
Nested Transactions and Read/Write Locking

(Prehmmary Report)

Alan Fekete’
Nancy Lynch2

Michael Merrltt3
W&am Welhl*

1. Introduction
A malor part of database 1 eseal ch over several years has been the

dealgn and analysis of slgollthms to mamtam consistent data m the
tace of mte~leaved accesses, abolts of operations, rephcatlon of
mfool mntmn and fadures of system components The most popular
and simple protocol 1s tao phase locbmg with separate read and
~llte lochs, other methods Include arbltraly confhct-based lockmg,
tlmestsmp-based techmques, and lockmg that uses special structure
of the data (e g a luerarchlcal arrangement) [Gr,T,I<S,I<o,We] A
powerful theory has been developed to prove the correctnes of
these algorithms, based on the idea that a protocol 1s correct If It
ensures that all executions are equivalent to serial executions
(EGLT,P,BG] This theory proves serlahzabdlty by showing that a
precedence graph contams no cycles

Recently, some Ideas m database system design and mole general
d&lbuted sybtem design have led several research groups to study
the possib1ht.y of glvtng more structure to the transactlons that ale
the basic umt of atcmuclty \Vhen a transaction can contain
concmlent operations that are to be performed atomically, or
opelarmns wh~h can be abol ted Independently, we say that the
op~i ations foe! m subtrat~sact~ons of the mlgmal transaction Thus
\re consider a s) stem whete tiansactlona can be nested This idea
wti fuat suggested by Davies under the name spheres of control
[D] A plmlltlve example of this concept 13 Implemented m System
R, \\ hele a recotely block can be aborted and the transaction
reataited at the last savepomt In general chstrlbuted systems hke
Argus /L&,LHJLS\V] or Clouds [4], the basic services are often

1D epartment of Mathematics, Harvard Unlveralty Cambrldw, hfaas

2
Laboratory for Computer Swnce, hlzssacbuaetts Institute of Technology,

CambrldSP hfas~

3
iTST Bell Lahoratorw hlurray HII& New Jersey

*Laboratory lor Computer Sc~nee hk.%achusetts Inatltute of Technology,
CarubrldgP Uass

The nork al the second author was supported I” pert by the Office of Naval
Resrarlh under Contract NO0914 85 I< 0168, by the OffIce or Army Research under
contract DAAGSQ 84 I< 0058, by the Natconal Science Foundatmn under Grants
MCS 8306854, DCR 8502391, and CCR 8611442, and by the Defenw Advanced
Research ProJects i\genCy (DARPA) under Contract NO0014 83-K 0125 The work

of the fourth author was supported ,a part by the Natmnal Swnce Foundatmn
under Grant DCR-8510014, and by the Defense Advanced Research PrOJeCtS AWCY
(DARPA) under Contract NO0014 83-K 0125

Pemusslon to copy wthout fee all or part of thts mate4 ts granted provtded that
the COPES are not made or dlstnbuted for direct commercml advantage, the ACM
copyright nottce and the tnle of the pubhcatton and tts date appear, and notice IS
given that copymg 1s by pemuss~on of the Assoclahon for Computmg Machinery
To copy otherwae. or to repubhsh. reqmres a fee and/or specific penrusslon

Dlovlded by Remote Procedure Calls which, at their best (“OnI)
Once” semantics), are atomic Smce provldmg a service ~111 often
require usmg other services, the transactmns that Implrmcnt
selvlces ought to be nested

The lmplementatlon of a nested transaction system rcquuLs

extending the algmlthms that have previously been considered fbl
conamency control, recovery and rephcatlon The work of Reed
[RI extended multi-version tlmestamp concurlency contlol to
provide nested transactIon data management MOSS [MO] extended
two phase lockmg with separate lead and write locks to handle
nesting, and this algorithm IS the basis of data management m the
Argus system implemented at MIT

This paper 1s part of a major research effort to offer clean,
readable descriptions of algorithms for managmg data m a nested
transaction system, together w1t.h rigorous proof* of the correctness
of these algollthms Othei paits of the prolect Include studymg
rephcated data management algonthms, orphan ehmmatlon
algorithms and general aton-uclty of abstract objects All this worh
IS baaed on a simple model of concurrent systems usmg I/O
automata and an operational style of reasomng about theu
schedules The first frmts of this program are detailed m [Lhl]
which proves the correctness of exclusive lockmg, and which
provides a basic framework for presentmg the Ideas of this paper

This paper’s contrlbutlon 18 threefold First, It proves for the first
time the correctnecr?l of Moss’ algorithm, an algorithm which has
been used m practice Our dlscusslon covers both concurrency
control and recovery from aborts However, we do not consider all
the failure cases that the real system must deal with, ss our model
does not yet include crashes which compromlse the system state
Second, we provide technical defuutlons (for equzefjeclzveness and

transparency) which seem to eaptme exactly those propertles of
read operations that the algollthm depends on Third, this papel
provides another example of the power and value of the basic
model of serial correctness first proposed m [MI], and of the
open atlonal style of reasoning 1) Ith I/O automata

In this papel we first levlew the I/O automaton model of

computation This IS velv slrmlsi to models hbe Commumcatmg
Sequential Processes [Ho], m that automata Interact by
synchromzmg on shared operations The mam difference from other
models 1s that we distmgmsh the input and output operations of
each automaton Any operation shared between components of a
system can be an output of at most one component, and that
component 1s m control of the operation, because no automaton 1s
allowed to refuse to execute an Input Though automata have states
a~ well as operations, we concentrate our analysis on the sequence
of opelatmns performed (the schedule of the system) - this
operatIona mode of reasomng 1s qmte different flom asset tlonal
mvarmnt methods used elsewhere m reasonmg about &strlbnted
systems, but we find It very powerful and yet smlple for the set of
problems we consider

Next, we show how to use I/O automata to model the paIts ol a
nested tlansactlon system Each transactIon 1.5 leplesented b) 311

