect to the prefix of £s. Part 3 and
Part 4 are also straightforward. 0

3 Reconfigurable Atomic Memory Service Specification

This section contains our specification for the RAMBO reconfigurable atomic memory service. This
specification consists of an external signature (interface) plus a set of traces that embody RAMBO’s
safety properties. No liveness properties are included in the specification; we replace these with
conditional latency bounds, which are stated and proved in Sections 8 and 9. The external signature
appears in Figure 1. (We use I/O automata notation for all of our specifications.)

The client at location ¢ requests to join the system for a particular object = by performing a
join(rambo, J), ; input action. The set J represents the client’s best guess at a set of processes that
have already joined the system for z. If i = (iy),, the set J is empty, because (ig), is supposed to
be the first process to join the system for z. If the join attempt is successful, the RAMBO service
responds with a join-ack(rambo), ; output action.

The client at 4 initiates a read (resp., write) operation using a read; (resp., write;) input action,
which the RAMBO service acknowledges with a read-ack; (resp., write-ack;) output action. The client
initiates a reconfiguration using a recon; input action, which is acknowledged with a recon-ack;
output action. RAMBO reports a new configuration to the client using a report; output action.
Finally, a crash at location 7 is modelled using a fail; input action. We do not explicitly model
graceful process “leaves”, but instead we model process departures as failures.

Now we define the set of traces describing RAMBO’s safety properties. These traces are defined to be
those that satisfy an implication of the form “environment assumptions imply service guarantees”.
The environment assumptions are simple “well-formedness” conditions:



Input: Output:

join(rambo, J)a,;, J a finite subset of I — {i}, z € X, 1 € I, join-ack(rambo),;, v € X, 1 € I

such that if ¢ = (ip), then J =0 read-ack(v)e,i, v € Vo, z € X, 1€ T
read,;, v € X, 1€l write-ack, ;, ¢ € X, 1€ 1
write(v)g,i, vE Ve, v € X, 1 €1 recon-ack(b)z,i, b € {ok,nok},x € X i €1
recon(c,c')z.i, ¢, ¢ € C, i € members(c), v € X,i €1l report(c)z,i, c€ C,c € X,i € 1
faili, i€l

Figure 1: RAMBO(z): External signature

o Well-formedness:

— For every x and :
* No join(rambo, %), ;, read, ;, write(x), ;, or recon(x, %), ; event is preceded by a fail;
event.
* At most one join(rambo, *); ; event occurs.
* Any read, ;, write(x),;, or recon(x,x),; event is preceded by a join-ack(rambo), ;
event.
* Any read, ;, write(*)z;, or recon(x,*),; event is preceded by an -ack event for any
preceding event of any of these kinds.
— For every x and ¢, at most one recon(*,C)z,* event occurs.
This says that configuration identifiers that are proposed in recon events are unique. It
does not say that the membership and/or quorum sets are unique—just the identifiers.
The same membership and quorum sets may be associated with different configuration
identifiers.
— For every ¢, ¢, =, and i, if a recon(c, '), event occurs, then it is preceded by:
* A report(c),,; event, and
* A join-ack(rambo), ; event for every j € members(c').
This says participant ¢ can request reconfiguration from ¢ to ¢ only if 7 has previously

receives a report that c is the current configuration identifier, and only if all the members
of ¢ have already joined.

The safety guarantees provided by the service are as follows:

o Well-formedness: For every x and 1:

— No join-ack(rambo); ;, read-ack(x); ;, write-acky ;, recon-ack (%) ;, or report(x);; event is
preceded by a fail; event.

— Any join-ack(rambo), ; (resp., read-ack(x), ;, write-ack,, ;, recon-ack(x), ;) event has a pre-

ceding join(rambo, %) ; (resp., ready ;, write(x), ;, recon(x, %), ;) event with no intervening
invocation or response action for x and 3.

o Atomicity? If all the read and write operations that are invoked complete, then the read and
write operations for object « can be partially ordered by an ordering <, so that the following
conditions are satisfied:

% Atomicity is often defined in terms of an equivalence with a serial memory. The definition given here implies this
equivalence, as shown, for example, in Lemma 13.16 in [33]. Note that Lemma 13.16 of [33] is presented for a setting



1. No operation has infinitely many other operations ordered before it.

2. The partial order is consistent with the external order of invocations and responses, that
is, there do not exist read or write operations 7; and 79 such that m; completes before
o starts, yet mg < my.

3. All write operations are totally ordered and every read operation is ordered with respect
to all the writes.

4. Every read operation ordered after any writes returns the value of the last write preceding
it in the partial order; any read operation ordered before all writes returns (vg),.

The rest of the paper presents our implementation of RAMBO. The implementation is a dis-
tributed algorithm in the asynchronous message-passing model, in which uniquely identified asyn-
chronous processes communicate using point-to-point channels. All processes may communicate
with each other. Processes may fail by stopping without warning.

Our implementation can be described formally as the composition of a separate implementation
for each z. Therefore, throughout the rest of the paper, we describe an implementation for a
particular x, and (usually) suppress explicit mention of z. Thus, we write V', vg, ¢g, and iy from
now on as shorthand for V,, (vy)s, (co)z, and (ip),, respectively.

4 Reconfiguration Service Specification

Our RAMBO implementation for each object x consists of a main Reader- Writer algorithm and a
reconfiguration service, Recon(z); since we are suppressing mention of z, we write this simply as
Recon. In this section, we present the specification for the Recon service, as an external signature
and a set of traces. We present our implementation of Recon in Section 7, after we present the
main Reader- Writer algorithm and the proof of its safety properties.

The external signature for Recon appears in Figure 2. The client of Recon at location 7 re-
quests to join the reconfiguration service by performing a join(recon); input action. The service
acknowledges this with a corresponding join-ack; output action. The client requests to reconfigure
the object using a recon; input, which is acknowledged with a recon-ack; output action. RAMBO
reports a new configuration to the client using a report; output action. Crashes are modeled using
fail actions.

Recon also produces outputs of the form new-config(c, k);, which announce at location 7 that ¢
is the k' configuration identifier for the object. These outputs are used for communication with
the portion of the Reader- Writer algorithm running at location ¢. Recon announces consistent
information, only one configuration identifier per index in the configuration identifier sequence.
It delivers information about each configuration to members of the new configuration and of the
immediately preceding configuration.

Now we define the set of traces describing Recon’s safety properties. Again, these are defined in
terms of environment assumptions and and service guarantees. The environment assumptions are
simple well-formedness conditions, consistent with the well-formedness assumptions for RAMBO:

with only finitely many locations, whereas we consider infinitely many locations. However, nothing in Lemma 13.16
or its proof depends on the finiteness of the set of locations, so the result carries over immediately to our setting. The
other relevant results accompanying Lemma 13.16 also carry over to this setting; in particular, Theorem 13.1, which
asserts that atomicity is a safety property, and Lemma 13.10, which asserts that it suffices to consider executions in
which all operations complete, both carry over.



Input: Output:

join(recon);, i € I join-ack(recon);, ¢ € I
recon(c, c')s, ¢, ¢’ € C, i € members(c) recon-ack(b);, b € {ok,nok},i € I
fail;, i €I report(c)i, c € C,i € I

new-config(c, k)i, c€ C, k Nt ie T

Figure 2: Recon: External signature

e Well-formedness:

— For every i:

* No join(recon); or recon(x, x); event is preceded by a fail; event.

* At most one join(recon); event occurs.

* Any recon(x, *); event is preceded by a join-ack(recon); event.

* Any recon(x, ); event is preceded by an -ack for any preceding recon(x, *); event.
— For every ¢, at most one recon(x, c), event occurs.
— For every ¢, ¢, z, and i, if a recon(c, ¢'); event occurs, then it is preceded by:

* A report(c); event, and
* A join-ack(recon); for every j € members(c).

The safety guarantees provided by the service are as follows:
o Well-formedness: For every i:

— No join-ack(recon);, recon-ack(x);, report(x);, or new-config(x, ); event is preceded by a
fail; event.

— Any join-ack(recon); (resp., recon-ack(c);) event has a preceding join(recon); (resp., recon;)
event with no intervening invocation or response action for z and 3.

o Agreement: If new-config(c, k); and new-config(c’,k); both occur, then ¢ = ¢’. (No disagree-
ment arises about what the k* configuration identifier is, for any k.)

e Validity: If new-config(c, k); occurs, then it is preceded by a recon(x,c); for some i’ for which
a matching recon-ack(nok); does not occur. (Any configuration identifier that is announced
was previously requested by someone who did not receive a negative acknowledgment.)

e No duplication: If new-config(c,k); and new-config(c, k'); both occur, then k = k'. (The
same configuration identifier cannot be assigned to two different positions in the identifier
sequence. )

5 Implementation of RAMBO Using a Reconfiguration Service

Our implementation of RAMBO includes Joiner, ; automata for each x and ¢, which handle joining of
new participants, and Reader- Writer, ; automata, which handle reading, writing, and “installing”
new configurations. The Reader-Writer and Joiner automata have access to asynchronous com-
munication channels Channely; ;. The Reader-Writer automata also interact with an arbitrary
implementation of the Recon service. The architecture is depicted in Figure 3.



RAMBO for z at ¢ RAMBO for x at j

Channely ; ;
] I Channely j; I ]

Reader-Writer, ;

C Recon )

Figure 3: RAMBO architecture: The diagram depicts the Joiner and Reader- Writer automata at ¢
and j, the Channel automata, and the Recon service.

Reader-Writer, ;

In this section we present the Joiner;;, Reader-Writery;, and Channel,;; automata. As
before, since we are suppressing explicit mention of z, we write simply Joiner;, Reader-Writer;,
and Channel; j, leaving the object x implicit.

5.1 Joiner automata

The joining protocol is implemented by a separate Joiner; automaton for each ¢. The signature,
state and transitions of Joiner; all appear in Figure 4.

When Joiner; receives a join(rambo, J) request from its environment, it carries out a simple
protocol: It sends join messages to the processes in J (with the hope that they are already par-
ticipating, and so can help in the attempt to join). Also, it submits join requests to the local
Reader- Writer and Recon components and waits for acknowledgments for these requests. The join
messages that are sent by Joiner automata are not handled by Joiner automata at other locations,
but rather, by Reader- Writer automata, as discussed in the next subsection.

5.2 Reader-Writer automata

The heart, and hardest part, of our RAMBO implementation is the reader-writer algorithm, which
handles the processing of read and write operations. Each read or write operation is processed
using one or more configurations, which it learns about from the Recon service. The reader-writer
protocol also handles the garbage-collection of older configurations, which ensures that later read
and write operations need not use them.

The reader-writer protocol is implemented by Reader-Writer; automaton for all 7. The
Reader- Writer; components interact with the Recon service and communicate using point-to-point
asynchronous channels.

5.2.1 Signature and state

The signature and state of Reader-Writer; appear in Figure 5.

The state variables are used as follows. The status variable keeps track of the progress of the
component as it joins the protocol. When status = idle, Reader-Writer; does not respond to any
inputs (except for join) and does not perform any locally controlled actions. When status = joining,



Signature:

Input: Output:
join(rambo, J);, J a finite subset of I — {i} send(join); ;, j € I — {i}
join-ack(r);, r € {recon, rw} join(r)s, r € {recon, rw}
fail; join-ack(rambo);

State:

status € {idle, joining, active}, initially idle

child-status € {recon,rw} — {idle, joining, active}, initially everywhere idle
hints C I, initially ()

failed, a Boolean, initially false

Transitions:

Input join(rambo, J); Input join-ack(r);

Effect: Effect:
if —~failed then if —failed then
if status = id.le.then if status = joining then
status <— joining child-status(r) < active
hints < J

Output join-ack(rambo);

Output send(join); ; Precondition:
Precondition: —failed
—failed o status = joining
status = joining Vr € {recon, rw} : child-status(r) = active
J € hints Effect:
Effect: status < active
none
o Input fail,
Output join(r); Effect:
Precondition: failed < true
—failed

status = joining

child-status(r) = idle
Effect:

child-status(r) < joining

Figure 4: Joiner;

Reader-Writer; is receptive to inputs but still does not perform any locally controlled actions.
When status = active, the automaton participates fully in the protocol.

The world variable is used to keep track of all processes that are known to have attempted
to join the system. The walue variable contains the current value of the local replica of z, and
tag holds the associated tag. The cmap variable contains information about configurations: If
cmap(k) = L, it means that Reader- Writer; has not yet learned what the £ configuration identifier
is. If cmap(k) = ¢ € C, it means that Reader-Writer; has learned that the k' configuration
identifier is ¢, and it has not yet garbage-collected it. If cmap (k) = =+, it means that Reader- Writer;
has garbage-collected the k'® configuration identifier. Reader- Writer; learns about configuration
identifiers either directly, from the Recon service, or indirectly, from other Reader- Writer processes.
The value of ¢cmap is always in Usable, that is, = for some finite (possibly zero length) prefix of N,
followed by an element of C, followed by elements of C'; , with only finitely many total elements of

10



Signature:

Input: Internal:
read; query-fix;
write(v);, v €V prop-fix;
new-config(c, k)i, ¢ € C,k € Nt gc(k)i, k €N
recv(join); i, j € I — {i} gc-query-fix(k);, k € N
recv(m)js, me M, jel gc-prop-fix(k)i, k € N
join(rw); gc-ack(k)i, k € N
faili

Output:

join-ack(rw);
read-ack(v);, v € V
write-ack;

send(m);;, me M, jel

State:
status € {idle, joining, active}, initially idle op, a record with fields:
world, a finite subset of I, initially 0 type € {read,write}
value € V, initially vo phase € {idle, query, prop, done}, initially idle
tag € T, initially (0,40) pnum € N
cmap € CMap, initially cmap(0) = co, cmap € CMap
cmap(k) = L for k> 1 acc, a finite subset of I
pnuml € N, initially 0 value € V
pnum2 € I — N, initially everywhere 0
failed, a Boolean, initially false gc, a record with fields:
phase € {idle, query, prop}, initially idle
pnum € N
acc, a finite subset of I
index € N

Figure 5: Reader- Writer;: Signature and state

C. When Reader/ Writer; processes a read or write operation, it uses all the configurations whose
identifier appear in its cmap up to the first L.

The pnuml variable and pnum?2 array are used to implement a handshake that identifies
cent” messages. Reader- Writer; uses pnuml to count the total number of operation “phases” it
has initiated overall, including phases occurring in read, write, and garbage-collection operations.
(A “phase” here refers to either a query or propagate phase, as described below.) For every 7,
including j = i, Reader- Writer; uses pnum2(j) to record the largest number of a phase that ¢ has
learned that j has started, via a direct message from j to ¢. Finally, two records, op and gc, are
used to maintain information about a locally-initiated read, write, or garbage-collection operation
in progress.

“I_e_

5.2.2 Transitions

The transitions are presented in three figures: Figure 6 presents the transitions pertaining to joining
the protocol and failing. Figure 7 presents those pertaining to reading and writing, and Figure 8
presents those pertaining to garbage-collection.
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Joining. When a join(rw); input occurs when status = idle, if 7 is the object’s creator iy, then
status immediately becomes active, which means that Reader- Writer; is ready for full participation
in the protocol. Otherwise, status becomes joining, which means that Reader- Writer; is receptive
to inputs but not ready to perform any locally controlled actions. In either case, Reader-Writer;
records itself as a member of its own world. From this point on, Reader- Writer; also adds to its
world any process from which it receives a join message. (Recall that these join messages are sent
by Joiner automata, not Reader- Writer automata.)

If status = joining, then status becomes active when Reader- Writer; receives a message from
another process. (The code for this appears in the recv transition definition in Figure 7.) At this
point, process ¢ has acquired enough information to begin participating fully. After status becomes
active, process i can perform a join-ack(rw).

Input join(rw); Output join-ack(rw);
Effect: Precondition:
if =failed then —failed
if status = idle then status = active
if i = g then Effect:
status < active none
else
status < joining Input fail,
world < world U {i} Effect:

failed < true
Input recv(join);,:
Effect:
if =failed then
if status # idle then
world < world U {j}

Figure 6: Reader- Writer;: Join-related and failure transitions

Information propagation. Information is propagated between Reader- Writer processes in the
background, via point-to-point channels that are accessed using send and recv actions. The al-
gorithm uses only one kind of message, which contains a tuple including the sender’s world, its
latest known wvalue and tag, its cmap, and two phase numbers—the current phase number of the
sender, pnuml, and the latest known phase number of the receiver, from the pnum?2 array. These
background messages may be sent at any time, once the sender is active. They are sent only to
processes in the sender’s world set, that is, processes that the sender knows have tried to join the
system at some point.

