
Rambo: A Re
on�gurable Atomi
 Memory Servi
e

for Dynami
 Networks

�

Nan
y Lyn
h

y

Alex Shvartsman

z

August 16, 2002

Abstra
t

This paper presents an algorithm that emulates atomi
 read/write shared obje
ts in a dy-

nami
 network setting. To ensure that the data is highly available and long-lived, ea
h obje
t is

repli
ated at several network lo
ations. To ensure atomi
ity, reads and writes are performed us-

ing quorum
on�gurations , ea
h of whi
h
onsists of a set of members plus sets of read-quorums

and write-quorums. The algorithm is re
on�gurable: the quorum
on�gurations are allowed to

hange during
omputation, and su
h
hanges do not
ause violations of atomi
ity. Any quorum

on�guration may be installed at any time|no interse
tion requirement is imposed on the sets

of members or on the quorums of distin
t
on�gurations. The algorithm tolerates pro
essor

stopping failures and message loss.

The algorithm performs three major a
tivities, all
on
urrently: (1) reading and writing

obje
ts, (2)
hoosing new
on�gurations and notifying members, and (3) identifying and re-

moving (\garbage-
olle
ting") obsolete
on�gurations. The algorithm is
omposed of two sub-

algorithms: a main algorithm, whi
h handles reading, writing, and garbage-
olle
tion, and a

re
on�guration algorithm, whi
h handles the sele
tion and dissemination of new
on�gurations.

The algorithm guarantees atomi
ity in the presen
e of arbitrary patterns of asyn
hrony and

failures. The algorithm satis�es a variety of
onditional performan
e properties, based on a

variety of timing and failure assumptions. In parti
ular, if parti
ipants gossip periodi
ally in

the ba
kground, if garbage-
olle
tion is s
heduled periodi
ally, if re
on�guration is not requested

too frequently, and if quorums of a
tive
on�gurations do not fail, then read and write operations

omplete within time 8d, where d is the maximum message laten
y.

�

This work was supported in part by the NSF ITR Grant CCR-0121277.

y

Massa
husetts Institute of Te
hnology, Laboratory for Computer S
ien
e, 200 Te
hnology Square, NE43-365,

Cambridge, MA 02139, USA. Email: lyn
h�theory.l
s.mit.edu. The work of this author was also supported by

AFOSR under
ontra
t F49620-00-1-0097 and by NTT under
ontra
t MIT9904-12.

z

Department of Computer S
ien
e and Engineering, 191 Auditorium Road, Unit 3155, University of Conne
ti
ut,

Storrs, CT 06269 and Massa
husetts Institute of Te
hnology, Laboratory for Computer S
ien
e, 200 Te
hnology

Square, NE43-316, Cambridge, MA 02139, USA. Email: alex�theory.l
s.mit.edu. The work of this author was

also supported by NSF Career Award 9984778 and NSF Grant 9988304.

1 Introdu
tion

This paper presents an algorithm that
an be used to implement atomi
 read/write shared memory

in a dynami
 network setting, in whi
h parti
ipants may join or fail during the
ourse of
omputa-

tion.

1

Examples of su
h settings are mobile networks and peer-to-peer networks. One use of this

servi
e might be to provide long-lived data in a dynami
 and volatile setting su
h as a military

operation.

In order to a
hieve availability in the presen
e of failures, the obje
ts are repli
ated at several

network lo
ations. In order to maintain memory
onsisten
y in the presen
e of small and transient

hanges, the algorithm uses
on�gurations, ea
h of whi
h
onsists of a set of members plus sets of

read-quorums and write-quorums. In order to a

ommodate larger and more permanent
hanges,

the algorithm supports re
on�guration, by whi
h the set of members and the sets of quorums are

modi�ed. Su
h
hanges do not
ause violations of atomi
ity. Any quorum
on�guration may be

installed at any time|no interse
tion requirement is imposed on the sets of members or on the

quorums of distin
t
on�gurations.

We �rst provide a formal spe
i�
ation for re
on�gurable atomi
 shared memory as a global

servi
e. We
all this servi
e Rambo, whi
h stands for \Re
on�gurable Atomi
 Memory for Basi

Obje
ts". (Here \Basi
" means \Read/Write".) The rest of the paper presents our algorithm and

its analysis. The algorithm
arries out three major a
tivities, all
on
urrently: (1) reading and

writing obje
ts, (2)
hoosing new
on�gurations and notifying members, and (3) identifying and

removing (\garbage-
olle
ting") obsolete
on�gurations.

The algorithm is
omposed of a main algorithm, whi
h handles reading, writing, and garbage-

olle
tion, and a global re
on�guration servi
e, Re
on , whi
h provides the main algorithm with a

onsistent sequen
e of
on�gurations. Re
on�guration is only loosely
oupled to the main read-

write algorithm, in parti
ular, several
on�gurations may be known to the algorithm at one time,

and read and write operations
an use them all without any harm.

The main algorithm performs read and write operations requested by
lients using a two-phase

strategy, where the �rst phase gathers information from read-quorums of a
tive
on�gurations

and the se
ond phase propagates information to write-quorums of a
tive
on�gurations. This

ommuni
ation is
arried out using ba
kground gossiping, whi
h allows the algorithm to maintain

only a small amount of proto
ol state information. Ea
h phase is terminated by a �xed point

ondition that involves a quorum from ea
h a
tive
on�guration. Di�erent read and write operations

may exe
ute
on
urrently: the restri
ted semanti
s of reads and writes permit the e�e
ts of this

on
urren
y to be sorted out afterwards.

The main algorithm also in
ludes a fa
ility for garbage-
olle
ting old
on�gurations when their

use is no longer ne
essary for maintaining
onsisten
y. Garbage-
olle
tion also uses a two-phase

strategy, where the �rst phase
ommuni
ates with an old
on�guration and the se
ond phase

ommuni
ates with a new
on�guration. A garbage-
olle
tion operation ensures that both a read-

quorum and a write-quorum of the old
on�guration learn about the new
on�guration, and that

the latest value from the old
on�guration is
onveyed to a write-quorum of the new
on�guration.

The re
on�guration servi
e is implemented by a distributed algorithm that uses distributed

onsensus to agree on the su

essive
on�gurations. Any member of the latest
on�guration

may propose a new
on�guration at any time; di�erent proposals are re
on
iled by an exe
ution

of
onsensus among the members of
. Consensus is, in turn, implemented using a version of the

1

We do not expli
itly
onsider parti
ipants leaving, but treat that
ase in the same way as a failure.

1

Paxos algorithm [30℄, as des
ribed formally in [14℄. Although su
h
onsensus exe
utions may be

slow|in fa
t, in some situations, they may not even terminate|they do not
ause any delays for

read and write operations.

We spe
ify all servi
es and algorithms, and their intera
tions, using I/O automata. We show

orre
tness (atomi
ity) of the algorithm for arbitrary patterns of asyn
hrony and failures. On the

other hand, we analyze performan
e
onditionally , based on
ertain failure and timing assumptions.

For example, assuming that gossip and garbage-
olle
tion o

ur periodi
ally, that re
on�guration

is requested infrequently enough for garbage-
olle
tion to keep up, and that quorums of a
tive

on�gurations do not fail, we show that read and write operations
omplete within time 8d, where

d is the maximum message laten
y.

One possible appli
ation for the Rambo servi
e is for maintaining reliable information in a

military mission. Data obje
ts might represent the latest status information for various real-

world entities, su
h as friendly and unfriendly vehi
les and soldiers. Although all parti
ipants

might need to read or write the values of su
h a data obje
t, a small number of parti
ipants,

for example, those
urrently operating in the geographi
al vi
inity of the real-world entity, might

assume responsibility for maintaining the obje
t's integrity. In this
ase, it would be reasonable

to
hange the
on�guration from time to time, based on whi
h parti
ipants are
urrently in the

vi
inity.

Comparison with other approa
hes. Consensus algorithms
an be used dire
tly to implement

an atomi
 data servi
e, by allowing parti
ipants to agree on a global total ordering of all operations,

as suggested by Lamport [30℄. In
ontrast, we use
onsensus to agree only on the sequen
e of

on�gurations and not on the individual read and write operations. Sin
e rea
hing
onsensus is

ostly, our approa
h leads to better performan
e for reads and writes. Also, in our algorithm,

the termination of
onsensus a�e
ts the termination of re
on�guration attempts, but not of read

and write operations: reads and writes are guaranteed to
omplete, provided that
urrently a
tive

on�gurations are not disabled by failures.

Group
ommuni
ation servi
es (GCSs) [1℄
an also be used to implement an atomi
 data servi
e

in a dynami
 network. This
an be done, for example, by implementing a global totally ordered

broad
ast servi
e on top of a view-syn
hronous GCS [19℄ using te
hniques of Amir, Dolev, Keidar,

Melliar-Smith and Moser [28, 29, 5℄. Our approa
h
ompares favorably with these implementations:

In most GCS-based implementations, forming a new view following a
rash takes a substantial

amount of time, and
lient-level operations are delayed during the view-formation period. In

ontrast, although re
on�guration
an be slow in our algorithm, reads and writes
ontinue to make

progress during re
on�guration. Also, in some standard GCS implementations, performan
e is

degraded even if only one failure o

urs. For example, in ring-based implementations like that of

Cristian and S
hmu
k [10℄ a single failure triggers the formation of a new view. In
ontrast, our

algorithm uses quorums to tolerate small numbers of failures.

De Pris
o, Fekete, Lyn
h, and Shvartsman [13℄ introdu
ed the notion of primary
on�gurations

and de�ned a dynami
 primary
on�guration group
ommuni
ation servi
e. They also showed how

to implement dynami
 atomi
 memory over su
h a servi
e, using a version of the algorithm of

Attiya, Bar-Noy, and Dolev [7℄ within ea
h
on�guration. That work restri
ts the set of possible

new
on�gurations to those satisfying
ertain interse
tion properties with previous
on�gurations,

whereas we impose no su
h restri
tions|we allow arbitrary new
on�gurations to be installed. Like

other solutions based on group
ommuni
ation, the algorithm of [13℄ delays reads and writes during

2

re
on�guration.

In earlier work on atomi
 memory for dynami
 networks, [34, 18℄, we
onsidered single re
on-

�gurer approa
hes, in whi
h a single designated parti
ipant initiates all re
on�guration requests.

This approa
h has the disadvantage that the failure of the single re
on�gurer disables future re
on-

�guration. In
ontrast, in our new approa
h, any member of the latest
on�guration may propose

the next
on�guration, and fault-tolerant
onsensus is used to ensure that a unique next
on�gu-

ration is determined. For well-
hosen quorums, this approa
h avoids single points of failure: new

on�gurations
an
ontinue to be produ
ed, in spite of the failures of some of the
on�guration

members. Another di�eren
e is that, in [34, 18℄, garbage-
olle
tion of an old
on�guration is tightly

oupled to the introdu
tion of a new
on�guration. Our new approa
h allows garbage-
olle
tion

of old
on�gurations to be
arried out in the ba
kground,
on
urrently with other pro
essing. A

�nal di�eren
e is that, in [34, 18℄, information about new
on�gurations is propagated only dur-

ing the pro
essing of read and write operations. A
lient who does not perform any operations

for a long while may be
ome \dis
onne
ted" from the latest
on�guration, if older
on�gurations

be
ome disabled. In
ontrast, in our new algorithm, information about
on�gurations is gossiped

periodi
ally, in the ba
kground, whi
h permits all parti
ipants to learn about new
on�gurations

and garbage-
olle
t old
on�gurations.

Other related work. Upfal and Wigderson produ
ed the �rst general s
heme for emulating

shared memory in message-passing systems by using repli
ation and a

essing majorities of times-

tamped repli
as [39℄. Attiya, Bar-Noy, and Dolev developed a majority-based emulation of atomi

read/write memory [7℄. Their algorithm introdu
ed a two-phase paradigm in whi
h the �rst phase

gathers information from a majority of parti
ipants and the se
ond phase propagates information

to a majority.

Quorums [21℄ are generalizations of majorities. A quorum system is a
olle
tion of quorum sets

su
h that any two quorums interse
t [20℄. Another approa
h is to
lassify quorums as read-quorums

and write-quorums su
h that any read-quorum interse
ts any write-quorum, and (sometimes) su
h

that any two write-quorums interse
t. Quorums have been used to implement data repli
ation

proto
ols [2, 8, 9, 11, 16, 17, 22, 23℄.

Consensus algorithms have been used as building blo
ks in other work, e.g, [27℄.

Paper organization. The rest of the paper is organized as follows. Se
tion 2 des
ribes some data

types used by our algorithms. Se
tion 3
ontains our spe
i�
ation for the Rambo re
on�gurable

atomi
 memory servi
e. Se
tion 4
ontains the spe
i�
ation for the Re
on re
on�guration servi
e.

Se
tion 5
ontains the main algorithm, assuming the Re
on servi
e, and Se
tion 6
ontains the

proof that the algorithm satis�es the Rambo spe
i�
ation. Se
tion 7
ontains the algorithm to

implement the Re
on spe
i�
ation, using
onsensus. Se
tion 8
ontains the analysis of laten
y

under \normal" timing and failure assumptions, and Se
tion 9
ontains the analysis of laten
y

when normal behavior begins at some point in the exe
ution. Finally, Se
tion 10
ontains our

on
lusions.

2 Data Types

We assume two distinguished elements, ? and �, whi
h are not in any of the basi
 types. For any

type A, we de�ne new types A

?

= A[f?g. and A

�

= A[f?;�g. If A is a partially ordered set,

3

we augment its ordering by assuming that ? < a < � for every a 2 A.

We assume the following spe
i�
 data types, distinguished elements, and fun
tions.

� I, the totally-ordered set of lo
ations.

� T , the set of tags, de�ned as N � I.

� M , the set of messages.

� X, the set of obje
t identi�ers, partitioned into subsets X

i

, i 2 I. X

i

is the set of identi�ers

for obje
ts that may be
reated at lo
ation i. For any x 2 X, (i

0

)

x

denotes the unique i su
h

that x 2 X

i

.

� For ea
h x 2 X:

{ V

x

, the set of values that obje
t x may take on.

{ (v

0

)

x

2 V

x

, the initial value of x.

� C, the set of
on�guration identi�ers. We assume only the trivial partial order on C, in whi
h

all elements are in
omparable; in the resulting augmented partial ordering of C

�

, all elements

of C are still in
omparable.

� For ea
h x 2 X, (

0

)

x

2 C, the initial
on�guration identi�er for x.

� For ea
h
 2 C we de�ne:

{ members(
), a �nite subset of I.

{ read-quorums(
), a set of �nite subsets of members(
).

{ write-quorums(
), a set of �nite subsets of members(
).

We assume the following
onstraints:

{ members((

0

)

x

) = f(i

0

)

x

g. That is, the initial
on�guration for obje
t x has only a single

member, who is the
reator of x.

{ For every
, every R 2 read-quorums(
), and every W 2 write-quorums(
), R \W 6= ;.

� update , a binary fun
tion on C

�

, de�ned by update(
;

0

) = max(
;

0

) if
 and

0

are
ompa-

rable (in the augmented partial ordering of C

�

), update(
;

0

) =
 otherwise.

� extend , a binary fun
tion on C

�

, de�ned by extend(
;

0

) =

0

if
 = ? and

0

2 C, and

extend(
;

0

) =
 otherwise.

� CMap, the set of
on�guration maps, de�ned as the set of mappings from N to C

�

, N ! C

�

.

We extend the update and extend operators elementwise to binary operations on CMap.

� trun
ate , a unary fun
tion on CMap, de�ned by trun
ate(
m)(k) = ? if there exists ` � k

su
h that
m(`) = ?, trun
ate(
m)(k) =
m(k) otherwise. This trun
ates
on�guration map

m by removing all the
on�guration identi�ers that follow a ?.

� Trun
ated , the subset of CMap su
h that
m 2 Trun
ated if and only if trun
ate(
m) =
m.

4

� Usable, the subset of CMap su
h that
m 2 Usable i� the pattern o

urring in
m
onsists

of a pre�x of �nitely many �s, followed by an element of C, followed by an in�nite sequen
e

of elements of C

?

in whi
h all but �nitely many elements are ?.

Lemma 2.1 If
m 2 Usable then:

1. If k; ` 2 N, k � `, and
m(`) = �, then
m(k) = �.

2.
m
ontains �nitely many � entries.

3.
m
ontains �nitely many C entries.

4. If k 2 N,
m(k) = �, and
m(k + 1) 6= �, then
m(k + 1) 2 C.

The following lemma says that various operations preserve the \usable" property:

Lemma 2.2 1. If
m ;
m

0

2 Usable then update(
m ;
m

0

) 2 Usable.

2. If
m 2 Usable, k 2 N ,
 2 C, and
m

0

is identi
al to
m ex
ept that
m

0

(k) = update(
m(k);
),

then
m

0

2 Usable.

3. If
m;
m

0

2 Usable then extend(
m ;
m

0

) 2 Usable.

4. If
m 2 Usable then trun
ate(
m) 2 Usable.

Proof. Part 1 is shown using a
ase analysis based on whi
h of
m and
m

0

has a longer pre�x of

�s. Part 2 uses a
ase analysis based on where k is with respe
t to the pre�x of �s. Part 3 and

Part 4 are also straightforward. �

3 Re
on�gurable Atomi
 Memory Servi
e Spe
i�
ation

This se
tion
ontains our spe
i�
ation for the Rambo re
on�gurable atomi
 memory servi
e. This

spe
i�
ation
onsists of an external signature (interfa
e) plus a set of tra
es that embody Rambo's

safety properties. No liveness properties are in
luded in the spe
i�
ation; we repla
e these with

onditional laten
y bounds, whi
h are stated and proved in Se
tions 8 and 9. The external signature

appears in Figure 1. (We use I/O automata notation for all of our spe
i�
ations.)

The
lient at lo
ation i requests to join the system for a parti
ular obje
t x by performing a

join(rambo; J)

x;i

input a
tion. The set J represents the
lient's best guess at a set of pro
esses that

have already joined the system for x. If i = (i

0

)

x

, the set J is empty, be
ause (i

0

)

x

is supposed to

be the �rst pro
ess to join the system for x. If the join attempt is su

essful, the Rambo servi
e

responds with a join-a
k(rambo)

x;i

output a
tion.

The
lient at i initiates a read (resp., write) operation using a read

i

(resp., write

i

) input a
tion,

whi
h the Rambo servi
e a
knowledges with a read-a
k

i

(resp., write-a
k

i

) output a
tion. The
lient

initiates a re
on�guration using a re
on

i

input a
tion, whi
h is a
knowledged with a re
on-a
k

i

output a
tion. Rambo reports a new
on�guration to the
lient using a report

i

output a
tion.

Finally, a
rash at lo
ation i is modelled using a fail

i

input a
tion. We do not expli
itly model

gra
eful pro
ess \leaves", but instead we model pro
ess departures as failures.

Now we de�ne the set of tra
es des
ribingRambo's safety properties. These tra
es are de�ned to be

those that satisfy an impli
ation of the form \environment assumptions imply servi
e guarantees".

The environment assumptions are simple \well-formedness"
onditions:

5

Input:

join(rambo; J)

x;i

, J a �nite subset of I � fig, x 2 X, i 2 I,

su
h that if i = (i

0

)

x

then J = ;

read

x;i

, x 2 X, i 2 I

write(v)

x;i

, v 2 V

x

, x 2 X, i 2 I

re
on(
;

0

)

x;i

,
;

0

2 C, i 2 members(
), x 2 X, i 2 I

fail

i

, i 2 I

Output:

join-a
k(rambo)

x;i

, x 2 X, i 2 I

read-a
k(v)

x;i

, v 2 V

x

, x 2 X, i 2 I

write-a
k

x;i

, x 2 X, i 2 I

re
on-a
k(b)

x;i

, b 2 fok; nokg; x 2 X; i 2 I

report(
)

x;i

,
 2 C;
 2 X; i 2 I

Figure 1: Rambo(x): External signature

� Well-formedness:

{ For every x and i:

� No join(rambo; �)

x;i

, read

x;i

, write(�)

x;i

, or re
on(�; �)

x;i

event is pre
eded by a fail

i

event.

� At most one join(rambo; �)

x;i

event o

urs.

� Any read

x;i

, write(�)

x;i

, or re
on(�; �)

x;i

event is pre
eded by a join-a
k(rambo)

x;i

event.

� Any read

x;i

, write(�)

x;i

, or re
on(�; �)

x;i

event is pre
eded by an -a
k event for any

pre
eding event of any of these kinds.

{ For every x and
, at most one re
on(�;
)

x;�

event o

urs.

This says that
on�guration identi�ers that are proposed in re
on events are unique. It

does not say that the membership and/or quorum sets are unique|just the identi�ers.

The same membership and quorum sets may be asso
iated with di�erent
on�guration

identi�ers.

{ For every
,

0

, x, and i, if a re
on(
;

0

)

x;i

event o

urs, then it is pre
eded by:

� A report(
)

x;i

event, and

� A join-a
k(rambo)

x;j

event for every j 2 members(

0

).

This says parti
ipant i
an request re
on�guration from
 to

0

only if i has previously

re
eives a report that
 is the
urrent
on�guration identi�er, and only if all the members

of

0

have already joined.

The safety guarantees provided by the servi
e are as follows:

� Well-formedness: For every x and i:

{ No join-a
k(rambo)

x;i

, read-a
k(�)

x;i

, write-a
k

x;i

, re
on-a
k(�)

x;i

, or report(�)

x;i

event is

pre
eded by a fail

i

event.

{ Any join-a
k(rambo)

x;i

(resp., read-a
k(�)

x;i

, write-a
k

x;i

, re
on-a
k(�)

x;i

) event has a pre-

eding join(rambo; �)

x;i

(resp., read

x;i

, write(�)

x;i

, re
on(�; �)

x;i

) event with no intervening

invo
ation or response a
tion for x and i.

� Atomi
ity:

2

If all the read and write operations that are invoked
omplete, then the read and

write operations for obje
t x
an be partially ordered by an ordering �, so that the following

onditions are satis�ed:

2

Atomi
ity is often de�ned in terms of an equivalen
e with a serial memory. The de�nition given here implies this

equivalen
e, as shown, for example, in Lemma 13.16 in [33℄. Note that Lemma 13.16 of [33℄ is presented for a setting

6

1. No operation has in�nitely many other operations ordered before it.

2. The partial order is
onsistent with the external order of invo
ations and responses, that

is, there do not exist read or write operations �

1

and �

2

su
h that �

1

ompletes before

�

2

starts, yet �

2

� �

1

.

3. All write operations are totally ordered and every read operation is ordered with respe
t

to all the writes.

4. Every read operation ordered after any writes returns the value of the last write pre
eding

it in the partial order; any read operation ordered before all writes returns (v

0

)

x

.

The rest of the paper presents our implementation of Rambo. The implementation is a dis-

tributed algorithm in the asyn
hronous message-passing model, in whi
h uniquely identi�ed asyn-

hronous pro
esses
ommuni
ate using point-to-point
hannels. All pro
esses may
ommuni
ate

with ea
h other. Pro
esses may fail by stopping without warning.

Our implementation
an be des
ribed formally as the
omposition of a separate implementation

for ea
h x. Therefore, throughout the rest of the paper, we des
ribe an implementation for a

parti
ular x, and (usually) suppress expli
it mention of x. Thus, we write V , v

0

,

0

, and i

0

from

now on as shorthand for V

x

, (v

0

)

x

, (

0

)

x

, and (i

0

)

x

, respe
tively.