@ 1987 ACM O-89791-223-3/87/0003/0097 75C

97

auton~ston, as IS each data object The actlons of callmg a
subtlansactlon, mvokmg an access to an object, and retuimng a
result are each spht mto two operations, one requestmg the actlon
dud one dehvelmg the request to the reclplent The request
opclatlon 1s an output of the caller and an mput to the scheduler
(nh~ch acts as a commumcatlon system) whde the dehvery
optrstlon 1s an output of the scheduler and an mput of the
lcclplent Thus, each transactlon (and each oblect) shares
opcldtlons only with the scheduler A serzal system 1s the result of
composmg tlansactlon and object automata with a eerlol
sc/&u/er, which runs the subtransactlons of any transactlo”
sequentially (with no concurrency between slbhngs) and only aborts
tlansactlons before they start runmng The serial scheduler IS very
simple to understand and 1s used as the basis of our correctness
condltlon

\Ve then mtloduce a Rfl Loclzng system to model a system
usmg hloss’ lockmg algorithm to manage data We use a new sort
of I/O automaton called a R/W Lo&rag oblect which IS like the
object automaton of the serml system, but which maintains lock
tables and %erslons of the object so that It can respond correctly
when aborts occur It also delays operations until it 1s permltted to
respond by the lochmg rules \Ve also use a new sort of scheduler
called a gcner IC scheduler, which transmits requests to the
?pploprlate reclptent \rlth arbitrary delay, allowmg slbhngs to run
conculrentlq or to abort after pelformmg some work A R/W
Lochmg system 1s the result of composmg the transaction
automata, R/W Lockmg obJecti and generic scheduler

A R/IV Locl,mg system allows more concurrency than a serial
slstem, but It 1s correct m the sense (first suggested m [LM]) that
each tlansactlon wh~h does not have an aborted ancestor 1s unable
to tell whether It 1s runmng m a R/W Lockmg system or m a serial
system The proof of this correctness condltlon 1s the mam result
of this paper

The proof proceeds by takmg an arbitrary schedule of a R/W
Lochmg system (d concurrent schedule) and exphcltly showmg how
to 1 eal1 ange the operations to get a schedule of the serial system
The permltted rearrangements (which do not alter the sequence of
events at any transaction) are those that are write-equ8uaZent to
the orlgmal sequence

A ley contrlbutlon of this paper 1s m ldentlfymg exactly the
propertles of read and write accesses which are required to
guarantee correctness of Moss’ algorithm Write accesses reqmre no
special properties However, it IS necessary that read accesses leave
the object m “essentially” the same state as they found It We
define equwj~ectaue schedules to be those that leave the object in
“essentially” the same state, where “essentially” means “BS far BS
later opelatlons can detect” Then an object schedule with a read

access appended 1s required to be equleffectlve to the same schedule
without the read access

There have been several other attempti to provide rigorous proofs
of the correctness of algorithms for data management m nested
tlansactlon systems The first was [Ly], which presented a model
that successfully handled exclusive lockmg, but which proved
dlfflcult to extend to more complicated problems such as orphan
ehmmatlon [Go] The mam defrclencles of this earher model seem
to be the lack of dlstmctlon bettieen mputs and outputs, and the
lack of exphclt lepresentatlons for transactions and their interfaces
‘Ihesc deflclencles were remcdled m [LM], where the operational
model discussed above was defmed, this paper again proved
co1 LLC~I~CSS of excluswe lockmg This paper contmues the work of
[I M] by dedllng with an algorithm with separate read and write
lochs (lhe result of this paper Implies a mam result of [LM], smce
whc.11 no accesses are dlstmgulshed as read accesses, Moss’
algot lthm dpgenel ltes Into exclusive lochmg) A different program

to study concurrency control m nested transactIon systems has been
offered m [BBGLS,BBG], where a major motlvatlon 1s to analyze
protocols that operate on data at different levels of abstraction, but
where recovery 1s not consldered The argument for the correctness
of Moss’ algollthm m [BBG] considers only the lochmg rules and
not the state mamtenance methods, so correctness 1s proved only 111
the absence of aborts Concurrency control and recovery
algorithms are also analyzed m [MGG], but [MGG] 1s also
concerned mamly with levels of abstractlon

This paper uses many concepts flom [LM], but we have repeated
everythmg needed to mahe It self-contamed, and rndlcated whele
defmltlons or detade differ In Sectlon 2, we review the model of
I/O automata of [LT,Lh4] In SectIon 3, we define the automata
that make up the serial system, namely the transactlon automata,
the basic object automata and the serial scheduler In Sectlon 4,

we specify the semantic condltlons that read accesses must sat&y,
usmg the technical notion of eqmeffectlve schedules In Sectlon 5
we define the automata of the R/W Lochmg system, namely the
R/W Lockmg objects (which have code based lmmedlately on the
algorithm of [MO]) and the generic scheduler, and prove the mam
lemmas that relate the schedules of R/W Lockmg obpxts to the
schedules of the basic objects Fmally m S&Ion 6 we plove that
R/W Locking systems are serially correct at transactlons no
ancestor of which has aborted, and m particular at the root
transactlon which represents the external environment

2. I/O Automata
The followmg 1s a brief mtroductlon to a model uhlch 1s

described m [Lhl] and developed at length, nlth extensions to
express mfmlte behavior, m [LT]

All components m our systems, transactions, oblects and
schedulers, ~111 be modelled by I/O automata An I/O automaton
A has a set of states, some of which are designated as ~tlrt~al
states It has operatrons, each clssslhed as either an znput
operatron or an output operation Finally, It haa a transltlon
relation, which 1s a set of triples of the form (s’,rr,s), where s’ and s
are states, and k IS an operation This triple means that m state s’,
the automaton can atomically do operation r and change to state s
An element of the transItIon relation 1s called a step of the
automaton The output operations are intended to model the
actlons that are trlggered by the automaton Itself, while the input
operations model the a&Ions that are trlggered by the envtronment
of the automaton

Given a state s’ and an operation lr, we say that r IS enabled in s’
If there 1s a state s for which (s’J,s) 1s a step We require the
followma condltlon