When Reader- Writer; receives a message, it sets its status to active, if it has not already done
so. It adds incoming information about the world, in W, to its local world set. It compares
the incoming tag ¢ to its own tag. It t is strictly greater, it represents a more recent version of
the object; in this case, Reader-Writer; sets its ftag to t and its walue to the incoming value v.
Reader-Writer; also updates its ¢cmap with the information in the incoming configuration map,
cm, using the update operator defined in Section 2. That is, for each k, if cmap(k) = L and cm/(k)
is a configuration identifier ¢ € C, then process i sets its cmap(k) to ¢. Also, if cmap(k) € C,
and cm(k) = £, indicating that the sender knows that configuration k£ has already been garbage-
collected, then Reader-Writer; sets its cmap (k) to =. Reader- Writer; also updates its pnum?2(j)
component for the sender j to reflect new information about the phase number of the sender, which
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appears in the pns components of the message.

If Reader-Writer; is currently conducting a phase of a read, write, or garbage-collection oper-
ation, it verifies that the incoming message is “recent”, in the sense that the sender j sent it after
j received a message from ¢ that was sent after ¢ began the current phase. Reader- Writer; uses
the phase numbers to perform this check: if the incoming phase number pnr is at least as large as
the current operation phase number (op.pnum or gc.pnum), then process 7 knows that the message
is recent. If the message is recent, then it is used to update the records for current read, write
or garbage-collection operations. For more information about how this is done and why, see the
descriptions of these operations below.

Read and write operations. A read or write operation is performed in two phases: a query
phase and a propagation phase. In each phase, Reader-Writer; obtains recent wvalue, tag, and
cmap information from “enough” processes. This information is obtained by sending and receiving
messages in the background, as described above.

When Reader- Writer; starts either a query phase or a propagation phase of a read or write,
it sets op.cmap to a CMap whose configurations are intended to be used to conduct the phase.
Specifically, Reader-Writer; chooses the CMap truncate(cmap), which is defined to include all the
configuration identifiers in the local cmap up to the first L. When a new CMap, cm, is received
during the phase, op.cmap is “extended” by adding all newly-discovered configuration identifiers,
up to the first L in ¢m. If adding these new configuration identifiers does not create a “gap”, that
is, if the extended op.cmap is in Truncated, then the phase continues using the extended op.cmap.
On the other hand, if adding these new configuration identifiers does create a gap (that is, the result
is not in Truncated), then Reader- Writer; can infer that it has been using out-of-date configuration
identifiers. In this case, it restarts the phase using the best currently known CMap, information,
which is obtained by computing truncate(cmap) for the latest local cmap.

In between restarts, while process 7 is engaged in a single attempt to complete a phase, it
never removes a configuration identifier from op.cmap, that is, the set of configuration identifiers
being used for the phase is only increased. In particular, if process ¢ learns during a phase that
a configuration identifier in op.cmap(k) has been garbage-collected, it does not remove it from
op.cmap, but continues to include it in conducting the phase.

The query phase of a read or write operation terminates when a query fized point is reached.
This happens when Reader- Writer; determines that it has received recent responses from some
read-quorum of each configuration in its current op.cmap. Let t denote process i’s tag at the query
fixed point. Then we know that ¢ is at least as great as the tag value that each process in each of
these read-quorums had at the start of the query phase.

If the operation is a read operation, then process 7 determines at this point that its current value
is the value to be returned to its client. However, before returning this value, process ¢ embarks
upon the propagation phase of the read operation, whose purpose is to make sure that “enough”
Reader-Writer processes have acquired tags that are at least ¢ (and associated values). Again,
the information is propagated in the background, and op.cmap is managed as described above.
The propagation phase ends once a propagation fized point is reached, when Reader-Writer; has
received recent responses from some write-quorum of each configuration in the current op.cmap.
When this occurs, we know that the tag of each process in each of these write-quorums is at least
t.

Processing for a write operation starting with a write(v); event is similar to that for a read
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Output send((W, v, t, cm, pns, pnr)); ;
Precondition:

—failed

status = active

j € world

(W, v,t,cm, pns, pnr) =

(world, value, tag, cmap, pnuml , pnum2(5))

Effect:

none

Input recv((W, v, t, cm, pns,pnr));,;
Effect:
if =failed then
if status # idle then

status < active

world < world UW

if t > tag then (value, tag)  (v,t)

cmap < update(cmap, cm)

pnum2(j) < max(pnum2(j), pns)

if op.phase € {query, prop} and pnr > op.pnum then
op.cmap < extend(op.cmap, truncate(cm))
it op.cmap € Truncated then
op.acc < op.accU {j}
else
op.acc < 0
op.cmap < truncate(cmap)

if gc.phase € {query, prop} and pnr > gc.pnum then
gc.acc < ge.acc U {j}

Input new-config(c, k);
Effect:
if =failed then
if status # idle then
cmap(k) < update(cmap(k), c)

Input read,
Effect:
if =failed then
if status # idle then
pnuml < pnuml +1
(op.pnum, op.type, op.phase, op.cmap, op.acc)
« (pnuml, read, query, truncate(cmap), 0)

Input write(v);
Effect:
if =failed then
if status # idle then
pnuml < pnuml +1

(op.pnum, op.type, op.phase, op.cmap, op.acc, op.value)

+ (pnuml, write, query, truncate(cmap), ), v)

Internal query-fix;
Precondition:
—failed
status = active
op.type € {read, write}
op.phase = query
VEeN,ceC: (op.cmap(k) =c)
= (3R € read-quorums(c) : R C op.acc)
Effect:
if op.type = read then
op.value < value
else
value < op.value
tag < (tag.seq + 1,1)
pnuml < pnuml +1
op.pnum 4— pnuml
op.phase < prop
op.cmap < truncate(cmap)
op.acc < )

Internal prop-fix;
Precondition:

—failed

status = active

op.type € {read, write}

op.phase = prop

Vk €N, c € C : (op.cmap(k) = c)

= (AW € write-quorums(c) : W C op.acc)

Effect:

op.phase = done

Output read-ack(v);
Precondition:
—failed
status = active
op.type = read
op.phase = done
v = op.value
Effect:
op.phase = idle

Output write-ack;
Precondition:
—failed
status = active
op.type = write
op.phase = done
Effect:
op.phase = idle

Figure 7: Reader- Writer;: Read/write transitions
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operation. The query phase is conducted exactly as for a read, but processing after the query fixed
point is different: Suppose t, process i’s tag at the query fixed point, is of the form (n,j). Then
Reader-Writer; defines the tag for its write operation to be the pair (n+ 1,7). Reader-Writer; sets
its local tag to (n + 1,i) and its value to v, the value it is currently writing. Then it performs its
propagation phase. Now the purpose of the propagation phase is to ensure that “enough” processes
acquire tags that are at least as great as the new tag (n+1,4). The propagation phase is conducted
exactly as for a read operation: Information is propagated in the background, and op.cmap is
managed as described above. The propagation phase is over when the same propagation fixed
point condition is satisfied as for the read operation.

The communication strategy we use for reads and writes is different from what is done in other
similar algorithms (e.g., [7, 18, 34]). Typically, process i first determines a tag and value to prop-
agate, and then propagates it directly to appropriate quorums. In our algorithm, communication
occurs in the background, and process ¢ just checks a fixed point condition. The fixed point con-
dition ensures that enough processes have received recent messages, which implies that they must
have tags at least as large as the one that process ¢ is trying to propagate.

New configurations and garbage collection. When Reader- Writer; learns about a new con-
figuration identifier via a new-config input action, it simply records it in its cmap. From time
to time, configuration identifiers get garbage-collected at ¢, in numerical order. The configura-
tion identifiers used in performing query and propagation phases of reads and writes are those in
truncate(cmap), that is, all configurations that have not been garbage-collected and that appear
before the first L.

There are two situations in which Reader- Writer; may garbage-collect a configuration identifier,
say, the one in cmap (k). First, Reader- Writer; can garbage-collect cmap (k) if it learns that another
process has already garbage-collected it. This happens when a recv, ; event occurs in which cm (k) =
+. The second, more interesting situation is where Reader- Writer; acquires enough information to
garbage-collect configuration k on its own. Reader- Writer; acquires this information by carrying
out a garbage-collection operation, which is a two-phase operation with a structure similar to the
read and write operations. Reader- Writer; may initiate a garbage-collection of configuration £ when
its cmap (k) and cmap(k + 1) are both in C, and when any configurations with indices smaller than
k—1 have already been garbage-collected. Garbage-collection operations may proceed concurrently
with read or write operations at the same node.

In the query phase of a garbage-collection operation, Reader- Writer; communicates with both
a read-quorum and a write-quorum of configuration k. The query phase accomplishes two tasks:
First, Reader-Writer; ensures that certain information is conveyed to the processes in a read-
quorum and a write-quorum of k. In particular, all these processes learn about both configurations
k and k + 1, and also learn that all configurations smaller than k£ have been garbage-collected.
We refer loosely to the fact that they know about configuration k& + 1 as the “forwarding pointer”
condition— if such a process j, is contacted later by someone who is trying to access a quorum of
configuration k, j is able to tell that process about the existence of configuration k£ + 1. Second,
in the query phase, Reader- Writer; collects tag and value information from the read-quorum and
write-quorum that it accesses. This ensures that, by the end of the query phase, Reader- Writer;’s
tag is equal to some ¢ that is at least as great as the tag that each of the quorum members had when
it sent a message to Reader- Writer; for the query phase. In the propagation phase, Reader- Writer;
ensures that all the processes in a write-quorum of the new configuration, k + 1, have acquired tags
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that are at least .

Note that, unlike a read or write operation, a garbage-collection for k uses only two
configurations—k in the query phase and k£ + 1 in the propagation phase.

At any time when Reader- Writer; is carrying out a garbage-collection operation for config-
uration k, it may discover that someone else has already garbage-collected k; it learns this by
observing that cmap(k) = +. When this happens, Reader-Writer; may simply terminate its
garbage-collection operation.

Internal gc(k);

Internal gc-prop-fix(k);
Precondition:

Precondition:
~failed —failed
status = active
gc.phase = idle
cmap(k) € C

status = active
gc.phase = prop

gc.index = k
cmap(k +1) € C AW € write-quorums(cmap(k + 1)) : W C ge.ace
k=0or cmap(k —1) ==+ Effect:
Effect: cmap(k) + £

pnuml ¢ pnuml +1

yC-pZum : pruml Internal gc-ack(k);
gc.phase < query Precondition:
gc.acc < 0 —failed

ge.index <k status = active

. gc.index =k
Internal gc-query-fix(k); cmap(k) = +
Precondition: Effect:

—failed

status = active

gc.phase = query

gc.index = k

3R € read-quorums(cmap(k)) :

AW € write-quorums(cmap(k)) : RUW C ge.acc

Effect:

pnuml ¢ pnuml +1

ge.pnum <— pnuml

gc.phase < prop

gc.acc < )

gc.phase = idle

Figure 8: Reader-Writer;: Garbage-collection transitions

5.3 Channel automata

We assume point to point channels Channel; j, one for each 4,j € I (including the case where
i = j). Channel;; is accessed using send(m);; input actions, by which a sender at location i
submits message m to the channel, and recv(m); ; output actions, by which a receiver at location j
receives m. We assume that message m is an element of the message alphabet M, which we assume
includes all the messages that are used by the protocol.

Channels may lose and reorder messages, but cannot manufacture new messages or duplicate
messages (the latter restriction is used for convenience, in reasoning about latency). Formally, we
model the channel as a multiset. A send(rm); ; adds one copy of the message m to the multiset, and
a recv(m); ; removes one copy of m. A lose action allows any sub-multiset of messages to be lost.
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5.4 The complete algorithm

The complete implementation § is the composition of all the automata defined above—the Joiner;
and Reader- Writer; automata for all 7, all the channels, and any automaton whose traces satisfy
the Recon safety specification—with all the actions that are not external actions of RAMBO hidden.

6 Safety Proof

In this section, we show that our implementation § satisfies the safety guarantees of RAMBO, as
given in Section 3, assuming the environment safety assumptions. That is, we prove the following
theorem:

Theorem 6.1 Let 8 be a trace of the system S. If B satisfy the RAMBO environment assumptions,
then (3 satisfies the RAMBO service guarantees (well-formedness and atomicity).

This safety theorem does not depend on any assumptions about timing and failures. In contrast,
our performance results, in Sections 8 and 9, do depend on such assumptions.

The proof of well-formedness is straightforward based on inspection of the code, so the rest of
this section is devoted to the proof of the atomicity property. To prove atomicity, we consider a
trace 0 of & that satisfies the RAMBO environment assumptions and in which all read and write
operations complete. We show the existence of a partial order on the operations in 3 satisfying the
conditions listed in the atomicity definition in Section 3.

The proof is carried out in several stages. First, in Section 6.1, we establish some notational
conventions and define some useful history variables. In Section 6.2, we establish some simple
invariants involving configuration maps. Then in Section 6.3, we present results that say what
is achieved by the two phases of read, write, and garbage-collection operations. The next three
subsections describe information propagation between operations: Section 6.4 describes the rela-
tionship between garbage-collection operations, Section 6.5 describes the relationship between a
garbage-collection operation and a read or write operation, and Section 6.6 describes the relation-
ship between two read or write operations. Section 6.6 culminates in Lemma 6.14, which says that
tags are monotonic with respect to non-concurrent read or write operations. Finally, Section 6.7
uses the tags to define a partial order on operations and verifies the four properties required for
atomicity.

Throughout Section 6, we consider executions of S whose traces satisfy the RAMBO environment
assumptions. We call these good executions. In particular, an “invariant” in this section is a
statement that is true of all states that are reachable in good executions of S.

6.1 Notational conventions

Before diving into the proof, we introduce some notational conventions and add certain history
variables to the global state of the system S.

An operation can be of type read, write, or garbage-collection. Operations are uniquely identi-
fied by their starting events, that is, a read operation is defined by its read; event, a write operation
by its write(v); event, and a garbage-collection operation by its gc(k); event.?

We introduce the following history variables:

3An event is an occurrence of an action in a sequence, formally, a pair (a,n), where a is an action and 7 is an
index at which a occurs in that sequence.
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in-transit, a set of messages, initially (.

A message is added to the set when it is sent by any Reader- Writer; to any Reader-Writer .
No message is ever removed from this set.

For every k € N:

c(k) € C, initially undefined.
This is set when the first new-config(c, k); occurs, for some ¢ and 7. It is set to the ¢ that
appears as the first argument of this action.

For every operation =:

tag(m) € T, initially undefined.

This is set to the value of tag at the process running 7, at the point right after n’s
query-fix or gc-query-fix event occurs. If 7 is a read or garbage-collection operation, this
is the highest tag that it encounters during the query phase. If 7 is a write operation,
this is the new tag that is selected for performing the write.

For every read or write operation m:

query-cmap (), a CMap, initially undefined.
This is set in the query-fix step of m, to the value of op.cmap in the pre-state.

R(m, k), for k € N, a subset of I, initially undefined.
This is set in the query-fix step of m, for each k such that query-cmap(w)(k) € C. Tt is
set to an arbitrary R € read-quorums(c(k)) such that R C op.acc in the pre-state.

prop-cmap (7), a CMap, initially undefined.
This is set in the prop-fix step of 7, to the value of op.cmap in the pre-state.

W (r, k), for k € N, a subset of I, initially undefined.
This is set in the prop-fix step of 7, for each k such that prop-cmap(m)(k) € C. It is set
to an arbitrary W € write-quorums(c(k)) such that W C op.acc in the pre-state.

e For every garbage-collection operation «y for k:

R(), a subset of I, initially undefined.

This is set in the gc-query-fix step of v, to an arbitrary R € read-quorums(c(k)), such
that R C gc.acc in the pre-state.

W1(7), a subset of I, initially undefined.

This is set in the gc-query-fix step of v, to an arbitrary W € write-quorums(c(k)) such
that W C gc.acc in the pre-state.

W (), a subset of I, initially undefined.

This is set in the gc-prop-fix step of v, to an arbitrary W € write-quorums(c(k+1)) such
that W C gc.acc in the pre-state.

In any good execution «, we define the following events (more precisely, we give additional

names to some existing events):

e For every read or write operation =:
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— query-phase-start(r), initially undefined.
This is defined in the query-fix step of 7, to be the unique earlier event at which the
collection of query results was started and not subsequently restarted (that is, op.acc
is set to () in the effects of the corresponding step, and it is not the case that op.acc is
again reset to () following that event and prior to the query-fix step). This is either a
read, write, or recv event.

— prop-phase-start(7), initially undefined.
This is defined in the prop-fix step of m, to be the unique earlier event at which the
collection of propagation results was started and not subsequently restarted. This is
either a query-fix or recv event.

We define a property of garbage-collection events in an execution a:
e Initial garbage-collection events: A gc-prop-fix(k); event is initial if it is the first gc-prop-fix(k).

event in a. A garbage-collection operation is initial if its gc-prop-fix event is initial.

6.2 Configuration map invariants

In this subsection, we give invariants describing the kinds of configuration maps that may appear
in various places in the state of S.