4 Re
on�guration Servi
e Spe
i�
ation

Our Rambo implementation for ea
h obje
t x
onsists of a main Reader-Writer algorithm and a

re
on�guration servi
e, Re
on(x); sin
e we are suppressing mention of x, we write this simply as

Re
on . In this se
tion, we present the spe
i�
ation for the Re
on servi
e, as an external signature

and a set of tra
es. We present our implementation of Re
on in Se
tion 7, after we present the

main Reader-Writer algorithm and the proof of its safety properties.

The external signature for Re
on appears in Figure 2. The
lient of Re
on at lo
ation i re-

quests to join the re
on�guration servi
e by performing a join(re
on)

i

input a
tion. The servi
e

a
knowledges this with a
orresponding join-a
k

i

output a
tion. The
lient requests to re
on�gure

the obje
t using a re
on

i

input, whi
h is a
knowledged with a re
on-a
k

i

output a
tion. Rambo

reports a new
on�guration to the
lient using a report

i

output a
tion. Crashes are modeled using

fail a
tions.

Re
on also produ
es outputs of the form new-
on�g(
; k)

i

, whi
h announ
e at lo
ation i that

is the k

th

on�guration identi�er for the obje
t. These outputs are used for
ommuni
ation with

the portion of the Reader-Writer algorithm running at lo
ation i. Re
on announ
es
onsistent

information, only one
on�guration identi�er per index in the
on�guration identi�er sequen
e.

It delivers information about ea
h
on�guration to members of the new
on�guration and of the

immediately pre
eding
on�guration.

Now we de�ne the set of tra
es des
ribing Re
on 's safety properties. Again, these are de�ned in

terms of environment assumptions and and servi
e guarantees. The environment assumptions are

simple well-formedness
onditions,
onsistent with the well-formedness assumptions for Rambo:

with only �nitely many lo
ations, whereas we
onsider in�nitely many lo
ations. However, nothing in Lemma 13.16

or its proof depends on the �niteness of the set of lo
ations, so the result
arries over immediately to our setting. The

other relevant results a

ompanying Lemma 13.16 also
arry over to this setting; in parti
ular, Theorem 13.1, whi
h

asserts that atomi
ity is a safety property, and Lemma 13.10, whi
h asserts that it suÆ
es to
onsider exe
utions in

whi
h all operations
omplete, both
arry over.

7

Input:

join(re
on)

i

, i 2 I

re
on(
;

0

)

i

,
;

0

2 C, i 2 members(
)

fail

i

, i 2 I

Output:

join-a
k(re
on)

i

, i 2 I

re
on-a
k(b)

i

, b 2 fok; nokg; i 2 I

report(
)

i

,
 2 C; i 2 I

new-
on�g(
; k)

i

,
 2 C, k 2 N

+

, i 2 I

Figure 2: Re
on : External signature

� Well-formedness:

{ For every i:

� No join(re
on)

i

or re
on(�; �)

i

event is pre
eded by a fail

i

event.

� At most one join(re
on)

i

event o

urs.

� Any re
on(�; �)

i

event is pre
eded by a join-a
k(re
on)

i

event.

� Any re
on(�; �)

i

event is pre
eded by an -a
k for any pre
eding re
on(�; �)

i

event.

{ For every
, at most one re
on(�;
)

�

event o

urs.

{ For every
,

0

, x, and i, if a re
on(
;

0

)

i

event o

urs, then it is pre
eded by:

� A report(
)

i

event, and

� A join-a
k(re
on)

j

for every j 2 members(

0

).

The safety guarantees provided by the servi
e are as follows:

� Well-formedness: For every i:

{ No join-a
k(re
on)

i

, re
on-a
k(�)

i

, report(�)

i

, or new-
on�g(�; �)

i

event is pre
eded by a

fail

i

event.

{ Any join-a
k(re
on)

i

(resp., re
on-a
k(
)

i

) event has a pre
eding join(re
on)

i

(resp., re
on

i

)

event with no intervening invo
ation or response a
tion for x and i.

� Agreement: If new-
on�g(
; k)

i

and new-
on�g(

0

; k)

j

both o

ur, then
 =

0

. (No disagree-

ment arises about what the k

th

on�guration identi�er is, for any k.)

� Validity: If new-
on�g(
; k)

i

o

urs, then it is pre
eded by a re
on(�;
)

i

0

for some i

0

for whi
h

a mat
hing re
on-a
k(nok)

i

0

does not o

ur. (Any
on�guration identi�er that is announ
ed

was previously requested by someone who did not re
eive a negative a
knowledgment.)

� No dupli
ation: If new-
on�g(
; k)

i

and new-
on�g(
; k

0

)

j

both o

ur, then k = k

0

. (The

same
on�guration identi�er
annot be assigned to two di�erent positions in the identi�er

sequen
e.)

5 Implementation of Rambo Using a Re
on�guration Servi
e

Our implementation of Rambo in
ludes Joiner

x;i

automata for ea
h x and i, whi
h handle joining of

new parti
ipants, and Reader-Writer

x;i

automata, whi
h handle reading, writing, and \installing"

new
on�gurations. The Reader-Writer and Joiner automata have a

ess to asyn
hronous
om-

muni
ation
hannels Channel

x;i;j

. The Reader-Writer automata also intera
t with an arbitrary

implementation of the Re
on servi
e. The ar
hite
ture is depi
ted in Figure 3.

8

Rambo for x at i

�

�

�

�

Reader-Writer

x;i

�

�

�

�

Joiner

x;i

'

&

$

%

Rambo for x at j

�

�

�

�

Reader-Writer

x;j

�

�

�

�

Joiner

x;j

'

&

$

%

�

�

�

�

Channel

x;i;j

�

�

�

�

Channel

x;j;i

�

�

�

�

Re
on

- -

��

?

6

?

6

?

6

?

6

Figure 3: Rambo ar
hite
ture: The diagram depi
ts the Joiner and Reader-Writer automata at i

and j, the Channel automata, and the Re
on servi
e.

In this se
tion we present the Joiner

x;i

, Reader-Writer

x;i

, and Channel

x;i;j

automata. As

before, sin
e we are suppressing expli
it mention of x, we write simply Joiner

i

, Reader-Writer

i

,

and Channel

i;j

, leaving the obje
t x impli
it.

5.1 Joiner automata

The joining proto
ol is implemented by a separate Joiner

i

automaton for ea
h i. The signature,

state and transitions of Joiner

i

all appear in Figure 4.

When Joiner

i

re
eives a join(rambo; J) request from its environment, it
arries out a simple

proto
ol: It sends join messages to the pro
esses in J (with the hope that they are already par-

ti
ipating, and so
an help in the attempt to join). Also, it submits join requests to the lo
al

Reader-Writer and Re
on
omponents and waits for a
knowledgments for these requests. The join

messages that are sent by Joiner automata are not handled by Joiner automata at other lo
ations,

but rather, by Reader-Writer automata, as dis
ussed in the next subse
tion.

5.2 Reader-Writer automata

The heart, and hardest part, of our Rambo implementation is the reader-writer algorithm, whi
h

handles the pro
essing of read and write operations. Ea
h read or write operation is pro
essed

using one or more
on�gurations, whi
h it learns about from the Re
on servi
e. The reader-writer

proto
ol also handles the garbage-
olle
tion of older
on�gurations, whi
h ensures that later read

and write operations need not use them.

The reader-writer proto
ol is implemented by Reader-Writer

i

automaton for all i. The

Reader-Writer

i

omponents intera
t with the Re
on servi
e and
ommuni
ate using point-to-point

asyn
hronous
hannels.

5.2.1 Signature and state

The signature and state of Reader-Writer

i

appear in Figure 5.

The state variables are used as follows. The status variable keeps tra
k of the progress of the

omponent as it joins the proto
ol. When status = idle, Reader-Writer

i

does not respond to any

inputs (ex
ept for join) and does not perform any lo
ally
ontrolled a
tions. When status = joining,

9

Signature:

Input:

join(rambo; J)

i

, J a �nite subset of I � fig

join-a
k(r)

i

, r 2 fre
on; rwg

fail

i

Output:

send(join)

i;j

, j 2 I � fig

join(r)

i

, r 2 fre
on; rwg

join-a
k(rambo)

i

State:

status 2 fidle; joining; a
tiveg, initially idle

hild-status 2 fre
on; rwg ! fidle; joining; a
tiveg, initially everywhere idle

hints � I, initially ;

failed , a Boolean, initially false

Transitions:

Input join(rambo; J)

i

E�e
t:

if :failed then

if status = idle then

status joining

hints J

Output send(join)

i;j

Pre
ondition:

:failed

status = joining

j 2 hints

E�e
t:

none

Output join(r)

i

Pre
ondition:

:failed

status = joining

hild-status(r) = idle

E�e
t:

hild-status(r) joining

Input join-a
k(r)

i

E�e
t:

if :failed then

if status = joining then

hild-status(r) a
tive

Output join-a
k(rambo)

i

Pre
ondition:

:failed

status = joining

8r 2 fre
on; rwg :
hild-status(r) = a
tive

E�e
t:

status a
tive

Input fail

i

E�e
t:

failed true

Figure 4: Joiner

i

Reader-Writer

i

is re
eptive to inputs but still does not perform any lo
ally
ontrolled a
tions.

When status = a
tive, the automaton parti
ipates fully in the proto
ol.

The world variable is used to keep tra
k of all pro
esses that are known to have attempted

to join the system. The value variable
ontains the
urrent value of the lo
al repli
a of x, and

tag holds the asso
iated tag. The
map variable
ontains information about
on�gurations: If

map(k) = ?, it means that Reader-Writer

i

has not yet learned what the k

th

on�guration identi�er

is. If
map(k) =
 2 C, it means that Reader-Writer

i

has learned that the k

th

on�guration

identi�er is
, and it has not yet garbage-
olle
ted it. If
map(k) = �, it means that Reader-Writer

i

has garbage-
olle
ted the k

th

on�guration identi�er. Reader-Writer

i

learns about
on�guration

identi�ers either dire
tly, from the Re
on servi
e, or indire
tly, from other Reader-Writer pro
esses.

The value of
map is always in Usable, that is, � for some �nite (possibly zero length) pre�x of N,

followed by an element of C, followed by elements of C

?

, with only �nitely many total elements of

10

Signature:

Input:

read

i

write(v)

i

, v 2 V

new-
on�g(
; k)

i

,
 2 C; k 2 N

+

re
v(join)

j;i

, j 2 I � fig

re
v(m)

j;i

, m 2M , j 2 I

join(rw)

i

fail

i

Output:

join-a
k(rw)

i

read-a
k(v)

i

, v 2 V

write-a
k

i

send(m)

i;j

, m 2M , j 2 I

Internal:

query-�x

i

prop-�x

i

g
(k)

i

, k 2 N

g
-query-�x(k)

i

, k 2 N

g
-prop-�x(k)

i

, k 2 N

g
-a
k(k)

i

; k 2 N

State:

status 2 fidle; joining; a
tiveg, initially idle

world , a �nite subset of I, initially ;

value 2 V , initially v

0

tag 2 T , initially (0; i

0

)

map 2 CMap, initially
map(0) =

0

,

map(k) = ? for k � 1

pnum1 2 N, initially 0

pnum2 2 I ! N, initially everywhere 0

failed , a Boolean, initially false

op, a re
ord with �elds:

type 2 fread;writeg

phase 2 fidle; query; prop; doneg, initially idle

pnum 2 N

map 2 CMap

a

, a �nite subset of I

value 2 V

g
, a re
ord with �elds:

phase 2 fidle; query; propg, initially idle

pnum 2 N

a

, a �nite subset of I

index 2 N

Figure 5: Reader-Writer

i

: Signature and state

C. When Reader=Writer

i

pro
esses a read or write operation, it uses all the
on�gurations whose

identi�er appear in its
map up to the �rst ?.

The pnum1 variable and pnum2 array are used to implement a handshake that identi�es \re-

ent" messages. Reader-Writer

i

uses pnum1 to
ount the total number of operation \phases" it

has initiated overall, in
luding phases o

urring in read, write, and garbage-
olle
tion operations.

(A \phase" here refers to either a query or propagate phase, as des
ribed below.) For every j,

in
luding j = i, Reader-Writer

i

uses pnum2 (j) to re
ord the largest number of a phase that i has

learned that j has started, via a dire
t message from j to i. Finally, two re
ords, op and g
, are

used to maintain information about a lo
ally-initiated read, write, or garbage-
olle
tion operation

in progress.

5.2.2 Transitions

The transitions are presented in three �gures: Figure 6 presents the transitions pertaining to joining

the proto
ol and failing. Figure 7 presents those pertaining to reading and writing, and Figure 8

presents those pertaining to garbage-
olle
tion.

11

Joining. When a join(rw)

i

input o

urs when status = idle, if i is the obje
t's
reator i

0

, then

status immediately be
omes a
tive, whi
h means that Reader-Writer

i

is ready for full parti
ipation

in the proto
ol. Otherwise, status be
omes joining, whi
h means that Reader-Writer

i

is re
eptive

to inputs but not ready to perform any lo
ally
ontrolled a
tions. In either
ase, Reader-Writer

i

re
ords itself as a member of its own world . From this point on, Reader-Writer

i

also adds to its

world any pro
ess from whi
h it re
eives a join message. (Re
all that these join messages are sent

by Joiner automata, not Reader-Writer automata.)

If status = joining, then status be
omes a
tive when Reader-Writer

i

re
eives a message from

another pro
ess. (The
ode for this appears in the re
v transition de�nition in Figure 7.) At this

point, pro
ess i has a
quired enough information to begin parti
ipating fully. After status be
omes

a
tive, pro
ess i
an perform a join-a
k(rw).

Input join(rw)

i

E�e
t:

if :failed then

if status = idle then

if i = i

0

then

status a
tive

else

status joining

world world [fig

Input re
v(join)

j;i

E�e
t:

if :failed then

if status 6= idle then

world world [fjg

Output join-a
k(rw)

i

Pre
ondition:

:failed

status = a
tive

E�e
t:

none

Input fail

i

E�e
t:

failed true

Figure 6: Reader-Writer

i

: Join-related and failure transitions

Information propagation. Information is propagated between Reader-Writer pro
esses in the

ba
kground, via point-to-point
hannels that are a

essed using send and re
v a
tions. The al-

gorithm uses only one kind of message, whi
h
ontains a tuple in
luding the sender's world , its

latest known value and tag , its
map, and two phase numbers|the
urrent phase number of the

sender, pnum1 , and the latest known phase number of the re
eiver, from the pnum2 array. These

ba
kground messages may be sent at any time, on
e the sender is a
tive. They are sent only to

pro
esses in the sender's world set, that is, pro
esses that the sender knows have tried to join the

system at some point.

When Reader-Writer

i

re
eives a message, it sets its status to a
tive, if it has not already done

so. It adds in
oming information about the world, in W , to its lo
al world set. It
ompares

the in
oming tag t to its own tag . It t is stri
tly greater, it represents a more re
ent version of

the obje
t; in this
ase, Reader-Writer

i

sets its tag to t and its value to the in
oming value v.

Reader-Writer

i

also updates its
map with the information in the in
oming
on�guration map,

m, using the update operator de�ned in Se
tion 2. That is, for ea
h k, if
map(k) = ? and
m(k)

is a
on�guration identi�er
 2 C, then pro
ess i sets its
map(k) to
. Also, if
map(k) 2 C

?

,

and
m(k) = �, indi
ating that the sender knows that
on�guration k has already been garbage-

olle
ted, then Reader-Writer

i

sets its
map(k) to �. Reader-Writer

i

also updates its pnum2 (j)

omponent for the sender j to re
e
t new information about the phase number of the sender, whi
h

12

appears in the pns
omponents of the message.

If Reader-Writer

i

is
urrently
ondu
ting a phase of a read, write, or garbage-
olle
tion oper-

ation, it veri�es that the in
oming message is \re
ent", in the sense that the sender j sent it after

j re
eived a message from i that was sent after i began the
urrent phase. Reader-Writer

i

uses

the phase numbers to perform this
he
k: if the in
oming phase number pnr is at least as large as

the
urrent operation phase number (op:pnum or g
:pnum), then pro
ess i knows that the message

is re
ent. If the message is re
ent, then it is used to update the re
ords for
urrent read, write

or garbage-
olle
tion operations. For more information about how this is done and why, see the

des
riptions of these operations below.

Read and write operations. A read or write operation is performed in two phases: a query

phase and a propagation phase. In ea
h phase, Reader-Writer

i

obtains re
ent value, tag , and

map information from \enough" pro
esses. This information is obtained by sending and re
eiving

messages in the ba
kground, as des
ribed above.

When Reader-Writer

i

starts either a query phase or a propagation phase of a read or write,

it sets op:
map to a CMap whose
on�gurations are intended to be used to
ondu
t the phase.

Spe
i�
ally, Reader-Writer

i

hooses the CMap trun
ate(
map), whi
h is de�ned to in
lude all the

on�guration identi�ers in the lo
al
map up to the �rst ?. When a new CMap,
m , is re
eived

during the phase, op:
map is \extended" by adding all newly-dis
overed
on�guration identi�ers,

up to the �rst ? in
m. If adding these new
on�guration identi�ers does not
reate a \gap", that

is, if the extended op:
map is in Trun
ated , then the phase
ontinues using the extended op:
map .

On the other hand, if adding these new
on�guration identi�ers does
reate a gap (that is, the result

is not in Trun
ated), then Reader-Writer

i

an infer that it has been using out-of-date
on�guration

identi�ers. In this
ase, it restarts the phase using the best
urrently known CMap, information,

whi
h is obtained by
omputing trun
ate(
map) for the latest lo
al
map.

In between restarts, while pro
ess i is engaged in a single attempt to
omplete a phase, it

never removes a
on�guration identi�er from op:
map , that is, the set of
on�guration identi�ers

being used for the phase is only in
reased. In parti
ular, if pro
ess i learns during a phase that

a
on�guration identi�er in op:
map(k) has been garbage-
olle
ted, it does not remove it from

op:
map , but
ontinues to in
lude it in
ondu
ting the phase.

The query phase of a read or write operation terminates when a query �xed point is rea
hed.

This happens when Reader-Writer

i

determines that it has re
eived re
ent responses from some

read-quorum of ea
h
on�guration in its
urrent op:
map. Let t denote pro
ess i's tag at the query

�xed point. Then we know that t is at least as great as the tag value that ea
h pro
ess in ea
h of

these read-quorums had at the start of the query phase.

If the operation is a read operation, then pro
ess i determines at this point that its
urrent value

is the value to be returned to its
lient. However, before returning this value, pro
ess i embarks

upon the propagation phase of the read operation, whose purpose is to make sure that \enough"

Reader-Writer pro
esses have a
quired tags that are at least t (and asso
iated values). Again,

the information is propagated in the ba
kground, and op:
map is managed as des
ribed above.

The propagation phase ends on
e a propagation �xed point is rea
hed, when Reader-Writer

i

has

re
eived re
ent responses from some write-quorum of ea
h
on�guration in the
urrent op:
map .

When this o

urs, we know that the tag of ea
h pro
ess in ea
h of these write-quorums is at least

t.

Pro
essing for a write operation starting with a write(v)

i

event is similar to that for a read

13

Output send(hW;v; t;
m; pns; pnri)

i;j

Pre
ondition:

:failed

status = a
tive

j 2 world

hW; v; t;
m; pns; pnri =

hworld ; value; tag ;
map; pnum1 ; pnum2 (j)i

E�e
t:

none

Input re
v(hW; v; t;
m; pns; pnri)

j;i

E�e
t:

if :failed then

if status 6= idle then

status a
tive

world world [W

if t > tag then (value ; tag) (v; t)

map update(
map;
m)

pnum2 (j) max(pnum2 (j); pns)

if op:phase 2 fquery; propg and pnr � op:pnum then

op:
map extend (op:
map; trun
ate(
m))

if op:
map 2 Trun
ated then

op:a

 op:a

 [fjg

else

op:a

 ;

op:
map trun
ate(
map)

if g
:phase 2 fquery; propg and pnr � g
:pnum then

g
:a

 g
:a

 [fjg

Input new-
on�g(
; k)

i

E�e
t:

if :failed then

if status 6= idle then

map(k) update(
map(k);
)

Input read

i

E�e
t:

if :failed then

if status 6= idle then

pnum1 pnum1 + 1

hop:pnum; op:type ; op:phase ; op:
map; op:a

i

 hpnum1 ; read; query; trun
ate(
map); ;i

Input write(v)

i

E�e
t:

if :failed then

if status 6= idle then

pnum1 pnum1 + 1

hop:pnum; op:type ; op:phase ; op:
map; op:a

; op:valuei

 hpnum1 ;write; query; trun
ate(
map); ;; vi

Internal query-�x

i

Pre
ondition:

:failed

status = a
tive

op:type 2 fread;writeg

op:phase = query

8k 2 N;
 2 C : (op:
map(k) =
)

) (9R 2 read-quorums(
) : R � op:a

)

E�e
t:

if op:type = read then

op:value value

else

value op:value

tag htag :seq + 1; ii

pnum1 pnum1 + 1

op:pnum pnum1

op:phase prop

op:
map trun
ate(
map)

op:a

 ;

Internal prop-�x

i

Pre
ondition:

:failed

status = a
tive

op:type 2 fread;writeg

op:phase = prop

8k 2 N;
 2 C : (op:
map(k) =
)

) (9W 2 write-quorums(
) : W � op:a

)

E�e
t:

op:phase = done

Output read-a
k(v)

i

Pre
ondition:

:failed

status = a
tive

op:type = read

op:phase = done

v = op:value

E�e
t:

op:phase = idle

Output write-a
k

i

Pre
ondition:

:failed

status = a
tive

op:type = write

op:phase = done

E�e
t:

op:phase = idle

Figure 7: Reader-Writer

i

: Read/write transitions

14

operation. The query phase is
ondu
ted exa
tly as for a read, but pro
essing after the query �xed

point is di�erent: Suppose t, pro
ess i's tag at the query �xed point, is of the form (n; j). Then

Reader-Writer

i

de�nes the tag for its write operation to be the pair (n+1; i). Reader-Writer

i

sets

its lo
al tag to (n+ 1; i) and its value to v, the value it is
urrently writing. Then it performs its

propagation phase. Now the purpose of the propagation phase is to ensure that \enough" pro
esses

a
quire tags that are at least as great as the new tag (n+1; i). The propagation phase is
ondu
ted

exa
tly as for a read operation: Information is propagated in the ba
kground, and op:
map is

managed as des
ribed above. The propagation phase is over when the same propagation �xed

point
ondition is satis�ed as for the read operation.

The
ommuni
ation strategy we use for reads and writes is di�erent from what is done in other

similar algorithms (e.g., [7, 18, 34℄). Typi
ally, pro
ess i �rst determines a tag and value to prop-

agate, and then propagates it dire
tly to appropriate quorums. In our algorithm,
ommuni
ation

o

urs in the ba
kground, and pro
ess i just
he
ks a �xed point
ondition. The �xed point
on-

dition ensures that enough pro
esses have re
eived re
ent messages, whi
h implies that they must

have tags at least as large as the one that pro
ess i is trying to propagate.