Input Condltlon Each mput operation r 1s enabled m each state
S’
This condltlon says that an I/O automaton must be prepared to
receive any input operation at any time

An ezecutron of A 1s an fimte alternatmg sequence sO,rl,

SIJ*, ,R”,s,, of states and operations of A, begmmng and ending
with a state Furthermore, s,, IS a start state of A, and each triple
(s’,x,s) which occurs as a consecutive subsequence 1s a step of A
From any execution, we can extract the schedule, which 1s the
subsequence of the execution conslstmg of operations only Because
transltlons to different states may have the same operation,
different executions may have the same schedule We say that a
schedule cx of A can leave A in state s If there IS some execution of
A with schedule Q and final state s We say that an operation = IS
enabled alter a schedule cy of A lf there exists a state s such that Q
can leave A m state s and A 1s enabled m s Smce the same
opelatlon may occur several times m an execution or schedule, we

98

\Ve ~LXI ~bt sybtLms as conslstmg of rntel actmg components, each
of \F~IIL~ 1s an I/O automaton It IS convenient and natural to view
sl&ems as I/O automata, also Thus, we defme a composltlon
opclatlon for I/O automata, to yltld a new I/O automaton A set
of I/O automata may be composed to create a system S, If the sets
of output operatlous of the various automata are palrwlse disJomt
(Thus, every output operation m .S WIN be tllggered by exactly one
component) A state of the composed automaton IS a tuple of
states, one for each component, and the stal t states are tuples
conslstmg of start states of the components The operations of the
composed automaton are those of the component automata Thus,
each operation of the composed automaton IS an operation of a
subset of the component automata An operation IS an output of
the composed automaton exactly of It 1s an output of some
component (The output operations of a system are Intended to be
exactly those that are trlggered by components of the system, while
the Input operations of a system are those that are trlggered by the
system’s envuonment) Durmg an operation k of a composed
automaton, each of the components which has operation IT carries
out the operation, while the remamder stay m the same state

An etecutton or schedule of a system 1s defined to be an
executton or schedule of the automaton composed of the mdlvldual
automata of the system If o 1s a schedule of a system with
component A, then we denote by a)A the subsequence of cy
contammg all the operations of A Clearly, ~I]A IS a schedule of A

The followmg lemma from [LM] expresses formally the Idea that
an operation IS under the control of the component of which It IS
an output

Lemma 1 Let a’ be a schedule of a system S, and let a
= CY’R, where lr IS an output operation of component A If
cu]A 1s a schedule of A, then (Y IS a schedule of S

We say that automaton A preserves a property P of schedules of
A If cy = @‘A satlsfles P whenever (1 1s a schedule A, a. satlsfles P
and T IS an output of A

3. Serial Systems
In this paper we define two hmds of systems “serial systems”

and “R/W Locking systems” Serial systems describe serial
execution of transactlons They are defined for the purpose of
glvmg a correctness condition for other systems, namely that the
schedules of another svstem should look hhe schedules of the serial
svstem to the transactlons As with serial executions of smgle-level
transaction systems, serial systems are too InefficIent to use in
practice Thus, we defme R/W Locking systems, which allow

transactlons to run concurrently or abort after performmg some
wolh, these systems use Moss’ algorithm to mamtam locks and
enough mformatlon to restore the states of objects after aborts
occur

In this section of the paper we defme sellal systems, which consist
of tlansactlons and bJslc objects commumcatmg with a seraal
scheduler TransactIons and basic objects describe user programs
and data, respectively The serial scheduler controls commumcatlon
between the other components, and thereby controls the orders m
which the tlansactlons create children or access data All the
system components are modelled as I/O automata Most of this
sectldn 1s taken from [LM], with shght modlflcatlons to accomodate
shght changes m defmltlons

We represent the pattern of transactlon nestmg, which we call a
system type, by a set of transactlon names, orgamzed mto a tree by
the mappmg “parent()“, with T, as the root In referrmg to this

tlce, we use tladltlolld tLImlll(>Iogy, SUCK 1.5 clllld, 1~ lf, IL&t
common ancestor (lea), ancestor and dcscenddnt (A tr?ns?cLlon 1s
Its own ancestol and descendant) The leaves of this tree 81 e called
acces.¶es The accesses ale paltltloned, whele each element of the
partltlon contams the accesses to a particular object The bee

structure can be thought of as a predefmed naming scheme for all
possible transactIons that might ever be Invoked In any particular
execution, however, only some of these transactions ~111 actuali)
take steps We lmagme that the tree structure 1s known m advance
by all components of a system The tree ~111, in general, be an
mfmlte structure with mfmlte branchmg

The &sslcal transactlons of concurrency control theory (wlthout
nestmg) appear m our model as the children of a “mythical”
transactlon, T,, the root of the transactlon tree (In worh on

nested transactlons, such as Argus, the children of T, are often

called “top-level” transactlons) It IS very convenient to mtloduce
the new root transactlon to model the environment In which the
rest of the transaction system runs TI ansactlon T, has operations
that describe the mvocatlon and return of the classIcal tlansactlons
It 1s natural to reason about T, m the same way as about all of the
other transactions The only transactlons which actually access
data are the leaves of the transactlon tree, and thus they are
dlstmgulshed as “accesses” The Internal nodes of the tree model
transactions whose function 1s to create and manage
subtransactlons, but not to access data directly

We also assume that a system type mcludes a designated set V of
values. to be used as return values of transactlons

A serial system of a given system type 1s the cornposItIon of a set
of I/O automata This set contams a transactlon automaton for
each rnternal (I e non-leaf, non-access) node of the transactlon
tree, a basic object automaton for each object, and a sellal
scheduler These automata are described below

3 1 Trsnsactlons
This paper differs flom other work such as [BBG] m that we

model the transactlons exphcltly A non-access transactron T IS
modelled as an I/O automaton, with the followmg operations

Input operations
CREATE(T)
REPORT-COMMIT(T’,v), for T’ a chdd of T, and v a value
REPORT-ABORT(T’), for T’ a child of T