The first invariant (recall this means a property of all states that arise in good executions of
S) describes some properties of cmap; that hold while Reader-Writer; is conducting a garbage-
collection operation:

Invariant 1 If gc.phase; # idle and gc.index; = k then:
1. cmap(k); € CU{£}.
2. cmap(k +1); € CU{£}.
3. k=0 or cmap(k —1) = +.

Proof. By the precondition of gc(k); and monotonicity of all the changes to cmap;. Specifically,
for this invariant, if for some h we have cmap(h) € C in the pre-state, then cmap(h) € C U {£} in
the post-state (by code inspection). O

We next proceed to describe the patterns of C', |, and + values that may occur in configuration
maps in various places in the system state.

Invariant 2 Let ¢cm be a CMap that appears as one of the following:
1. The cm component of some message in in-transit.
2. cmap; for any i € I.
3. op.cmap; for some i € I for which op.phase # idle.
4. query-cmap(m) or prop-cmap () for any operation .

Then cm € Usable.
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In the following proof and elsewhere, we use dot notation to indicate components of a state, for
example, s.cmap; indicates the value of cmap; in state s.
Proof. By induction on the length of a finite good execution.

Base: Part 1 holds because initially, in-transit is empty. Part 2 holds because initially, for
every i, cmap(0); = ¢o and cmap(k); = L; the resulting CMap is in Usable. Part 3 holds vacuously,
because in the initial state, all op.phase values are idle. Part 4 also holds vacuously, because in the
initial state, all query-cmap and prop-cmap variables are undefined.

Inductive step: Let s and s’ be the states before and after the new event, respectively. We consider
Parts 1-4 one by one.

For Part 1, the interesting case is a send; event that puts a message containing cm in in-transit.
The precondition on send action implies that cm is set to s.cmap;. The inductive hypothesis, Part
2, implies that s.cmap; € Usable, which suffices.

For Part 2, fix 4. The interesting cases are those that may change cmap;, namely, new-config;, recv;
for a gossip (non-join) message, and gc-prop-fix;.

1. new-config(c, *);.
By inductive hypothesis, s.cmap; € Usable. The only change this can make is changing a L
to ¢. Then Lemma 2.2, Part 2, implies that s'.cmap; € Usable.

2. recv((x,*, cm, *, %)),
By inductive hypothesis, ¢m € Usable and s.cmap; € Usable. The step sets s'.cmap; to
update(s.cmap;, cm). Lemma 2.2, Part 1, then implies that s'.cmap; € Usable.

3. ge-prop-fix(k);.
This sets cmap(k); to +. If s.ecmap(k); = £, then this step causes no change and we are done.
So suppose that this is not the case; then Invariant 1, Part 1, implies that s.cmap(k); € C and
Invariant 1, Part 2, implies that s.cmap(k+1); € CU{£}. Since s.cmap; € Usable, this implies
that s.cmap(k+1); € C. Invariant 1, Part 3, implies that either £ = 0 or s.cmap(k—1) = +.
Since s.cmap; € Usable, under the conditions just described, s.cmap(f); = + if and only if
¢ < k. Then changing cmap(k); to £ preserves usability.

For Part 3, the interesting actions to consider are those that modify op.cmap, namely, read;, write;,
recv;, and query-fix;.

1. read;, write;, or query-fix;.
By inductive hypothesis, s.cmap; € Usable. The new step sets s.op.cmap; to
truncate(s.cmap;); since s.cmap; € Usable, Lemma 2.2, Part 4, implies that this is also
usable.

2. recv((*, x, cm, *, %));.
This step may alter op.cmap; only if s.op.phase € {query, prop}, and then in only two ways:
by setting it either to extend(s.op.cmap;, truncate(cm)) or to truncate(update(s.cmap;, cm)).
The inductive hypothesis implies that s.op.cmap;, cmap;, and cm are all in Usable.
Lemma 2.2 implies that truncate, extend, and update all preserve usability. Therefore,
s'.op.cmap; € Usable.
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For Part 4, the actions to consider are query-fix; and prop-fix;.

1. query-fix;.
This sets s'.query-cmap; to the value of s.op.cmap;. Since by inductive hypothesis that is
usable, so is s'.query-cmap;.

2. prop-fix;.
This sets s'.prop-cmap; to the value of s.op.cmap,;. Since by inductive hypothesis that is
usable, so is s'.prop-cmap;.

g

We now strengthen Invariant 2 to say more about the form of the CMaps that are used for read
and write operations:

Invariant 3 Let cm be a CMap that appears as op.cmap; for some i € I for which op.phase; # idle,
or as query-cmap(m) or prop-cmap () for any operation w. Then:

1. em € Truncated.

2. c¢cm consists of finitely many + entries followed by finitely many C' entries followed by an
infinite number of L entries.

Proof. We prove that the desired properties hold for a ¢m that is op.cmap;. The same properties
for query-cmap; and prop-cmap; follow by the way they are defined, from op.cmap,.

To prove Part 1 we proceed by induction. In the initial state, op.phase; = idle, which makes
the claim vacuously true. For the inductive step we consider all actions that alter op.cmap;:

1. read;, write;, or query-fiz;.
These set op.cmap; to truncate(cmap;), which is necessarily in Truncated.

2. recv;.
This first sets op.cmap; to a preliminary value and then tests if the result is in Truncated.
If it is, we are done. If not, then this step resets op.cmap; to truncate(cmap;), which is in
Truncated.

To see Part 2, note that ¢m € Usable by Invariant 2. The fact that ¢m € Truncated then
follows from the definition of Usable and Part 1. O

6.3 Phase guarantees

In this section, we present results saying what is achieved by the individual operation phases. We
give four lemmas, describing the messages that must be sent and received and the information flow
that must occur during the two phases of garbage-collection and during the two phases of read and
write operations.

Note that these lemmas treat the case where j = ¢ uniformly with the case where j # i. This
is because, in the Reader-Writer algorithm, communication from a location to itself is treated
uniformly with communication between two different locations. We first consider the query phase
of garbage-collection. Lemma 6.2 says that, in the query phase of a garbage-collection of k, every
member j of the designated read-quorum and designated write-quorum learns about all configura-
tions up to and including the k+15¢. Moreover, the tag assigned to the garbage-collection operation
is at least as great as the one sent by any such j.

21



Lemma 6.2 Suppose that a gc-query-fix(k); event for a garbage-collection operation 7y occurs in «.
Suppose j € R(y) UWi(y).
Then there exist messages m from i to j and m' from j to i such that:

1. m is sent after the gc(k); event of ~y.

2. m! is sent after j receives m.

3. m' is received before the gc-query-fix(k); event of .

4. In any state after j receives m, cmap(£); # L for all £ <k + 1.
5

. tag(7y) is at least as great as the value of tag; in any state before j sends message m!.

Proof. The phase number discipline implies the existence of the claimed messages m and m’.

For Part 4, the precondition of gc(k) and the fact that cmap,; € Usable (by Invariant 2) together
imply that, when the gc(k); event of v occurs, cmap(¢); # L for all £ < k + 1. Therefore, j sets
cmap(f); # L for all £ < k + 1 when it receives m. Monotonicity of cmap; ensures that this
property persists forever.

For Part 5, let ¢ be the value of tag; in any state before j sends message m'. Let t' be the value
of tag; in the state just before j sends m’, by monotonicity. Then ¢ < ¢/, by monotonicity. The
tag component of m' is equal to t’, by the code for send. Since 4 receives this message before the
gc-query-fix(k), it follows that tag(7y) is set by ¢ to a value > t. O

Next, we consider the propagation phase of garbage-collection. Lemma 6.3 says that, in the
propagation phase of a garbage-collection, every member j of the designated write-quorum acquires
a tag that is at least as great as the tag of the garbage-collection operation.

Lemma 6.3 Suppose that a gc-prop-fix(k); event for a garbage-collection operation 7y occurs in «.
Suppose that j € W(7y).
Then there exist messages m from i to j and m' from j to i such that:

1. m is sent after the gc-query-fix(k); event of ~y.
2. m' is sent after j receives m.
3. m' is received before the ge-prop-fix(k); event of 7.

4. In any state after j receives m, tag; > tag(y).

Proof. The phase number discipline implies the existence of the claimed messages m and m’.
For Part 4, when j receives m, it sets tag; to be > tag(y). Monotonicity of tag; ensures that
this property persists in later states. O

Next, we consider the query phase of read and write operations. Lemma 6.4 says that the tag
assigned to a read or write operation is at least as great as the one sent in the query phase by
any member j of the designated read-quorum; if the operation is a write, then the tag is strictly
greater. Also, the read or write operation learns about all configurations known by any such j by
the time 7 sent its message for the query phase.
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Lemma 6.4 Suppose that a query-fix; event for a read or write operation ™ occurs in .
k,k" € N. Suppose query-cmap(m)(k) € C and j € R(m, k).
Then there exist messages m from i to j and m' from j to i such that:

1. m is sent after the query-phase-start(m) event.
2. m! is sent after j receives m.
3. m' is received before the query-fix event of .

4. If t 1s the value of tag; in any state before j sends m', then:

(a) tag(m) >t.
(b) If w is a write operation then tag(m) > t.

Let

5. If cmap(€); # L for all £ < k' in any state before j sends m', then query-cmap(m)(¢) € C for

some £ > K.

Proof. The phase number discipline implies the existence of the claimed messages m and m’.

For Part 4, the tag component of message m' is > t, so i receives a tag that is > ¢ during the
query phase of w. Therefore, tag(w) > t. Also, if 7 is a write, the effects of the query-fix imply that

tag(m) > t.

Finally, we show Part 5. In the ¢m component of message m', cm(f) # L for all £ < k'

Therefore, truncate(cm)(£) = ecm(£) for all £ < k', so truncate(cm)(¢) # L for all £ < k'

Let ¢m' be the configuration map extend(op.cmap,, truncate(cm)) computed by ¢ during the
effects of the recv event for m'. Since 7 does not reset op.acc to () in this step, by definition of the
query-phase-start event, it follows that em’ € Truncated, and em' is the value of op.cmap; just after

the recv step.
Fix £, 0 < ¢ < k'. We claim that ¢m'(£) # L. We consider cases:

1. op.cmap(¥); # L just before the recv step.
Then the definition of eztend implies that ¢m'(£) # L, as needed.

2. op.cmap(£); = L just before the recv step and truncate(cm)(¢) € C.

Then the definition of eztend implies that ¢m/(£) € C, which implies that ¢m/(¢) # L, as

needed.

3. op.cmap(£); = L just before the recv step and truncate(cm)(¢) ¢ C.

Since truncate(cm)(£) # L, it follows that truncate(cm)(¢) = +. Since truncate(cm)(f) = +

and truncate(cm) € Usable, it follows that, for some ¢ > ¢, truncate(cm)(¢') € C.

By the case assumption, op.cmap(¢); = L just before the recv step. Since, by Invariant 3,

op.cmap,; € Truncated, it follows that op.cmap(¢'); = L before the recv step.

Then by definition of extend, we have that ¢m'(¢) = L while ¢m/(¢') € C. This implies that
em! ¢ Truncated, which contradicts the fact, already shown, that c¢m' ¢ Truncated, So this

case cannot arise.
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Since this argument holds for all ¢, 0 < ¢ < k', it follows that e¢m/(¢) # L for all £ < k'. Since
em!(£) # L for all £ < k', Invariant 2 implies that ¢m’ € Usable, which implies by definition of
Usable that e¢m/(¢) € C for some ¢ > k'. That is, op.cmap,;(¢) € C for some ¢ > k' immediately
after the recv step. This implies that query-cmap(w)(¢) € C for some £ > k', as needed. O

Finally, we consider the propagation phase of read and write operations. Lemma 6.5 says that,
in the propagation phase of a read or write, every member j of the designated write-quorum acquires
a tag that is at least as great as the tag of the read or write operation. Also, the read or write
operation learns about all configurations known by any such j by the time j sent its message for
the propagation phase.

Lemma 6.5 Suppose that a prop-fix; event for a read or write operation m occurs in «. Suppose
prop-cmap (m)(k) € C and j € W(r, k).
Then there exist messages m from i to j and m' from j to i such that:

1. m is sent after the prop-phase-start(m) event.
m' is sent after j receives m.
m' is received before the prop-fix event of .

In any state after j receives m, tag; > tag(m).

If cmap(€); # L for all £ <K' in any state before j sends m/, then prop-cmap(7)(¢) € C for
some > K.

Proof. The phase number discipline implies the existence of the claimed messages m and m’.

For Part 4, let m.tag be the tag field of message m. Since m is sent after the prop-phase-start
event, which is not earlier than the query-fix, it must be that m.tag > tag(w). Therefore, by the
effects of the recv, just after j receives m, tag; > m.tag > tag(m). Then monotonicity of tag;
implies that tag; > tag(m) in any state after j receives m.

For Part 5, the proof is analogous to the proof of Part 5 of Lemma 6.4. In fact, it is identical
except for the final conclusion, which now says that prop-cmap(7)(£) € C for some £ > k'. O

6.4 Behavior of garbage-collection

In this subsection, we present lemmas describing information flow between garbage-collection oper-
ations. The first lemma says that initial gc-prop-fix(k) events for successive k occur in order. In fact,
for each k, the initial gc-prop-fix(k) event precedes any attempt by any process to garbage-collect
k + 1. This means that garbage-collection obeys a simple, sequential discipline.

Lemma 6.6 1. If any gc({); event occurs in a and 0 < k < £, then some gc-prop-fix(k) event
occurs in «, and the initial gc-prop-fix(k) event precedes the given gc(f); event.

2. If any gc-prop-fix(£) event occurs in o and 0 < k < £, then some gc-prop-fix(k) event occurs
in «, and the initial gc-prop-fix(k) event precedes the given gc-prop-fix(£) event.
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Proof. For Part 1, note that the precondition of gc(¢); implies that cmap(¢ — 1); = %+ in the pre-

state. Since cmap; € Usable, it must be that cmap(k); = &+ for all k, 0 < k < £, in the pre-state.

This implies that prior to the gc(¢);, some gc-prop-fix(k) event occurs in « for each &k, 0 < k < /.
Part 2 follows from Part 1 and the behavior of garbage-collection operations. O

The sequential nature of garbage-collection has a nice consequence for propagation of tags:
Counsider a particular good execution «. For any k£ € N, define vy to be the initial garbage-collection
operation for k, if any gc-prop-fix(k) event occurs. If no such event occurs, then 7y, is undefined.
The lemma says that the tags of garbage-collection operations are monotonically nondecreasing
with respect to the configuration indices.

Lemma 6.7 Suppose a gc-query-fix(€) event for v, occurs in a and k < £. Then tag(yx) < tag(7ye).

Proof. Fix k. We use induction on 4.

The base case, £ = k, is trivially true. For the inductive step, assume that £ > &k + 1 and the result
is true for £ — 1. To show that the result is true for ¢, assume that a gc-query-fix(¢) event for -y,
occurs in . Then Lemma 6.6 implies that gc-query-fix(£ — 1) for ;1 also occurs in «. Therefore,
by inductive hypothesis, tag(vx) < tag(ye—1). It suffices to show that tag(ve—1) < tag(ye).

By Lemma 6.6, the gc-prop-fix(¢ — 1) for 441 occurs in a and precedes the gc(€) event of .
Then R(7y;) and Wa(y,—1) are both defined in «. Since both are quorums of ¢(¢), they have a
nonempty intersection; choose j € R(y,) N Wa(ye_1).

Lemma 6.3 and monotonicity of tag; imply that, in any state after the gc-prop-fix(¢ — 1) for
Ye-1, tag; > tag(ye—1). Lemma 6.6 implies that this gc-prop-fix(£ —1) precedes the gc(¢) event of ;.
Therefore, t > tag(vy,—1), where ¢ is defined to be the value of tag; just before the gc(¢) event of .
Lemma 6.2 and monotonicity of tag; imply that tag(ye) > ¢. Thus, we have tag(ye—1) < t < tag(ve),
so tag(ye—1) < tag(7ye), as needed. O

6.5 Behavior of a read or a write following a garbage-collection

Now we describe the relationship between a garbage-collection and a following read or write oper-
ation. The first two lemmas describe situations in which certain configurations must belong to the
query-cmap of a read or write operation.

First, if no garbage-collection operation for k£ completes before the query-phase-start event
of a read or write operation, then some configuration with index < k& must be included in the
query-cmap.

Lemma 6.8 Let 7 be a read or write operation whose query-fix event occurs in «. Suppose that no
gc-prop-fix(k) event precedes the query-phase-start(m) event.
Then query-cmap(m)(¢) € C for some £ < k.

Proof. Since no garbage-collection operation for k& completes before the query-phase-start(7) event,
it follows that, just after the query-phase-start(m) event, op.cmap (k) # =+; that is, op.cmap(k) € C .
Then Invariant 2 implies that, just after query-phase-start(m), op.cmap(¢) € C for some ¢ < k. Fix
such an /; then the behavior of the query phase of the read or write implies that query-cmap(w)(£) €
C. O

Second, if some garbage-collection for k does complete before the query-phase-start event of
a read or write operation, then some configuration with index > k 4+ 1 must be included in the
query-cmap.