New
on�gurations and garbage
olle
tion. When Reader-Writer

i

learns about a new
on-

�guration identi�er via a new-
on�g input a
tion, it simply re
ords it in its
map. From time

to time,
on�guration identi�ers get garbage-
olle
ted at i, in numeri
al order. The
on�gura-

tion identi�ers used in performing query and propagation phases of reads and writes are those in

trun
ate(
map), that is, all
on�gurations that have not been garbage-
olle
ted and that appear

before the �rst ?.

There are two situations in whi
h Reader-Writer

i

may garbage-
olle
t a
on�guration identi�er,

say, the one in
map(k). First, Reader-Writer

i

an garbage-
olle
t
map(k) if it learns that another

pro
ess has already garbage-
olle
ted it. This happens when a re
v

�;i

event o

urs in whi
h
m(k) =

�. The se
ond, more interesting situation is where Reader-Writer

i

a
quires enough information to

garbage-
olle
t
on�guration k on its own. Reader-Writer

i

a
quires this information by
arrying

out a garbage-
olle
tion operation, whi
h is a two-phase operation with a stru
ture similar to the

read and write operations. Reader-Writer

i

may initiate a garbage-
olle
tion of
on�guration k when

its
map(k) and
map(k+1) are both in C, and when any
on�gurations with indi
es smaller than

k�1 have already been garbage-
olle
ted. Garbage-
olle
tion operations may pro
eed
on
urrently

with read or write operations at the same node.

In the query phase of a garbage-
olle
tion operation, Reader-Writer

i

ommuni
ates with both

a read-quorum and a write-quorum of
on�guration k. The query phase a

omplishes two tasks:

First, Reader-Writer

i

ensures that
ertain information is
onveyed to the pro
esses in a read-

quorum and a write-quorum of k. In parti
ular, all these pro
esses learn about both
on�gurations

k and k + 1, and also learn that all
on�gurations smaller than k have been garbage-
olle
ted.

We refer loosely to the fa
t that they know about
on�guration k + 1 as the \forwarding pointer"

ondition| if su
h a pro
ess j, is
onta
ted later by someone who is trying to a

ess a quorum of

on�guration k, j is able to tell that pro
ess about the existen
e of
on�guration k + 1. Se
ond,

in the query phase, Reader-Writer

i

olle
ts tag and value information from the read-quorum and

write-quorum that it a

esses. This ensures that, by the end of the query phase, Reader-Writer

i

's

tag is equal to some t that is at least as great as the tag that ea
h of the quorum members had when

it sent a message to Reader-Writer

i

for the query phase. In the propagation phase, Reader-Writer

i

ensures that all the pro
esses in a write-quorum of the new
on�guration, k+1, have a
quired tags

15

that are at least t.

Note that, unlike a read or write operation, a garbage-
olle
tion for k uses only two

on�gurations|k in the query phase and k + 1 in the propagation phase.

At any time when Reader-Writer

i

is
arrying out a garbage-
olle
tion operation for
on�g-

uration k, it may dis
over that someone else has already garbage-
olle
ted k; it learns this by

observing that
map(k) = �. When this happens, Reader-Writer

i

may simply terminate its

garbage-
olle
tion operation.

Internal g
(k)

i

Pre
ondition:

:failed

status = a
tive

g
:phase = idle

map(k) 2 C

map(k + 1) 2 C

k = 0 or
map(k � 1) = �

E�e
t:

pnum1 pnum1 + 1

g
:pnum pnum1

g
:phase query

g
:a

 ;

g
:index k

Internal g
-query-�x(k)

i

Pre
ondition:

:failed

status = a
tive

g
:phase = query

g
:index = k

9R 2 read-quorums(
map(k)) :

9W 2 write-quorums(
map(k)) : R [W � g
:a

E�e
t:

pnum1 pnum1 + 1

g
:pnum pnum1

g
:phase prop

g
:a

 ;

Internal g
-prop-�x(k)

i

Pre
ondition:

:failed

status = a
tive

g
:phase = prop

g
:index = k

9W 2 write-quorums(
map(k + 1)) :W � g
:a

E�e
t:

map(k) �

Internal g
-a
k(k)

i

Pre
ondition:

:failed

status = a
tive

g
:index = k

map(k) = �

E�e
t:

g
:phase = idle

Figure 8: Reader-Writer

i

: Garbage-
olle
tion transitions

5.3 Channel automata

We assume point to point
hannels Channel

i;j

, one for ea
h i; j 2 I (in
luding the
ase where

i = j). Channel

i;j

is a

essed using send(m)

i;j

input a
tions, by whi
h a sender at lo
ation i

submits message m to the
hannel, and re
v(m)

i;j

output a
tions, by whi
h a re
eiver at lo
ation j

re
eives m. We assume that message m is an element of the message alphabetM , whi
h we assume

in
ludes all the messages that are used by the proto
ol.

Channels may lose and reorder messages, but
annot manufa
ture new messages or dupli
ate

messages (the latter restri
tion is used for
onvenien
e, in reasoning about laten
y). Formally, we

model the
hannel as a multiset. A send(m)

i;j

adds one
opy of the message m to the multiset, and

a re
v(m)

i;j

removes one
opy of m. A lose a
tion allows any sub-multiset of messages to be lost.

16

5.4 The
omplete algorithm

The
omplete implementation S is the
omposition of all the automata de�ned above|the Joiner

i

and Reader-Writer

i

automata for all i, all the
hannels, and any automaton whose tra
es satisfy

the Re
on safety spe
i�
ation|with all the a
tions that are not external a
tions of Rambo hidden.

6 Safety Proof

In this se
tion, we show that our implementation S satis�es the safety guarantees of Rambo, as

given in Se
tion 3, assuming the environment safety assumptions. That is, we prove the following

theorem:

Theorem 6.1 Let � be a tra
e of the system S. If � satisfy the Rambo environment assumptions,

then � satis�es the Rambo servi
e guarantees (well-formedness and atomi
ity).

This safety theorem does not depend on any assumptions about timing and failures. In
ontrast,

our performan
e results, in Se
tions 8 and 9, do depend on su
h assumptions.

The proof of well-formedness is straightforward based on inspe
tion of the
ode, so the rest of

this se
tion is devoted to the proof of the atomi
ity property. To prove atomi
ity, we
onsider a

tra
e � of S that satis�es the Rambo environment assumptions and in whi
h all read and write

operations
omplete. We show the existen
e of a partial order on the operations in � satisfying the

onditions listed in the atomi
ity de�nition in Se
tion 3.

The proof is
arried out in several stages. First, in Se
tion 6.1, we establish some notational

onventions and de�ne some useful history variables. In Se
tion 6.2, we establish some simple

invariants involving
on�guration maps. Then in Se
tion 6.3, we present results that say what

is a
hieved by the two phases of read, write, and garbage-
olle
tion operations. The next three

subse
tions des
ribe information propagation between operations: Se
tion 6.4 des
ribes the rela-

tionship between garbage-
olle
tion operations, Se
tion 6.5 des
ribes the relationship between a

garbage-
olle
tion operation and a read or write operation, and Se
tion 6.6 des
ribes the relation-

ship between two read or write operations. Se
tion 6.6
ulminates in Lemma 6.14, whi
h says that

tags are monotoni
 with respe
t to non-
on
urrent read or write operations. Finally, Se
tion 6.7

uses the tags to de�ne a partial order on operations and veri�es the four properties required for

atomi
ity.

Throughout Se
tion 6, we
onsider exe
utions of S whose tra
es satisfy the Rambo environment

assumptions. We
all these good exe
utions. In parti
ular, an \invariant" in this se
tion is a

statement that is true of all states that are rea
hable in good exe
utions of S.

6.1 Notational
onventions

Before diving into the proof, we introdu
e some notational
onventions and add
ertain history

variables to the global state of the system S.

An operation
an be of type read, write, or garbage-
olle
tion. Operations are uniquely identi-

�ed by their starting events, that is, a read operation is de�ned by its read

i

event, a write operation

by its write(v)

i

event, and a garbage-
olle
tion operation by its g
(k)

i

event.

3

We introdu
e the following history variables:

3

An event is an o

urren
e of an a
tion in a sequen
e, formally, a pair (a; n), where a is an a
tion and n is an

index at whi
h a o

urs in that sequen
e.

17

� in-transit , a set of messages, initially ;.

A message is added to the set when it is sent by any Reader-Writer

i

to any Reader-Writer

j

.

No message is ever removed from this set.

� For every k 2 N:

{
(k) 2 C, initially unde�ned.

This is set when the �rst new-
on�g(
; k)

i

o

urs, for some
 and i. It is set to the
 that

appears as the �rst argument of this a
tion.

� For every operation �:

{ tag(�) 2 T , initially unde�ned.

This is set to the value of tag at the pro
ess running �, at the point right after �'s

query-�x or g
-query-�x event o

urs. If � is a read or garbage-
olle
tion operation, this

is the highest tag that it en
ounters during the query phase. If � is a write operation,

this is the new tag that is sele
ted for performing the write.

� For every read or write operation �:

{ query-
map(�), a CMap, initially unde�ned.

This is set in the query-�x step of �, to the value of op:
map in the pre-state.

{ R(�; k), for k 2 N, a subset of I, initially unde�ned.

This is set in the query-�x step of �, for ea
h k su
h that query-
map(�)(k) 2 C. It is

set to an arbitrary R 2 read-quorums(
(k)) su
h that R � op:a

 in the pre-state.

{ prop-
map(�), a CMap, initially unde�ned.

This is set in the prop-�x step of �, to the value of op:
map in the pre-state.

{ W (�; k), for k 2 N, a subset of I, initially unde�ned.

This is set in the prop-�x step of �, for ea
h k su
h that prop-
map(�)(k) 2 C. It is set

to an arbitrary W 2 write-quorums(
(k)) su
h that W � op:a

 in the pre-state.

� For every garbage-
olle
tion operation
 for k:

{ R(
), a subset of I, initially unde�ned.

This is set in the g
-query-�x step of
, to an arbitrary R 2 read-quorums(
(k)), su
h

that R � g
:a

 in the pre-state.

{ W

1

(
), a subset of I, initially unde�ned.

This is set in the g
-query-�x step of
, to an arbitrary W 2 write-quorums(
(k)) su
h

that W � g
:a

 in the pre-state.

{ W

2

(
), a subset of I, initially unde�ned.

This is set in the g
-prop-�x step of
, to an arbitraryW 2 write-quorums(
(k+1)) su
h

that W � g
:a

 in the pre-state.

In any good exe
ution �, we de�ne the following events (more pre
isely, we give additional

names to some existing events):

� For every read or write operation �:

18

{ query-phase-start(�), initially unde�ned.

This is de�ned in the query-�x step of �, to be the unique earlier event at whi
h the

olle
tion of query results was started and not subsequently restarted (that is, op:a

is set to ; in the e�e
ts of the
orresponding step, and it is not the
ase that op:a

 is

again reset to ; following that event and prior to the query-�x step). This is either a

read, write, or re
v event.

{ prop-phase-start(�), initially unde�ned.

This is de�ned in the prop-�x step of �, to be the unique earlier event at whi
h the

olle
tion of propagation results was started and not subsequently restarted. This is

either a query-�x or re
v event.

We de�ne a property of garbage-
olle
tion events in an exe
ution �:

� Initial garbage-
olle
tion events: A g
-prop-�x(k)

i

event is initial if it is the �rst g
-prop-�x(k)

�

event in �. A garbage-
olle
tion operation is initial if its g
-prop-�x event is initial.

6.2 Con�guration map invariants

In this subse
tion, we give invariants des
ribing the kinds of
on�guration maps that may appear

in various pla
es in the state of S.

The �rst invariant (re
all this means a property of all states that arise in good exe
utions of

S) des
ribes some properties of
map

i

that hold while Reader-Writer

i

is
ondu
ting a garbage-

olle
tion operation:

Invariant 1 If g
:phase

i

6= idle and g
:index

i

= k then:

1.
map(k)

i

2 C [f�g.

2.
map(k + 1)

i

2 C [f�g.

3. k = 0 or
map(k � 1) = �.

Proof. By the pre
ondition of g
(k)

i

and monotoni
ity of all the
hanges to
map

i

. Spe
i�
ally,

for this invariant, if for some h we have
map(h) 2 C in the pre-state, then
map(h) 2 C [f�g in

the post-state (by
ode inspe
tion). �

We next pro
eed to des
ribe the patterns of C, ?, and � values that may o

ur in
on�guration

maps in various pla
es in the system state.

Invariant 2 Let
m be a CMap that appears as one of the following:

1. The
m
omponent of some message in in-transit .

2.
map

i

for any i 2 I.

3. op:
map

i

for some i 2 I for whi
h op:phase 6= idle.

4. query-
map(�) or prop-
map(�) for any operation �.

Then
m 2 Usable.

19

In the following proof and elsewhere, we use dot notation to indi
ate
omponents of a state, for

example, s:
map

i

indi
ates the value of
map

i

in state s.

Proof. By indu
tion on the length of a �nite good exe
ution.

Base: Part 1 holds be
ause initially, in-transit is empty. Part 2 holds be
ause initially, for

every i,
map(0)

i

=

0

and
map(k)

i

= ?; the resulting CMap is in Usable. Part 3 holds va
uously,

be
ause in the initial state, all op:phase values are idle. Part 4 also holds va
uously, be
ause in the

initial state, all query-
map and prop-
map variables are unde�ned.

Indu
tive step: Let s and s

0

be the states before and after the new event, respe
tively. We
onsider

Parts 1-4 one by one.

For Part 1, the interesting
ase is a send

i

event that puts a message
ontaining
m in in-transit .

The pre
ondition on send a
tion implies that
m is set to s:
map

i

. The indu
tive hypothesis, Part

2, implies that s:
map

i

2 Usable, whi
h suÆ
es.

For Part 2, �x i. The interesting
ases are those that may
hange
map

i

, namely, new-
on�g

i

, re
v

i

for a gossip (non-join) message, and g
-prop-�x

i

.

1. new-
on�g(
; �)

i

.

By indu
tive hypothesis, s:
map

i

2 Usable. The only
hange this
an make is
hanging a ?

to
. Then Lemma 2.2, Part 2, implies that s

0

:
map

i

2 Usable.

2. re
v(h�; �;
m ; �; �i)

i

.

By indu
tive hypothesis,
m 2 Usable and s:
map

i

2 Usable. The step sets s

0

:
map

i

to

update(s:
map

i

;
m). Lemma 2.2, Part 1, then implies that s

0

:
map

i

2 Usable.

3. g
-prop-�x(k)

i

.

This sets
map(k)

i

to �. If s:
map(k)

i

= �, then this step
auses no
hange and we are done.

So suppose that this is not the
ase; then Invariant 1, Part 1, implies that s:
map(k)

i

2 C and

Invariant 1, Part 2, implies that s:
map(k+1)

i

2 C[f�g. Sin
e s:
map

i

2 Usable, this implies

that s:
map(k+1)

i

2 C. Invariant 1, Part 3, implies that either k = 0 or s:
map(k� 1) = �.

Sin
e s:
map

i

2 Usable, under the
onditions just des
ribed, s:
map(`)

i

= � if and only if

` < k. Then
hanging
map(k)

i

to � preserves usability.

For Part 3, the interesting a
tions to
onsider are those that modify op:
map , namely, read

i

, write

i

,

re
v

i

, and query-�x

i

.

1. read

i

, write

i

, or query-�x

i

.

By indu
tive hypothesis, s:
map

i

2 Usable. The new step sets s

0

:op:
map

i

to

trun
ate(s:
map

i

); sin
e s:
map

i

2 Usable, Lemma 2.2, Part 4, implies that this is also

usable.

2. re
v(h�; �;
m ; �; �i)

i

.

This step may alter op:
map

i

only if s:op:phase 2 fquery; propg, and then in only two ways:

by setting it either to extend(s:op:
map

i

; trun
ate(
m)) or to trun
ate(update(s:
map

i

;
m)).

The indu
tive hypothesis implies that s:op:
map

i

,
map

i

, and
m are all in Usable.

Lemma 2.2 implies that trun
ate , extend , and update all preserve usability. Therefore,

s

0

:op:
map

i

2 Usable.

20

For Part 4, the a
tions to
onsider are query-�x

i

and prop-�x

i

.

1. query-�x

i

.

This sets s

0

:query-
map

i

to the value of s:op:
map

i

. Sin
e by indu
tive hypothesis that is

usable, so is s

0

:query-
map

i

.

2. prop-�x

i

.

This sets s

0

:prop-
map

i

to the value of s:op:
map

i

. Sin
e by indu
tive hypothesis that is

usable, so is s

0

:prop-
map

i

.

�

We now strengthen Invariant 2 to say more about the form of the CMaps that are used for read

and write operations:

Invariant 3 Let
m be a CMap that appears as op:
map

i

for some i 2 I for whi
h op:phase

i

6= idle,

or as query-
map(�) or prop-
map(�) for any operation �. Then:

1.
m 2 Trun
ated .

2.
m
onsists of �nitely many � entries followed by �nitely many C entries followed by an

in�nite number of ? entries.

Proof. We prove that the desired properties hold for a
m that is op:
map

i

. The same properties

for query-
map

i

and prop-
map

i

follow by the way they are de�ned, from op:
map

i

.

To prove Part 1 we pro
eed by indu
tion. In the initial state, op:phase

i

= idle, whi
h makes

the
laim va
uously true. For the indu
tive step we
onsider all a
tions that alter op:
map

i

:

1. read

i

, write

i

, or query-�x

i

.

These set op:
map

i

to trun
ate(
map

i

), whi
h is ne
essarily in Trun
ated .

2. re
v

i

.

This �rst sets op:
map

i

to a preliminary value and then tests if the result is in Trun
ated .

If it is, we are done. If not, then this step resets op:
map

i

to trun
ate(
map

i

), whi
h is in

Trun
ated .

To see Part 2, note that
m 2 Usable by Invariant 2. The fa
t that
m 2 Trun
ated then

follows from the de�nition of Usable and Part 1. �

6.3 Phase guarantees

In this se
tion, we present results saying what is a
hieved by the individual operation phases. We

give four lemmas, des
ribing the messages that must be sent and re
eived and the information
ow

that must o

ur during the two phases of garbage-
olle
tion and during the two phases of read and

write operations.

Note that these lemmas treat the
ase where j = i uniformly with the
ase where j 6= i. This

is be
ause, in the Reader-Writer algorithm,
ommuni
ation from a lo
ation to itself is treated

uniformly with
ommuni
ation between two di�erent lo
ations. We �rst
onsider the query phase

of garbage-
olle
tion. Lemma 6.2 says that, in the query phase of a garbage-
olle
tion of k, every

member j of the designated read-quorum and designated write-quorum learns about all
on�gura-

tions up to and in
luding the k+1

st

. Moreover, the tag assigned to the garbage-
olle
tion operation

is at least as great as the one sent by any su
h j.

21

Lemma 6.2 Suppose that a g
-query-�x(k)

i

event for a garbage-
olle
tion operation
 o

urs in �.

Suppose j 2 R(
) [W

1

(
).

Then there exist messages m from i to j and m

0

from j to i su
h that:

1. m is sent after the g
(k)

i

event of
.

2. m

0

is sent after j re
eives m.

3. m

0

is re
eived before the g
-query-�x(k)

i

event of
.

4. In any state after j re
eives m,
map(`)

j

6= ? for all ` � k + 1.

5. tag(
) is at least as great as the value of tag

j

in any state before j sends message m

0

.

Proof. The phase number dis
ipline implies the existen
e of the
laimed messages m and m

0

.

For Part 4, the pre
ondition of g
(k) and the fa
t that
map

i

2 Usable (by Invariant 2) together

imply that, when the g
(k)

i

event of
 o

urs,
map(`)

i

6= ? for all ` � k + 1. Therefore, j sets

map(`)

j

6= ? for all ` � k + 1 when it re
eives m. Monotoni
ity of
map

j

ensures that this

property persists forever.

For Part 5, let t be the value of tag

j

in any state before j sends message m

0

. Let t

0

be the value

of tag

j

in the state just before j sends m

0

, by monotoni
ity. Then t � t

0

, by monotoni
ity. The

tag
omponent of m

0

is equal to t

0

, by the
ode for send. Sin
e i re
eives this message before the

g
-query-�x(k), it follows that tag(
) is set by i to a value � t. �

Next, we
onsider the propagation phase of garbage-
olle
tion. Lemma 6.3 says that, in the

propagation phase of a garbage-
olle
tion, every member j of the designated write-quorum a
quires

a tag that is at least as great as the tag of the garbage-
olle
tion operation.

Lemma 6.3 Suppose that a g
-prop-�x(k)

i

event for a garbage-
olle
tion operation
 o

urs in �.

Suppose that j 2W

2

(
).

Then there exist messages m from i to j and m

0

from j to i su
h that:

1. m is sent after the g
-query-�x(k)

i

event of
.

2. m

0

is sent after j re
eives m.

3. m

0

is re
eived before the g
-prop-�x(k)

i

event of
.

4. In any state after j re
eives m, tag

j

� tag(
).

Proof. The phase number dis
ipline implies the existen
e of the
laimed messages m and m

0

.

For Part 4, when j re
eives m, it sets tag

j

to be � tag(
). Monotoni
ity of tag

j

ensures that

this property persists in later states. �

Next, we
onsider the query phase of read and write operations. Lemma 6.4 says that the tag

assigned to a read or write operation is at least as great as the one sent in the query phase by

any member j of the designated read-quorum; if the operation is a write, then the tag is stri
tly

greater. Also, the read or write operation learns about all
on�gurations known by any su
h j by

the time j sent its message for the query phase.

22

Lemma 6.4 Suppose that a query-�x

i

event for a read or write operation � o

urs in �. Let

k; k

0

2 N. Suppose query-
map(�)(k) 2 C and j 2 R(�; k).

Then there exist messages m from i to j and m

0

from j to i su
h that:

1. m is sent after the query-phase-start(�) event.

2. m

0

is sent after j re
eives m.

3. m

0

is re
eived before the query-�x event of �.

4. If t is the value of tag

j

in any state before j sends m

0

, then:

(a) tag(�) � t.

(b) If � is a write operation then tag(�) > t.

5. If
map(`)

j

6= ? for all ` � k

0

in any state before j sends m

0

, then query-
map(�)(`) 2 C for

some ` � k

0

.

Proof. The phase number dis
ipline implies the existen
e of the
laimed messages m and m

0

.

For Part 4, the tag
omponent of message m

0

is � t, so i re
eives a tag that is � t during the

query phase of �. Therefore, tag(�) � t. Also, if � is a write, the e�e
ts of the query-�x imply that

tag(�) > t.

Finally, we show Part 5. In the
m
omponent of message m

0

,
m(`) 6= ? for all ` � k

0

.

Therefore, trun
ate(
m)(`) =
m(`) for all ` � k

0

, so trun
ate(
m)(`) 6= ? for all ` � k

0

.

Let
m

0

be the
on�guration map extend(op:
map

i

; trun
ate(
m))
omputed by i during the

e�e
ts of the re
v event for m

0

. Sin
e i does not reset op:a

 to ; in this step, by de�nition of the

query-phase-start event, it follows that
m

0

2 Trun
ated , and
m

0

is the value of op:
map

i

just after

the re
v step.

Fix `, 0 � ` � k

0

. We
laim that
m

0

(`) 6= ?. We
onsider
ases:

1. op:
map(`)

i

6= ? just before the re
v step.

Then the de�nition of extend implies that
m

0

(`) 6= ?, as needed.