Output operations
REQUEST-CREATE(T’), for T’ a chdd of T
REQUEST-COMMIT(T,v), for v a value

Ihe CREATE input operation “wabes up” the transaction The
REQUEST-CREATE output operation 1s a request by T to cleate
a particular child transactlon ’ The REPORT-COMhfIT mput
operation reports to T the successful completion of one of Its
children, and returns a value recordmg the results of that child’s
execution The REPORT-ABORT input operation reports to T
the unsuccessful completion of one of Its chddren, wlthout
retulnmg any other informatmn We Cdl
REPORT_COh4h4IT(T’,v), for any v, and REPORT-ABORT(T’)
report opetatlons for transactlon T’ The REQUEST- COMMIT
operation 1s an announcement by T that It has fmrshed Its wolh,
and mcludes a value recording the results of that work

6
Note that there IS no provision for T to pass lnformatmn to I& chdd in this

request In B programmmg language, T might be permllted to pass parameter
values to & subtransactmn Although this may be a convewent descrlptwe aId it IF
not necessary to Include it in the underlymg formal model Instead, we consider
trsnsact~~~s that have dlfkrent wput parameters to be dlffwent transactwns

99

It IS c0nven1ent to use two separate operations,
REQUEST-CREATE and CREATE, to describe what takes place
when a subtransactlon 1s activated The REQUEST-CREATE 1s
an opelatlon of the transactlon’s parent, while the actual CREATE
tahta piace at the subtransactlon Itself In actual systems such as
Algus, this separation does occur, and the dlstmctlon ~111 be
unpoltant m our results and proofs Sumlar remarks hold for the
REQUEST -COMMIT and COMMIT operations ’ We Imvr the

executions of pal tlculsr t,i ansactlon automata largely unspeclfled,
the choice of which chddren to create, and what value to return,
\r 111 depend on the pal tlcular lmplementatlon For the purposes of
the schedulers studled hLre, the transactions (and m large part, the
objects) are “biach boles * Nevertheless, it 1s convement to
az+ume that schedules of transactlon automata obey certain
syntsctlc constrsmts We therefore require that all transaction
automata preserve well-Cormedness, as defined m the next
pslaglaph We do not constrsm the operatmn of a transaction
automaton after schedules that violate well-formedness, but we will
plove later that, when placed m any of thP systems we consider, a
transaction generates only well-formed schedules

We lecurslvely defme well-fonnedtxus for sequences of operations
of tl ansactlon T Namely, the empty schedule IS well-formed Also,

of o = LY’K 1s a sequence of operations of T, where R 1s a single
event, then LY LS well-formed provided that Q’ IS well-formed, and
the follon mg hold

. If k 1s CREATE(T), then
(1) thele 1s no CREATE(T) event m ti’

. If R IS REPORT_COMh4IT(T’,v) for a chdd T’ of T,
then
(I) REQUEST_CRE4TE(T’) appears m (I’ and
(a) there IS no REPORT-ABORT(T’) event m (Y’ and
(111) there IS no REPORT-COMMIT(T’,v’) event with

F’#V in (Y’

l If r 1s REPORT-ABORT(T’) for a chdd T’ of T, then
(1) REQUEST _ CREATE(T’) appears m a’ and
(II) there 1s no REPORT-COMMIT event for T’ m a’

. If t 1s REQUEST-CREATE(T’) for a child T’ of T,
then

(I) there 1s no REQUEST-CREATE(T’) m Q’ and
(11) there 1s no REQUEST-COMMIT event for T m cy’
m d
(111) CREATE(T) appears m a’

. If IT IS a REQUEST-COMMIT for T, then
(1) there 1s no REQUEST-COMMIT event for T m cy’
and
(II) CREATE(T) appears m 0’

These restrictions are very basic, they simply say that a
transactIon does not get created more than once, does not receive
conflicting information about the fates of its children, and does not,
receive information about the fate of any chdd whose creation It
has not requested, also, a transactIon does not perform any output
opelatlons before it has been created or after lt has requested to
cornnut, and does not lequest the creation of the same &Id more
thin once Except fool these mnumal condltlons, there are no a

7 Note that we do not mclude a REQUEST-ABORT opcratlon for B transaction
we do not model the sltuatton m wluch a transactmn deader that lb own exmtence
IS a m&eke Rather we aagn dccwons to abort trsnsactmns to another
component of the system the scheduler In practice, the scheduler must have some
POW-~ to deade to abort transactms, as when ,t detect., deadlocks 01 failures In
Argus, transactions are permltted to request to abort, we regard this request simply
as a ‘hmt- to the scheduler to restrwt Its allowable exeeutlons III L partwular way

pl1or1 rest1 actions on allowable tl ansactlon behavior

The followmg easy lemma summarizes the properties of well-
formed sequences of tlansactlon operations

Lemma 2 Let a be a well-formed sequence of operations
of transactlon T Then the Collowmg condltlons hold

The first event m (I 1s a CREATE(T) event, and
there are no other CREATE events

If a REQUEST-COMMIT event for T occurs m (Y,
then there are no later output events of T m (Y

There 1s al, most one REQUEST-CREATE(T’)
event for each child T’ of T, m cv

4 There are not two Mferent repel t operations m a
for any cluld T’ of T (However, there may be
several events which are repeated mstances of a
single report operation)

5 Any report event for a ciuld T’ of T IS preceded by
REQUEST-CREATE(T’) m ~1

Conversely, any sequence of operations of T satlsfymg these
conchtlons 1s well-Calmed

3 2 Basic ObJects
Recall that I/O automata are associated with non-access

transactions only Smce access transactIons model abstract
operations on shared data objects, we associate a single I/O
automaton with each ob)ect, rather than one for each access The
operations for each object are Just the CREATE and
REQUEST-COMMIT operations for all the correspondmg access
transactions Although we give these operations the same names as
the operations of non-access transactions, It IS helpful to think of
the operations of access transactIons m other terms also a
CREATE corresponds to an mvocatlon of an operation on the
oblect, while a REQUEST -COMMIT corresponds to a response by
the oblect to an mvocatlon Actually, these CREATE and
REQUEST-COMMIT operations generahze the usual mvocatlons
and responses m that our operations carry ~lth them a designation
of the positIon of the access m the transactIon tree Thus, a basrc
obpct X IS modelled as an automaton, with the followmg
operations