25



Lemma 6.9 Let v be a garbage-collection operation for k. Let w be a read or write opera-
tion whose query-fix event occurs in «. Suppose that the gc-prop-fix(k) event of v precedes the
query-phase-start(m) event. Then query-cmap(w)(£) € C for some £ >k + 1.

Proof. Suppose for the sake of contradiction that query-cmap(w)(¢) ¢ C for all £ > k + 1. Fix
k' = max({¢ : query-cmap(m)(¢) € C}). Then k' < k. Since the gc-prop-fix(k) event of v precedes
the query-phase-start(w) event, Lemma 6.6 implies that a gc-prop-fix(k') event also precedes the
query-phase-start(m) event. Let 4/ be the initial garbage-collection operation for k'.

Then write-quorum Wi (') of ¢(k') and read-quorum R(m, k') are both defined; choose j €
Wi(v') N R(m, k'). Then Lemma 6.2 and monotonicity of ¢cmap imply that, in the state just prior
to the gc-prop-fix(k') event of o', cmap(¢); # L for all £ < k' 4+ 1. Then Lemma 6.4 implies that
query-cmap(w)(£) € C for some £ > k' + 1. But this contradicts the choice of k'. O

The next two lemmas describe propagation of tag information from a garbage-collection oper-
ation to a following read or write operation. The first lemma assumes that the query-cmap of the
read or write includes the configuration following the one being garbage-collected.

Lemma 6.10 Let v be an initial garbage-collection operation for k. Let m be a read or write
operation whose query-fix event occurs in «. Suppose that the gc-prop-fix(k) event of v precedes the
query-phase-start(m) event. Suppose also that query-cmap(m)(k + 1) € C. Then:

1. tag(y) < tag(m).

2. If w is a write operation then tag(y) < tag(mw).

Proof. The propagation phase of v accesses write-quorum Ws(y) of ¢(k + 1), whereas the query
phase of 7 accesses read-quorum R(w, k + 1). Since both are quorums of configuration c(k + 1),
they have a nonempty intersection; choose j € Wy(y) N R(m, k + 1).

Lemma 6.3 implies that, in any state after the gc-prop-fix(k) event for vy, tag; > tag(7y). Since the
gc-prop-fix(k) event of y precedes the query-phase-start(w) event, we have that ¢t > tag(vy), where ¢ is
defined to be the value of tag; just before the query-phase-start(7) event. Then Lemma 6.4 implies
that tag(w) > t, and if 7 is a write operation, then tag(w) > ¢t. Combining the inequalities yields
both conclusions of the lemma. O

The final lemma has a similar statement to the previous one. However, this one drops the
assumption that the query-cmap of the read or write includes the configuration following the one
being garbage-collected.

Lemma 6.11 Let v be an initial garbage-collection operation for k. Let w be a read or write
operation whose query-fix event occurs in «. Suppose that the ge-prop-fix(k) event of v precedes the
query-phase-start(m) event. Then:

1. tag(y) < tag(r).

2. If 7 is a write operation then tag(y) < tag(rw).

Proof. Lemma 6.9 implies that query-cmap(7)(¢) € C for some £ > k + 1.
Let k' = min({¢ : query-cmap(n)(¢) € C}). We consider cases:
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I ' <Ek+1.

Then Invariant 3 implies that query-cmap(w)(k 4+ 1) € C, that is, that configuration k + 1 is
included in the query phase of 7. Then Lemma 6.10 implies the conclusions.

2. K >k+1.

By Lemma 6.8, some gc-prop-fix(k' — 1) event precedes the query-phase-start(m) event. Let
7' be the initial garbage-collection operation for k' — 1; then the gc-prop-fix(k' — 1) event
of 7' precedes the query-phase-start(m) event. Since k < k' — 1, Lemma 6.7 implies that
tag(y) < tag(y').

Since query-cmap(7)(k') € C, we may apply Lemma 6.10 to ' and 7, which yields that
tag(v') < tag(w), and if 7 is a write, then tag(y') < tag(w). Combining the inequalities yields
both conclusions of the lemma.

0

6.6 Behavior of sequential reads and writes

Read or write operations that originate at different locations may proceed concurrently. However,
in the special case where they execute sequentially, we can prove some relationships between their
query-cmaps, prop-cmaps, and tags. The first lemma says that, when two read or write operations
execute sequentially, the smallest configuration index used in the propagation of the first operation
is less than or equal to the largest index used in the query phase of the second. In other words,
we cannot have a situation in which the second operation’s query phase executes using only con-
figurations with indices that are strictly less than any used in the first operation’s propagation
phase.

Lemma 6.12 Assume w1 and wo are two read or write operations, such that:
1. The prop-fix event of w1 occurs in c.
2. The query-fix event of mo occurs in a.
3. The prop-fix event of m, precedes the query-phase-start(my) event.

Then min({¢ : prop-cmap(m1)(¢) € C}) < max({¢ : query-cmap(m2)(¢) € C}).

Proof. Suppose for the sake of contradiction that
min({¢ : prop-cmap(n1)(¢) € C}) > k, where k is defined to be max({¢ : query-cmap(m2)(¢) € C}).
Then in particular, prop-cmap(m1)(k) ¢ C. The form of prop-cmap (71 ), as expressed in Invariant 3,
implies that prop-cmap(71)(k) = +.

This implies that some gc-prop-fix(k) event occurs prior to the prop-fix of 71, and hence prior
to the query-phase-start(my) event. Lemma 6.9 then implies that query-cmap(my)(¢) € C for some
¢ >k + 1. But this contradicts the choice of k. O

The next lemma describes propagation of tag information, in the case where the propagation
phase of the first operation and the query phase of the second operation share a configuration.

Lemma 6.13 Assume m and mo are two read or write operations, and k € N, such that:
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The prop-fix event of w1 occurs in .
2. The query-fix event of mo occurs in a.
3. The prop-fix event of m, precedes the query-phase-start(my) event.
4. prop-cmap (m1)(k) and query-cmap(ma)(k) are both in C.
Then:
1. tag(m) < tag(rs).

2. If my is a write then tag(my) < tag(ma).

Proof. The hypotheses imply that prop-cmap(m1)(k) = query-cmap(ms)(k) = ¢(k). Then W (ry, k)
and R(mg, k) are both defined in «. Since they are both quorums of configuration c¢(k), they have
a nonempty intersection; choose j € W (my, k) N R(me, k).

Lemma 6.5 implies that, in any state after the prop-fix event of 71, tag; > tag(mi). Since the
prop-fix event of m; precedes the query-phase-start(my) event, we have that ¢t > tag(m ), where ¢ is
defined to be the value of tag; just before the query-phase-start(72) event. Then Lemma 6.4 implies
that tag(my) > t, and if 7o is a write operation, then tag(my) > t. Combining the inequalities yields
both conclusions. O

The final lemma is similar to the previous one, but it does not assume that the propagation
phase of the first operation and the query phase of the second operation share a configuration. The
main focus of the proof is on the situation where all the configuration indices used in the query
phase of the second operation are greater than those used in the propagation phase of the first
operation.

Lemma 6.14 Assume w1 and wo are two read or write operations, such that:
1. The prop-fix of m1 occurs in .
2. The query-fix of ma occurs in «.
3. The prop-fix event of m, precedes the query-phase-start(my) event.
Then:
1. tag(m) < tag(ms).

2. If w9 is a write then tag(m ) < tag(ms).

Proof. Let 71 and i3 be the indices of the processes that run operations m; and oy, respectively.
Let ¢my = prop-cmap(m1) and emg = query-cmap(me). If there exists & such that ¢my(k) € C and
cma(k) € C, then Lemma, 6.13 implies the conclusions of the lemma. So from now on, we assume
that no such £ exists.

Lemma 6.12 implies that min({¢ : em,(¢) € C'}) < max({£: em2(¢) € C}). Invariant 3 implies
that the set of indices used in each phase consists of consecutive integers. Since the intervals have
no indices in common, it follows that k; < kg2, where k; is defined to be max({¢ : em1(¢) € C'}) and
ks is defined to be min({¢ : cmy(¢) € C}).
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Since, for every k < ko—1, query.cmap(m2)(k) ¢ C, Lemma 6.8 implies that, for every k£ < ky—1,
a gc-prop-fix(k) event occurs before the query-phase-start(ms) event. For each such k, that is, for
0 <k < ky —1, define 7, to be the initial garbage-collection operation for k.

We focus now on the relationship between m; and +;,. The propagation phase of m; accesses
write-quorum W (my, k1) of configuration ¢(k;), whereas the query phase of 7, accesses read-quorum
R(7k, ) of configuration k. Since W (w1, k1) N R(yg,) # 0, we may fix some j € W (my, k1) N R(vk,)-
Let message m from i; to j and message m' from j to iy be as in Lemma 6.5. Let message my from
the process running 7, to j and message m/ from j to the process running 7y, be the messages
whose existence is asserted in Lemma 6.2.

We claim that j sends m/, its message for 7, before it sends m/, its message for vy,. Suppose
for the sake of contradiction that j sends m/) before it sends m'. Lemma 6.2 implies that, just before
j sends mf, cmap(k); # L for all kK < ki + 1. Since j sends m/ before it sends m/', monotonicity
of emap implies that just before j sends m', cmap(k); # L for all K < k; + 1. Then Lemma 6.5
implies that prop-cmap(m1)(¢) € C for some ¢ > k; + 1. But this contradicts the choice of k1, which
implies that j sends m' before it sends m].

Since j sends m/ before it sends m/, Lemma 6.5 implies that, at the time j sends m/, tag(m) <
tag;. Then Lemma 6.2 implies that tag(m1) < tag(vk,)-

Since k1 < kg — 1, Lemma 6.7 implies that tag(yg,) < tag(yk,—1). Lemma 6.11 implies that
tag(vk,—1) < tag(me), and if 7o is a write then tag(yg,—1) < tag(mz). Combining the various
inequalities then yields both conclusions. O

6.7 Atomicity

Let 8 be a trace of S that satisfies the RAMBO environment assumptions, and assume that all read
and write operations complete in 3. Consider any particular (good) execution a of S whose trace
is 8.* We define a partial order < on read and write operations in 3, in terms of the operations’
tags in . Namely, we totally order the writes in order of their tags, and we order each read with
respect to all the writes as follows: a read with tag = t is ordered after all writes with tag < ¢t and
before all writes with tag > t.

Lemma 6.15 The ordering < is well-defined.

Proof. The key is to show that no two write operations get assigned the same tag. This is obvi-
ously true for two writes that are initiated at different locations, because the low-order tiebreaker
identifiers are different. For two writes at the same location, Lemma 6.14 implies that the tag of
the second is greater than the tag of the first. This suffices. O

Lemma 6.16 < satisfies the four conditions in the definition of atomicity.’

Proof. We begin with Condition 2, which (as usual in such proofs), is the most interesting thing
to show. Suppose for the sake of contradiction that m; completes before 7o starts, yet mo < 7. We
consider two cases:

“The “scope” of these definitions of o and J is just the following two lemmas and their proofs.
The four conditions for atomicity are defined in Section 3.

29



(i) w9 is a write operation.
Since m; completes before w9 starts, Lemma 6.14 implies that tag(ms) > tag(m). On the
other hand, the fact that mo < 7; implies that tag(me) < tag(m;). This yields a contradiction.

(i%) my is a read operation.
Since m; completes before mo starts, Lemma 6.14 implies that tag(ms) > tag(m). On the
other hand, the fact that mo < 7; implies that tag(me) < tag(m;). This yields a contradiction.

Since we have a contradiction in either case, Property 2 must hold.

Condition 1 follows from Condition 2 with the following observation. Consider any operation
7 in an execution where all the read and write operations complete. Given that 7w terminates, any
operation that starts after it terminates cannot be ordered before m, by Condition 2. Since only
a finite number of operations can start before the termination of 7, then only a subset of such
operations can be ordered before 7.

Conditions 3 and 4 are straightforward. O

Now we tie everything together for the proof of Theorem 6.1.
Proof. (of Theorem 6.1)
Let 8 be a trace of S that satisfies the RAMBO environment assumptions. We argue that 3 satisfies
the RAMBO service guarantees. The proof that [ satisfies the RAMBO well-formedness guarantees
is straightforward from the code.

To show that [ satisfies the atomicity condition (as defined in Section 3), assume that all read
and write operations complete in 3. Let « be a good execution of § whose trace is 8. Define the
ordering < on the read and write operations in 3 as above, using the chosen «. Then Lemma 6.16
says that < satisfies the four conditions in the definition of atomicity. Thus, 3 satisfies the atomicity
condition, as needed. O

7 Implementation of the Reconfiguration Service

In this section, we describe a distributed algorithm that implements the Recon service. We also
describe how to combine this algorithm with the components already defined in Section 5, thus
obtaining the complete RAMBO system.

We describe the implementation of Recon for a particular object z (and we suppress mention of
x). The Recon algorithm consists of a Recon; automaton for each location 7, which interacts with
a collection of global consensus services Cons(k,c), one for each k > 1 and each ¢ € C, and with a
point-to-point communication service.

Cons(k,c) accepts inputs from members of configuration ¢, which it assumes to be the k£ — 1°
configuration. These inputs are proposed new configurations. The configuration that Cons(k, c)
decides upon is deemed to be the k' configuration. The validity property of consensus implies that
this decision is one of the proposed configurations.

Recon; is activated by a join(recon); action, which is an output of Joiner;. Recon; accepts
reconfiguration requests from clients, and initiates consensus to help determine new configura-
tions. It records the new configurations that the consensus services determine. Recon; also informs
Reader- Writer; about newly-determined configurations, and disseminates information about newly-
determined configurations to the members of those configurations. It returns acknowledgments and
configuration reports to its client.

t
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7.1 Consensus services

In this subsection, we specify the behavior we assume for consensus service Cons(k,c), for a fixed
k> 1and ¢ € C. Fix V to be the set of consensus values. (In the implementation of the Recon
service, V' will be instantiated as C, the set of configuration identifiers.) The external signature of
Cons(k,c) is given in Figure 9.

Input: Output:
init(v)k,c,i, v € V, i € members(c) decide(v)k,c,i, v € V, i € members(c)
fail;, i € members(c)

Figure 9: Cons(k,c): External signature

We describe the safety properties of Cons(k,c) in terms of properties of a trace 3 of actions in
the external signature. Namely, we define the environment safety assumptions:

o Well-formedness: For any i € members(c):

— No init(x)g,; event is preceded by a fail; event.

— At most one init(*) ; event occurs in 3.
And we define the consensus safety guarantees:
e Well-formedness: For any i € members(c):

— No decide(*)y .; event is preceded by a fail; event.
— At most one decide(*)} .; event occurs in /3.

— If a decide(*) . ; event occurs in 3, then it is preceded by an init(*) . ; event.
o Agreement: If decide(v)y .; and decide(v') . i events occur in §, then v = v'.
o Validity: If a decide(v),.; event occurs in 3, then it is preceded by an init(v)s ;.

The behavior specified above can be achieved using the Paxos consensus algorithm [30], as
described formally in [14]. We call this version of the Paxos algorithm PAXOS;p. PAX0S;,, uses
a fixed parameter € > 0; in the rest of this section, we fix €.

The following theorem says that PAXO0S;y,, satisfies the safety guarantees described above,
based on the safety assumptions:

Theorem 7.1 If 3 is a trace of PAXOS;y,y that satisfies the safety assumptions of Cons(k,c), then
B also satisfies the (well-formedness, agreement, and validity) safety guarantees of Cons(k,c).

PAXOS;mpi also satisfies the following latency result [14]:

Theorem 7.2 Consider a timed ezecution o of PAXOS;py and a prefiz &' of a. Suppose that:

1. The underlying system “behaves well” after o, in the sense that timing is “normal” (what is
called “regular” in [1/])°® and no process failures or message losses occur.

®In [14], regular timing implies that messages are delivered within time d, that local processing time is 0, and that
information is “gossiped” at intervals of d.
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2. For every i that does not fail in «, an init(x); event occurs in o.

3. There exist R € read-quorums(c) and W € write-quorums(c) such that for alli € RUW, no
fail; event occurs in a.

Then for every i that does not fail in «, a decide(x); event occurs, no later than 10d + € time after
the end of o.

In our latency analysis, in Sections 8 and 9, we assume that the Cons(k,c) services are imple-
mented using PAXOS;y,p;.

7.2 Recon automata

The signature and state of Recon; appear in Figures 10 and the transitions in Figure 11.