2. op:
map(`)

i

= ? just before the re
v step and trun
ate(
m)(`) 2 C.

Then the de�nition of extend implies that
m

0

(`) 2 C, whi
h implies that
m

0

(`) 6= ?, as

needed.

3. op:
map(`)

i

= ? just before the re
v step and trun
ate(
m)(`) =2 C.

Sin
e trun
ate(
m)(`) 6= ?, it follows that trun
ate(
m)(`) = �. Sin
e trun
ate(
m)(`) = �

and trun
ate(
m) 2 Usable, it follows that, for some `

0

> `, trun
ate(
m)(`

0

) 2 C.

By the
ase assumption, op:
map(`)

i

= ? just before the re
v step. Sin
e, by Invariant 3,

op:
map

i

2 Trun
ated , it follows that op:
map(`

0

)

i

= ? before the re
v step.

Then by de�nition of extend , we have that
m

0

(`) = ? while
m

0

(`

0

) 2 C. This implies that

m

0

=2 Trun
ated , whi
h
ontradi
ts the fa
t, already shown, that
m

0

=2 Trun
ated , So this

ase
annot arise.

23

Sin
e this argument holds for all `, 0 � ` � k

0

, it follows that
m

0

(`) 6= ? for all ` � k

0

. Sin
e

m

0

(`) 6= ? for all ` � k

0

, Invariant 2 implies that
m

0

2 Usable, whi
h implies by de�nition of

Usable that
m

0

(`) 2 C for some ` � k

0

. That is, op:
map

i

(`) 2 C for some ` � k

0

immediately

after the re
v step. This implies that query-
map(�)(`) 2 C for some ` � k

0

, as needed. �

Finally, we
onsider the propagation phase of read and write operations. Lemma 6.5 says that,

in the propagation phase of a read or write, every member j of the designated write-quorum a
quires

a tag that is at least as great as the tag of the read or write operation. Also, the read or write

operation learns about all
on�gurations known by any su
h j by the time j sent its message for

the propagation phase.

Lemma 6.5 Suppose that a prop-�x

i

event for a read or write operation � o

urs in �. Suppose

prop-
map(�)(k) 2 C and j 2W (�; k).

Then there exist messages m from i to j and m

0

from j to i su
h that:

1. m is sent after the prop-phase-start(�) event.

2. m

0

is sent after j re
eives m.

3. m

0

is re
eived before the prop-�x event of �.

4. In any state after j re
eives m, tag

j

� tag(�).

5. If
map(`)

j

6= ? for all ` � k

0

in any state before j sends m

0

, then prop-
map(�)(`) 2 C for

some ` � k

0

.

Proof. The phase number dis
ipline implies the existen
e of the
laimed messages m and m

0

.

For Part 4, let m:tag be the tag �eld of message m. Sin
e m is sent after the prop-phase-start

event, whi
h is not earlier than the query-�x, it must be that m:tag � tag(�). Therefore, by the

e�e
ts of the re
v, just after j re
eives m, tag

j

� m:tag � tag(�). Then monotoni
ity of tag

j

implies that tag

j

� tag(�) in any state after j re
eives m.

For Part 5, the proof is analogous to the proof of Part 5 of Lemma 6.4. In fa
t, it is identi
al

ex
ept for the �nal
on
lusion, whi
h now says that prop-
map(�)(`) 2 C for some ` � k

0

. �

6.4 Behavior of garbage-
olle
tion

In this subse
tion, we present lemmas des
ribing information
ow between garbage-
olle
tion oper-

ations. The �rst lemma says that initial g
-prop-�x(k) events for su

essive k o

ur in order. In fa
t,

for ea
h k, the initial g
-prop-�x(k) event pre
edes any attempt by any pro
ess to garbage-
olle
t

k + 1. This means that garbage-
olle
tion obeys a simple, sequential dis
ipline.

Lemma 6.6 1. If any g
(`)

i

event o

urs in � and 0 � k < `, then some g
-prop-�x(k) event

o

urs in �, and the initial g
-prop-�x(k) event pre
edes the given g
(`)

i

event.

2. If any g
-prop-�x(`) event o

urs in � and 0 � k < `, then some g
-prop-�x(k) event o

urs

in �, and the initial g
-prop-�x(k) event pre
edes the given g
-prop-�x(`) event.

24

Proof. For Part 1, note that the pre
ondition of g
(`)

i

implies that
map(`� 1)

i

= � in the pre-

state. Sin
e
map

i

2 Usable, it must be that
map(k)

i

= � for all k, 0 � k < `, in the pre-state.

This implies that prior to the g
(`)

i

, some g
-prop-�x(k) event o

urs in � for ea
h k, 0 � k < `.

Part 2 follows from Part 1 and the behavior of garbage-
olle
tion operations. �

The sequential nature of garbage-
olle
tion has a ni
e
onsequen
e for propagation of tags:

Consider a parti
ular good exe
ution �. For any k 2 N, de�ne

k

to be the initial garbage-
olle
tion

operation for k, if any g
-prop-�x(k) event o

urs. If no su
h event o

urs, then

k

is unde�ned.

The lemma says that the tags of garbage-
olle
tion operations are monotoni
ally nonde
reasing

with respe
t to the
on�guration indi
es.

Lemma 6.7 Suppose a g
-query-�x(`) event for

`

o

urs in � and k � `. Then tag(

k

) � tag(

`

).

Proof. Fix k. We use indu
tion on `.

The base
ase, ` = k, is trivially true. For the indu
tive step, assume that ` � k+1 and the result

is true for ` � 1. To show that the result is true for `, assume that a g
-query-�x(`) event for

`

o

urs in �. Then Lemma 6.6 implies that g
-query-�x(`� 1) for

`�1

also o

urs in �. Therefore,

by indu
tive hypothesis, tag(

k

) � tag(

`�1

). It suÆ
es to show that tag(

`�1

) � tag(

`

).

By Lemma 6.6, the g
-prop-�x(` � 1) for

`�1

o

urs in � and pre
edes the g
(`) event of

`

.

Then R(

`

) and W

2

(

`�1

) are both de�ned in �. Sin
e both are quorums of
(`), they have a

nonempty interse
tion;
hoose j 2 R(

`

) \W

2

(

`�1

).

Lemma 6.3 and monotoni
ity of tag

j

imply that, in any state after the g
-prop-�x(` � 1) for

`�1

, tag

j

� tag(

`�1

). Lemma 6.6 implies that this g
-prop-�x(`�1) pre
edes the g
(`) event of

`

.

Therefore, t � tag(

`�1

), where t is de�ned to be the value of tag

j

just before the g
(`) event of

`

.

Lemma 6.2 and monotoni
ity of tag

j

imply that tag(

`

) � t. Thus, we have tag(

`�1

) � t � tag(

`

),

so tag(

`�1

) � tag(

`

), as needed. �

6.5 Behavior of a read or a write following a garbage-
olle
tion

Now we des
ribe the relationship between a garbage-
olle
tion and a following read or write oper-

ation. The �rst two lemmas des
ribe situations in whi
h
ertain
on�gurations must belong to the

query-
map of a read or write operation.

First, if no garbage-
olle
tion operation for k
ompletes before the query-phase-start event

of a read or write operation, then some
on�guration with index � k must be in
luded in the

query-
map.

Lemma 6.8 Let � be a read or write operation whose query-�x event o

urs in �. Suppose that no

g
-prop-�x(k) event pre
edes the query-phase-start(�) event.

Then query-
map(�)(`) 2 C for some ` � k.

Proof. Sin
e no garbage-
olle
tion operation for k
ompletes before the query-phase-start(�) event,

it follows that, just after the query-phase-start(�) event, op:
map(k) 6= �; that is, op:
map(k) 2 C

?

.

Then Invariant 2 implies that, just after query-phase-start(�), op:
map(`) 2 C for some ` � k. Fix

su
h an `; then the behavior of the query phase of the read or write implies that query-
map(�)(`) 2

C. �

Se
ond, if some garbage-
olle
tion for k does
omplete before the query-phase-start event of

a read or write operation, then some
on�guration with index � k + 1 must be in
luded in the

query-
map.

25

Lemma 6.9 Let
 be a garbage-
olle
tion operation for k. Let � be a read or write opera-

tion whose query-�x event o

urs in �. Suppose that the g
-prop-�x(k) event of
 pre
edes the

query-phase-start(�) event. Then query-
map(�)(`) 2 C for some ` � k + 1.

Proof. Suppose for the sake of
ontradi
tion that query-
map(�)(`) =2 C for all ` � k + 1. Fix

k

0

= max(f` : query-
map(�)(`) 2 Cg). Then k

0

� k. Sin
e the g
-prop-�x(k) event of
 pre
edes

the query-phase-start(�) event, Lemma 6.6 implies that a g
-prop-�x(k

0

) event also pre
edes the

query-phase-start(�) event. Let

0

be the initial garbage-
olle
tion operation for k

0

.

Then write-quorum W

1

(

0

) of
(k

0

) and read-quorum R(�; k

0

) are both de�ned;
hoose j 2

W

1

(

0

) \ R(�; k

0

). Then Lemma 6.2 and monotoni
ity of
map imply that, in the state just prior

to the g
-prop-�x(k

0

) event of

0

,
map(`)

j

6= ? for all ` � k

0

+ 1. Then Lemma 6.4 implies that

query-
map(�)(`) 2 C for some ` � k

0

+ 1. But this
ontradi
ts the
hoi
e of k

0

. �

The next two lemmas des
ribe propagation of tag information from a garbage-
olle
tion oper-

ation to a following read or write operation. The �rst lemma assumes that the query-
map of the

read or write in
ludes the
on�guration following the one being garbage-
olle
ted.

Lemma 6.10 Let
 be an initial garbage-
olle
tion operation for k. Let � be a read or write

operation whose query-�x event o

urs in �. Suppose that the g
-prop-�x(k) event of
 pre
edes the

query-phase-start(�) event. Suppose also that query-
map(�)(k + 1) 2 C. Then:

1. tag(
) � tag(�).

2. If � is a write operation then tag(
) < tag(�).

Proof. The propagation phase of
 a

esses write-quorum W

2

(
) of
(k + 1), whereas the query

phase of � a

esses read-quorum R(�; k + 1). Sin
e both are quorums of
on�guration
(k + 1),

they have a nonempty interse
tion;
hoose j 2W

2

(
) \R(�; k + 1).

Lemma 6.3 implies that, in any state after the g
-prop-�x(k) event for
, tag

j

� tag(
). Sin
e the

g
-prop-�x(k) event of
 pre
edes the query-phase-start(�) event, we have that t � tag(
), where t is

de�ned to be the value of tag

j

just before the query-phase-start(�) event. Then Lemma 6.4 implies

that tag(�) � t, and if � is a write operation, then tag(�) > t. Combining the inequalities yields

both
on
lusions of the lemma. �

The �nal lemma has a similar statement to the previous one. However, this one drops the

assumption that the query-
map of the read or write in
ludes the
on�guration following the one

being garbage-
olle
ted.

Lemma 6.11 Let
 be an initial garbage-
olle
tion operation for k. Let � be a read or write

operation whose query-�x event o

urs in �. Suppose that the g
-prop-�x(k) event of
 pre
edes the

query-phase-start(�) event. Then:

1. tag(
) � tag(�).

2. If � is a write operation then tag(
) < tag(�).

Proof. Lemma 6.9 implies that query-
map(�)(`) 2 C for some ` � k + 1.

Let k

0

= min(f` : query-
map(�)(`) 2 Cg). We
onsider
ases:

26

1. k

0

� k + 1.

Then Invariant 3 implies that query-
map(�)(k + 1) 2 C, that is, that
on�guration k + 1 is

in
luded in the query phase of �. Then Lemma 6.10 implies the
on
lusions.

2. k

0

> k + 1.

By Lemma 6.8, some g
-prop-�x(k

0

� 1) event pre
edes the query-phase-start(�) event. Let

0

be the initial garbage-
olle
tion operation for k

0

� 1; then the g
-prop-�x(k

0

� 1) event

of

0

pre
edes the query-phase-start(�) event. Sin
e k < k

0

� 1, Lemma 6.7 implies that

tag(
) � tag(

0

).

Sin
e query-
map(�)(k

0

) 2 C, we may apply Lemma 6.10 to

0

and �, whi
h yields that

tag(

0

) � tag(�), and if � is a write, then tag(

0

) < tag(�). Combining the inequalities yields

both
on
lusions of the lemma.

�

6.6 Behavior of sequential reads and writes

Read or write operations that originate at di�erent lo
ations may pro
eed
on
urrently. However,

in the spe
ial
ase where they exe
ute sequentially, we
an prove some relationships between their

query-
maps, prop-
maps, and tags. The �rst lemma says that, when two read or write operations

exe
ute sequentially, the smallest
on�guration index used in the propagation of the �rst operation

is less than or equal to the largest index used in the query phase of the se
ond. In other words,

we
annot have a situation in whi
h the se
ond operation's query phase exe
utes using only
on-

�gurations with indi
es that are stri
tly less than any used in the �rst operation's propagation

phase.

Lemma 6.12 Assume �

1

and �

2

are two read or write operations, su
h that:

1. The prop-�x event of �

1

o

urs in �.

2. The query-�x event of �

2

o

urs in �.

3. The prop-�x event of �

1

pre
edes the query-phase-start(�

2

) event.

Then min(f` : prop-
map(�

1

)(`) 2 Cg) � max(f` : query-
map(�

2

)(`) 2 Cg).

Proof. Suppose for the sake of
ontradi
tion that

min(f` : prop-
map(�

1

)(`) 2 Cg) > k, where k is de�ned to be max(f` : query-
map(�

2

)(`) 2 Cg).

Then in parti
ular, prop-
map(�

1

)(k) =2 C. The form of prop-
map(�

1

), as expressed in Invariant 3,

implies that prop-
map(�

1

)(k) = �.

This implies that some g
-prop-�x(k) event o

urs prior to the prop-�x of �

1

, and hen
e prior

to the query-phase-start(�

2

) event. Lemma 6.9 then implies that query-
map(�

2

)(`) 2 C for some

` � k + 1. But this
ontradi
ts the
hoi
e of k. �

The next lemma des
ribes propagation of tag information, in the
ase where the propagation

phase of the �rst operation and the query phase of the se
ond operation share a
on�guration.

Lemma 6.13 Assume �

1

and �

2

are two read or write operations, and k 2 N, su
h that:

27

1. The prop-�x event of �

1

o

urs in �.

2. The query-�x event of �

2

o

urs in �.

3. The prop-�x event of �

1

pre
edes the query-phase-start(�

2

) event.

4. prop-
map(�

1

)(k) and query-
map(�

2

)(k) are both in C.

Then:

1. tag(�

1

) � tag(�

2

).

2. If �

2

is a write then tag(�

1

) < tag(�

2

).

Proof. The hypotheses imply that prop-
map(�

1

)(k) = query-
map(�

2

)(k) =
(k). ThenW (�

1

; k)

and R(�

2

; k) are both de�ned in �. Sin
e they are both quorums of
on�guration
(k), they have

a nonempty interse
tion;
hoose j 2W (�

1

; k) \R(�

2

; k).

Lemma 6.5 implies that, in any state after the prop-�x event of �

1

, tag

j

� tag(�

1

). Sin
e the

prop-�x event of �

1

pre
edes the query-phase-start(�

2

) event, we have that t � tag(�

1

), where t is

de�ned to be the value of tag

j

just before the query-phase-start(�

2

) event. Then Lemma 6.4 implies

that tag(�

2

) � t, and if �

2

is a write operation, then tag(�

2

) > t. Combining the inequalities yields

both
on
lusions. �

The �nal lemma is similar to the previous one, but it does not assume that the propagation

phase of the �rst operation and the query phase of the se
ond operation share a
on�guration. The

main fo
us of the proof is on the situation where all the
on�guration indi
es used in the query

phase of the se
ond operation are greater than those used in the propagation phase of the �rst

operation.

Lemma 6.14 Assume �

1

and �

2

are two read or write operations, su
h that:

1. The prop-�x of �

1

o

urs in �.

2. The query-�x of �

2

o

urs in �.

3. The prop-�x event of �

1

pre
edes the query-phase-start(�

2

) event.

Then:

1. tag(�

1

) � tag(�

2

).

2. If �

2

is a write then tag(�

1

) < tag(�

2

).

Proof. Let i

1

and i

2

be the indi
es of the pro
esses that run operations �

1

and �

2

, respe
tively.

Let
m

1

= prop-
map(�

1

) and
m

2

= query-
map(�

2

). If there exists k su
h that
m

1

(k) 2 C and

m

2

(k) 2 C, then Lemma 6.13 implies the
on
lusions of the lemma. So from now on, we assume

that no su
h k exists.

Lemma 6.12 implies that min(f` :
m

1

(`) 2 Cg) � max(f` :
m

2

(`) 2 Cg). Invariant 3 implies

that the set of indi
es used in ea
h phase
onsists of
onse
utive integers. Sin
e the intervals have

no indi
es in
ommon, it follows that k

1

< k

2

, where k

1

is de�ned to be max(f` :
m

1

(`) 2 Cg) and

k

2

is de�ned to be min(f` :
m

2

(`) 2 Cg).

28

Sin
e, for every k � k

2

�1, query :
map(�

2

)(k) =2 C, Lemma 6.8 implies that, for every k � k

2

�1,

a g
-prop-�x(k) event o

urs before the query-phase-start(�

2

) event. For ea
h su
h k, that is, for

0 � k � k

2

� 1, de�ne

k

to be the initial garbage-
olle
tion operation for k.

We fo
us now on the relationship between �

1

and

k

1

. The propagation phase of �

1

a

esses

write-quorumW (�

1

; k

1

) of
on�guration
(k

1

), whereas the query phase of

k

1

a

esses read-quorum

R(

k

1

) of
on�guration k

1

. Sin
e W (�

1

; k

1

)\R(

k

1

) 6= ;, we may �x some j 2W (�

1

; k

1

)\R(

k

1

).

Let message m from i

1

to j and message m

0

from j to i

1

be as in Lemma 6.5. Let message m

1

from

the pro
ess running

k

1

to j and message m

0

1

from j to the pro
ess running

k

1

be the messages

whose existen
e is asserted in Lemma 6.2.

We
laim that j sends m

0

, its message for �

1

, before it sends m

0

1

, its message for

k

1

. Suppose

for the sake of
ontradi
tion that j sendsm

0

1

before it sendsm

0

. Lemma 6.2 implies that, just before

j sends m

0

1

,
map(k)

j

6= ? for all k � k

1

+ 1. Sin
e j sends m

0

1

before it sends m

0

, monotoni
ity

of
map implies that just before j sends m

0

,
map(k)

j

6= ? for all k � k

1

+ 1. Then Lemma 6.5

implies that prop-
map(�

1

)(`) 2 C for some ` � k

1

+1. But this
ontradi
ts the
hoi
e of k

1

, whi
h

implies that j sends m

0

before it sends m

0

1

.

Sin
e j sends m

0

before it sends m

0

1

, Lemma 6.5 implies that, at the time j sends m

0

1

, tag(�

1

) �

tag

j

. Then Lemma 6.2 implies that tag(�

1

) � tag(

k

1

).

Sin
e k

1

� k

2

� 1, Lemma 6.7 implies that tag(

k

1

) � tag(

k

2

�1

). Lemma 6.11 implies that

tag(

k

2

�1

) � tag(�

2

), and if �

2

is a write then tag(

k

2

�1

) < tag(�

2

). Combining the various

inequalities then yields both
on
lusions. �

6.7 Atomi
ity

Let � be a tra
e of S that satis�es the Rambo environment assumptions, and assume that all read

and write operations
omplete in �. Consider any parti
ular (good) exe
ution � of S whose tra
e

is �.

4

We de�ne a partial order � on read and write operations in �, in terms of the operations'

tags in �. Namely, we totally order the writes in order of their tags, and we order ea
h read with

respe
t to all the writes as follows: a read with tag = t is ordered after all writes with tag � t and

before all writes with tag > t.

Lemma 6.15 The ordering � is well-de�ned.

Proof. The key is to show that no two write operations get assigned the same tag. This is obvi-

ously true for two writes that are initiated at di�erent lo
ations, be
ause the low-order tiebreaker

identi�ers are di�erent. For two writes at the same lo
ation, Lemma 6.14 implies that the tag of

the se
ond is greater than the tag of the �rst. This suÆ
es. �

Lemma 6.16 � satis�es the four
onditions in the de�nition of atomi
ity.

5

Proof. We begin with Condition 2, whi
h (as usual in su
h proofs), is the most interesting thing

to show. Suppose for the sake of
ontradi
tion that �

1

ompletes before �

2

starts, yet �

2

� �

1

. We

onsider two
ases:

4

The \s
ope" of these de�nitions of � and � is just the following two lemmas and their proofs.

5

The four
onditions for atomi
ity are de�ned in Se
tion 3.

29

(i) �

2

is a write operation.

Sin
e �

1

ompletes before �

2

starts, Lemma 6.14 implies that tag(�

2

) > tag(�

1

). On the

other hand, the fa
t that �

2

� �

1

implies that tag(�

2

) � tag(�

1

). This yields a
ontradi
tion.

(ii) �

2

is a read operation.

Sin
e �

1

ompletes before �

2

starts, Lemma 6.14 implies that tag(�

2

) � tag(�

1

). On the

other hand, the fa
t that �

2

� �

1

implies that tag(�

2

) < tag(�

1

). This yields a
ontradi
tion.

Sin
e we have a
ontradi
tion in either
ase, Property 2 must hold.

Condition 1 follows from Condition 2 with the following observation. Consider any operation

� in an exe
ution where all the read and write operations
omplete. Given that � terminates, any

operation that starts after it terminates
annot be ordered before �, by Condition 2. Sin
e only

a �nite number of operations
an start before the termination of �, then only a subset of su
h

operations
an be ordered before �.

Conditions 3 and 4 are straightforward. �

Now we tie everything together for the proof of Theorem 6.1.

Proof. (of Theorem 6.1)

Let � be a tra
e of S that satis�es the Rambo environment assumptions. We argue that � satis�es

the Rambo servi
e guarantees. The proof that � satis�es the Rambo well-formedness guarantees

is straightforward from the
ode.

To show that � satis�es the atomi
ity
ondition (as de�ned in Se
tion 3), assume that all read

and write operations
omplete in �. Let � be a good exe
ution of S whose tra
e is �. De�ne the

ordering � on the read and write operations in � as above, using the
hosen �. Then Lemma 6.16

says that � satis�es the four
onditions in the de�nition of atomi
ity. Thus, � satis�es the atomi
ity

ondition, as needed. �

7 Implementation of the Re
on�guration Servi
e

In this se
tion, we des
ribe a distributed algorithm that implements the Re
on servi
e. We also

des
ribe how to
ombine this algorithm with the
omponents already de�ned in Se
tion 5, thus

obtaining the
omplete Rambo system.

We des
ribe the implementation of Re
on for a parti
ular obje
t x (and we suppress mention of

x). The Re
on algorithm
onsists of a Re
on

i

automaton for ea
h lo
ation i, whi
h intera
ts with

a
olle
tion of global
onsensus servi
es Cons(k;
), one for ea
h k � 1 and ea
h
 2 C, and with a

point-to-point
ommuni
ation servi
e.

Cons(k;
) a

epts inputs from members of
on�guration
, whi
h it assumes to be the k � 1

st

on�guration. These inputs are proposed new
on�gurations. The
on�guration that Cons(k;
)

de
ides upon is deemed to be the k

th

on�guration. The validity property of
onsensus implies that

this de
ision is one of the proposed
on�gurations.