Input operations
CREATE(T), fool T an access to X

Output operations
REQUEST-COMMIT(T,v), for T an access to X

As with transactions, wlnle speelfic oblects are left largely
unspecified, It IS convenient to reqmre that schedules of basic
oblects satisfy certam syntactic conditions We recursively defme
we&formednees for sequences of operations of bs.slc ob]eCts
Namely, the empty schedule 1s well-formed Also, d (Y = Q’A 1s a
sequence of operations of bastslc object X, where ff IS a smgle event,
then cz 1s well-formed provtded that cz’ 1s well-formed, and the
Collowmg hold

l If r IS CREATE(T), then
(I) there IS no CREATE(T) event m n’

l If R IS REQUEST-COMMIT for T, then
(I) there 1s no REQUEST-COMMIT event for T m CY’,
and
(n) CREATE(T) appears m (Y’

These restrlctlons simply say that the same acces does not get
created more than once, and that a basx object does not, respond
more than once to any access, and only responds to accesses that

100

IIZVL ,” Lvlo”sly bl CII c, c ILL‘1 I IlL’lfJ I equllelnellts const1 am the
Cll\llOlllllC'll~ 01 tilt OhJCLt all;tlllj' k=Tb tb?" thOSC I" [Lhf], the
adtld f~wdom mlhtb so”,e of the algulne”ts shghtly sm~pler We
1equ”e that every basslc object preserve well-formedness (this 1s a
simple syntactic condlt,lon) The follotimg easy lemma summarizes
the plopertles of \\~Il-fol”~~d s‘quences of ba.w object operations

Lemma 3 Let cy be a ~~ll-fo~“~ed sequenw of operations
01 btislc object \ lhen fol a”y access T Lo Y, (Y co”t?lns
one of the folio\\ mg

1 no CREATE(T) and no REQUEST-COMMIT(T,v)
events. 0,

2 one CREATE(T) and IlO
REQUEST-COMMIT(T,v) events, or

3 one CREAlE(T) event and followmg that one
RFQUES I’- COMMI r(T,v) event for solne v

Conversely, any cr sztlsfymg tins condltlon 1s well-formed

If a 1s a well-fol “led sequence of operations of X and T IS a”
access to X such that ~1 contams CREATE(T) but no
REQUEST-COMhlIT(T,v), we say that T 1s pendmg m (I

3 3 Serial Scheduler
The third kmd of component I” a serml system 1s the serial

scheduler The serial scheduler 1s also modelled aa a” automaton
Whereas the transactmns and basic oblects have bee” speclhed to
be any I/O automata whose operations and behawor sat&y simple
syntactic restrlctlons, the serial scheduler IS a fully spe&ed
automaton, particular to each system type It runs transactlons
accordmg to a depth-first traversal of the transactlon tree The
sellal scheduler can choose nondetermmlstlcally to abort any
tra”aactlon after Ita parent has requested Its cleatIon, as long as
the transaction has not actually been created In the context of
thlb scheduler, the “aemantlcs” of an ABORT(T) operation are that
tlansactlon T was ne,er created Each child of T whose cleatmn
%\ as requested must be either aborted or run to comrnltrnent wth
no slblmgs ovellappmg Its execution, before T can commit The
operations of the serial scheduler are as follows

Input Operations
REQUEST _ CREATE(T)
REQlrEST -COhIMI r(r,v)

Output OpLr?tlo”s
CREATE(T)
COVMIT(T) T f T,
4BORT(T), T # T,,
REPORT _ COi\~IIT(T,v), T # T,

REPORT- 4BORT(T), T # T,

1 he RFQUIZS r _ C,I1EATE and REQUEST _ COMMlT mputs
JI P mtwded to be tde”tlflcd wth the correspondmg outputs of
trwsactlon arld obIwt automata, and correspondmgly for the
CREATE, REPORT-COMMIT and REPORT-ABORT output
operations The COMMIT and ABORT operations are Internal,
malhmg the pomt m tnne where the decwon on the fate of the
tla”sactlon 1s wrevocabie We call COMMIT(T) and ABORT(T)
return operations for T

Each state s of the aerial scheduler consists of SIX sets, named
with 1 word notation s create-requested, s created,
s cornnut-requested, s committed, s abolted and s returned The
set s commit-requesttd 1s a set of (transactlowvalue) pairs The
others ale sets of tra”aactlo”s There 1s exactly one mltlal state, 1”
which the set create-requested 1s {T,}, and the other sets are
empty

The transltmn lelatlo” conslstz of exactly tlwbe tllples (s’,~T,s)
satlsfymg the pie- and poatcmldrtlons belo\\, whele x IS thL
mdlcated operation Fol blevlty, we Include m the postco”dltlonb
only those condltlons 011 the state s wluch m ly change with the
operation If a component of s LS not nwntloned I” tlrc
postcondltlon, It 1s lxnplwt that the stt IS the same I” s’ and s

REQUEST-CREAlE(T)
Postcondltlon

s create-requested = s’ create_rLquesttd u {T}

REQUEST-COMMIl(T,v)
Postcondltlon

s commit-requested = s’ comrmt- requested U ((I’,v))

CREATE(T)
Precondltlon

T E s’ create-requested - (b’ created U s’ aborted)
slbhngs(T) II s’ CI eated C s’ returned

Postconchtlon
s created = s’ created U {T}

COMMIT(T), T f T,
Preconchtlon

(T,v) E s’ commit-requested for some v
T p s’ returned
children(T) n s’ cl eate-requested C s’ 1 eturned