Signature:
Input: Output:
join(recon); join-ack(recon);
recon(c,c');,c,c’ € C,i € members(c) new-config(c, k)i, c € C, k € Nt
decide(c)x,i,c € C,k € Nt init(c, ¢ ki, ¢, ¢ € C,k € NT, i € members(c)
recv({config,c,k));j i, c € C, k € NT, recon-ack(b);, b € {ok, nok}
i € members(c), j € I — {i} report(c)i, c € C
recv((init,c, ¢, k))ji, ¢, ¢ € C, k € NT| send({config, ¢, k)i j, c € C, k € Nt,
i,j € members(c), j # i Jj € members(c) — {i}
fail; send((init,c,c’, k)i j,c,c € C k € N,
i,7 € members(c), j £ i
State:
status € {idle, active}, initially idle. op-status € {idle, active}, initially idle
rec-cmap € CMap, initially rec-cmap(0) = co op-outcome € {ok, nok, L}, initially L
and rec-crmap (k) = L for all k # 0. cons-data € (Nt — (C x C)), initially everywhere L
did-new-config C NT | initially 0 did-init C Nt initially ()
reported C C, initially () failed, a Boolean, initially false

Figure 10: Recon;: Signature and state

Recon; begins operating by setting its status variable to active, when a join(recon) input event
occurs. Recon; responds to such a join input with a join-ack(recon); output event.

Recon;’s state includes a variable rec-cmap, which holds a CMap: rec-cmap(k) = ¢ indicates that
i knows that cis the k' configuration identifier. If Recon; has learned that c is the kth configuration
identifier, it can convey this information to its local Reader- Writer; using a new-config(c, k); output
action; variable did-new-config keeps track of the indices for which Recon; has done a new-config
output. Recon; can also convey the fact that ¢ is the k* configuration identifier to other Recon 7
J € members(c), using a (config, ¢, k) message. Also, Recon; can inform its local client that ¢ is the
latest configuration identifier that it knows about, using a report(c); output action.

Recon; learns about a configuration identifier in one of two ways: either directly, by receiving a
decide input from a Cons service, or indirectly, by receiving a config or init message from another
Recon; automaton.

Recon; receives a reconfiguration request from its environment via a recon(c, c’'); event, where
i € members(c). (An environment well-formedness assumption says that the environment waits for
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Input join(recon);
Effect:
if =failed then
if status = idle then
status < active

Output join-ack(recon);

Precondition:
—failed
status = active
Effect:
none

Output new-config(c, k)i
Precondition:
—failed
status = active
rec-cmap (k) = ¢
k ¢ did-new-config
Effect:
did-new-config < did-new-config U {k}

Output send({(config, ¢, k))i,;
Precondition:
—failed
status = active
rec-cmap (k) = ¢
Effect:
none

Input recv((config, ¢, k));,
Effect:
if =failed then
if status = active then
rec-cmap (k) < ¢

Output report(c);
Precondition:
—failed
status = active
¢ = rec-cmap (k)
Vel >k : rec-cmap (€) = L
¢ & reported
Effect:
reported < reported U {c}

Input recon(c, c');
Effect:
if =failed then
if status = active then
op-status <— active
let k = max({¢: rec-cmap () € C})

if ¢ = rec-cmap (k) and cons-data(k +1) = L then

cons-data(k + 1) « (¢, ')
op-outcome < L

else
op-outcome < nok

Output init(c'),e,i
Precondition:
—failed
status = active
cons-data (k) = (¢, c')
if K > 1 then k — 1 € did-new-config
k & did-init
Effect:
did-init « did-init U {k}

Output send({init, ¢, ¢, k))s,;
Precondition:
—failed
status = active
cons-data(k) = (c,c')
k € did-init
Effect:
none

Input recv({init, ¢, ¢, k));,i
Effect:
if =failed then
if status = active then
if rec-cmap(k — 1) = L then rec-cmap(k — 1) < ¢
if cons-data(k) = L then cons-data(k) < (c,c')

Input decide(c'),c,i
Effect:
if —failed then
if status = active then
rec-cmap (k) « ¢
if op-status = active then
if cons-data(k) = (c,c’) then op-outcome « ok
else op-outcome < nok

Output recon-ack(b);
Precondition:
—failed
status = active
op-status = active
op-outcome = b
Effect:
op-status = idle

Input fail;
Effect:
failed < true

Figure 11: Rec%:r))zi: Transitions.



any previous reconfiguration request at the same location to complete (with a recon-ack) before
issuing another request.) Upon receiving such a request, if ¢ is the latest configuration identifier
Recon; knows about, Recon; prepares data for participating in consensus on the configuration
identifier to follow c¢. This data is a pair consisting of ¢, the latest known configuration identifier,
and ¢, the proposed new configuration identifier. If ¢ is not the latest configuration, Recon;
prepares to respond negatively to the new reconfiguration request, by setting op-outcome to nok.
Variable op-status records the existence of a locally-initiated reconfiguration request, and variable
op-outcome is used to keep track of the planned response value.

Recon; can initiate participation in a Cons(k,c) algorithm, with an init(x); ., output event,
after its consensus data are prepared. Before doing so, it makes sure that it has already notified
Reader-Writer; about the current configuration c. Variable did-init keeps track of the values
of k for which ¢ has initiated participation in some Cons(k,x*) service; this is used to prevent ¢
from participating in consensus for the same k more than once. After initiating participation in
a consensus algorithm, Recon; sends init messages to inform the other members of the current
configuration ¢ about its initiation of consensus. Another member who receives this information
may use it to prepare to participate in the same consensus algorithm. Such a member may also
take advantage of the received information to include the current configuration in its rec-cmap.
Thus, there are two ways in which Recon; can initiate participation in consensus: as a result of a
local recon event, or by receiving an init message from another Recon; process.

When Recon; receives a decide(c')y, .; directly from Cons(k, c), it records configuration ¢’ as the
k" configuration identifier in its rec-cmap. It also determines whether a response to its local client
is necessary (if a local reconfiguration operation is active), and determines the response based on
whether the consensus decision is the same as the locally-proposed configuration identifier. Recon;
actively informs members of ¢/ that ¢’ is the k" configuration, by sending config messages. It does
not notify anyone else. The consensus service Cons(k,c) is responsible for conveying consensus
decisions to members(c).

Theorem 7.3 Let 3 be a trace of the Recon implementation. If B satisfies the Recon environment
assumptions, then (B satisfies the Recon service guarantees (well-formedness, agreement, validity,
and no duplication,).

7.3 The complete RAMBO system

Our complete implementation of Recon, Reconpyy, consists of the Recon; automata, channels
connecting all the Recon; automata, and the implementations of the Cons services using PAX0S;y,;.
We use the same kinds of channels as for RAMBO: point-to-point channels, one for each 4,5 € I;
again, the channels may lose and reorder messages, but may not manufacture new messages or
duplicate messages.

The complete RAMBO system (for a particular object) consists of Joiner, Reader- Writer, and
Channel automata as described in Section 5, plus Reconp,,. We denote the complete RAMBO
system by S'.

We finish this section by defining two properties of configuration indices in an execution « of
S'. Let k € N. Then:

e Latest configuration inder: Index k is the latest configuration index in « provided that one
of the following holds:
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1. £ =0 and no decide event occurs in «.

2. A decide(*)} .« event occurs in o and no decide ()41, €vent occurs in .

We say that ¢ € C' is the latest configuration identifier in « provided that one of the following
holds:

1. ¢ = ¢p and 0 is the latest configuration index in «.

2. A decide(c)y .« event occurs in « and k is the latest configuration index.

e Installed configuration index: Index k is installed in « provided that either £ = 0 or there
exists ¢ € C' such that both of the following hold:

1. At least one init(*) .« event occurs in o.

2. For every i € members(c), either a decide(x)y . ; event or a fail; event occurs in a.

That is, the k¥ — 1% configuration is ¢, and every non-failed member of ¢ has learned about
the k' configuration. If index k is installed and rec-cmap(k); = ¢ for some i and ¢, then we
also say that configuration ¢’ is installed.

8 Latency Bounds: Normal Behavior Throughout the Execution

In this section and Section 9, we present our conditional performance results—latency results for
the various operations performed by RAMBO under various assumptions about timing, failures, and
the patterns of requests. This section contains results for executions in which “normal” timing and
failure behavior occurs throughout the execution, whereas Section 9 contains results for executions
in which normal behavior occurs from some point onward. We formulate these results for the full
RAMBO system S’ consisting of Reader-Writer; and Joiner; for all i, Recony,, (which consists of
Recon; for all i and Cons(k,c) for all k and ¢), and channels between all ¢ and j. Since we are
dealing here with timing, we “convert” all these automata to general timed automata as defined
in [33], by allowing arbitrary amounts of time to pass in any state, without changing the state.

Section 8.1 describes restrictions on the nondeterministic choices within the RAMBO algorithm,
in particular, on the scheduling of locally controlled actions. We impose these restrictions for
the rest of this paper. Section 8.2 describes the restrictions on timing and failure patterns that
define the normal timing and failure behavior considered in this section. Section 8.3 contains some
basic definitions and assumptions that are used in stating hypotheses for particular conditional
performance results in this section. Section 8.4 contains latency results that do not depend on
background gossiping, but only on communication that is triggered naturally by the operations.
Finally, Section 8.5 contains latency results that do depend on gossiping.

8.1 Restricting nondeterminism

RAMBO in its full generality is a highly nondeterministic algorithm. For example, it allows sending
of gossip messages at arbitrary times. In this section and Section 9, we restrict RAMBO’s nondeter-
minism so that messages are sent at the earliest possible time and at regular intervals thereafter,
and so that non-send locally controlled events occur just once, as soon as they are enabled.

More precisely, fix d > 0, the normal message delay, and fix € > 0 to be the value of € used
in PAXOS;p,, as we described in Section 7.1. We assume a restricted version of RAMBO in which
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each Joiner;, Reader- Writer;, and Recon; automaton has a real-valued local clock, which evolves
according to a continuous, monotone increasing function from nonnegative reals to reals. Local
clocks of different automata (even different automata at the same location) may run at different
rates. Moreover, the following conditions hold, in all admissible timed executions (those timed
executions in which the limit time is oo):

e Periodic gossip: Each Joiner; whose status = joining sends join messages to everyone in its
hints set, every time d, according to its local clock. Each Reader- Writer; sends messages to
everyone in its world every time d, according to its clock. Each Recon; sends config messages
and init messages to every process to whom it is allowed to send such messages, every time
d, according to its clock.

o Important Joiner messages: Each Joiner; sends a join message immediately to location j,
without any time passing on its local clock, in the following situation:

Just after a join(rambo, J) event, if j € J.

e Important Reader- Writer messages: FKach Reader-Writer; sends a message immediately to
location j, without any time passing on its clock, in each of the following situations:

Just after a recv(join);; event, if status; = active.
This is when ¢ learns that j is attempting to join.

Just after a recv(x, x, x, x, pns, x);; event occurs, if pns > pnum2(j); and status; = active.
This is when ¢ receives a message from j that indicates that j is engaged in a later
operation phase than ¢ previously knew about.

Just after a new-config(c, k); event, if status; = active and j € world,;.
This is when ¢ learns about a new configuration from Recon, and j is in ¢’s current world.

Just after a read;, write;, or query-fix; event, or a recv event that resets op.acc to 0, if
J € members(c), for some c that appears in the new op.cmap;.
This is when ¢ starts or restarts a phase and j is a member of a relevant configuration.

Just after a gc(k); event, if j € members(cmap(k);).

This is when 7 starts garbage-collecting a configuration that includes j as a member.
Just after a gc-query-fix(k); event, if j € members(cmap(k + 1);).

This is when 4 starts the second phase of the garbage-collection of a configuration, and
4 is member of the next configuration.

o Important Recon messages: Each Recon; sends a message immediately to j, without any time
passing on its clock, in the following situations:

The message is of the form (config,c, k), a decide(c)y .; event has just occurred, and
J € members(c) — {i}.

This is when ¢ has learned directly from the consensus service, about configuration k
and j is a member of that configuration.

The message is of the form (init,c, ', k), an init(c')c; event has just occurred, and
J € members(c) — {i}.

This is when ¢ has just initiated consensus and j is another member of the configuration
that is involved in performing the consensus.
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e Non-communication events: Any non-send locally controlled action of any RAMBO automaton
that has no effect on the state is performed only once, and before any time passes on the local
clock.

An alternative to listing all these properties is to add appropriate bookkeeping to the various
RAMBO automata to ensure these properties. This approach would help in detecting and avoiding
ambiguities in the statements of the constraints. However, it would add complexity to the code.
So we postpone this for now.

8.2 Normal behavior

The previous subsection described restrictions on the nondeterministic choices made by the algo-
rithm. Our results also require restrictions on timing and failure behavior—things that are not
generally considered to be under the control of the algorithm. Thus, we define “normal” executions
as follows:

e Normal execution: An admissible timed execution « is normal if it satisfies the following
conditions:

1. Regular timing behavior for RAMBO automata: The local clocks of all Joiner;,

Reader- Writer;, and Recon; automata progress at exactly the rate of real time, through-
out «.
Recall from Section 8.1 that the timing of gossip messages, of sending events for impor-
tant messages, and of the performance of other locally-controlled events, are all governed
by the local clocks. Thus, this single assumption, that the local clocks progress at the
rate of real time, implies that the timing of all locally-controlled events observes real-time
constraints.

2. Reliable message delivery: No message sent in « is lost.

3. Message delay bound: Every message that is received in « is received within time d of
when it was sent.

4. Normal timing for consensus: Timing for all consensus services is “normal”.”

Many of our results also require assumptions about certain processes not failing for certain
intervals of time. However, since these assumptions are different for different results, we postpone
stating such assumptions until they are needed.

8.3 Hypotheses for latency results

In this section, we list various hypotheses that we need for our latency bound results. These
hypotheses are needed in addition to the restrictions on nondeterminism described in Section 8.1
and the normal behavior assumptions described in Section 8.2.

The first hypothesis we define says that, when a client proposes a configuration ¢, every member
of configuration ¢ must have already joined the system, at least time e ago. The requirement that
each member has already joined the system is already included in the environment assumptions for
the RAMBO and Recon services; this new hypothesis adds a timing requirement:

"What this means internally to the consensus services is defined in [14]. As noted in Section 7.1, it means that
messages are delivered within time d, that local processing time is 0, and that information is gossiped at intervals of d.
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e Reconfiguration-readiness: Let « be a timed execution, e € RZ0. Then « satisfies e-recon-
readiness provided that, if a recon(x, c); event occurs at time ¢ then for every j € members(c),
the event join-ack(rambo); occurs by time ¢ — e.

The next hypothesis states a bound on the time for two participants that join the system to
learn about each other.

e Join-connectivity: Let a be an admissible timed execution, e € RZ?. We say o satisfies e-
join-connectivity provided that, if join-ack(rambo); and join-ack(rambo); both occur in « by
time ¢, and neither ¢ nor j fails by time ¢ + e, then by time ¢ + e, 7 € world;.

We do not think of join-connectivity as a primitive assumption. Rather, it is a property one might
expect to prove of all executions that satisfy some more basic assumptions, such as sufficient spacing
between join requests. Since there are many possibilities here, we postpone considering this, and
use join-connectivity itself as an assumption.

The next hypothesis, configuration-viability, is a reliability property for quorums. In general, in
systems that use quorum configurations, operations that use quorums are guaranteed to terminate
only if certain quorums do not fail. In this paper, our termination guarantees for reconfiguration,
garbage-collection, and read and write operations all require assumptions that say that some quo-
rums do not fail. Because our algorithm uses different configurations at different times, our notion
of configuration-viability hypothesis takes into account which configurations might still be in use.

o Configuration-viability: Let o be an admissible timed execution, e € R2%. Then we say
that « is e-configuration-viable provided that the following holds: For every ¢ and k such
that some rec-cmap (k). = ¢ in some state in «, there exist R € read-quorums(c) and W €
write-quorums(c) such that at least one of the following holds:

1. No process in R U W fails in a.

2. There exists a finite prefix o/ of a such that k + 1 is installed in o/ and no process in
RUW fails in « by time ftime(a’) + e.

(For a finite timed execution «, we define ¢time(«), the limit time of «, to be the time of the
last event in a.)

Note that the special case of 0-configuration-viability is not a completely trivial property. It
says that certain processes remain alive until a time that is strictly greater than the time when
configuration k + 1 is installed. This implies that events that are required to happen within 0 time
of this installation must actually happen, if time subsequently increases.

The e-configuration-viability property is useful only in situations where a configuration is no
longer needed for performing operations after time e after the next configuration is installed. This
latter condition holds, for suitable e, in RAMBO executions in which certain timing assumptions
hold; the strength of those timing assumptions determines the value of e that must be considered.
Roughly speaking, e should be sufficiently large to allow information about a new configuration
to be propagated to all the active participants and for the previous configuration to be garbage-
collected.