Re
on

i

is a
tivated by a join(re
on)

i

a
tion, whi
h is an output of Joiner

i

. Re
on

i

a

epts

re
on�guration requests from
lients, and initiates
onsensus to help determine new
on�gura-

tions. It re
ords the new
on�gurations that the
onsensus servi
es determine. Re
on

i

also informs

Reader-Writer

i

about newly-determined
on�gurations, and disseminates information about newly-

determined
on�gurations to the members of those
on�gurations. It returns a
knowledgments and

on�guration reports to its
lient.

30

7.1 Consensus servi
es

In this subse
tion, we spe
ify the behavior we assume for
onsensus servi
e Cons(k;
), for a �xed

k � 1 and
 2 C. Fix V to be the set of
onsensus values. (In the implementation of the Re
on

servi
e, V will be instantiated as C, the set of
on�guration identi�ers.) The external signature of

Cons(k;
) is given in Figure 9.

Input:

init(v)

k;
;i

, v 2 V , i 2 members(
)

fail

i

, i 2 members(
)

Output:

de
ide(v)

k;
;i

, v 2 V , i 2 members(
)

Figure 9: Cons(k;
): External signature

We des
ribe the safety properties of Cons(k;
) in terms of properties of a tra
e � of a
tions in

the external signature. Namely, we de�ne the environment safety assumptions:

� Well-formedness: For any i 2 members(
):

{ No init(�)

k;
;i

event is pre
eded by a fail

i

event.

{ At most one init(�)

k;
;i

event o

urs in �.

And we de�ne the
onsensus safety guarantees:

� Well-formedness: For any i 2 members(
):

{ No de
ide(�)

k;
;i

event is pre
eded by a fail

i

event.

{ At most one de
ide(�)

k;
;i

event o

urs in �.

{ If a de
ide(�)

k;
;i

event o

urs in �, then it is pre
eded by an init(�)

k;
;i

event.

� Agreement: If de
ide(v)

k;
;i

and de
ide(v

0

)

k;
;i

0

events o

ur in �, then v = v

0

.

� Validity: If a de
ide(v)

k;
;i

event o

urs in �, then it is pre
eded by an init(v)

k;
;j

.

The behavior spe
i�ed above
an be a
hieved using the Paxos
onsensus algorithm [30℄, as

des
ribed formally in [14℄. We
all this version of the Paxos algorithm Paxos

impl

. Paxos

impl

uses

a �xed parameter " > 0; in the rest of this se
tion, we �x ".

The following theorem says that Paxos

impl

satis�es the safety guarantees des
ribed above,

based on the safety assumptions:

Theorem 7.1 If � is a tra
e of Paxos

impl

that satis�es the safety assumptions of Cons(k;
), then

� also satis�es the (well-formedness, agreement, and validity) safety guarantees of Cons(k;
).

Paxos

impl

also satis�es the following laten
y result [14℄:

Theorem 7.2 Consider a timed exe
ution � of Paxos

impl

and a pre�x �

0

of �. Suppose that:

1. The underlying system \behaves well" after �

0

, in the sense that timing is \normal" (what is

alled \regular" in [14℄)

6

and no pro
ess failures or message losses o

ur.

6

In [14℄, regular timing implies that messages are delivered within time d, that lo
al pro
essing time is 0, and that

information is \gossiped" at intervals of d.

31

2. For every i that does not fail in �, an init(�)

i

event o

urs in �

0

.

3. There exist R 2 read-quorums(
) and W 2 write-quorums(
) su
h that for all i 2 R [W , no

fail

i

event o

urs in �.

Then for every i that does not fail in �, a de
ide(�)

i

event o

urs, no later than 10d+ " time after

the end of �

0

.

In our laten
y analysis, in Se
tions 8 and 9, we assume that the Cons(k;
) servi
es are imple-

mented using Paxos

impl

.

7.2 Re
on automata

The signature and state of Re
on

i

appear in Figures 10 and the transitions in Figure 11.

Signature:

Input:

join(re
on)

i

re
on(
;

0

)

i

;
;

0

2 C; i 2 members(
)

de
ide(
)

k;i

;
 2 C; k 2 N

+

re
v(h
on�g;
; ki)

j;i

,
 2 C, k 2 N

+

,

i 2 members(
), j 2 I � fig

re
v(hinit;
;

0

; ki)

j;i

,
;

0

2 C, k 2 N

+

,

i; j 2 members(
), j 6= i

fail

i

Output:

join-a
k(re
on)

i

new-
on�g(
; k)

i

,
 2 C; k 2 N

+

init(
;

0

)

k;i

,
;

0

2 C; k 2 N

+

, i 2 members(
)

re
on-a
k(b)

i

, b 2 fok; nokg

report(
)

i

,
 2 C

send(h
on�g;
; ki)

i;j

,
 2 C, k 2 N

+

,

j 2 members(
)� fig

send(hinit;
;

0

; ki)

i;j

;
;

0

2 C; k 2 N

+

;

i; j 2 members(
), j 6= i

State:

status 2 fidle; a
tiveg, initially idle.

re
-
map 2 CMap, initially re
-
map(0) =

0

and re
-
map(k) = ? for all k 6= 0.

did-new-
on�g � N

+

, initially ;

reported � C, initially ;

op-status 2 fidle; a
tiveg, initially idle

op-out
ome 2 fok; nok;?g, initially ?

ons-data 2 (N

+

! (C � C)), initially everywhere ?

did-init � N

+

, initially ;

failed , a Boolean, initially false

Figure 10: Re
on

i

: Signature and state

Re
on

i

begins operating by setting its status variable to a
tive, when a join(re
on) input event

o

urs. Re
on

i

responds to su
h a join input with a join-a
k(re
on)

i

output event.

Re
on

i

's state in
ludes a variable re
-
map, whi
h holds a CMap: re
-
map(k) =
 indi
ates that

i knows that
 is the k

th

on�guration identi�er. If Re
on

i

has learned that
 is the kth
on�guration

identi�er, it
an
onvey this information to its lo
al Reader-Writer

i

using a new-
on�g(
; k)

i

output

a
tion; variable did-new-
on�g keeps tra
k of the indi
es for whi
h Re
on

i

has done a new-
on�g

output. Re
on

i

an also
onvey the fa
t that
 is the k

th

on�guration identi�er to other Re
on

j

,

j 2 members(
), using a h
on�g;
; ki message. Also, Re
on

i

an inform its lo
al
lient that
 is the

latest
on�guration identi�er that it knows about, using a report(
)

i

output a
tion.

Re
on

i

learns about a
on�guration identi�er in one of two ways: either dire
tly, by re
eiving a

de
ide input from a Cons servi
e, or indire
tly, by re
eiving a
on�g or init message from another

Re
on

j

automaton.

Re
on

i

re
eives a re
on�guration request from its environment via a re
on(
;

0

)

i

event, where

i 2 members(
). (An environment well-formedness assumption says that the environment waits for

32

Input join(re
on)

i

E�e
t:

if :failed then

if status = idle then

status a
tive

Output join-a
k(re
on)

i

Pre
ondition:

:failed

status = a
tive

E�e
t:

none

Output new-
on�g(
; k)

i

Pre
ondition:

:failed

status = a
tive

re
-
map(k) =

k =2 did-new-
on�g

E�e
t:

did-new-
on�g did-new-
on�g [fkg

Output send(h
on�g;
; ki)

i;j

Pre
ondition:

:failed

status = a
tive

re
-
map(k) =

E�e
t:

none

Input re
v(h
on�g;
; ki)

j;i

E�e
t:

if :failed then

if status = a
tive then

re
-
map(k)

Output report(
)

i

Pre
ondition:

:failed

status = a
tive

 = re
-
map(k)

8` > k : re
-
map(`) = ?

 62 reported

E�e
t:

reported reported [f
g

Input re
on(
;

0

)

i

E�e
t:

if :failed then

if status = a
tive then

op-status a
tive

let k = max(f` : re
-
map(`) 2 Cg)

if
 = re
-
map(k) and
ons-data(k + 1) = ? then

ons-data(k + 1) h
;

0

i

op-out
ome ?

else

op-out
ome nok

Output init(

0

)

k;
;i

Pre
ondition:

:failed

status = a
tive

ons-data(k) = h
;

0

i

if k � 1 then k � 1 2 did-new-
on�g

k 62 did-init

E�e
t:

did-init did-init [fkg

Output send(hinit;
;

0

; ki)

i;j

Pre
ondition:

:failed

status = a
tive

ons-data(k) = h
;

0

i

k 2 did-init

E�e
t:

none

Input re
v(hinit;
;

0

; ki)

j;i

E�e
t:

if :failed then

if status = a
tive then

if re
-
map(k � 1) = ? then re
-
map(k � 1)

if
ons-data(k) = ? then
ons-data(k) h
;

0

i

Input de
ide(

0

)

k;
;i

E�e
t:

if :failed then

if status = a
tive then

re
-
map(k)

0

if op-status = a
tive then

if
ons-data(k) = h
;

0

i then op-out
ome ok

else op-out
ome nok

Output re
on-a
k(b)

i

Pre
ondition:

:failed

status = a
tive

op-status = a
tive

op-out
ome = b

E�e
t:

op-status = idle

Input fail

i

E�e
t:

failed true

Figure 11: Re
on

i

: Transitions.

33

any previous re
on�guration request at the same lo
ation to
omplete (with a re
on-a
k) before

issuing another request.) Upon re
eiving su
h a request, if
 is the latest
on�guration identi�er

Re
on

i

knows about, Re
on

i

prepares data for parti
ipating in
onsensus on the
on�guration

identi�er to follow
. This data is a pair
onsisting of
, the latest known
on�guration identi�er,

and

0

, the proposed new
on�guration identi�er. If
 is not the latest
on�guration, Re
on

i

prepares to respond negatively to the new re
on�guration request, by setting op-out
ome to nok.

Variable op-status re
ords the existen
e of a lo
ally-initiated re
on�guration request, and variable

op-out
ome is used to keep tra
k of the planned response value.

Re
on

i

an initiate parti
ipation in a Cons(k;
) algorithm, with an init(�)

k;
;i

output event,

after its
onsensus data are prepared. Before doing so, it makes sure that it has already noti�ed

Reader-Writer

i

about the
urrent
on�guration
. Variable did-init keeps tra
k of the values

of k for whi
h i has initiated parti
ipation in some Cons(k; �) servi
e; this is used to prevent i

from parti
ipating in
onsensus for the same k more than on
e. After initiating parti
ipation in

a
onsensus algorithm, Re
on

i

sends init messages to inform the other members of the
urrent

on�guration
 about its initiation of
onsensus. Another member who re
eives this information

may use it to prepare to parti
ipate in the same
onsensus algorithm. Su
h a member may also

take advantage of the re
eived information to in
lude the
urrent
on�guration in its re
-
map.

Thus, there are two ways in whi
h Re
on

i

an initiate parti
ipation in
onsensus: as a result of a

lo
al re
on event, or by re
eiving an init message from another Re
on

j

pro
ess.

When Re
on

i

re
eives a de
ide(

0

)

k;
;i

dire
tly from Cons(k;
), it re
ords
on�guration

0

as the

k

th

on�guration identi�er in its re
-
map. It also determines whether a response to its lo
al
lient

is ne
essary (if a lo
al re
on�guration operation is a
tive), and determines the response based on

whether the
onsensus de
ision is the same as the lo
ally-proposed
on�guration identi�er. Re
on

i

a
tively informs members of

0

that

0

is the k

th

on�guration, by sending
on�g messages. It does

not notify anyone else. The
onsensus servi
e Cons(k;
) is responsible for
onveying
onsensus

de
isions to members(
).

Theorem 7.3 Let � be a tra
e of the Re
on implementation. If � satis�es the Re
on environment

assumptions, then � satis�es the Re
on servi
e guarantees (well-formedness, agreement, validity,

and no dupli
ation).

7.3 The
omplete Rambo system

Our
omplete implementation of Re
on , Re
on

impl

,
onsists of the Re
on

i

automata,
hannels

onne
ting all the Re
on

i

automata, and the implementations of the Cons servi
es using Paxos

impl

.

We use the same kinds of
hannels as for Rambo: point-to-point
hannels, one for ea
h i; j 2 I;

again, the
hannels may lose and reorder messages, but may not manufa
ture new messages or

dupli
ate messages.

The
omplete Rambo system (for a parti
ular obje
t)
onsists of Joiner , Reader-Writer , and

Channel automata as des
ribed in Se
tion 5, plus Re
on

impl

. We denote the
omplete Rambo

system by S

0

.

We �nish this se
tion by de�ning two properties of
on�guration indi
es in an exe
ution � of

S

0

. Let k 2 N. Then:

� Latest
on�guration index: Index k is the latest
on�guration index in � provided that one

of the following holds:

34

1. k = 0 and no de
ide event o

urs in �.

2. A de
ide(�)

k;�;�

event o

urs in � and no de
ide(�)

k+1;�;�

event o

urs in �.

We say that
 2 C is the latest
on�guration identi�er in � provided that one of the following

holds:

1.
 =

0

and 0 is the latest
on�guration index in �.

2. A de
ide(
)

k;�;�

event o

urs in � and k is the latest
on�guration index.

� Installed
on�guration index: Index k is installed in � provided that either k = 0 or there

exists
 2 C su
h that both of the following hold:

1. At least one init(�)

k;
;�

event o

urs in �.

2. For every i 2 members(
), either a de
ide(�)

k;
;i

event or a fail

i

event o

urs in �.

That is, the k � 1

st

on�guration is
, and every non-failed member of
 has learned about

the k

th

on�guration. If index k is installed and re
-
map(k)

i

=

0

for some i and

0

, then we

also say that
on�guration

0

is installed.

8 Laten
y Bounds: Normal Behavior Throughout the Exe
ution

In this se
tion and Se
tion 9, we present our
onditional performan
e results|laten
y results for

the various operations performed by Rambo under various assumptions about timing, failures, and

the patterns of requests. This se
tion
ontains results for exe
utions in whi
h \normal" timing and

failure behavior o

urs throughout the exe
ution, whereas Se
tion 9
ontains results for exe
utions

in whi
h normal behavior o

urs from some point onward. We formulate these results for the full

Rambo system S

0

onsisting of Reader-Writer

i

and Joiner

i

for all i, Re
on

impl

(whi
h
onsists of

Re
on

i

for all i and Cons(k;
) for all k and
), and
hannels between all i and j. Sin
e we are

dealing here with timing, we \
onvert" all these automata to general timed automata as de�ned

in [33℄, by allowing arbitrary amounts of time to pass in any state, without
hanging the state.

Se
tion 8.1 des
ribes restri
tions on the nondeterministi

hoi
es within the Rambo algorithm,

in parti
ular, on the s
heduling of lo
ally
ontrolled a
tions. We impose these restri
tions for

the rest of this paper. Se
tion 8.2 des
ribes the restri
tions on timing and failure patterns that

de�ne the normal timing and failure behavior
onsidered in this se
tion. Se
tion 8.3
ontains some

basi
 de�nitions and assumptions that are used in stating hypotheses for parti
ular
onditional

performan
e results in this se
tion. Se
tion 8.4
ontains laten
y results that do not depend on

ba
kground gossiping, but only on
ommuni
ation that is triggered naturally by the operations.

Finally, Se
tion 8.5
ontains laten
y results that do depend on gossiping.

8.1 Restri
ting nondeterminism

Rambo in its full generality is a highly nondeterministi
 algorithm. For example, it allows sending

of gossip messages at arbitrary times. In this se
tion and Se
tion 9, we restri
t Rambo's nondeter-

minism so that messages are sent at the earliest possible time and at regular intervals thereafter,

and so that non-send lo
ally
ontrolled events o

ur just on
e, as soon as they are enabled.

More pre
isely, �x d > 0, the normal message delay, and �x " > 0 to be the value of " used

in Paxos

impl

, as we des
ribed in Se
tion 7.1. We assume a restri
ted version of Rambo in whi
h

35

ea
h Joiner

i

, Reader-Writer

i

, and Re
on

i

automaton has a real-valued lo
al
lo
k, whi
h evolves

a

ording to a
ontinuous, monotone in
reasing fun
tion from nonnegative reals to reals. Lo
al

lo
ks of di�erent automata (even di�erent automata at the same lo
ation) may run at di�erent

rates. Moreover, the following
onditions hold, in all admissible timed exe
utions (those timed

exe
utions in whi
h the limit time is 1):

� Periodi
 gossip: Ea
h Joiner

i

whose status = joining sends join messages to everyone in its

hints set, every time d, a

ording to its lo
al
lo
k. Ea
h Reader-Writer

i

sends messages to

everyone in its world every time d, a

ording to its
lo
k. Ea
h Re
on

i

sends
on�g messages

and init messages to every pro
ess to whom it is allowed to send su
h messages, every time

d, a

ording to its
lo
k.

� Important Joiner messages: Ea
h Joiner

i

sends a join message immediately to lo
ation j,

without any time passing on its lo
al
lo
k, in the following situation:

{ Just after a join(rambo; J) event, if j 2 J .

� Important Reader-Writer messages: Ea
h Reader-Writer

i

sends a message immediately to

lo
ation j, without any time passing on its
lo
k, in ea
h of the following situations:

{ Just after a re
v(join)

j;i

event, if status

i

= a
tive.

This is when i learns that j is attempting to join.

{ Just after a re
v(�; �; �; �; pns ; �)

j;i

event o

urs, if pns > pnum2 (j)

i

and status

i

= a
tive.

This is when i re
eives a message from j that indi
ates that j is engaged in a later

operation phase than i previously knew about.

{ Just after a new-
on�g(
; k)

i

event, if status

i

= a
tive and j 2 world

i

.

This is when i learns about a new
on�guration from Re
on , and j is in i's
urrent world .

{ Just after a read

i

, write

i

, or query-�x

i

event, or a re
v event that resets op:a

 to ;, if

j 2 members(
), for some
 that appears in the new op:
map

i

.

This is when i starts or restarts a phase and j is a member of a relevant
on�guration.

{ Just after a g
(k)

i

event, if j 2 members(
map(k)

i

).

This is when i starts garbage-
olle
ting a
on�guration that in
ludes j as a member.

{ Just after a g
-query-�x(k)

i

event, if j 2 members(
map(k + 1)

i

).

This is when i starts the se
ond phase of the garbage-
olle
tion of a
on�guration, and

j is member of the next
on�guration.

� Important Re
on messages: Ea
h Re
on

i

sends a message immediately to j, without any time

passing on its
lo
k, in the following situations:

{ The message is of the form (
on�g;
; k), a de
ide(
)

k;�;i

event has just o

urred, and

j 2 members(
) � fig.

This is when i has learned dire
tly from the
onsensus servi
e, about
on�guration k

and j is a member of that
on�guration.

{ The message is of the form (init;
;

0

; k), an init(

0

)

k;
;i

event has just o

urred, and

j 2 members(
) � fig.

This is when i has just initiated
onsensus and j is another member of the
on�guration

that is involved in performing the
onsensus.

36

� Non-
ommuni
ation events: Any non-send lo
ally
ontrolled a
tion of any Rambo automaton

that has no e�e
t on the state is performed only on
e, and before any time passes on the lo
al

lo
k.

An alternative to listing all these properties is to add appropriate bookkeeping to the various

Rambo automata to ensure these properties. This approa
h would help in dete
ting and avoiding

ambiguities in the statements of the
onstraints. However, it would add
omplexity to the
ode.

So we postpone this for now.

8.2 Normal behavior

The previous subse
tion des
ribed restri
tions on the nondeterministi

hoi
es made by the algo-

rithm. Our results also require restri
tions on timing and failure behavior|things that are not

generally
onsidered to be under the
ontrol of the algorithm. Thus, we de�ne \normal" exe
utions

as follows:

� Normal exe
ution: An admissible timed exe
ution � is normal if it satis�es the following

onditions:

1. Regular timing behavior for Rambo automata: The lo
al
lo
ks of all Joiner

i

,

Reader-Writer

i

, and Re
on

i

automata progress at exa
tly the rate of real time, through-

out �.

Re
all from Se
tion 8.1 that the timing of gossip messages, of sending events for impor-

tant messages, and of the performan
e of other lo
ally-
ontrolled events, are all governed

by the lo
al
lo
ks. Thus, this single assumption, that the lo
al
lo
ks progress at the

rate of real time, implies that the timing of all lo
ally-
ontrolled events observes real-time

onstraints.

2. Reliable message delivery: No message sent in � is lost.

3. Message delay bound: Every message that is re
eived in � is re
eived within time d of

when it was sent.

4. Normal timing for
onsensus: Timing for all
onsensus servi
es is \normal".

7

Many of our results also require assumptions about
ertain pro
esses not failing for
ertain

intervals of time. However, sin
e these assumptions are di�erent for di�erent results, we postpone

stating su
h assumptions until they are needed.

8.3 Hypotheses for laten
y results

In this se
tion, we list various hypotheses that we need for our laten
y bound results. These

hypotheses are needed in addition to the restri
tions on nondeterminism des
ribed in Se
tion 8.1

and the normal behavior assumptions des
ribed in Se
tion 8.2.

The �rst hypothesis we de�ne says that, when a
lient proposes a
on�guration
, every member

of
on�guration
 must have already joined the system, at least time e ago. The requirement that

ea
h member has already joined the system is already in
luded in the environment assumptions for

the Rambo and Re
on servi
es; this new hypothesis adds a timing requirement:

7

What this means internally to the
onsensus servi
es is de�ned in [14℄. As noted in Se
tion 7.1, it means that

messages are delivered within time d, that lo
al pro
essing time is 0, and that information is gossiped at intervals of d.

37

� Re
on�guration-readiness: Let � be a timed exe
ution, e 2 R

�0

. Then � satis�es e-re
on-

readiness provided that, if a re
on(�;
)

i

event o

urs at time t then for every j 2 members(
),

the event join-a
k(rambo)

j

o

urs by time t� e.

The next hypothesis states a bound on the time for two parti
ipants that join the system to

learn about ea
h other.

� Join-
onne
tivity: Let � be an admissible timed exe
ution, e 2 R

�0

. We say � satis�es e-

join-
onne
tivity provided that, if join-a
k(rambo)

i

and join-a
k(rambo)

j

both o

ur in � by

time t, and neither i nor j fails by time t+ e, then by time t+ e, i 2 world

j

.

We do not think of join-
onne
tivity as a primitive assumption. Rather, it is a property one might

expe
t to prove of all exe
utions that satisfy some more basi
 assumptions, su
h as suÆ
ient spa
ing

between join requests. Sin
e there are many possibilities here, we postpone
onsidering this, and

use join-
onne
tivity itself as an assumption.

The next hypothesis,
on�guration-viability , is a reliability property for quorums. In general, in

systems that use quorum
on�gurations, operations that use quorums are guaranteed to terminate

only if
ertain quorums do not fail. In this paper, our termination guarantees for re
on�guration,

garbage-
olle
tion, and read and write operations all require assumptions that say that some quo-

rums do not fail. Be
ause our algorithm uses di�erent
on�gurations at di�erent times, our notion

of
on�guration-viability hypothesis takes into a

ount whi
h
on�gurations might still be in use.