Postcondrtlon
s commItted = s’ committed u {r}

s returned = s’ Ietul”ed U {T}

ABORT(T), T # T,
Preconrhtlon

T E s’ create requested - (s’ created U s’ aborted)
slhhngs(T) n: created c s’ returned

Postcondltlon
s aborted = s’ aborted U {T}
s returned = s’ returned U {T}

REPORT-ABORT(T), T # T,
Preconchtlon

T E s’ aborted

REPORT- COMMIT(T,v), T # T,,
Precondltlon

T E s’ commItted
(T,v) E s’ comrnlt-requested

The Input operations, REQUEST-CREATE and

REQUEST-COMMIT, simply result m the request bemg recorded
A CREATE operation ca” only occur If a correspondmg
REQUEST-CREATE has occurred and the CREATE has “ot
already occurred The second precondltlon on the CREATE
opelatlon says that the serial schrduler does not create a
transaction untd all Its previously created slbl”lg transactIons have
returned That IS, srblmgs are run sequentially The precondltlon
on the COMMIT operation says that the scheduler does not allow a
transactIon to comrnlt until Its chrldren have returned The
preconchtlon on the ABORT operation says that the scheduler does
not abort a transaction while there 1s actwty gmng on on behalf of
any of Its slblmgs That IS, aborted tlansactlons are dealt wth
sequentially wth respect to the” slbhngs The result of a
transactlon can be reported to Its parent at any time after the
(purely Internal) commit or abort has occurred In paltlcular,
slblmgs rnlght run m one order and be reported to thew parent I”
the opposite order

One slgmflcant difference between our serial scheduler and the
one m [LM] 1s that there the return operation and the repmt to the

101

.

paltnt of the return ale combmed as a smgle operation, glvmg the
palent the extra mformatmn of the older m which Its children are
L”Cl

The next lemma relates a schedule of the serial scheduler to the
state 1, huh 1 esults from applymg that schedule

Lemma 4 Let o be a schedule of the sellal scheduler, and
let s be a state which can result from applymg o to the
nntml state Then the followmg conchtlons are true

1 T IS In s create-requested exactly If T = T,, or a
contam:. a REQUEST-CREATE(T) event

:! T 1s m s created exactly of CY contuns a CREATE(T)

event

3 (T,v) IS m s commlt_1equ&ed exactly If (Y contams
a REQUEST-COMMlT(T,v) event

1 T 1s m s cornnutted exactly If (Y contains a
COMMIT(T) event

5 r 1s m s abol ted exactly of cy contams an ABORT(T)
e\ ent

G s returned = s cornnutted U s aborted

7 s commlttcd n s aborted = 0

3 4 Serial Systems and Serml Schedules
The cornposItIon of transactions with basic objects and the serial

scheduler for a given system type 1s called a serzal system, and its
operatmns and schedules are called serral operatrone and sefral
sclredules respectively A sequence u of serial operations 1s said to
be c~ell {armed plovlded that Its proJectIon at every transactIon
and bask obleLt IS well-formed

Lemma 5 Let CI be a serial schedule Then (Y 1s well-
fool nird

Proof A straightforward mductlon on the length of
schedules The mductlve step mvolves a case analysis based
on the possible operations 0

If Q 1s a sequence of serial operations and T IS a transaction such
that Q contams CREATE(T) but no return event for T, we say
that T IS Izve m CY The following lemma states that only related
transactions can be hve concurrently, m a serial schedule

Lemma 8 Let (Y be a sellal schedule, and T and T’
tlansactlons each of wtnch 1s hve m cy Then either T LS an
ancestor of T’ or T’ 1s an ancestor of T

In older to talk about schedules, we mtroduce some terms to
descllbe the fate of transactions Let 01 be any sequence of
opcratlons (We will use these same terms later for schedules of
R/W Lockmg systems, 90 we make the defmltlons for general
sequences) If ‘I 1s a transactmn and T’ an ancestor of T, we say
that 1 1s committed to T’ m CY of COMMIT(U) occurs m a for
every U wh~h IS an ancestor of T and a proper descendant of T’ If
1 and T’ are transactions we say that T 1s wasable to T’ m a If T IS
cornnutted to lca(T,T’) If t 1s one of the operations CREATE(T),
REQUEST- CREATE(T’), COMMIT(T’), ABORT(T’),
REPORT-COMMIT(T’,v’), REPORT-ABORT(T’,v’) or
REQUEST-COMMIT(T,v) where T’ 1s a child of T, then we
dLflne Itonsactaon(lr) to bc T If 1 LS a non-access transaction then
thr operations R with transactIon = T are the operations of the
automaton T togLthe1 wtlr the lcturn operatmns for children of
1 W’CL dcuote by vlslble(u,T) the subsequence of a conslstmg of

events II with transactIon to T m a Notice that every operation
o~cmrmg m vlsrble(cr,T) IS a serial operation

We collect here some straightfmward consequences of these
delmltlons

Lemma 7 Let a be a sequence of operstlons, and T, T’
and T” transactIons

If T IS an ancestor of T’, then T IS vmble to T’ In a

T’ 1s visible to T m a If and only If T’ 1s amble to
lca(T,T’) m a

If T” IS vlslble to T’ m CY and T’ 1s amble to T In a,
theu T” 1s visible to T in (I

If T’ 1s a proper descendant of T, T” IS vslble to T’
in Q, but T” IS not vznble to T m (Y, then T” 1s a
descendant of the child of T whrch 1s an ancestor of
T’

Lemma 8 Let, a and j3 be sequences of opelatlons, such
that j3 cons1st.s of a subset of the events of a

1 If transactIon T 1s amble to transactIon T’ m p,
then T 1s vmble to T’ m (Y

2 If event)r 1s In vmble@,T), then t 1s m \rslble(a,T)

Lemma 9 Let 01 be a bequence of operations, and let T
and T’ be transactIons Then x Iwble(a,T)IT’ IS equal to crjT
if T’ IS vlslble to T m Q, and 1s equal to the empty sequence
otherwise

Lemma 10 Let o be a sequence of operations Let T, T’
and T” be transactIons such that T” 1s vlslble to T’ and to
T m a Then T” 1s amble to T’ m vlslble(a,T)