We believe that the e-configuration-viability assumption is reasonable for a reconfigurable algo-
rithm such as RAMBO. This is because the algorithm can be reconfigured when quorums appear to
be in danger of failing. New configurations should be chosen to minimize the likelihood of failure.
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In some situations, we will not be able to characterize interesting executions in terms of e-
configuration-viability for a fixed e because an arbitrary amount of time may elapse from when
a configuration becomes installed until it is garbage-collected. Therefore we define executions in
which no quorum system is ever disabled:

e oo-configuration-viability: Let « be an admissible timed execution. Then we say that «
is oo-configuration-viable provided that the following holds: For every ¢ and k such that
some rec-cmap(k)s = c in some state in «, there exist R € read-quorums(c) and W €
write-quorums(c) such that no process in RU W fails in a.

The next property says that a reconfiguration request waits at least a certain amount of time
after a corresponding report event. Recall that environment assumptions for RAMBO and Recon
say that such a report event must precede the request; the new assumption says that it must have
occurred sufficiently long ago.

e Recon-spacing: Let o be an admissible timed execution, e € RZ?. We say that « satis-
fies e-recon-spacing provided that, for any recon(c, x); that occurs in «, the time since the
corresponding report(c); event is > e.

Finally, the following property says that infinitely many configurations are produced. This is
simply a technical assumption that is used to simplify some of our results.

e Infinite reconfiguration: Let a be an admissible timed execution. We say that « satisfies
infinite reconfiguration provided for every k € N*, o contains a decide(x), . . event.

8.4 Bounds that do not depend on gossiping

We give bounds for joining, reconfiguration, and garbage-collection operations for normal admissible
executions. We also give bounds on reading and writing in “stable” situations. These bounds do
not depend on the periodic gossiping among the Reader- Writer; components.

8.4.1 Joining

The following result gives bounds on the time to join. The result has two parts, based on whether
or not the joiner is the creator of the object. Namely, if join(rambo, J); occurs and i does not fail,
then: (1) if ¢ = 4y then the join is acknowledged immediately (within zero time), and (2) if i # 4o,
j € J, join-ack(rambo); occurs before the join of i, and j does not fail, then j’s join is acknowledged
within 2d time. More formally:

Theorem 8.1 Let « be a normal admissible timed execution of S'. If join(rambo, J); occurs in «
and fail; does not occur then:

1. If i =g then join-ack(rambo); occurs before any time elapses.

2. Suppose that i # iy. Suppose also that, for some j € J —{i}, a join-ack(rambo); event occurs
prior to the join(rambo, J); event, and fail; does not occur. Then join-ack(rambo); occurs
within time 2d of the join(rambo, J); event.
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Proof. Part 1 immediately follows from the code for the creator automata, Joiner;,
Reader-Writer;, and Recon;,. This is because the response does not depend on the receipt of
any messages. Part 2 follows from the fact that at most two message delays are incurred by the
protocol, and from the guarantee that process j responds. [l

8.4.2 Reconfiguration

The next result gives a latency bound for reconfiguration, assuming no relevant failures and as-
suming viability. It says that, in a 0-configuration-viable execution, if recon(c, *); occurs at time
t and no process in members(c) fails after this event, then the recon(c, x); is acknowledged with a
recon-ack(*); no later than time ¢ 4+ 11d 4+ e. More formally:

Theorem 8.2 Let o be a normal admissible timed execution of S' satisfying 0-configuration-
viability, and t € RZ0. Assume that:

1. A recon(c,c'); event occurs at time t in «.
2. No fail event for a member of ¢ occurs in « after the recon(c,d); event.

Then a recon-ack(x); event matching the assumed recon(c,c'); event occurs by time t + 11d + €.

Proof. We know that ¢, the originator of the operation, does not fail, because the signature
restrictions for Recon require that ¢ € members(c), and assumption 2 says that no members of ¢
fail after the recon(c, c'); event.

When recon(c,c’); occurs, if outcome is immediately set to nok, then the time until the
recon-ack(nok); is 0. If not, then process i sets cons-data; in preparation for consensus, again
within 0 time. Then an init(c')x c; event occurs for some k within 0 time. Then we claim that, after
no more than time 10d +¢, a decide(*) . ; occurs, and before any further time passes, recon-ack(x);
occurs.

The argument that decide(*) .; occurs within time 10d + € proceeds as follows: First, the last
init event for Cons(k,c) that occurs in @ must occur within time d after the init(c); . ; event. This
is guaranteed by the sending of init messages by the Recon; component.

Let o be the shortest prefix of « that includes all the init()j .. events that occur in a. We
will apply Theorem 7.2 to « and ¢/, to conclude that by 10d + ¢ time after the end of o/, and hence
by time ¢+ 11d + ¢, a decidey, . ; occurs for every non-failed j € members(c). Since recon-ack events
happen within time 0 of the decide events, this will yield the result.

Applying Theorem 7.2 requires some care: we must show that the three hypotheses of that
theorem are satisfied. For Property 1, the “normal case” assumptions of this section imply that
timing is regular and no message losses occur after o/. No process failures occur either: since the
init(c')k,c; event follows the recon(c,c’); event, an assumption of this theorem implies that no fail
events for members of ¢ occur in « after .

To see Property 2, note that the environment well-formedness conditions for RAMBO imply that
all members of ¢’ must have already joined the RAMBO system when the recon(c, ¢’); event occurs.
Then they are ready to accept the init messages when they receive them from ¢, and they perform
init(*)y ¢« events, provided they have not failed. Since all the init(x)s ., events that occur in «
actually occur in o, this implies Property 2.
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Property 3 is slightly tricky: it says formally that some read-quorum and some write-quorum
of ¢ must stay non-failed forever. However, because of the on-line nature of the computation,
Theorem 7.2 does not need that the members of these quorums stay alive after the time of the
last decide event. The fact that they remain non-failed for this long follows directly from the
0-configuration-viability assumption. O

The next result describes a situation in which the system is guaranteed to produce a positive
respounse to a reconfiguration request.

Theorem 8.3 Let « be a normal admissible timed execution of S', and ¢ € C. Suppose that some
recon(c, *). event occurs in . Then for some i such that a recon(c,*); event occurs in «, either «
contains no matching recon-ack(b); or b = ok.

Proof. Environment well-formedness assumptions imply that for every 7 such that recon(c, *);
occurs, there is a preceding report(c);, whose precondition states that there exists &k such that ¢ =
rec-cmap(k);. By the no-duplication property of Recon, this must be the same £ for all i. Therefore,
all the recon(c, x); events result in participation in the same consensus service, Cons(k + 1,¢).
Validity of Cons(k + 1, c¢) implies that the decision is a configuration submitted by one of the
participating members, say 7. Then the only possible response at 7 is recon-ack(ok);. [l

8.4.3 Garbage-collection

The next result gives a latency bound for garbage-collection, assuming that none of the relevant
processes fail. Suppose a garbage-collection operation starts with a gc(k); event. If there exist
a read-quorum and a write-quorum of configuration £ and a write-quorum of configuration £ + 1
such that no processes in these quorums fail, and if ¢ itself does not fail, then garbage-collection
terminates with gc-ack(k); within time 4d. Formally:

Theorem 8.4 Let v be a garbage-collection operation in a normal admissible timed execution of
S'. Let y start with gc(k); and let ¢, and cgyq be the values of cmap(k); and cmap(k + 1); when
starts.

Let R € read-quorums(cy), W1 € write-quorums(cy), Wo € write-quorums(cxy1). Assume:

1. Process i does not fail.
2. No process in RU W1 U Wy fails.

Then ~y ends with a gc-ack(k);, within time 4d of the gc(k);.

Proof. Since 7 does not fail, the existence of non-failing quorums R, W7 and W5 ensures that ¢
receives replies as needed in the two phases of garbage collection. Each phase takes at most 2d
time. N

8.4.4 Reads and writes

The following theorem gives a bound for read and write operations in the simple “quiescent”
situation where all joins and configuration management events stop from some point onward.
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Theorem 8.5 (Informally stated.) Let o be a normal admissible timed ezecution of S', and o' be
a finite prefiz of a. Suppose that:

1. « 1s 0-viable.
2. The system is “quiescent” after o, in the sense that:

(a) There are no pending join, garbage-collection, or recon requests, and no active consensus
executions at the end of .

(b) No new join or recon requests occur in « after o'.

(c) Every process that has ever performed a join-ack and has not failed is “up-to-date” af-
ter o, in that its cmap consists of exactly one configuration index, which is the latest
configuration, preceded by + entries and followed by L entries.

3. A read; or write; is initiated in o after o.

Then the time until a matching read-ack; or write-ack; event is at most 4d.

The next theorem describes another situation in which a read or write operation is guaranteed
to have latency at most 4d: when no new configurations are being generated, and the configuration
map of the operation’s initiator includes the latest configuration. This configuration map may
contain more than one configuration. Since the configurations are used concurrently by the read
or write operation, the use of multiple configurations does not slow the operation down. Here, we
need to assume oo-configuration-viability.

Theorem 8.6 Let « be a normal admissible timed execution of S’ satisfying oo-configuration-
viability, and t € RZY. Suppose « contains no decide events after time t, and let k be the latest
configuration index in «. If a read or write operation starts in a state where cmap(€); # L for all
£, 0 <l <k, then it completes in at most 4d time.

Proof. This result follows from the two-phased implementation of read and write operations. Each
phase lasts for at most two message delays: since new configurations are not added to op.cmap;
during the phase, the phase completes in 2d time. New configurations can only be added in the
effects of the recv action in Reader- Writer;. Because k is the latest configuration index, no higher
numbered configurations exist, and smaller numbered configurations cannot be added because of

the properties of the extend and truncate functions used to modify op.cmap; in the effects of recv.
O

8.5 Bounds that depend on gossiping

In this subsection, we give results that depend on periodic gossiping among the Reader- Writer;
automata. These results give bounds for learning about new configurations. They also give bounds
on garbage-collection, and describe conditions under which garbage-collection is guaranteed to keep
up with reconfiguration. Finally, we give bounds on the latency of read and write operations.

For this entire subsection, we fix e € RZY. Also, for a timed execution a, we let time(n) stand
for the real time at which the event 7 occurs in «.
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8.5.1 Joining

The following lemma says that if report(c), occurs then all members of ¢ are “old enough”, that is,
they have joined at least time e earlier.

Lemma 8.7 Let a be a normal admissible timed execution of S’ satisfying e-recon-readiness, and
ceC, c#cy, i€l Suppose that a report(c), event occurs at time t in « and i € members(c).
Then a join-ack(rambo); event occurs by time t — e.

Proof. Assume that «, ¢, and 7 are as given, and that rec-cmap(k); = ¢ when the report(c); event
occurs, that is, ¢ is the k' configuration. Since ¢ # ¢y, we have that k& > 1. Therefore, the report(c),
event is preceded by a recon(c’, ¢), event. Then recon-readiness implies that a join-ack(rambo); event
occurs at a time at least e before the recon(c,c), event, and so, by time ¢ — e, as needed. O

The next lemma says that a process receiving a report must be “old enough”, that is, they have
joined at least time e earlier.

Lemma 8.8 Let a be a normal admissible timed execution of S’ satisfying e-recon-readiness, and
ceC, c#cy, i€ l. Suppose that a report(c); event occurs at time t in «. Then a join-ack(rambo);
event occurs by time t — e.

Proof. Assume that a, ¢, and 7 are as given, and that rec-cmap(k); = ¢ when the report(c); event
occurs, that is, ¢ is the k' configuration. Since ¢ # ¢y, we have that k& > 1. The behavior of Recon;
implies that 7 is a member either of ¢ or of the k — 1% configuration, say ¢'. If i € members(c) then
Lemma 8.7 implies the conclusion. So in the rest of the proof, assume that i € members(c).

If k = 1, then ¢ = ¢g, so i = ip, which implies that a join-ack(rambo); event occurs prior to
any other join-ack(rambo), event. In particular, a join-ack(rambo); event occurs at a time that is
less than or equal to that of any join-ack(rambo), event for any member of ¢. Since such join-ack
events occur by time < ¢t — e, again by Lemma 8.7, the join-ack(rambo); also occurs by time ¢ — e,
as needed.

The only other possibility is that i € members(c’) and k > 2. In this case, the report(c); event
must be preceded by a recon(x,c’), event. Then recon-readiness implies that a join-ack(rambo);
event occurs at a time at least e before the recon(x, ). event, and so again, by time ¢ — e. O

8.5.2 Learning about configurations

The following result says that all participants succeed in exchanging information about configura-
tions, within a short time. If both ¢ and j are “old enough” (have joined at least time e ago), and
don’t fail, then any information that ¢ has about configurations is conveyed to j within time 2d.

Lemma 8.9 Let a be a normal admissible timed execution of S’ satisfying e-join-connectivity,
t e R2, t > e. Suppose:

1. join-ack(rambo); and join-ack(rambo); both occur in a by time t — e.
2. Process @ does not fail by time t +d and j does not fail by time t + 2d.

Then the following hold:
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1. If by time t, cmap(k); # L, then by time t 4+ 2d, cmap(k); # L
2. If by time t, cmap(k); = &, then by time t + 2d, cmap(k); = £.

Proof. Since « is e-join-connected, by time ¢, 7 € world;. Sometime strictly after time ¢ and no
later than time ¢ +d, Reader- Writer; sends a gossip message to j, and Reader- Writer; receives this
message by time ¢ + 2d. To see Part 1, suppose that cmap(k); # L by time ¢. Then the gossip
message has cm(k) # L. The receipt of this message causes j to set cmap(k); to be non-L (if it
isn’t already), as needed. To see Part 2, suppose that cmap(k); = = by time ¢. Then the gossip
message has cm(k) = £. The receipt of this message causes j to set cmap(k); to be £ (if it isn’t
already), as needed. O

Next, we show that, if a report(c); event occurs and 7 does not fail, then another process j learns

about c¢ soon after the later of the report event and the time of j’s joining.

Theorem 8.10 Let a be a normal admissible timed execution of 8’ satisfying e-recon-readiness
and e-join-connectivity, c€ C, k €N, 4,5, € I, t,t' € R2Y. Suppose:

1. A report(c); occurs at time t in a, where ¢ = rec-cmap(k);, and i does not fail by max (¢,t')+d.

2. join-ack(rambo); occurs in o by time t' — e, and j does not fail by time max (¢,t') 4 2d.
Then by time max (t,t") 4+ 2d, cmap(k); # L.

Proof. The case where k = 0 is trivial to prove, because everyone’s cmap(0) is always non-L. So
assume that £ > 1.

Lemma 8.8 implies that join-ack(rambo); occurs by time ¢ — e < max (¢,¢') — e. Also,
join-ack(rambo); occurs by time ¢’ — e < max (¢,t') — e. By assumption, 7 does not fail by time
max (¢,t') + d. and j does not fail by time max (¢,¢') + 2d. Furthermore, we claim that, by
time max (¢,t'), cmap(k); # L. This is because the time of the report(c); is < max (¢,t'), when
the report(c); occurs, rec-cmap(k); # L, and within 0 time, this information gets conveyed to
Reader-Writer;.

Therefore, we may apply Lemma 8.9, with the ¢ in that theorem instantiated to max (¢,t'), to
conclude that by time max (¢,t") + 2d, cmap(k); # L. This yields the conclusion. O

The following lemma, specializes the previous ones to members of the reported configuration.

Lemma 8.11 Let « be a normal admissible timed execution of S' satisfying e-recon-readiness and
e-join-connectivity, i,j € I, t € RZ". Suppose:

1. A report(c); occurs at time t, where ¢ = rec-cmap(k); and i does not fail by time t + d.
2. j € members(c) and j does not fail by time t + 2d.

Then by time t 4 2d, cmap(k); # L.

Proof. If £ = 0 then the conclusion is immediate because cmap(0); # L in all reachable states. So
suppose that & > 0. Then a join-ack; must occur by time ¢ —e by Lemma 8.7. Then Theorem 8.10,
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applied with ¢ and ¢’ in the statement of that theorem set to the current ¢, implies the conclusion.
O

The following theorem does not use the assumption of join-connectivity. It considers the set J
of processes that join the system by a certain time ¢. It says that, after a time that is logarithmic in
|J|, all the processes in J know about each other, and thereafter, information about configurations
propagates quickly among processes in J. The result assumes that the execution is failure-free (so
the set of joiners cannot become partitioned).