� Con�guration-viability: Let � be an admissible timed exe
ution, e 2 R

�0

. Then we say

that � is e-
on�guration-viable provided that the following holds: For every
 and k su
h

that some re
-
map(k)

�

=
 in some state in �, there exist R 2 read-quorums(
) and W 2

write-quorums(
) su
h that at least one of the following holds:

1. No pro
ess in R [W fails in �.

2. There exists a �nite pre�x �

0

of � su
h that k + 1 is installed in �

0

and no pro
ess in

R [W fails in � by time `time(�

0

) + e.

(For a �nite timed exe
ution �, we de�ne `time(�), the limit time of �, to be the time of the

last event in �.)

Note that the spe
ial
ase of 0-
on�guration-viability is not a
ompletely trivial property. It

says that
ertain pro
esses remain alive until a time that is stri
tly greater than the time when

on�guration k+1 is installed. This implies that events that are required to happen within 0 time

of this installation must a
tually happen, if time subsequently in
reases.

The e-
on�guration-viability property is useful only in situations where a
on�guration is no

longer needed for performing operations after time e after the next
on�guration is installed. This

latter
ondition holds, for suitable e, in Rambo exe
utions in whi
h
ertain timing assumptions

hold; the strength of those timing assumptions determines the value of e that must be
onsidered.

Roughly speaking, e should be suÆ
iently large to allow information about a new
on�guration

to be propagated to all the a
tive parti
ipants and for the previous
on�guration to be garbage-

olle
ted.

We believe that the e-
on�guration-viability assumption is reasonable for a re
on�gurable algo-

rithm su
h as Rambo. This is be
ause the algorithm
an be re
on�gured when quorums appear to

be in danger of failing. New
on�gurations should be
hosen to minimize the likelihood of failure.

38

In some situations, we will not be able to
hara
terize interesting exe
utions in terms of e-

on�guration-viability for a �xed e be
ause an arbitrary amount of time may elapse from when

a
on�guration be
omes installed until it is garbage-
olle
ted. Therefore we de�ne exe
utions in

whi
h no quorum system is ever disabled:

� 1-
on�guration-viability : Let � be an admissible timed exe
ution. Then we say that �

is 1-
on�guration-viable provided that the following holds: For every
 and k su
h that

some re
-
map(k)

�

=
 in some state in �, there exist R 2 read-quorums(
) and W 2

write-quorums(
) su
h that no pro
ess in R [W fails in �.

The next property says that a re
on�guration request waits at least a
ertain amount of time

after a
orresponding report event. Re
all that environment assumptions for Rambo and Re
on

say that su
h a report event must pre
ede the request; the new assumption says that it must have

o

urred suÆ
iently long ago.

� Re
on-spa
ing: Let � be an admissible timed exe
ution, e 2 R

�0

. We say that � satis-

�es e-re
on-spa
ing provided that, for any re
on(
; �)

i

that o

urs in �, the time sin
e the

orresponding report(
)

i

event is � e.

Finally, the following property says that in�nitely many
on�gurations are produ
ed. This is

simply a te
hni
al assumption that is used to simplify some of our results.

� In�nite re
on�guration: Let � be an admissible timed exe
ution. We say that � satis�es

in�nite re
on�guration provided for every k 2 N

+

, �
ontains a de
ide(�)

k;�;�

event.

8.4 Bounds that do not depend on gossiping

We give bounds for joining, re
on�guration, and garbage-
olle
tion operations for normal admissible

exe
utions. We also give bounds on reading and writing in \stable" situations. These bounds do

not depend on the periodi
 gossiping among the Reader-Writer

i

omponents.

8.4.1 Joining

The following result gives bounds on the time to join. The result has two parts, based on whether

or not the joiner is the
reator of the obje
t. Namely, if join(rambo; J)

i

o

urs and i does not fail,

then: (1) if i = i

0

then the join is a
knowledged immediately (within zero time), and (2) if i 6= i

0

,

j 2 J , join-a
k(rambo)

j

o

urs before the join of i, and j does not fail, then j's join is a
knowledged

within 2d time. More formally:

Theorem 8.1 Let � be a normal admissible timed exe
ution of S

0

. If join(rambo; J)

i

o

urs in �

and fail

i

does not o

ur then:

1. If i = i

0

then join-a
k(rambo)

i

o

urs before any time elapses.

2. Suppose that i 6= i

0

. Suppose also that, for some j 2 J �fig, a join-a
k(rambo)

j

event o

urs

prior to the join(rambo; J)

i

event, and fail

j

does not o

ur. Then join-a
k(rambo)

i

o

urs

within time 2d of the join(rambo; J)

i

event.

39

Proof. Part 1 immediately follows from the
ode for the
reator automata, Joiner

i

0

)

,

Reader-Writer

i

0

and Re
on

i

0

. This is be
ause the response does not depend on the re
eipt of

any messages. Part 2 follows from the fa
t that at most two message delays are in
urred by the

proto
ol, and from the guarantee that pro
ess j responds. �

8.4.2 Re
on�guration

The next result gives a laten
y bound for re
on�guration, assuming no relevant failures and as-

suming viability. It says that, in a 0-
on�guration-viable exe
ution, if re
on(
; �)

i

o

urs at time

t and no pro
ess in members(
) fails after this event, then the re
on(
; �)

i

is a
knowledged with a

re
on-a
k(�)

i

no later than time t+ 11d+ ". More formally:

Theorem 8.2 Let � be a normal admissible timed exe
ution of S

0

satisfying 0-
on�guration-

viability, and t 2 R

�0

. Assume that:

1. A re
on(
;

0

)

i

event o

urs at time t in �.

2. No fail event for a member of
 o

urs in � after the re
on(
;

0

)

i

event.

Then a re
on-a
k(�)

i

event mat
hing the assumed re
on(
;

0

)

i

event o

urs by time t+ 11d + ".

Proof. We know that i, the originator of the operation, does not fail, be
ause the signature

restri
tions for Re
on require that i 2 members(
), and assumption 2 says that no members of

fail after the re
on(
;

0

)

i

event.

When re
on(
;

0

)

i

o

urs, if out
ome is immediately set to nok, then the time until the

re
on-a
k(nok)

i

is 0. If not, then pro
ess i sets
ons-data

i

in preparation for
onsensus, again

within 0 time. Then an init(

0

)

k;
;i

event o

urs for some k within 0 time. Then we
laim that, after

no more than time 10d+ ", a de
ide(�)

k;
;i

o

urs, and before any further time passes, re
on-a
k(�)

i

o

urs.

The argument that de
ide(�)

k;
;i

o

urs within time 10d+ " pro
eeds as follows: First, the last

init event for Cons(k;
) that o

urs in � must o

ur within time d after the init(

0

)

k;
;i

event. This

is guaranteed by the sending of init messages by the Re
on

i

omponent.

Let �

0

be the shortest pre�x of � that in
ludes all the init(�)

k;
;�

events that o

ur in �. We

will apply Theorem 7.2 to � and �

0

, to
on
lude that by 10d+ " time after the end of �

0

, and hen
e

by time t+11d+ ", a de
ide

k;
;j

o

urs for every non-failed j 2 members(
). Sin
e re
on-a
k events

happen within time 0 of the de
ide events, this will yield the result.

Applying Theorem 7.2 requires some
are: we must show that the three hypotheses of that

theorem are satis�ed. For Property 1, the \normal
ase" assumptions of this se
tion imply that

timing is regular and no message losses o

ur after �

0

. No pro
ess failures o

ur either: sin
e the

init(

0

)

k;
;i

event follows the re
on(
;

0

)

i

event, an assumption of this theorem implies that no fail

events for members of
 o

ur in � after �

0

.

To see Property 2, note that the environment well-formedness
onditions for Rambo imply that

all members of

0

must have already joined the Rambo system when the re
on(
;

0

)

i

event o

urs.

Then they are ready to a

ept the init messages when they re
eive them from i, and they perform

init(�)

k;
;�

events, provided they have not failed. Sin
e all the init(�)

k;
;i

events that o

ur in �

a
tually o

ur in �

0

, this implies Property 2.

40

Property 3 is slightly tri
ky: it says formally that some read-quorum and some write-quorum

of
 must stay non-failed forever. However, be
ause of the on-line nature of the
omputation,

Theorem 7.2 does not need that the members of these quorums stay alive after the time of the

last de
ide event. The fa
t that they remain non-failed for this long follows dire
tly from the

0-
on�guration-viability assumption. �

The next result des
ribes a situation in whi
h the system is guaranteed to produ
e a positive

response to a re
on�guration request.

Theorem 8.3 Let � be a normal admissible timed exe
ution of S

0

, and
 2 C. Suppose that some

re
on(
; �)

�

event o

urs in �. Then for some i su
h that a re
on(
; �)

i

event o

urs in �, either �

ontains no mat
hing re
on-a
k(b)

i

or b = ok.

Proof. Environment well-formedness assumptions imply that for every i su
h that re
on(
; �)

i

o

urs, there is a pre
eding report(
)

i

, whose pre
ondition states that there exists k su
h that
 =

re
-
map(k)

i

. By the no-dupli
ation property of Re
on , this must be the same k for all i. Therefore,

all the re
on(
; �)

i

events result in parti
ipation in the same
onsensus servi
e, Cons(k + 1;
).

Validity of Cons(k + 1;
) implies that the de
ision is a
on�guration submitted by one of the

parti
ipating members, say i. Then the only possible response at i is re
on-a
k(ok)

i

. �

8.4.3 Garbage-
olle
tion

The next result gives a laten
y bound for garbage-
olle
tion, assuming that none of the relevant

pro
esses fail. Suppose a garbage-
olle
tion operation starts with a g
(k)

i

event. If there exist

a read-quorum and a write-quorum of
on�guration k and a write-quorum of
on�guration k + 1

su
h that no pro
esses in these quorums fail, and if i itself does not fail, then garbage-
olle
tion

terminates with g
-a
k(k)

i

within time 4d. Formally:

Theorem 8.4 Let
 be a garbage-
olle
tion operation in a normal admissible timed exe
ution of

S

0

. Let
 start with g
(k)

i

and let

k

and

k+1

be the values of
map(k)

i

and
map(k+ 1)

i

when

starts.

Let R 2 read-quorums(

k

), W

1

2 write-quorums(

k

), W

2

2 write-quorums(

k+1

). Assume:

1. Pro
ess i does not fail.

2. No pro
ess in R [W

1

[W

2

fails.

Then
 ends with a g
-a
k(k)

i

, within time 4d of the g
(k)

i

.

Proof. Sin
e i does not fail, the existen
e of non-failing quorums R, W

1

and W

2

ensures that i

re
eives replies as needed in the two phases of garbage
olle
tion. Ea
h phase takes at most 2d

time. �

8.4.4 Reads and writes

The following theorem gives a bound for read and write operations in the simple \quies
ent"

situation where all joins and
on�guration management events stop from some point onward.

41

Theorem 8.5 (Informally stated.) Let � be a normal admissible timed exe
ution of S

0

, and �

0

be

a �nite pre�x of �. Suppose that:

1. � is 0-viable.

2. The system is \quies
ent" after �

0

, in the sense that:

(a) There are no pending join, garbage-
olle
tion, or re
on requests, and no a
tive
onsensus

exe
utions at the end of �

0

.

(b) No new join or re
on requests o

ur in � after �

0

.

(
) Every pro
ess that has ever performed a join-a
k and has not failed is \up-to-date" af-

ter �

0

, in that its
map
onsists of exa
tly one
on�guration index, whi
h is the latest

on�guration, pre
eded by � entries and followed by ? entries.

3. A read

i

or write

i

is initiated in � after �

0

.

Then the time until a mat
hing read-a
k

i

or write-a
k

i

event is at most 4d.

The next theorem des
ribes another situation in whi
h a read or write operation is guaranteed

to have laten
y at most 4d: when no new
on�gurations are being generated, and the
on�guration

map of the operation's initiator in
ludes the latest
on�guration. This
on�guration map may

ontain more than one
on�guration. Sin
e the
on�gurations are used
on
urrently by the read

or write operation, the use of multiple
on�gurations does not slow the operation down. Here, we

need to assume 1-
on�guration-viability .

Theorem 8.6 Let � be a normal admissible timed exe
ution of S

0

satisfying 1-
on�guration-

viability, and t 2 R

�0

. Suppose �
ontains no de
ide events after time t, and let k be the latest

on�guration index in �. If a read or write operation starts in a state where
map(`)

i

6= ? for all

`, 0 � ` � k, then it
ompletes in at most 4d time.

Proof. This result follows from the two-phased implementation of read and write operations. Ea
h

phase lasts for at most two message delays: sin
e new
on�gurations are not added to op:
map

i

during the phase, the phase
ompletes in 2d time. New
on�gurations
an only be added in the

e�e
ts of the re
v a
tion in Reader-Writer

i

. Be
ause k is the latest
on�guration index, no higher

numbered
on�gurations exist, and smaller numbered
on�gurations
annot be added be
ause of

the properties of the extend and trun
ate fun
tions used to modify op:
map

i

in the e�e
ts of re
v.

�

8.5 Bounds that depend on gossiping

In this subse
tion, we give results that depend on periodi
 gossiping among the Reader-Writer

i

automata. These results give bounds for learning about new
on�gurations. They also give bounds

on garbage-
olle
tion, and des
ribe
onditions under whi
h garbage-
olle
tion is guaranteed to keep

up with re
on�guration. Finally, we give bounds on the laten
y of read and write operations.

For this entire subse
tion, we �x e 2 R

�0

. Also, for a timed exe
ution �, we let time(�) stand

for the real time at whi
h the event � o

urs in �.

42

8.5.1 Joining

The following lemma says that if report(
)

�

o

urs then all members of
 are \old enough", that is,

they have joined at least time e earlier.

Lemma 8.7 Let � be a normal admissible timed exe
ution of S

0

satisfying e-re
on-readiness, and

 2 C,
 6=

0

, i 2 I. Suppose that a report(
)

�

event o

urs at time t in � and i 2 members(
).

Then a join-a
k(rambo)

i

event o

urs by time t� e.

Proof. Assume that �,
, and i are as given, and that re
-
map(k)

i

=
 when the report(
)

i

event

o

urs, that is,
 is the k

th

on�guration. Sin
e
 6=

0

, we have that k � 1. Therefore, the report(
)

�

event is pre
eded by a re
on(

0

;
)

�

event. Then re
on-readiness implies that a join-a
k(rambo)

i

event

o

urs at a time at least e before the re
on(

0

;
)

�

event, and so, by time t� e, as needed. �

The next lemma says that a pro
ess re
eiving a report must be \old enough", that is, they have

joined at least time e earlier.

Lemma 8.8 Let � be a normal admissible timed exe
ution of S

0

satisfying e-re
on-readiness, and

 2 C,
 6=

0

, i 2 I. Suppose that a report(
)

i

event o

urs at time t in �. Then a join-a
k(rambo)

i

event o

urs by time t� e.

Proof. Assume that �,
, and i are as given, and that re
-
map(k)

i

=
 when the report(
)

i

event

o

urs, that is,
 is the k

th

on�guration. Sin
e
 6=

0

, we have that k � 1. The behavior of Re
on

i

implies that i is a member either of
 or of the k� 1

st

on�guration, say

0

. If i 2 members(
) then

Lemma 8.7 implies the
on
lusion. So in the rest of the proof, assume that i 2 members(

0

).

If k = 1, then

0

=

0

, so i = i

0

, whi
h implies that a join-a
k(rambo)

i

event o

urs prior to

any other join-a
k(rambo)

�

event. In parti
ular, a join-a
k(rambo)

i

event o

urs at a time that is

less than or equal to that of any join-a
k(rambo)

�

event for any member of
. Sin
e su
h join-a
k

events o

ur by time � t� e, again by Lemma 8.7, the join-a
k(rambo)

i

also o

urs by time t� e,

as needed.

The only other possibility is that i 2 members(

0

) and k � 2. In this
ase, the report(
)

i

event

must be pre
eded by a re
on(�;

0

)

�

event. Then re
on-readiness implies that a join-a
k(rambo)

i

event o

urs at a time at least e before the re
on(�;

0

)

�

event, and so again, by time t� e. �

8.5.2 Learning about
on�gurations

The following result says that all parti
ipants su

eed in ex
hanging information about
on�gura-

tions, within a short time. If both i and j are \old enough" (have joined at least time e ago), and

don't fail, then any information that i has about
on�gurations is
onveyed to j within time 2d.

Lemma 8.9 Let � be a normal admissible timed exe
ution of S

0

satisfying e-join-
onne
tivity,

t 2 R

�0

, t � e. Suppose:

1. join-a
k(rambo)

i

and join-a
k(rambo)

j

both o

ur in � by time t� e.

2. Pro
ess i does not fail by time t+ d and j does not fail by time t+ 2d.

Then the following hold:

43

1. If by time t,
map(k)

i

6= ?, then by time t+ 2d,
map(k)

j

6= ?.

2. If by time t,
map(k)

i

= �, then by time t+ 2d,
map(k)

j

= �.

Proof. Sin
e � is e-join-
onne
ted, by time t, j 2 world

i

. Sometime stri
tly after time t and no

later than time t+d, Reader-Writer

i

sends a gossip message to j, and Reader-Writer

j

re
eives this

message by time t + 2d. To see Part 1, suppose that
map(k)

i

6= ? by time t. Then the gossip

message has
m(k) 6= ?. The re
eipt of this message
auses j to set
map(k)

j

to be non-? (if it

isn't already), as needed. To see Part 2, suppose that
map(k)

i

= � by time t. Then the gossip

message has
m(k) = �. The re
eipt of this message
auses j to set
map(k)

j

to be � (if it isn't

already), as needed. �

Next, we show that, if a report(
)

i

event o

urs and i does not fail, then another pro
ess j learns

about
 soon after the later of the report event and the time of j's joining.

Theorem 8.10 Let � be a normal admissible timed exe
ution of S

0

satisfying e-re
on-readiness

and e-join-
onne
tivity,
 2 C, k 2 N, i; j;2 I, t; t

0

2 R

�0

. Suppose:

1. A report(
)

i

o

urs at time t in �, where
 = re
-
map(k)

i

, and i does not fail by max (t; t

0

)+d.

2. join-a
k(rambo)

j

o

urs in � by time t

0

� e, and j does not fail by time max (t; t

0

) + 2d.

Then by time max (t; t

0

) + 2d,
map(k)

j

6= ?.

Proof. The
ase where k = 0 is trivial to prove, be
ause everyone's
map(0) is always non-?. So

assume that k � 1.

Lemma 8.8 implies that join-a
k(rambo)

i

o

urs by time t � e � max (t; t

0

) � e. Also,

join-a
k(rambo)

j

o

urs by time t

0

� e � max (t; t

0

) � e. By assumption, i does not fail by time

max (t; t

0

) + d. and j does not fail by time max (t; t

0

) + 2d. Furthermore, we
laim that, by

time max (t; t

0

),
map(k)

i

6= ?. This is be
ause the time of the report (
)

i

is � max (t; t

0

), when

the report(
)

i

o

urs, re
-
map(k)

i

6= ?, and within 0 time, this information gets
onveyed to

Reader-Writer

i

.

Therefore, we may apply Lemma 8.9, with the t in that theorem instantiated to max (t; t

0

), to

on
lude that by time max (t; t

0

) + 2d,
map(k)

j

6= ?. This yields the
on
lusion. �

The following lemma spe
ializes the previous ones to members of the reported
on�guration.

Lemma 8.11 Let � be a normal admissible timed exe
ution of S

0

satisfying e-re
on-readiness and

e-join-
onne
tivity, i; j 2 I, t 2 R

�0

. Suppose:

1. A report(
)

i

o

urs at time t, where
 = re
-
map(k)

i

and i does not fail by time t+ d.

2. j 2 members(
) and j does not fail by time t+ 2d.

Then by time t+ 2d,
map(k)

j

6= ?.

Proof. If k = 0 then the
on
lusion is immediate be
ause
map(0)

j

6= ? in all rea
hable states. So

suppose that k > 0. Then a join-a
k

j

must o

ur by time t� e by Lemma 8.7. Then Theorem 8.10,

44

applied with t and t

0

in the statement of that theorem set to the
urrent t, implies the
on
lusion.

�

The following theorem does not use the assumption of join-
onne
tivity. It
onsiders the set J

of pro
esses that join the system by a
ertain time t. It says that, after a time that is logarithmi
 in

jJ j, all the pro
esses in J know about ea
h other, and thereafter, information about
on�gurations

propagates qui
kly among pro
esses in J . The result assumes that the exe
ution is failure-free (so

the set of joiners
annot be
ome partitioned).

Theorem 8.12 Let � be a normal admissible timed failure-free exe
ution of S

0

, i; j 2 I, J � I,

t; t

0

2 R

�0

and t � t

0

. Assume

1. J is the set of pro
esses i

0

su
h that join-a
k(rambo)

i

0

o

urs by time t.

2. i; j 2 J .

Then

1. By time t+ ddlog(jJ j)e, i 2 world

j

.

2. If by time t

0

,
map(k)

i

6= ?, then by time max(t+ ddlog(jJ j)e; t

0

) + 2d
map(k)

j

6= ?.

3. If by time t

0

,
map(k)

i

= �, then by time max(t+ ddlog(jJ j)e; t

0

) + 2d
map(k)

j

= �.

Proof. We show this using a pointer-doubling argument. In any state of the exe
ution,
onsider

the graph whose nodes are the indi
es of the pro
esses that su

essfully joined and whose edges are

the pairs (i

0

; j

0

) su
h that j

0

2 world

i

0

. Sin
e we have assumed that no failures o

ur, this graph is

onne
ted (this
an be shown by indu
tion on the number of joins). For the purpose of the pointer-

doubling argument, pro
ess i

0

is
onsidered to have a \pointer" to j

0

when j

0

2 world

i

0

.℄℄℄ Given our

assumptions about the gossip, all pro
esses that join by time t require at most dlog(jJ j)e rounds of

gossip to learn about all other su
h pro
esses. This is be
ause during ea
h period of d time after

t a round of gossip
ompletes where at least one \pointer-doubling" o

urs at ea
h pro
ess in J .

Information in
map

i

at time t

0

is then re
e
ted in
map

j

by time max(t+ ddlog(jJ j)e; t

0

) + 2d. �

8.5.3 Garbage
olle
tion

The results of this se
tion show that, if re
on�guration requests are spa
ed suÆ
iently far apart,

and if quorums of
on�gurations remain alive for suÆ
iently long, then garbage
olle
tion keeps

up with re
on�guration. The �rst lemma says that, assuming 5d-
on�guration-viability , following

the report of a new
on�guration, at least one member of the immediately pre
eding
on�guration

does not fail for 4d time.

Lemma 8.13 Let � be a normal admissible timed exe
ution of S

0

satisfying 5d-
on�guration-

viability,
 2 C, k 2 N, k � 1, i; j 2 I, t 2 R

�0

. Suppose:

1. A report(
)

i

event o

urs at time t in �, where
 = re
-
map(k)

i

.

2.

0

is
on�guration k � 1 in �.

Then there exists j 2 members(

0

) su
h that j does not fail by time t+ 4d.

45

Proof. The behavior of Re
on algorithm implies that the time at whi
h Re
on

i

learns about

being
on�guration k is not more than d after the time of the last de
ide

k;
;�

event in �. On
e

Re
on

i

learns about
, it performs the report(
)

i

event without any further time-passage. Then

5d-viability ensures that at least one member of

0

does not fail by time t+ 4d. �

The following key lemma says that a pro
ess that has joined suÆ
iently long before a parti
ular

report(
)

�

event manages to garbage
olle
t all
on�gurations earlier than
 within time 6d after

the report.