Lemma 11 Let T be a transaction, and let Q?T be a
sequence of operations, where A 1s a smgle event

1 If transactIon IS not amble to T m crk, then
vmble(arr,T) = vnlble(cr,T)

2 If transactIon IS vlslble to T m as and If A 1s not
a COMMIT event., then vwble(on,T) =
vmble(cY,T)r

3 If transaction(n) 1s vmble to T m a~, and r 1s
COMMIT(U), then the events m vmble(arr,T) are
those vlslble m cx to &her T or U, together with n
itself

Lemma 12 Let (Y be a well-formed sequence, and T any

transactlon Then vislble(a,T) IS well-formed

The next two lemmas are taken from [LM] (There, they are
proved with shghtly different defmltlons, but the essentially the
same proofs WOI k here)

Lemma 13 Let u be a serial schedule and T a
transaction Then vlslble(cr,T) 1s a se& schedule

Lemma 14 Let (I be a serial schedule and T a
transactIon Let p = vnlble(rY,T) Then 7 = j3(a - p) IS a
serial schedule

Let o be any sequence of operations If T 1s a tlansactlon we say
T IS an orphan m a If ABORT(U) occurs m a for some ancestor U
of T

3 5 Serml Correctness
We use serrsl schedules as the baaIs of OUI collectness defmltlon,

whrch WBS first grven m ILM] Namely, we sav that a sequence of
operations 1s serralfr~ correct for a ~tansaclron r plovlded Lhat Its
prolectlon on r IS ldentlcal to the ploJect.loll on 1 of some sulal

schedule That IS, the sequence “looks hhe” a serml schedule to

102

T Later m tlus pdpcr WL ~111 dJme UOIZ/W LocLmg systems” and
show that then sth~dules isle sellally ccurect for every non-orphan
tlansactlon, snd m psltlcular that these schedules are srrlally
correct for lhe loot tlansactlon T,

Motlvatlon for our use of sellal schedules to define correctness
dellves from the smlple behavior of the sellal scheduler, wh~h
determmes the sequtnce of mteractlons between the transactions
and oblects We beheve the depth-first traversal of the transaction
tree to be a natural notion of correctness wluch corresponds
preclscly to the mtmtlon of how nested transaction systems ought
to behave Furthermore, It IS a natural generahzatlon of

sermhzablhty, the correctness con&Ion generally chosen for
classical transactIon systems Serial correctness for T IS a condltlon
winch guarantees to Implementors of T that their code will
encounter only sltuatlons which can arise m serial executions
Cmrectness for To 1s a special case which guarantees that the
external world wdl encounter only sltuatmns which can arise In
selisl executions

It would be best IF every transaction (whether an orphan or not)
saw comnstent data Ensurmg this reqmres a much more mtrlcate
scheduler than the simple R/W Lockmg systems we describe In
IHLMW], we describe and prove correctness of several algorithms
for mammtammg correctness for orphan transactIons

Our approach 1s an example of a general techmque for studymg
system algmlthms A simple, mtmtlve and mefficlent algorithm
(automaton) 1s used to specify an acceptable collection of schedules
for the system component The actual system component 1s more
efflclent or robust, but provides the same user Interface The user
1s guaranteed that apphcatlons (transactlons, m our work) which
wolh well when run with the simple algorithm wdl work the same
way ahen run w1t.h the actual system

4. Semantic Conditions
In the serial systems to be considered m this paper, accemes are

classllled as either read or lorrte accesses In tins se&Ion, we state
the propertIes ahlch these accesses are reqmred to satisfy First,
He defme the fundamental concept of “eqmeffectlveness” of
schedules, whuzh IS m turn used to defme “transparency” of
operations, an operation 1s said to be transparent of later accesses
to the same object return values which are the same as m the
sltuatmn whele the operation did not occur We then prove certam
consequences of these defmltlons, winch wdl be used m the ensumg

proofs Fmally, we use the notIon of transparency to speelfy the
precise semantic condltlons which read and write accesses must
sat&y

4 1 Equmffectrve Schedules
\Ve mtroduce the concept of eqmeffectlve schedules of a basic

object X, m order to define precisely what schedules we ~111 regard
as “essentially” the same Intmtlvely, these are schedules wluch
leave the automaton m states w&h are the same However, we are
really Interested m schedules, not states, so It 1s enough that they
be mdlstmgmshable by later operatmns

Formally, given two well-formed sequences (Y and @ of operations
of X, we say that Q 1s equrefject~ue to @ If for every sequence 4 of
operations of X such that both ad and fid are well-formed, (~4 IS a
schedule of X IF and only If 84 1s a schedule of X

Notlce that of nelther cy nor p IS a schedule of X, then (Y 1s
tllvlally eqmeffectlve to /9 Also, notIce that IF cy 1s eqmeffectlve to
p and B 1s a schedule of X, then cr IS a schedule of X In the sense
of semantrc theory, eqmeffectlve schedules pass the same tests,

whele a test mvolves dettrmmmg lf a glvcu squ(nce of op~allons
can occur after the sequence berng tested \VL lmnt the tests to
sequences wluch do not violate well-formedness, for techmcal
reasons, because we have not reqmred the objects to behave
sensibly If the inputs vIolate well-formedness Clearly, a 1s
eqmeffective to p if and only of @ 1s eqmeffectl\e to (Y and m this
case we say that Q and /3 are eqmeffectlve sequences We have a
restrIcted fol m of t.1 ansltlvlty

Lemma 16 Let CY’, /3 and 7 be sequences of operations of
X such that the events m B itle a subset of the events m (Y
and the events m 7 are d subset of the events m /3 (perhaps
m different orders) If (I and /9 are eqmrffectlve and also p

and 7 are eqmeffectme, then (Y and 7 are eqmeffcrtlve

We also have an extension result

Lemma 16 If (Y and B are eqmeffectlve sequences of
operations of X wluch contam the same events, and 4 1s a
sequence of operations of X such that u$ 1s a well-formed
schedule of X, then 84 IS a well-formed schedule of X wluch
1s equieffectlve to cub