Theorem 8.12 Let « be a normal admissible timed failure-free execution of S', 4,5 € I, J C I,
t,t' € R20 and t <t'. Assume

1. J is the set of processes i’ such that join-ack(rambo); occurs by time t.

2. 1,5€J.
Then

1. By time t + d[log(]J])], i € world;.

2. If by time t', cmap(k); # L, then by time max(t + d[log(|J])],t") + 2d cmap(k); # L

3. If by time t', cmap(k); = %, then by time max(t + d[log(|J|)],t') +2d cmap(k); = £.
Proof. We show this using a pointer-doubling argument. In any state of the execution, consider
the graph whose nodes are the indices of the processes that successfully joined and whose edges are
the pairs (i, j') such that j' € world;. Since we have assumed that no failures occur, this graph is
connected (this can be shown by induction on the number of joins). For the purpose of the pointer-
doubling argument, process i’ is considered to have a “pointer” to j' when j' € world;.]]] Given our
assumptions about the gossip, all processes that join by time ¢ require at most [log(].J|)] rounds of
gossip to learn about all other such processes. This is because during each period of d time after

t a round of gossip completes where at least one “pointer-doubling” occurs at each process in J.
Information in cmap; at time ¢’ is then reflected in cmap,; by time max(t + dflog(|J|)],#') +2d. O

8.5.3 Garbage collection

The results of this section show that, if reconfiguration requests are spaced sufficiently far apart,
and if quorums of configurations remain alive for sufficiently long, then garbage collection keeps
up with reconfiguration. The first lemma says that, assuming 5d-configuration-viability, following
the report of a new configuration, at least one member of the immediately preceding configuration
does not fail for 4d time.

Lemma 8.13 Let « be a normal admissible timed execution of S' satisfying 5d-configuration-
viability, c€ C, k €N, k> 1,4,5 € I, t € R2". Suppose:

1. A report(c); event occurs at time t in «, where ¢ = rec-cmap(k);.
2. c is configuration k — 1 in .

Then there exists j € members(c') such that j does not fail by time t + 4d.
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Proof. The behavior of Recon algorithm implies that the time at which Recon; learns about c
being configuration k is not more than d after the time of the last decidey ., event in . Once
Recon; learns about ¢, it performs the report(c); event without any further time-passage. Then
5d-viability ensures that at least one member of ¢’ does not fail by time ¢ + 4d. U

The following key lemma says that a process that has joined sufficiently long before a particular
report(c), event manages to garbage collect all configurations earlier than ¢ within time 6d after
the report.

Lemma 8.14 Let a be a normal admissible timed execution of S’ satisfying e-recon-readiness, e-
join-connectivity, 6d-recon-spacing and 5d-configuration-viability, c € C, k €N, i,j € I, t € R2Y,
Suppose:

1. A report(c); event occurs at time t in «, where ¢ = rec-cmap(k);.
2. join-ack(rambo); occurs in « by time t — e.
Then:

1. If k> 0 and j does not fail by time t + 2d, then by time t +2d: (a) cmap(k —1); # L and
(b) cmap(l); = £ for all ¢ < k — 1.

2. If i does not fail by t + d and j does not fail by time t + 6d, then by time t + 6d: (a)
cmap(k); # L and (b) cmap(€); = £ for all £ < k.

Proof. By induction on k.

Base: k= 0.

Part 1 is vacuously true. The clause (a) of Part 2 follows because cmap(0); # L in all reachable
states, and the clause (b) is vacuously true.

Inductive step: Assume k > 1, assume the conclusions for indices < k — 1, and show them for k.
Fix c, 1, j, t as above.

Part 1: Assume the hypotheses of Part 1, that is, that £ > 0 and that j does not fail by time
t+ 2d. If k =1 then the conclusions are easily seen to be true: for clause (a), cmap(0); # L in all
reachable states, and the clause (b) of the claim is vacuously true. So from now on in the proof of
Part 1, we assume that k£ > 2.

Since ¢ is the k' configuration and k& > 1, the given report(c); event is preceded by a recon(x, c),
event. Fix the first recon(x,c), event, and suppose it is of the form recon(c’,¢);. Then ¢’ must be
the k — 1% configuration. Lemma 8.13 implies that at least one member of ¢, say, i, does not fail
by time ¢ + 4d.

The recon(c’, ¢)i event must be preceded by a report(c’); event. Since k — 1 > 1, Lemma 8.7
implies that a join-ack(rambo);» event occurs at least time e prior to the report(c¢’); event. Then by
inductive hypothesis, Part 2, by time time(report(c’)y) + 6d, cmap(k — 1);» # L and cmap () =
+ for all £ < k — 1. By 6d-recon-spacing, time(recon(c,c)y) > time(report(c');) + 6d, and so
t = time(report(c);) > time(report(c')y) + 6d. Therefore, by time ¢, cmap(k — 1);» # L and
cmap(€);r =+ for all ¢ < k — 1.

Now we apply Lemma 8.9 to i and j, with ¢ in the statement of Lemma 8.9 set to the current
t. This allows us to conclude that, by time ¢ + 2d, cmap(k — 1); # L and cmap(¢); = £ for all
¢ < k —1. This is as needed for Part 1.
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Part 2: (Recall that we are assuming here that £ > 1.) Assume the hypotheses of Part2, that is,
that ¢ does not fail by time ¢ 4+ d and j does not fail by time ¢ + 6d. Theorem 8.10 applied to ¢ and
j and with ¢ and ¢’ both instantiated as the current ¢, implies that by time ¢ + 2d, cmap(k); # L.
Part 1 implies that by time ¢ + 2d, cmap(¢); = £ for all £ < k — 1. It remains to bound the time
for cmap(k —1); to become =.

By time t 4+ 2d, j initiates a garbage-collection for k — 1 (unless cmap(k — 1); is already +).
This terminates within time 4d. After garbage-collection, cmap(¥f); = + for all £ < k, as needed.
The fact that this succeeds depends on quorums of configuration k£ — 1 remaining alive throughout
the first phase of the garbage-collection. 5d-viability ensures this.

The calculation for 5d is as follows: t is at most d larger than the time of the last decide for
configuration k. The time at which the garbage-collection is started is < ¢ 4+ 2d. Thus, at most
3d time may elapse from the last decide for configuration k£ until the garbage-collection operation
begins. Then an additional 2d time suffices to complete the first phase of the garbage-collection. [

The following lemma specializes the previous one to members of the newly-reported configuration.

Lemma 8.15 Let a be a normal admissible timed execution of S’ satisfying e-recon-readiness, e-
join-connectivity, 6d-recon-spacing and 5d-configuration-viability, c € C, k €N, i,j € I, t € R2Y,
Suppose:

1. A report(c); event occurs at time t in «, where ¢ = rec-cmap(k);.
2. j € members(c).
Then:

1. If k > 0 and j does not fail by time t + 2d, then by time t + 2d, cmap(k — 1); # L and
cmap(€)j = £ for all £ <k —1.

2. If i does not fail by t+d and j does not fail by time t+6d, then by time t+6d, cmap(k); # L
and cmap(€); = £ for all £ < k.

Proof. If k = 0, the conclusions follow easily. If & = 1, then Lemma 8.7 implies that
join-ack(rambo); occurs in « by time ¢ — e. Then the conclusions follow from Lemma 8.14. g

The following theorem says that, in the “normal case”, all processes that have joined sufficiently
long ago know either the latest configuration or the one just before the latest. Since we have not
yet written out a proof of this, we call it a “strong conjecture”.

Theorem 8.16 (Strong conjecture) Let a be a normal admissible timed execution of S’ satisfying
e-recon-readiness, e-join-connectivity, 6d-recon-spacing and 5d-configuration-viability, o' a finite
prefiv of a, k€N, c€ C, i € I. Suppose:

1. k is the latest configuration index and c is the latest configuration identifier, after o.
2. join(rambo); occurs before time Ltime (') — (e + 2d).
3. emap(l); € C just after o.

Then £ € {k — 1,k}.
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8.5.4 Reads and writes

The final theorem bounds the time for read and write operations in the “steady-state” case, where
reconfigurations do not stop, but are spaced sufficiently far apart.

Theorem 8.17 Let « be a normal admissible timed execution of S’ satisfying e-recon-readiness, e-
join-connectivity, (12d+€)-recon-spacing, 11d-configuration-viability, and infinite reconfiguration,®
i €1, andt € RY. Assume that

1. a read; (resp., write(x);) event occurs at time t, and join-ack; occurs strictly before time t —
(e +8d).

Then the corresponding read-ack; (resp., write-ack(x);) event occurs by time t + 8d.

Proof. Let ¢, ¢y, co,. .. denote the infinite sequence of successive configurations decided upon in «;
by infinite reconfiguration, this sequence exists. For each k > 0, let 7 be the first recon(cg, cxt1)«
event in «, let 75 be the location at which this occurs, and let ¢; be the corresponding, preceding
report(cy);, event. (The special case of this notation for £ = 0 is consistent with our usage else-
where.) Also, for each k > 0, choose s, € members(ci) such that si does not fail by time 10d after
the time of ¢y, 1. The fact that this is possible follows from 11d-viability (because the report event
¢r+1 happens at most time d after the final decide for configuration &k + 1).

We show that the time for each phase of the read or write operation is < 4d—this will yield the
bound we need.. Consider one of the two phases, and let 1) be the read;, write; or query-fix; event
that begins the phase.

We claim that time(p) > time(¢p) + 8d, that is, that 1) occurs more than 8d time after
the report(0);, event: We have that time(y)) > t, and t > time(join-ack;) + 8d by assumption.
Also, time(join-ack;) > time(join-ack; ). Furthermore, time(join-ack; ) > time(¢o), that is, when
join-ack;  occurs, report(0);, occurs with no time passage. Putting these inequalities together we
see that time(y) > time(¢po) + 8d.

Fix k to be the largest number such that time(¢) > time(¢y) + 8d. The claim in the preceding
paragraph shows that such k exists.

Next, we claim that by time(¢y) + 6d, cmap(k)s, # L and cmap(f)s, = £ for all £ < k; this
follows from Lemma 8.15, Part 2, applied with ¢ = iy and j = sg, because 75 does not fail before
Tk, and because si does not fail by time 10d after ¢g ;.

Next, we show that in the pre-state of 1, cmap(k); # L and cmap(£); = + for all £ < k: We
apply Lemma 8.9 to s; and ¢, with ¢ in that lemma set to max (time(¢py) + 6d, time (join-ack;) + e).
This yields that, by time max (time(¢px) + 6d, time(join-ack;) +e) + 2d, cmap(k); # L and
cmap(£); = £ for all £ < k. Our choice of k implies that time(¢py)+8d < time(1)). Also, by assump-
tion, time(join-ack;) +e+2d < t. And ¢t < time(¢). So, time(join-ack;) +e+2d < time(1)). Putting
these inequalities together, we obtain that max (time(¢y) + 6d, time(join-ack;) + €) +2d < time(1)).
It follows that, in the pre-state of ¢, cmap(k); # L and cmap(€); = £ for all £ < k, as needed.

Now, by choice of k, we know that time (1) < time(¢ri1)~+8d. The recon-spacing condition im-
plies that time(my 1) (the first recon event that requests the creation of the (k+2)"? configuration)
is > time(¢ry1) + 12d. Therefore, for an interval of time of length > 4d after 1, the largest index
of any configuration that appears anywhere in the system is k£ 4+ 1. This implies that the phase of
the read or write operation that starts with ¢ completes with at most one additional delay (of 2d)

8This is assumed for simplicity, to avoid cases in the result and proof.
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for learning about a new configuration. This yields a total time of at most 4d for the phase, as we
claimed.

We use 11d-viability here: First at most time d elapses from the last decideyq .. until ¢p1.
Then at most 8d time elapses from ¢ until . At time(v)), configuration k is already known
(but configuration k& + 1 may not be known). Therefore we need a quorum of configuration & to
stay alive only for the first 2d time of the phase. Altogether yielding 11d. 0

9 Latency Bounds: Normal Behavior From Some Point On

In this section, we present latency bounds for executions that exhibit normal timing and failure be-
havior after some point. These results correspond to some of those in Section 8, but the hypotheses
and conclusions take into account the time when normal behavior begins.

9.1 Restricting nondeterminism

As we observed in Section 8, RAMBO is highly nondeterministic. For the purpose of the latency
analysis in this section, we restrict the nondeterminism of RAMBO precisely as described in Sec-
tion 8.1.

9.2 Normal behavior from some point on

As in Section 8, the results in this section require restrictions on timing and failure behavior—
things that are not generally considered to be under the control of the algorithm. In this section,
we impose timing and failure assumptions after some point in the execution, rather than throughout
the execution as in Section 8.2. Each of these assumptions is, formally, a property of an admissible
timed execution « and a finite prefix o/ of a. Arbitrary asynchrony is allowed in o', after which
normal behavior holds. Specifically, we assume:

e Normal execution after a finite prefiz: If o is an admissible timed execution and ¢ is a finite
prefix of «, then « is o’-normal if the following conditions hold:

1. Regular timing behavior for RAMBO automata after o': The local clocks of all Joiner;,
Reader-Writer;, and Recon; automata progress at exactly the rate of real time, after o/.
This single assumption implies that the timing of all locally-controlled events observes
real-time constraints, after o’.

2. Reliable message delivery after o': No message sent in « after o/ is lost. (However,
messages sent in ¢ may be lost.)

3. Message delay bound: If a message is sent at time ¢ in « and it is delivered, then it is
delivered by time max(t, £time(c/)) + d.

4. Normal timing for consensus: Timing for all consensus services is “normal” after .

These assumptions correspond to the assumptions defined in Section 8.2, which are used for
analyzing the case where the entire execution « is normal.

As before, some of our results will also require assumptions about certain processes not failing,
for certain intervals of time. Again, we state such assumptions where they are needed.
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9.3 Hypotheses for latency results

This subsection contains one more hypothesis that we need for our latency bound results. It is
needed in addition to the restrictions on nondeterminism described in Section 9.1, the behavior
assumptions described in Section 9.2, and some of the properties defined for the °
case in Section 8.3.

The new hypothesis, join-connectivity, is designed to ensure that all non-failing joining pro-
cesses retain the ability to learn about each other. Join-connectivity is defined in terms of a
join-connectivity digraph JC, which is defined as a derived variable of the system S':

‘normal behavior”

e JC, the join-connectivity digraph: This is the digraph with self-loops defined as follows:
1. The nodes of JC are all ¢ € I such that Reader-Writer;.status = active
and —Reader- Writer;.failed.
2. The edges of JC are the pairs (i,7) € I x I such that j € Reader- Writer;.world.

Now we define join-connectivity:

e Join-connectivity: We say that « satisfies join-connectivity provided that for any state s
occurring in «, digraph s.JC is connected®.

9.4 Bounds that do not depend on gossip after stabilization

We now present performance results that do not depend on gossip after the timing and failure
behavior stabilizes. More precisely, we consider the same protocol as before (see Section 8.1), in
which the messages are sent when they are important and are gossiped periodically according to
local clocks. However, the results of this section do not depend on gossip messages that are sent
after time ftime (') + d.

9.4.1 Message latency

We begin with a simple lemma saying that messages that are sent in ' are received within a short
time after the end of /. This follows from our assumptions about periodic gossip.

Lemma 9.1 Let « be an o -normal admissible timed execution of S', 4,5 € I, t € R20, and
t < ltime(c'). Assume that fail; and fail; events do not occur in a. Then:

1. If send(join); j occurs in o' at time t, then recv(join); ; occurs in a by time Ltime(a’) + 2d.

2. If send((W, *, tg, cm, pns,pnr)); ; occurs in o at time t, then

recv((W', %, tg’, cm/,pns’, pnr')); ; occurs in a by time Ctime(o') + 2d, where W C W/,
tg <tg', em(h) < em!(h) for all h €N, pns < pns’, and pnr < pnr'.

3. If send((config,c, k)); ; occurs in o/ at time t, then recv((config,c, k));; occurs in c by time
Ltime (o) + 2d.

4. If send((init,c,c, k))i; occurs in o' at time t, then recv((init,c,c, k));; occurs in a by time
Ltime(a!) + 2d.

®That is, the undirected version of the join-connectivity digraph, in which every directed edge is converted to an
undirected edge, is connected.
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Proof. Parts 1, 3, and 4 follow directly from the gossip policy and the assumption that « is
o/-normal and admissible. Since ¢ does not fail, it gossips all messages of the types join, init, and
config. At least one instance of gossip for each message type must occur after o/ and by time
Ltime(a’) + d. Since j does not fail, it receives at least one such message by time £time(a’) + 2d.
Part 2 is similar, except that the required relations between the message components must hold.
This is shown by observing that all changes to the relevant state components are monotone. If the
original message is not lost, then the received message may be taken to be the same as the one
that is sent at time ¢, which implies that the components of the received message are equal to those
of the one originally sent. On the other hand, if the original message is lost, then a subsequently
gossiped message is received by the indicated time, and its components are not smaller than those
in the original message. 0

9.4.2 Joining

The next theorem implies that if the creator starts the join protocol with the join(rambo, J);, event
at time ¢, then it finishes by time max(t, £time(c')), provided iy does not fail. Also, if a non-creator
starts the join protocol at time ¢, it finishes by time max(¢, £time(a’)) + 3d, provided the relevant
processes do not fail.

Theorem 9.2 Let « be an o -normal admissible timed execution of S'. If join(rambo, J); occurs
in o at time t and fail; does not occur then:

1. If i = ip then join-ack(rambo); occurs by time max(t, Ltime(d')).

2. Suppose that i # iy. Suppose also that, for some j € J —{i}, a join-ack(rambo); event occurs
prior to the join(rambo, J); event, and fail; does not occur. Then:

(a) If join(rambo, J); occurs in o then join-ack(rambo); occurs by time Ltime(a’) 4 3d.