Lemma 8.14 Let � be a normal admissible timed exe
ution of S

0

satisfying e-re
on-readiness, e-

join-
onne
tivity, 6d-re
on-spa
ing and 5d-
on�guration-viability,
 2 C, k 2 N, i; j 2 I, t 2 R

�0

.

Suppose:

1. A report(
)

i

event o

urs at time t in �, where
 = re
-
map(k)

i

.

2. join-a
k(rambo)

j

o

urs in � by time t� e.

Then:

1. If k > 0 and j does not fail by time t+ 2d, then by time t + 2d: (a)
map(k � 1)

j

6= ? and

(b)
map(`)

j

= � for all ` < k � 1.

2. If i does not fail by t + d and j does not fail by time t + 6d, then by time t + 6d: (a)

map(k)

j

6= ? and (b)
map(`)

j

= � for all ` < k.

Proof. By indu
tion on k.

Base: k = 0.

Part 1 is va
uously true. The
lause (a) of Part 2 follows be
ause
map(0)

j

6= ? in all rea
hable

states, and the
lause (b) is va
uously true.

Indu
tive step: Assume k � 1, assume the
on
lusions for indi
es � k � 1, and show them for k.

Fix
, i, j, t as above.

Part 1: Assume the hypotheses of Part 1, that is, that k > 0 and that j does not fail by time

t+ 2d. If k = 1 then the
on
lusions are easily seen to be true: for
lause (a),
map(0)

j

6= ? in all

rea
hable states, and the
lause (b) of the
laim is va
uously true. So from now on in the proof of

Part 1, we assume that k � 2.

Sin
e
 is the k

th

on�guration and k � 1, the given report(
)

i

event is pre
eded by a re
on(�;
)

�

event. Fix the �rst re
on(�;
)

�

event, and suppose it is of the form re
on(

0

;
)

i

0

. Then

0

must be

the k� 1

st

on�guration. Lemma 8.13 implies that at least one member of

0

, say, i

00

, does not fail

by time t+ 4d.

The re
on(

0

;
)

i

0

event must be pre
eded by a report(

0

)

i

0

event. Sin
e k � 1 � 1, Lemma 8.7

implies that a join-a
k(rambo)

i

00

event o

urs at least time e prior to the report(

0

)

i

0

event. Then by

indu
tive hypothesis, Part 2, by time time(report(

0

)

i

0

) + 6d,
map(k � 1)

i

00

6= ? and
map(`)

i

00

=

� for all ` < k � 1. By 6d-re
on-spa
ing , time(re
on(

0

;
)

i

0

) � time(report(

0

)

i

0

) + 6d, and so

t = time(report(
)

i

) � time(report(

0

)

i

0

) + 6d. Therefore, by time t,
map(k � 1)

i

00

6= ? and

map(`)

i

00

= � for all ` < k � 1.

Now we apply Lemma 8.9 to i

00

and j, with t in the statement of Lemma 8.9 set to the
urrent

t. This allows us to
on
lude that, by time t + 2d,
map(k � 1)

j

6= ? and
map(`)

j

= � for all

` < k � 1. This is as needed for Part 1.

46

Part 2: (Re
all that we are assuming here that k � 1.) Assume the hypotheses of Part2, that is,

that i does not fail by time t+ d and j does not fail by time t+6d. Theorem 8.10 applied to i and

j and with t and t

0

both instantiated as the
urrent t, implies that by time t+ 2d,
map(k)

j

6= ?.

Part 1 implies that by time t+ 2d,
map(`)

j

= � for all ` < k � 1. It remains to bound the time

for
map(k � 1)

j

to be
ome �.

By time t + 2d, j initiates a garbage-
olle
tion for k � 1 (unless
map(k � 1)

j

is already �).

This terminates within time 4d. After garbage-
olle
tion,
map(`)

j

= � for all ` < k, as needed.

The fa
t that this su

eeds depends on quorums of
on�guration k� 1 remaining alive throughout

the �rst phase of the garbage-
olle
tion. 5d-viability ensures this.

The
al
ulation for 5d is as follows: t is at most d larger than the time of the last de
ide for

on�guration k. The time at whi
h the garbage-
olle
tion is started is � t + 2d. Thus, at most

3d time may elapse from the last de
ide for
on�guration k until the garbage-
olle
tion operation

begins. Then an additional 2d time suÆ
es to
omplete the �rst phase of the garbage-
olle
tion. �

The following lemma spe
ializes the previous one to members of the newly-reported
on�guration.

Lemma 8.15 Let � be a normal admissible timed exe
ution of S

0

satisfying e-re
on-readiness, e-

join-
onne
tivity, 6d-re
on-spa
ing and 5d-
on�guration-viability,
 2 C, k 2 N, i; j 2 I, t 2 R

�0

.

Suppose:

1. A report(
)

i

event o

urs at time t in �, where
 = re
-
map(k)

i

.

2. j 2 members(
).

Then:

1. If k > 0 and j does not fail by time t + 2d, then by time t + 2d,
map(k � 1)

j

6= ? and

map(`)

j

= � for all ` < k � 1.

2. If i does not fail by t+d and j does not fail by time t+6d, then by time t+6d,
map(k)

j

6= ?

and
map(`)

j

= � for all ` < k.

Proof. If k = 0, the
on
lusions follow easily. If k = 1, then Lemma 8.7 implies that

join-a
k(rambo)

j

o

urs in � by time t� e. Then the
on
lusions follow from Lemma 8.14. �

The following theorem says that, in the \normal
ase", all pro
esses that have joined suÆ
iently

long ago know either the latest
on�guration or the one just before the latest. Sin
e we have not

yet written out a proof of this, we
all it a \strong
onje
ture".

Theorem 8.16 (Strong
onje
ture) Let � be a normal admissible timed exe
ution of S

0

satisfying

e-re
on-readiness, e-join-
onne
tivity, 6d-re
on-spa
ing and 5d-
on�guration-viability, �

0

a �nite

pre�x of �, k 2 N,
 2 C, i 2 I. Suppose:

1. k is the latest
on�guration index and
 is the latest
on�guration identi�er, after �

0

.

2. join(rambo)

i

o

urs before time `time(�

0

)� (e+ 2d).

3.
map(`)

i

2 C just after �

0

.

Then ` 2 fk � 1; kg.

47

8.5.4 Reads and writes

The �nal theorem bounds the time for read and write operations in the \steady-state"
ase, where

re
on�gurations do not stop, but are spa
ed suÆ
iently far apart.

Theorem 8.17 Let � be a normal admissible timed exe
ution of S

0

satisfying e-re
on-readiness, e-

join-
onne
tivity, (12d+")-re
on-spa
ing, 11d-
on�guration-viability, and in�nite re
on�guration,

8

i 2 I, and t 2 R

+

. Assume that

1. a read

i

(resp., write(�)

i

) event o

urs at time t, and join-a
k

i

o

urs stri
tly before time t �

(e+ 8d).

Then the
orresponding read-a
k

i

(resp., write-a
k(�)

i

) event o

urs by time t+ 8d.

Proof. Let

0

;

1

;

2

; : : : denote the in�nite sequen
e of su

essive
on�gurations de
ided upon in �;

by in�nite re
on�guration, this sequen
e exists. For ea
h k � 0, let �

k

be the �rst re
on(

k

;

k+1

)

�

event in �, let i

k

be the lo
ation at whi
h this o

urs, and let �

k

be the
orresponding, pre
eding

report(

k

)

i

k

event. (The spe
ial
ase of this notation for k = 0 is
onsistent with our usage else-

where.) Also, for ea
h k � 0,
hoose s

k

2 members(

k

) su
h that s

k

does not fail by time 10d after

the time of �

k+1

. The fa
t that this is possible follows from 11d-viability (be
ause the report event

�

k+1

happens at most time d after the �nal de
ide for
on�guration k + 1).

We show that the time for ea
h phase of the read or write operation is � 4d|this will yield the

bound we need.. Consider one of the two phases, and let be the read

i

, write

i

or query-�x

i

event

that begins the phase.

We
laim that time() > time(�

0

) + 8d, that is, that o

urs more than 8d time after

the report(0)

i

0

event: We have that time() � t, and t > time(join-a
k

i

) + 8d by assumption.

Also, time(join-a
k

i

) � time(join-a
k

i

0

). Furthermore, time(join-a
k

i

0

) � time(�

0

), that is, when

join-a
k

i

0

o

urs, report(0)

i

0

o

urs with no time passage. Putting these inequalities together we

see that time() > time(�

0

) + 8d.

Fix k to be the largest number su
h that time() > time(�

k

) + 8d. The
laim in the pre
eding

paragraph shows that su
h k exists.

Next, we
laim that by time(�

k

) + 6d,
map(k)

s

k

6= ? and
map(`)

s

k

= � for all ` < k; this

follows from Lemma 8.15, Part 2, applied with i = i

k

and j = s

k

, be
ause i

k

does not fail before

�

k

, and be
ause s

k

does not fail by time 10d after �

k+1

.

Next, we show that in the pre-state of ,
map(k)

i

6= ? and
map(`)

i

= � for all ` < k: We

apply Lemma 8.9 to s

k

and i, with t in that lemma set to max (time(�

k

) + 6d; time(join-a
k

i

) + e).

This yields that, by time max (time(�

k

) + 6d; time(join-a
k

i

) + e) + 2d,
map(k)

i

6= ? and

map(`)

i

= � for all ` < k. Our
hoi
e of k implies that time(�

k

)+8d < time(). Also, by assump-

tion, time(join-a
k

i

)+e+2d < t. And t � time(). So, time(join-a
k

i

)+e+2d < time(). Putting

these inequalities together, we obtain that max (time(�

k

) + 6d; time(join-a
k

i

) + e)+2d < time().

It follows that, in the pre-state of ,
map(k)

i

6= ? and
map(`)

i

= � for all ` < k, as needed.

Now, by
hoi
e of k, we know that time() � time(�

k+1

)+8d. The re
on-spa
ing
ondition im-

plies that time(�

k+1

) (the �rst re
on event that requests the
reation of the (k+2)

nd

on�guration)

is > time(�

k+1

) + 12d. Therefore, for an interval of time of length > 4d after , the largest index

of any
on�guration that appears anywhere in the system is k + 1. This implies that the phase of

the read or write operation that starts with
ompletes with at most one additional delay (of 2d)

8

This is assumed for simpli
ity, to avoid
ases in the result and proof.

48

for learning about a new
on�guration. This yields a total time of at most 4d for the phase, as we

laimed.

We use 11d-viability here: First at most time d elapses from the last de
ide

k+1;�;�

until �

k+1

.

Then at most 8d time elapses from �

k+1

until . At time(),
on�guration k is already known

(but
on�guration k + 1 may not be known). Therefore we need a quorum of
on�guration k to

stay alive only for the �rst 2d time of the phase. Altogether yielding 11d. �

9 Laten
y Bounds: Normal Behavior From Some Point On

In this se
tion, we present laten
y bounds for exe
utions that exhibit normal timing and failure be-

havior after some point. These results
orrespond to some of those in Se
tion 8, but the hypotheses

and
on
lusions take into a

ount the time when normal behavior begins.

9.1 Restri
ting nondeterminism

As we observed in Se
tion 8, Rambo is highly nondeterministi
. For the purpose of the laten
y

analysis in this se
tion, we restri
t the nondeterminism of Rambo pre
isely as des
ribed in Se
-

tion 8.1.

9.2 Normal behavior from some point on

As in Se
tion 8, the results in this se
tion require restri
tions on timing and failure behavior|

things that are not generally
onsidered to be under the
ontrol of the algorithm. In this se
tion,

we impose timing and failure assumptions after some point in the exe
ution, rather than throughout

the exe
ution as in Se
tion 8.2. Ea
h of these assumptions is, formally, a property of an admissible

timed exe
ution � and a �nite pre�x �

0

of �. Arbitrary asyn
hrony is allowed in �

0

, after whi
h

normal behavior holds. Spe
i�
ally, we assume:

� Normal exe
ution after a �nite pre�x : If � is an admissible timed exe
ution and �

0

is a �nite

pre�x of �, then � is �

0

-normal if the following
onditions hold:

1. Regular timing behavior for Rambo automata after �

0

: The lo
al
lo
ks of all Joiner

i

,

Reader-Writer

i

, and Re
on

i

automata progress at exa
tly the rate of real time, after �

0

.

This single assumption implies that the timing of all lo
ally-
ontrolled events observes

real-time
onstraints, after �

0

.

2. Reliable message delivery after �

0

: No message sent in � after �

0

is lost. (However,

messages sent in �

0

may be lost.)

3. Message delay bound: If a message is sent at time t in � and it is delivered, then it is

delivered by time max(t; `time(�

0

)) + d.

4. Normal timing for
onsensus: Timing for all
onsensus servi
es is \normal" after �

0

.

These assumptions
orrespond to the assumptions de�ned in Se
tion 8.2, whi
h are used for

analyzing the
ase where the entire exe
ution � is normal.

As before, some of our results will also require assumptions about
ertain pro
esses not failing,

for
ertain intervals of time. Again, we state su
h assumptions where they are needed.

49

9.3 Hypotheses for laten
y results

This subse
tion
ontains one more hypothesis that we need for our laten
y bound results. It is

needed in addition to the restri
tions on nondeterminism des
ribed in Se
tion 9.1, the behavior

assumptions des
ribed in Se
tion 9.2, and some of the properties de�ned for the \normal behavior"

ase in Se
tion 8.3.

The new hypothesis, join-
onne
tivity , is designed to ensure that all non-failing joining pro-

esses retain the ability to learn about ea
h other. Join-
onne
tivity is de�ned in terms of a

join-
onne
tivity digraph JC , whi
h is de�ned as a derived variable of the system S

0

:

� JC , the join-
onne
tivity digraph: This is the digraph with self-loops de�ned as follows:

1. The nodes of JC are all i 2 I su
h that Reader-Writer

i

:status = a
tive

and :Reader-Writer

i

:failed .

2. The edges of JC are the pairs (i; j) 2 I � I su
h that j 2 Reader-Writer

i

:world .

Now we de�ne join-
onne
tivity:

� Join-
onne
tivity : We say that � satis�es join-
onne
tivity provided that for any state s

o

urring in �, digraph s:JC is
onne
ted

9

.

9.4 Bounds that do not depend on gossip after stabilization

We now present performan
e results that do not depend on gossip after the timing and failure

behavior stabilizes. More pre
isely, we
onsider the same proto
ol as before (see Se
tion 8.1), in

whi
h the messages are sent when they are important and are gossiped periodi
ally a

ording to

lo
al
lo
ks. However, the results of this se
tion do not depend on gossip messages that are sent

after time `time(�

0

) + d.

9.4.1 Message laten
y

We begin with a simple lemma saying that messages that are sent in �

0

are re
eived within a short

time after the end of �

0

. This follows from our assumptions about periodi
 gossip.

Lemma 9.1 Let � be an �

0

-normal admissible timed exe
ution of S

0

, i; j 2 I, t 2 R

�0

, and

t � `time(�

0

). Assume that fail

i

and fail

j

events do not o

ur in �. Then:

1. If send(join)

i;j

o

urs in �

0

at time t, then re
v(join)

i;j

o

urs in � by time `time(�

0

) + 2d.

2. If send(hW; �; tg;
m; pns; pnri)

i;j

o

urs in �

0

at time t, then

re
v(hW

0

; �; tg

0

;
m

0

; pns

0

; pnr

0

i)

i;j

o

urs in � by time `time(�

0

) + 2d, where W � W

0

,

tg � tg

0

,
m(h) �
m

0

(h) for all h 2 N, pns � pns

0

, and pnr � pnr

0

.

3. If send(h
on�g;
; ki)

i;j

o

urs in �

0

at time t, then re
v(h
on�g;
; ki)

i;j

o

urs in � by time

`time(�

0

) + 2d.

4. If send(hinit;
;

0

; ki)

i;j

o

urs in �

0

at time t, then re
v(hinit;
;

0

; ki)

j;i

o

urs in � by time

`time(�

0

) + 2d.

9

That is, the undire
ted version of the join-
onne
tivity digraph, in whi
h every dire
ted edge is
onverted to an

undire
ted edge, is
onne
ted.

50

Proof. Parts 1, 3, and 4 follow dire
tly from the gossip poli
y and the assumption that � is

�

0

-normal and admissible. Sin
e i does not fail, it gossips all messages of the types join, init, and

on�g. At least one instan
e of gossip for ea
h message type must o

ur after �

0

and by time

`time(�

0

) + d. Sin
e j does not fail, it re
eives at least one su
h message by time `time(�

0

) + 2d.

Part 2 is similar, ex
ept that the required relations between the message
omponents must hold.

This is shown by observing that all
hanges to the relevant state
omponents are monotone. If the

original message is not lost, then the re
eived message may be taken to be the same as the one

that is sent at time t, whi
h implies that the
omponents of the re
eived message are equal to those

of the one originally sent. On the other hand, if the original message is lost, then a subsequently

gossiped message is re
eived by the indi
ated time, and its
omponents are not smaller than those

in the original message. �

9.4.2 Joining

The next theorem implies that if the
reator starts the join proto
ol with the join(rambo; J)

i

0

event

at time t, then it �nishes by time max(t; `time(�

0

)), provided i

0

does not fail. Also, if a non-
reator

starts the join proto
ol at time t, it �nishes by time max(t; `time(�

0

)) + 3d, provided the relevant

pro
esses do not fail.

Theorem 9.2 Let � be an �

0

-normal admissible timed exe
ution of S

0

. If join(rambo; J)

i

o

urs

in � at time t and fail

i

does not o

ur then:

1. If i = i

0

then join-a
k(rambo)

i

o

urs by time max(t; `time(�

0

)).

2. Suppose that i 6= i

0

. Suppose also that, for some j 2 J �fig, a join-a
k(rambo)

j

event o

urs

prior to the join(rambo; J)

i

event, and fail

j

does not o

ur. Then:

(a) If join(rambo; J)

i

o

urs in �

0

then join-a
k(rambo)

i

o

urs by time `time(�

0

) + 3d.

(b) If join(rambo; J)

i

o

urs after �

0

then join-a
k(rambo)

i

o

urs by time t+ 2d.

Proof. Similar to the proof of Theorem 8.1. Part 1 immediately follows from the
ode for the

reator: Joiner

i

0

)

, Reader-Writer

i

0

and Re
on

i

0

. This is be
ause the response does not depend on

the re
eipt of any messages.

We now
onsider Part 2(a). If the join

i

event o

urs in �

0

then it is possible that pro
ess

i's initial join message to j is lost; however, within time d of the end of �

0

, i is guaranteed to

resend the message, and this new message is guaranteed to be re
eived by j by time `time(�

0

)+ 2d

(by Lemma 9.1). Sin
e j 2 J and j does not fail, and sin
e join-a
k(rambo)

j

o

urs prior to

join(rambo; J)

i

, it follows that j must respond to su
h a join message by `time(�

0

) + 2d, and this

response is re
eived by i by `time(�

0

) + 3d.

Finally, we
onsider Part 2(b). If the join

i

event o

urs after �

0

, then at most two message delays

are in
urred by the proto
ol, sin
e no messages are lost and sin
e j is guaranteed to respond. Thus

join-a
k(rambo)

i

o

urs by time t+ 2d. �

51

9.4.3 Re
on�guration

We show that if pro
ess i starts a re
on�guration with a re
on(
; �)

i

event at time t and no failure

event o

ur among the members of
, then re
on�guration
ompletes by time max(t; `time(�

0

)) +

12d+ ". (We let " be �xed as needed for Theorem 7.2.)

In the setting with arbitrary initial behavior, we
annot
hara
terize interesting exe
utions in

terms of e-
on�guration-viability for a �xed e be
ause an arbitrary amount of time may elapse

from when a
on�guration be
omes installed until it is garbage-
olle
ted. Therefore, in the rest of

Se
tion 9, we limit our
onsideration to exe
utions in whi
h no quorum system is ever disabled,

that is, exe
utions satisfying 1-
on�guration-viability .

Theorem 9.3 Let � be an �

0

-normal admissible timed exe
ution of S

0

satisfying 1-
on�guration-

viability, and let t 2 R

�0

. Assume that:

1. A re
on(
;

0

)

i

event o

urs at time t in �.

2. No fail event for a member of
 o

urs in � after the re
on(
;

0

)

i

event.

Then a re
on-a
k(�)

i

event mat
hing the assumed re
on(
;

0

)

i

event o

urs by time

max(t; `time(�

0

)) + 12d+ ".

Proof. The proof follows the pattern established in Theorem 8.2. Let t

1

= max(t; `time(�

0

)).

We know that i, the originator of the operation, does not fail, be
ause the signature restri
tions

for Re
on require that i 2 members(
), and assumption 2 says that no members of
 fail after the

re
on(
;

0

)

i

event.

When re
on(
;

0

)

i

o

urs, if out
ome is immediately set to nok, then the re
on-a
k(nok)

i

event

o

urs by time t

1

. On the other hand, if out
ome is not immediately set to nok, then pro
ess i

sets
ons-data

i

in preparation for
onsensus, again by time t

1

. Then an init(

0

)

k;
;i

event o

urs for

some k, again by time t

1

. All these events must o

ur by time t

1

be
ause re
on(
;

0

)

i

o

urs by

time t

1

and t

1

� `time(�

0

).

Then we
laim that a de
ide(�)

k;
;i

event o

urs by time t

1

+ 12d + ", and subsequently

re
on-a
k(�)

i

o

urs, also by time t

1

+ 12d + ". The argument that de
ide(�)

k;
;i

o

urs by time

t

1

+ 12d + " pro
eeds as follows:

First, the last init event for Cons(k;
) that o

urs in � must o

ur by time t

2

= t

1

+2d. This is

guaranteed by the sending of init messages followed by the gossip of these messages within Re
on

(by Lemma 9.1). Let �

00

be the shortest pre�x of � that extends �

0

and in
ludes all the init(�)

k;
;�

events that o

ur in �. Then we know that `time(�

00

) � t

2

.

We will apply Theorem 7.2 to � and �

00

(using �

00

for the �

0

of that theorem) to
on
lude

that by time t

2

+ 10d + " = t

1

+ 12d + " = max(t; `time(�

0

)) + 12d + ", a de
ide(�)

k;
;j

event

o

urs for every non-failed j 2 members(
). In parti
ular, a de
ide(�)

k;
;i

event o

urs by time

max(t; `time(�

0

))+12d+". If the de
ide(�)

k;
;i

event o

urs in �

0

, then the
orresponding re
on-a
k

event o

urs by `time(�

0

), whi
h suÆ
es. On the other hand, if the de
ide(�)

k;
;i

event o

urs after

�

0

, then the re
on-a
k event happens within time 0 of the de
ide event, whi
h again suÆ
es.

It remains to show that the three hypotheses of Theorem 7.2 are satis�ed. For Property 1, the

\normal
ase" assumptions of this se
tion imply that timing is regular and no message losses o

ur

after �

00

. No pro
ess failures o

ur either: sin
e the init(

0

)

k;
;i

event follows the re
on(
;

0

)

i

event,

an assumption of this theorem implies that no fail events for members of
 o

ur in � after �

00

.

52

The argument for Property 2 is exa
tly the same as in Theorem 8.2. Property 3 says that some

read-quorum and some write-quorum of
 must stay non-failed forever. This is guaranteed by the

1-
on�guration-viability assumption. �

9.4.4 Garbage
olle
tion

We show that for 1-
on�guration-viable exe
utions of S

0

, if a garbage-
olle
tion operation starts

at time t, it �nishes by time max(t; `time(�

0

))+5d. In the theorem statement, we expli
itly assume

the existen
e of
ertain non-failing quorums rather than assuming 1-
on�guration-viability .

Theorem 9.4 Let
 be a garbage-
olle
tion operation in an �

0

-normal admissible timed exe
ution

of S

0

. Let
 start with g
(k)

i

at time t and let

k

and

k+1

be the values of
map(k)

i

and
map(k+1)

i

when
 starts.

Let R 2 read-quorums(

k

), W

1

2 write-quorums(

k

), W

2

2 write-quorums(

k+1

). Assume:

1. Pro
ess i does not fail.

2. No pro
ess in R [W

1

[W

2

fails.

Then
 ends with a g
-a
k(k)

i

, by time `time(�

0

) + 5d if the g
(k)

i

event o

urs in �

0

, and by time

t+ 4d if the g
(k)

i

event o

urs after �

0

.

Proof. The
ase where the g
(k)

i

event o

urs after �

0

is the same as Theorem 8.4. We
onsider

the
ase where g
(k)

i

event o

urs in �

0

in detail:

Garbage
olle
tion is implemented in two phases. In the �rst phase, pro
ess i sends messages to

members(
(k)) and
olle
ts responses. If messages from i are sent in �

0

they may be lost. However,

su
h messages are subsequently gossiped. At least one round of gossip with no message loss o

urs

by time max(t; `time(�

0

)) + d. These messages are delivered by time max(t; `time(�

0

)) + 2d, by

Lemma 9.1. With assumption 2, this ensures that i re
eives the ne
essary responses by time

t

1

= max(t; `time(�

0

)) + 3d. Lemma 9.1 also insures that the phase number
omponent of the

replies is at least as high as the phase of the garbage-
olle
tion operation.

The se
ond phase is similar, ex
ept that i
ommuni
ates with members(
(k+1)). If the se
ond

phase starts in �

0

then it is guaranteed to
omplete by time `time(�

0

)+3d (again using Lemma 9.1).

If the se
ond phase starts after �

0

, then it must start without delay after the end of the �rst phase,

and no later than the time t

1

. This means that in this
ase the se
ond phase
ompletes by time

t

1

+ 2d. This is due to the two message delays in
urred in this phase. Then assumption 2 ensures

that i re
eives the ne
essary responses. Combining these time bounds gives the result that garbage

olle
tion
ompletes by time max(t; `time(�

0

)) + 5d. �

Note that if an exe
ution satis�es 1-
on�guration-viability , then assumption 2 of the theorem

holds for any
on�guration. In this
ase, if a garbage
olle
tion starts at time t and the initiator

does not fail, the garbage-
olle
tion
ompletes su

essfully by time max(t; `time(�

0

)) + 5d.

9.5 Bounds that depend on gossip throughout exe
ution

We now show performan
e results that depends on periodi
 gossip throughout the entire exe
ution

of system S

0

.

53

9.5.1 Learning about parti
ipants and
on�gurations

The following theorem uses the assumption of join-
onne
tivity . It
onsiders the set J of pro
esses

that join the system by a
ertain time t. It says that, after a time that is logarithmi
 in jJ j following

�

0

, all the pro
esses in J know about ea
h other, and thereafter, information about
on�gurations

propagates qui
kly among pro
esses in J . The result assumes that pro
esses in J do not fail after

time t, to ensure rapid propagation of information.

Theorem 9.5 Let � be an �

0

-normal admissible timed exe
ution of S

0

satisfying join-
onne
tivity,

and let J � I, i; j 2 J , t; t

0

2 R

�0

and t � t

0

. Assume

1. J is the set of pro
esses i

0

su
h that join-a
k(rambo)

i

0

o

urs by time t.

2. No fail

i

0

events for i

0

2 J o

ur in �.

Then

1. By time max(t; `time(�

0

)) + d+ ddlog(jJ j)e, i 2 world

j

.

2. If by time t

0

,
map(k)

i

6= ?, then by time max (max(t; `time(�

0

)) + d+ ddlog(jJ j)e; t

0

) + 2d

map(k)

j

6= ?.

3. If by time t

0

,
map(k)

i

= �, then by time max (max(t; `time(�

0

)) + d+ ddlog(jJ j)e; t

0

) + 2d

map(k)

j

= �.

Proof. The proof follows that of Theorem 8.12, but with the failure-free assumption repla
ed with

a weaker join-
onne
tivity assumption during �

0

followed by the absen
e of failures of pro
esses in

J after �

0

.

We show this using a pointer-doubling argument. For Part 1, a pro
ess j is
onsidered to have

a \pointer" to i when i 2 world

j

. Given our assumptions about the gossip, during ea
h period of

d time after t a \round" of gossip
ompletes where at least one \pointer-doubling" o

urs at ea
h

pro
ess in J . However messages
an be lost in �

0

or have unbounded delay. Therefore periodi

message-lossless pointer-doubling starts at the latest by time max(t; `time(�

0

))+d. The �rst reliable

round of gossip
ompletes by time max(t; `time(�

0

)) + 2d (Lemma 9.1), and thereafter will o

ur

at least on
e every d time. Therefore all pro
esses that join by time t require at most dlog(jJ j)e

rounds of gossip to learn about all other su
h pro
esses.

For Parts 2 and 3, given t � t

0

and using Part 1, the information in
map

i

at time t

0

is re
e
ted in

map

j

by time max(max(t; `time(�

0

)) + d+ ddlog(jJ j)e; t

0

) + 2d. Here the quantity 2d
orresponds

to a delay of d from the time when
map

j

hanges until the next gossip round begins, and an

additional delay of d for the delivery of the gossip message. �

9.5.2 Garbage
olle
tion progress

We show that, after the system stabilizes, the time needed to garbage-
olle
t all but one
on�gura-

tion found in any pro
ess' trun
ated
map is at most linear in the length of that trun
ated
map.

We state this result for a
olle
tion of pro
esses that join by a
ertain time, and is shown to hold

after a suÆ
ient delay ne
essary for them to dis
over one another.

54

Theorem 9.6 Let � be an �

0

-normal admissible timed exe
ution of S

0

satisfying join-
onne
tivity

and 1-
on�guration-viability, i 2 I, J � I, t; t

0

2 R

�0

, and t

0

> max(t; `time(�

0

))+d+ddlog(jJ j)e.

Assume

1. J is the set of pro
esses i

0

su
h that join-a
k(rambo)

i

0

o

urs by time t.

2. k = maxfh : trun
ate(
map

i

)(h) 2 Cg at time t

0

.

3. No fail

i

0

events for i

0

2 J [fig o

ur in �.

Then
map(h)

i

= � for all h su
h that 0 � h < k by time t

0

+ 4 d k.

Proof. Given assumptions about J and join-
onne
tivity , Theorem 9.5 establishes that pro
esses

in J know about ea
h other by time t

0

. We
onsider two
ases.

First, we
onsider exe
utions where no garbage-
olle
tion operations start before time t

0

. If

k = 0, then garbage-
olle
tion is not enabled and the result holds at time t

0

as required. If

k > 0, then given that t

0

> `time(�

0

) and 1-
on�guration-viability , Theorem 9.4 says that ea
h

garbage-
olle
tion operation at i takes 4d time. By the de�nition of k, we require that at most k

on�gurations are to be garbage-
olle
ted at i. Sin
e garbage-
olle
tion is enabled at i at time t

0

,

it starts without any delay. This yields the result.

In the se
ond
ase, we
onsider exe
utions where 0 or more garbage-
olle
tion operations at i

may have
ompleted in �

0

. If no garbage-
olle
tion operations are in progress at time t

0

, then the

result is obtained as in the �rst
ase. Else, if a garbage-
olle
tion operation is in progress at time

t

0

and it started after �

0

, then by Theorem 9.4 it
ompletes by time t

0

+ 4d, then the result easily

follows. Finally, the most interesting situation is when a garbage-
olle
tion operation is in progress

at time t

0

and it started during �

0

. By Theorem 9.4 this garbage-
olle
tion operation
ompletes by

time `time(�

0

) + 5d. Then, using Theorem 9.4 again, the garbage
olle
tion of the remaining k� 1

on�gurations are
ompleted by time `time(�

0

)+5d+4d(k� 1). Sin
e t

0

> `time(�

0

)+d (from the

theorem assumption about t

0

and given that dlog(jJ j)e is positive for any J), the result follows. �

9.5.3 Read-write operation laten
y

Our �nal theorem des
ribes a situation in whi
h a read or write operation is guaranteed to have

laten
y at most 4d: when the
on�guration map of the operation's initiator
ontains multiple

on�gurations, in
luding the latest one and no new
on�gurations are being determined. Sin
e the

on�gurations are used
on
urrently by the read or write operation, they do not slow the operation

down. Here, we do not require garbage-
olle
tion, but we need to assume1-
on�guration-viability .

Theorem 9.7 Let � be an �

0

-normal admissible timed exe
ution of S

0

satisfying 1-
on�guration-

viability, i 2 I, J � I, t; t

0

2 R

�0

and t

0

> max(t; `time(�

0

)) + ddlog(jJ j)e + 3d. Assume

1. J is the set of pro
esses i

0

su
h that join-a
k(rambo)

i

0

o

urs by time t.

2. �
ontains no de
ide events after time t.

3. k is the latest
on�guration index in �.

4. No fail

�

events o

ur at or after time t.

55

Then if a read or write operation starts at time t

0

in a state where
map(`)

i

6= ? for all `, 0 � ` � k,

then it
ompletes by time t

0

+ 4d.

Proof. Given assumptions about �, J and join-
onne
tivity , Theorem 9.5 establishes that by time

t

0

the pro
esses in J know about ea
h other, and about all
on�gurations de
ided by time t. The

result then follows from the two-phased implementation of operations. Ea
h phase lasts for at most

two message delays: sin
e new
on�gurations are not added to op:
map

i

during the phase, the

phase
ompletes in 2d time. New
on�gurations
an only be added in the e�e
ts of the re
v a
tion

in Reader-Writer

i

. Be
ause k is the latest
on�guration index, no higher numbered
on�gurations

exist, and smaller numbered
on�gurations
annot be added be
ause of the properties of the extend

and trun
ate fun
tions used to modify op:
map

i

in the e�e
ts of re
v. �

10 Con
lusions

We have presented a spe
i�
ation for Rambo, a new re
on�gurable atomi
 memory servi
e for

read/write obje
ts, and have presented and analyzed a new, highly
on
urrent asyn
hronous

message-passing algorithm that implementsRambo. The algorithm uses a loosely-
oupled re
on�g-

uration servi
e, whi
h in turn uses a sequen
e of
onsensus servi
es, one for ea
h new
on�guration.

Ea
h
onsensus servi
e is implemented using Paxos. The entire algorithm satis�es its safety prop-

erties in the presen
e of any pattern of asyn
hrony and failures. The performan
e of the algorithm

depends on assumptions about message delay and failures. The limitations say, essentially, that

ea
h non-superseded
on�guration is \viable" (some read-quorum and some write-quorum
ontinue

to operate) for a
ertain amount of time.

In future work, we plan to analyze the algorithm under more sets of assumptions. Most of our

analysis so far has dealt with the
ase where behavior is normal throughout the exe
ution. Our

results for the situation where behavior is normal from some point onward are still in
omplete. In

parti
ular, we would like results that bound the laten
y of read and write operations that begin

suÆ
iently long after the system has stabilized. In this paper we gave a simple bound for read

and write operations in exe
utions that in
lude pro
ess failures, but where no
on�guration ever

be
omes disabled. We intend to show additional bounds for exe
utions where
on�gurations may

be
ome disabled, provided that they remain alive long enough to be garbage-
olle
ted.

The Rambo algorithm is very nondeterministi
 and so it
an be tuned for performan
e in a

variety of ways, for example, by varying the frequen
y of gossiping and dire
ting the gossip message

to
ertain subsets of the parti
ipants. We plan to evaluate the impa
t that various
hoi
es have

on the algorithm's fault-toleran
e, laten
y, and
ommuni
ation
osts. For example, what are the

tradeo�s between the frequen
y of gossiping and the laten
y of operations? We intend to examine

restri
tions on gossip where a pro
ess follows a gossip poli
y based on whether it is a member of

ertain
on�gurations. In parti
ular, a distin
t gossip poli
y
an be pres
ribed for a pro
ess that

is not a member of any
on�guration.

Also, we would like to analyze tradeo�s between the amount of time that a
on�guration is

assumed to remain viable (that is, the quantity e in the e-viable hypothesis) and other fa
tors,

su
h as the message delay d, the amount of pro
ess failure, and the frequen
y of gossip. With su
h

tradeo�s, the knowledge about the length of time that a
on�guration is expe
ted to remain alive

will determine the ne
essary frequen
y of gossip, and this will lead to better performan
e.

56

In other future work, we plan to implement and test the
omplete Rambo algorithm in LAN,

WAN, and mobile settings, and to use these implementations to build toy appli
ations. So far,

two LAN implementations have been begun, by Peter Musial, Jon Luke, Ben
e Magyar, and Matt

Ba
hmann. We will
ompare our theoreti
al results on performan
e analysis to experimental results

obtained from these implementations.

We are also
onsidering various improvements to the algorithm. For example, we are investi-

gating ways of in
reasing the
on
urren
y of garbage-
olle
tion. We will
onsider variants of the

algorithm that allow early return of the results of read operations, before the propagation phase

is exe
uted. Su
h results are guaranteed to be the same as the results that would be returned

after the propagation phase, so there appears to be little pra
ti
al reason not to return them early;

however, the e�e
ts of doing this need to be
arefully understood. More generally, we will
onsider

augmenting the algorithm with the
apability to return \best available" versions to
lients that

prefer not to wait for an atomi
 version.

We will
onsider \ba
kup" strategies for
oping with the situation where viability fails, and the

obje
t therefore be
omes ina

essible. For example, the system might automati
ally
reate a new

\
ontinuation" of an obje
t for whi
h too many
on�guration members fail. It might do this, for

instan
e, by reading several
opies of the obje
t, and using the value with the largest available tag

to start the new obje
t. Questions remain about who is authorized to
reate su
h a
ontinuation.

This work leaves open the very important question of how to
hoose good
on�gurations, for

various kinds of platforms.

One
an also study the \join problem". As we already noted, join-
onne
tivity is not really

appropriate as a basi
 assumption. It remains to formulate appropriate basi
 assumptions and

possibly improve the joining proto
ol, to prove a version of join-
onne
tivity from more basi

assumptions. It is possible that the join problem itself
ould be studied as a problem of independent

interest.

A
knowledgments. The authors thank Ken Birman, Alan Demers, Rui Fan, Seth Gilbert, But-

ler Lampson and Peter Musial for helpful dis
ussions.

Referen
es

[1℄ Communi
ations of the ACM, spe
ial se
tion on group
ommuni
ations, vol. 39, no. 4, 1996.

[2℄ D. Agrawal and A. El Abbadi, \Resilient Logi
al Stru
tures for EÆ
ient Management of

Repli
ated Data", TR, Univ. of California Santa Barbara, 1992.

[3℄ L. Alvisi, D. Malkhi, L. Pier
e, and M. Reiter, \Fault dete
tion for Byzantine quorum sys-

tems",(extended abstra
t), Pro
. of the 7th IFIP International Working Conferen
e on De-

pendable Computing for Criti
al Appli
ations, 1999.

[4℄ Amir Y., Dolev P., Melliar-Smith P., Agarwal D., and Ciarfella P. \Fast Message Ordering

and Membership using a Logi
al Token-Passing Ring". In 13th International Conferen
e on

Distributed Computing Systems (ICDCS), pages 551{560, 1993.

[5℄ Y. Amir, D. Dolev, P. Melliar-Smith and L. Moser, \Robust and EÆ
ient Repli
ation Using

Group Communi
ation" Te
hni
al Report 94-20, Department of Computer S
ien
e, Hebrew

University., 1994.

57

[6℄ Y. Amir, A. Wool, \Evaluating Quorum Systems over the Internet", Pro
. of 26th Intl. Symp.

on Fault-Tolerant Computing, Sendai, Japan, pp. 26-35, 1996.

[7℄ H. Attiya, A. Bar-Noy and D. Dolev, \Sharing Memory Robustly in Message Passing Systems",

J. of the ACM, vol. 42, no. 1, pp. 124-142, 1996.

[8℄ M. Bearden, R. P. Bian
hini Jr., \A Fault-tolerant Algorithm for De
entralized On-line Quo-

rum Adaptation", in Pro
. 28th Intl. Symp. on Fault-Tolerant Computing Systems, Muni
h,

Germany, 1998.

[9℄ P.A. Bernstein, V. Hadzila
os and N. Goodman, \Con
urren
y Control and Re
overy in

Database Systems", Addison-Wesley, Reading, MA, 1987.

[10℄ F. Cristian and F. S
hmu
k, \Agreeing on Pro
essor Group Membership in Asyn
hronous

Distributed Systems", Te
hni
al Report CSE95-428, Dept. of Computer S
ien
e, University of

California San Diego.

[11℄ S.B. Davidson, H. Gar
ia-Molina and D. Skeen, \Consisten
y in Partitioned Networks", ACM

Computing Surveys, vol. 15, no. 3, pp. 341-370, 1985.

[12℄ A. Demers, D. Greene, A. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart,

and D. Terry. Epidemi
 algorithms for repli
ated database maintenan
e. In Pro
. ACM Symp.

on the Prin
iples of Distr. Computing, pages 1{12, August 1987.

[13℄ R. De Pris
o, A. Fekete, N. Lyn
h, A. Shvartsman, \A Dynami
 Primary Con�guration Group

Communi
ation Servi
e", 13th International Conferen
e of Distributed Computing, 1999.

[14℄ Roberto De Pris
o, Nan
y Lyn
h, Alex Shvartsman, Ni
ole Immorli
a and Toh Ne Win \A

Formal Treatment of Lamport's Paxos Algorithm", manus
ript, 2002.

[15℄ C. Dwork, N. A. Lyn
h, L. J. Sto
kmeyer, \Consensus in the presen
e of partial syn
hrony",

J. of ACM , 35(2), pp. 288-323, 1988.

[16℄ A. El Abbadi, D. Skeen and F. Cristian, \An EÆ
ient Fault-Tolerant Proto
ol for Repli
ated

Data Management", in Pro
. of the Fourth ACM Symp. on Prin
. of Databases, pp. 215-228,

1985.

[17℄ A. El Abbadi and S. Toueg, \Maintaining Availability in Partitioned Repli
ated Databases",

ACM Trans. on Database Systems, vol. 14, no. 2, pp. 264-290, 1989.

[18℄ B. Englert and A.A. Shvartsman, Gra
eful Quorum Re
on�guration in a Robust Emula-

tion of Shared Memory, in Pro
. International Conferen
e on Distributed Computer Systems

(ICDCS'2000), pp. 454-463, 2000.

[19℄ A. Fekete, N. Lyn
h and A. Shvartsman \Spe
ifying and using a partitionable group
om-

muni
ation servi
e", ACM Transa
tion on Computer Systems, vol. 19, no. 2, pp. 171{216,

2001.

[20℄ H. Gar
ia-Molina and D. Barbara, \How to Assign Votes in a Distributed System," J. of the

ACM, vol. 32, no. 4, pp. 841-860, 1985.

58

[21℄ D.K. Gi�ord, \Weighted Voting for Repli
ated Data", in Pro
. of 7th ACM Symp. on Oper.

Sys. Prin
., pp. 150-162, 1979.

[22℄ K. Goldman and N. Lyn
h, \Nested Transa
tions and Quorum Consensus", in Pro
. of the 6th

ACM Symp. on Prin
. of Distr. Comput., pp. 27-41, 1987

[23℄ M.P. Herlihy, \Repli
ation Methods for Abstra
t Data Types", Do
toral Dissert., MIT,

LCS/TR-319, 1984.

[24℄ M.P. Herlihy, \Dynami
 Quorum Adjustment for Partitioned Data", ACM Trans. on Database

Systems, 12(2), pp. 170-194, 1987.

[25℄ S. Jajodia and D. Mut
hler, \Dynami
 Voting Algorithms for Maintaining the Consisten
y of

a Repli
ated Database", in ACM Trans. Database Systems, 15(2), pp. 230-280, 1990.

[26℄ David Kempe, Jon M. Kleinberg, Alan J. Demers: Spatial gossip and resour
e lo
ation proto-

ols. STOC 2001: 163-172.

[27℄ R. Guerraoui and A. S
hiper, \Consensus Servi
e: A Modular Approa
h For Building Fault-

Tolerant Agreement Proto
ols in Distributed Systems", Pro
. of the 26th International Sym-

posium on Fault-Tolerant Computing (FTCS-26), pp. 168-177, 1996.

[28℄ I. Keidar, A Highly Available Paradigm for Consistent Obje
t Repli
ation,

M.S
. Thesis, Hebrew Univ., Jerusalem, 1994; (see also TR CS95-5 at URL:

http://www.
s.huji.a
.il/�transis/publi
ations.html).

[29℄ I. Keidar and D. Dolev, \EÆ
ient Message Ordering in Dynami
 Networks", in Pro
. of 15th

Annual ACM Symp. on Prin
. of Distr. Comput., pp. 68-76, 1996.

[30℄ Leslie Lamport, "The Part-Time Parliament", ACM Transa
tions on Computer Systems, 16(2)

133-169, 1998.

[31℄ M. Liu, D. Agrawal and A. El Abaddi, \On the Implementation of the Quorum Consensus

proto
ol", Pro
. Parallel and Distributed Computing Systems, Orlando, Florida, 1995.

[32℄ E. Lotem, I. Keidar, and D. Dolev, \Dynami
 Voting for Consistent Primary Components",

in Pro
. 16 ACM Symp. on Prin
iples of Distributed Computing, pp. 63-71, 1997.

[33℄ N.A. Lyn
h, Distributed Algorithms, Morgan Kaufmann Publishers, San Mateo, CA, 1996.

[34℄ Nan
y Lyn
h and Alex Shvartsman. Robust emulation of shared memory using dynami

quorum-a
knowledged broad
asts. In Twenty-Seventh Annual International Symposium on

Fault-Tolerant Computing (FTCS'97), pages 272{281, Seattle, Washington, USA, June 1997.

IEEE.

[35℄ D. Malki and M. Reiter, \Byzantine Quorum Systems", in Pro
eedings of the 29th ACM

Symposium on Theory of Computing, pp. 569-578, 1997.

[36℄ D. Peleg and A. Wool, \The Availability of Quorum Systems", Information and Computation,

123(2), pp. 210-223, 1995.

59

[37℄ S. Rangarajan, S. Tripathi, \A Robust Distributed Mutual Ex
lusion Algorithm", Distributed

algorithms, Pro
eedings 5th Intl. Workshop, WDAG '91, Delphi, pp. 295-308, 1991.

[38℄ B. Sanders, \The Information Stru
ture of Distributed Mutual Ex
lusion Algorithms", ACM

Transa
tions on Computer Systems, 5(3), Aug. 1987, pp.284-299.

[39℄ E. Upfal and A. Wigderson, How to share memory in a distributed system, Journal of the

ACM, 34(1):116{127, 1987.

60