(b) If join(rambo, J); occurs after o' then join-ack(rambo); occurs by time t + 2d.

Proof. Similar to the proof of Theorem 8.1. Part 1 immediately follows from the code for the
creator: Joiner;y), Reader-Writer;, and Recon;,. This is because the response does not depend on
the receipt of any messages.

We now consider Part 2(a). If the join; event occurs in « then it is possible that process
i’s initial join message to j is lost; however, within time d of the end of o/, i is guaranteed to
resend the message, and this new message is guaranteed to be received by j by time ¢time(c/) + 2d
(by Lemma 9.1). Since j € J and j does not fail, and since join-ack(rambo); occurs prior to
join(rambo, J);, it follows that j must respond to such a join message by £time (') + 2d, and this
response is received by i by £time(a’) + 3d.

Finally, we consider Part 2(b). If the join, event occurs after o/, then at most two message delays
are incurred by the protocol, since no messages are lost and since j is guaranteed to respond. Thus
join-ack(rambo); occurs by time ¢ 4 2d. O
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9.4.3 Reconfiguration

We show that if process i starts a reconfiguration with a recon(c, x); event at time ¢ and no failure
event occur among the members of ¢, then reconfiguration completes by time max(t, £time(a’)) +
12d + . (We let ¢ be fixed as needed for Theorem 7.2.)

In the setting with arbitrary initial behavior, we cannot characterize interesting executions in
terms of e-configuration-viability for a fixed e because an arbitrary amount of time may elapse
from when a configuration becomes installed until it is garbage-collected. Therefore, in the rest of
Section 9, we limit our consideration to executions in which no quorum system is ever disabled,
that is, executions satisfying co-configuration-viability.

Theorem 9.3 Let a be an o' -normal admissible timed execution of S' satisfying oco-configuration-
viability, and let t € RZ0. Assume that:

1. A recon(c,c'); event occurs at time t in a.
2. No fail event for a member of ¢ occurs in « after the recon(c,d'); event.

Then a recon-ack(x); event matching the assumed recon(c,c'); event occurs by time
max(t, Ltime(a')) + 12d + €.

Proof. The proof follows the pattern established in Theorem 8.2. Let ¢; = max(¢, £time(c)).

We know that i, the originator of the operation, does not fail, because the signature restrictions
for Recon require that i € members(c), and assumption 2 says that no members of ¢ fail after the
recon(c, ¢'); event.

When recon(c, ¢); occurs, if outcome is immediately set to nok, then the recon-ack(nok); event
occurs by time t;. On the other hand, if outcome is not immediately set to nok, then process
sets cons-data; in preparation for consensus, again by time ¢;. Then an init(c'); .; event occurs for
some k, again by time ¢;. All these events must occur by time ¢; because recon(c,’); occurs by
time ¢; and t; > ftime(a).

Then we claim that a decide(x).; event occurs by time t; + 12d + ¢, and subsequently
recon-ack(x); occurs, also by time ¢; + 12d + . The argument that decide(x)s . ; occurs by time
t1 + 12d + ¢ proceeds as follows:

First, the last init event for Cons(k,c) that occurs in @ must occur by time ty = t; +2d. This is
guaranteed by the sending of init messages followed by the gossip of these messages within Recon
(by Lemma 9.1). Let o' be the shortest prefix of o that extends o/ and includes all the init(«)g .
events that occur in @. Then we know that ftime(”) < t.

We will apply Theorem 7.2 to « and " (using o for the o of that theorem) to conclude
that by time ty + 10d + ¢ = t; + 12d + ¢ = max(t, (time(a’)) + 12d + ¢, a decide(x);,; event
occurs for every non-failed j € members(c). In particular, a decide(x);.; event occurs by time
max(t, (time(a’)) +12d+e. If the decide(x) .; event occurs in ¢/, then the corresponding recon-ack
event occurs by /time(c’), which suffices. On the other hand, if the decide(x) .; event occurs after
o/, then the recon-ack event happens within time 0 of the decide event, which again suffices.

It remains to show that the three hypotheses of Theorem 7.2 are satisfied. For Property 1, the
“normal case” assumptions of this section imply that timing is regular and no message losses occur
after o’. No process failures occur either: since the init(c’) . ; event follows the recon(c,c’); event,
an assumption of this theorem implies that no fail events for members of ¢ occur in « after o”.
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The argument for Property 2 is exactly the same as in Theorem 8.2. Property 3 says that some
read-quorum and some write-quorum of ¢ must stay non-failed forever. This is guaranteed by the
oo-configuration-viability assumption. O

9.4.4 Garbage collection

We show that for oo-configuration-viable executions of &', if a garbage-collection operation starts
at time ¢, it finishes by time max(t, £time(a’)) +5d. In the theorem statement, we explicitly assume
the existence of certain non-failing quorums rather than assuming oo-configuration-viability.

Theorem 9.4 Let v be a garbage-collection operation in an o -normal admissible timed execution
of 8'. Let v start with gc(k); at time t and let ¢ and ¢k 1 be the values of cmap(k); and cmap(k+1);
when y starts.

Let R € read-quorums(cy), W1 € write-quorums(cg), Wa € write-quorums(cg41). Assume:

1. Process 1 does not fail.
2. No process in RU W1 U Wy fails.

Then vy ends with a gc-ack(k);, by time Ctime(d') 4 5d if the gc(k); event occurs in o', and by time
t + 4d if the gc(k); event occurs after o .

Proof. The case where the gc(k); event occurs after o' is the same as Theorem 8.4. We consider
the case where gc(k); event occurs in ¢ in detail:

Garbage collection is implemented in two phases. In the first phase, process ¢ sends messages to
members(c(k)) and collects responses. If messages from 7 are sent in o’ they may be lost. However,
such messages are subsequently gossiped. At least one round of gossip with no message loss occurs
by time max(t,time(c’)) + d. These messages are delivered by time max(t, £time(c/)) + 2d, by
Lemma 9.1. With assumption 2, this ensures that ¢ receives the necessary responses by time
t1 = max(t,ftime(a’)) + 3d. Lemma 9.1 also insures that the phase number component of the
replies is at least as high as the phase of the garbage-collection operation.

The second phase is similar, except that ¢ communicates with members(c(k 4+ 1)). If the second
phase starts in o/ then it is guaranteed to complete by time ¢time(c’)+3d (again using Lemma 9.1).
If the second phase starts after o/, then it must start without delay after the end of the first phase,
and no later than the time ¢;. This means that in this case the second phase completes by time
t1 + 2d. This is due to the two message delays incurred in this phase. Then assumption 2 ensures
that ¢ receives the necessary responses. Combining these time bounds gives the result that garbage
collection completes by time max(t, £time(a’)) + 5d. O

Note that if an execution satisfies co-configuration-viability, then assumption 2 of the theorem
holds for any configuration. In this case, if a garbage collection starts at time ¢ and the initiator
does not fail, the garbage-collection completes successfully by time max(t, £time(c’)) + 5d.

9.5 Bounds that depend on gossip throughout execution

We now show performance results that depends on periodic gossip throughout the entire execution
of system S’.
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9.5.1 Learning about participants and configurations

The following theorem uses the assumption of join-connectivity. It considers the set J of processes
that join the system by a certain time ¢. It says that, after a time that is logarithmic in |.J| following
o/, all the processes in J know about each other, and thereafter, information about configurations
propagates quickly among processes in J. The result assumes that processes in J do not fail after
time ¢, to ensure rapid propagation of information.

Theorem 9.5 Let « be an o/ -normal admissible timed execution of 8" satisfying join-connectivity,
and let J C 1,4, € J, t,t' € RZ" and t <t'. Assume

1. J is the set of processes i’ such that join-ack(rambo); occurs by time t.
2. No faily events for i’ € J occur in a.

Then
1. By time max(t, Ltime(c/)) + d + d[log(|J])], i € world;.

2. If by time t', cmap(k); # L, then by time max (max(t, Ltime()) + d + d[log(|J|)],t') + 2d
cmap(k); # L.

3. If by time t', cmap(k); = %, then by time max (max(t, £time(’)) + d + d[log(|J])],t') + 2d
cmap(k); = £.

Proof. The proof follows that of Theorem 8.12, but with the failure-free assumption replaced with
a weaker join-connectivity assumption during ' followed by the absence of failures of processes in
J after o.

We show this using a pointer-doubling argument. For Part 1, a process j is considered to have
a “pointer” to ¢ when ¢ € world;. Given our assumptions about the gossip, during each period of
d time after ¢t a “round” of gossip completes where at least one “pointer-doubling” occurs at each
process in J. However messages can be lost in o’ or have unbounded delay. Therefore periodic
message-lossless pointer-doubling starts at the latest by time max(¢, £time(o'))+d. The first reliable
round of gossip completes by time max(¢, £time(c’)) + 2d (Lemma 9.1), and thereafter will occur
at least once every d time. Therefore all processes that join by time ¢ require at most [log(|.J])]
rounds of gossip to learn about all other such processes.

For Parts 2 and 3, given ¢ < ¢’ and using Part 1, the information in e¢map; at time ¢’ is reflected in
cmap; by time max(max(t, £time(')) + d + d[log(]J])],t') + 2d. Here the quantity 2d corresponds
to a delay of d from the time when cmap; changes until the next gossip round begins, and an
additional delay of d for the delivery of the gossip message. O

9.5.2 Garbage collection progress

We show that, after the system stabilizes, the time needed to garbage-collect all but one configura-
tion found in any process’ truncated cmap is at most linear in the length of that truncated cmap.
We state this result for a collection of processes that join by a certain time, and is shown to hold
after a sufficient delay necessary for them to discover one another.
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Theorem 9.6 Let a be an o' -normal admissible timed execution of S’ satisfying join-connectivity
and oo-configuration-viability, i € I, J C I, t,t' € RZY and t' > max(t, {time(a’)) +d+d[log(|J])]-
Assume

1. J is the set of processes i’ such that join-ack(rambo)y occurs by time t.
2. k = max{h : truncate(cmap;)(h) € C} at time t'.
3. No faily events for i’ € JU{i} occur in «.

Then cmap(h); = £ for all h such that 0 < h < k by time t' +4 d k.

Proof. Given assumptions about J and join-connectivity, Theorem 9.5 establishes that processes
in J know about each other by time ¢'. We consider two cases.

First, we consider executions where no garbage-collection operations start before time t'. If
kE = 0, then garbage-collection is not enabled and the result holds at time ¢ as required. If
k > 0, then given that ¢ > £time(c’) and oo-configuration-viability, Theorem 9.4 says that each
garbage-collection operation at ¢ takes 4d time. By the definition of &k, we require that at most &
configurations are to be garbage-collected at 7. Since garbage-collection is enabled at 4 at time #/,
it starts without any delay. This yields the result.

In the second case, we consider executions where 0 or more garbage-collection operations at %
may have completed in o/. If no garbage-collection operations are in progress at time ', then the
result is obtained as in the first case. Else, if a garbage-collection operation is in progress at time
t' and it started after o/, then by Theorem 9.4 it completes by time ' 4+ 4d, then the result easily
follows. Finally, the most interesting situation is when a garbage-collection operation is in progress
at time ' and it started during o/. By Theorem 9.4 this garbage-collection operation completes by
time £time(a’) + 5d. Then, using Theorem 9.4 again, the garbage collection of the remaining k — 1
configurations are completed by time £time(a’) + 5d + 4d(k —1). Since t' > Ltime(a') +d (from the
theorem assumption about ' and given that [log(]J])] is positive for any J), the result follows. O

9.5.3 Read-write operation latency

Our final theorem describes a situation in which a read or write operation is guaranteed to have
latency at most 4d: when the configuration map of the operation’s initiator contains multiple
configurations, including the latest one and no new configurations are being determined. Since the
configurations are used concurrently by the read or write operation, they do not slow the operation
down. Here, we do not require garbage-collection, but we need to assume oco-configuration-viability.

Theorem 9.7 Let a be an o' -normal admissible timed execution of S' satisfying oo-configuration-
viability, i € I, J C I, t,t' € RZ0 and t' > max(t, £time(c’)) + d[log(]J|)] + 3d. Assume

1. J is the set of processes i’ such that join-ack(rambo)y occurs by time t.
2. « contains no decide events after time t.
3. k is the latest configuration index in «.

4. No fail, events occur at or after time t.

95



Then if a read or write operation starts at time t' in a state where cmap(€); # L for all 4,0 < ¢ <k,
then it completes by time t' + 4d.

Proof. Given assumptions about «, J and join-connectivity, Theorem 9.5 establishes that by time
t' the processes in J know about each other, and about all configurations decided by time ¢. The
result then follows from the two-phased implementation of operations. Each phase lasts for at most
two message delays: since new configurations are not added to op.cmap; during the phase, the
phase completes in 2d time. New configurations can only be added in the effects of the recv action
in Reader-Writer;. Because k is the latest configuration index, no higher numbered configurations
exist, and smaller numbered configurations cannot be added because of the properties of the extend
and truncate functions used to modify op.cmap; in the effects of recv. O

10 Conclusions

We have presented a specification for RAMBO, a new reconfigurable atomic memory service for
read/write objects, and have presented and analyzed a new, highly concurrent asynchronous
message-passing algorithm that implements RAMBO. The algorithm uses a loosely-coupled reconfig-
uration service, which in turn uses a sequence of consensus services, one for each new configuration.
Each consensus service is implemented using Paxos. The entire algorithm satisfies its safety prop-
erties in the presence of any pattern of asynchrony and failures. The performance of the algorithm
depends on assumptions about message delay and failures. The limitations say, essentially, that
each non-superseded configuration is “viable” (some read-quorum and some write-quorum continue
to operate) for a certain amount of time.

In future work, we plan to analyze the algorithm under more sets of assumptions. Most of our
analysis so far has dealt with the case where behavior is normal throughout the execution. Our
results for the situation where behavior is normal from some point onward are still incomplete. In
particular, we would like results that bound the latency of read and write operations that begin
sufficiently long after the system has stabilized. In this paper we gave a simple bound for read
and write operations in executions that include process failures, but where no configuration ever
becomes disabled. We intend to show additional bounds for executions where configurations may
become disabled, provided that they remain alive long enough to be garbage-collected.

The RAMBO algorithm is very nondeterministic and so it can be tuned for performance in a
variety of ways, for example, by varying the frequency of gossiping and directing the gossip message
to certain subsets of the participants. We plan to evaluate the impact that various choices have
on the algorithm’s fault-tolerance, latency, and communication costs. For example, what are the
tradeoffs between the frequency of gossiping and the latency of operations? We intend to examine
restrictions on gossip where a process follows a gossip policy based on whether it is a member of
certain configurations. In particular, a distinct gossip policy can be prescribed for a process that
is not a member of any configuration.

Also, we would like to analyze tradeoffs between the amount of time that a configuration is
assumed to remain viable (that is, the quantity e in the e-viable hypothesis) and other factors,
such as the message delay d, the amount of process failure, and the frequency of gossip. With such
tradeoffs, the knowledge about the length of time that a configuration is expected to remain alive
will determine the necessary frequency of gossip, and this will lead to better performance.
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In other future work, we plan to implement and test the complete RAMBO algorithm in LAN,
WAN, and mobile settings, and to use these implementations to build toy applications. So far,
two LAN implementations have been begun, by Peter Musial, Jon Luke, Bence Magyar, and Matt
Bachmann. We will compare our theoretical results on performance analysis to experimental results
obtained from these implementations.

We are also considering various improvements to the algorithm. For example, we are investi-
gating ways of increasing the concurrency of garbage-collection. We will consider variants of the
algorithm that allow early return of the results of read operations, before the propagation phase
is executed. Such results are guaranteed to be the same as the results that would be returned
after the propagation phase, so there appears to be little practical reason not to return them early;
however, the effects of doing this need to be carefully understood. More generally, we will consider
augmenting the algorithm with the capability to return “best available” versions to clients that
prefer not to wait for an atomic version.

We will consider “backup” strategies for coping with the situation where viability fails, and the
object therefore becomes inaccessible. For example, the system might automatically create a new
“continuation” of an object for which too many configuration members fail. It might do this, for
instance, by reading several copies of the object, and using the value with the largest available tag
to start the new object. Questions remain about who is authorized to create such a continuation.

This work leaves open the very important question of how to choose good configurations, for
various kinds of platforms.

One can also study the “join problem”. As we already noted, join-connectivity is not really
appropriate as a basic assumption. It remains to formulate appropriate basic assumptions and
possibly improve the joining protocol, to prove a version of join-connectivity from more basic
assumptions. It is possible that the join problem itself could be studied as a problem of independent
interest.

Acknowledgments. The authors thank Ken Birman, Alan Demers, Rui Fan, Seth Gilbert, But-
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