We say that an operation ?r of basic oblect X 1s transparent If for
any well-formed schedule (YA of X, CYK 1s eqmeffectlve to (Y Thus,
later operations which do not vIolate well-formedness cannot detect
whether = happened (Notlee that we only require IF to be
undetectable m sltuatlons where It can occur, 1 e when CUT 1s a
schedule)

Lemma 17: Let Q be a well-formed schedule of basic
oblect X, and S a set of accesses to X such that any
operation of a transactIon m S that occurs m cy 1s
transparent Let /3 be the subsequence of P obtamed by
removmg all the operations of accesses m S Then p IS a
well-formed schedule of X which 1s eqmeffectlve to Q

4 2 Reordermg and Combmmg Serral Schedules
In this subsectIon, we describe ways m which serial schedules can

be modified and combmed to yield other serial schedules These
lemmas are used m the proof of Lemma 33, m Section 6 3 The
first generalizes a lemma m [LM], taLmg mto account the special
properties of transparent operations The second 1s essentrally the
same as a lemma of [LM]

Lemma 18 Let (YP~COMMIT(T’) and o’p, be two serial
schedules and T, T’ and T” three transactIons such that the
following condltlons hold

1 T’ 1s a child of T” and T 1s a descendant of T” but
not of T’,

3 a@, = vlslble(aBz,T),

4 (Y = vislble(cYP1,T”) = .‘,‘ble(o@2,T”) and

5 If any basic obJect has an output operation m j3,

then all Its operations m 8, are transparent

Then a@,COMMIT(T’)P2 IS a serial schedule

Proof Strmghtfolward by mductlon on the length of
prefixes of (ralCOMMIT(T’)B, IJ

Lemma 19. Let aAEiORT(T’) and ~$3 be two serial
schedules, and let T, T’ and T” be transactions, such that
the followmg condltlons hold

1 T’ 1s a chdd of T” and T 1s a descendant of T” but
not of T’,

2 (YB = vlslble(cY@,T), and

103

3 (Y = vlslble(cr,T”) = vlslble(a@,T”)

Then aABORT(1s a serial schedule

4 3 Semantics of Read Accesses
Fmallv, we ale ready to state the condltlons to be satisfied by

lead and write accesses Namely, we reqmre that each basic object
X satisfy the followmg condltlons

Semantx Condhons

1 Every CREATE(T) opelatlon IS transparent

2 For any al and ‘Y? for which a,CREATE(T)(r2 and
aln2CREATE(T) are both well-formed schedules of X,
they are eqmeffectlve schedules

3 Every REQUEST-COMMIT(T,v) operation, for T a
1 cad access, 1s transparent

Condltlon (1) means that whether or not an access was created 1s
mvlalble to other accesses Condltlon (2) means that when an
access was created 1s not detectable by later operations Condltlon
(3) means that later operations cannot detelmme whether or not a
REQUEST-COMMIT operation for a read access has occurred
The third condltlon captures the fundamental feature of read
accesses that allows Moss’ algorithm, as given m the constructlon of
R/W Lockmg oblects m Sectlon 5 1, to work In contrast, the first
two condltlons are a convemence, wlthout which the proof of
correctness m Seetlon 6 3 would be less tidy, as we would have to
realrange a concu~ent schedule m more ways, to produce a serial
schedule that looked the same to each transactlon Note that we
make no assumption about the semantics of REQUEST-COMMIT
operations for write accesses, and so it 1s legltlmate to deslgnate all
accesses as wlltes If this 1s done, Moss’ algorithm as given m this
paper degenerates Into exclusive locking

An example of a basic object satlsfymg these condltlons would
ha\e as Its state a set of transactlons, called “pendmg’ and an
mstance of an abstract data type The input operation
CREATE(T) would simply add T to pendmg At any time, a
tlansactlon T m pending could be chosen, and the correspondmg
function apphed to the mstance of the abstract data type, yleldmg
return value v, and a possibly altered Instance of the abstract type
l? would be removed from pending, the new instance would replace

the old one in the state of the basic oblect, and
REQUEST-COMMIT(T,v) would be output (The whole sequence
from choosmg T to the output 1s an atomic step of the basic
oblect)

The followmg lemma combines all the mformatlon m the
semantic condltlons to give a simple sufficient condltlon for provmg
that schedules are eqmeffectlve This test IS used throughout this
paper Given a sequence Q of operations of X, define wnte(a) to be
the subsequence of Q conslstmg of the REQUEST-COMMIT(T,v)
events for write accesses T If (Y and p are sequences of operations
of X and wrlte(ru) = write(b) then we say that o and /3 are
write-equal This 1s clearly an eqmvalence relation on sequences of
operations of X

Lemma 20 Let Q and p be well-formed schedules of X
wluch are wllte-equal Then a and /3 are equleffectlve

Proof buppose 4 1s a sequence of operations of X such
that a& and @#I ale both well-formed We must prove that
+#J 1s a schedule of X IC and only IF cr# IS a schedule of
X Consldtr the set A of acctsse3 to X which 1s the umon of
the stt of wl~te RCCLSSLS for which a REQUEST-COMMIT
opc~.~t~on occurs 111 a (znd so also m p) and the set of

accesses which are pendmg 111 both (Y and B Let a’ denote
the subsequence of Q conslstrng of the events of accesses m
A Slmllarly let /3’ denote the subsequence of p conslstmg of
the events of accesses m A Smce (Y’ 1s obtamed from (I by
removmg all the operations of accesses not m A, and all such
operations are transparent (by condltlons 1 and 3), by
Lemma 17, we deduce that 0’ 1s a well-formed schedule of X
equleffectlve to 0 Slmllarly @” IS a well-formed schedule
equleffectlve to p Also, smce Q’ can be formed from @’ by
movmg CREATE events, we deduce from condltlon 2,
Lemma 16 and Lemma 15 that (Y’ and p’ are equleffectlve
Smce both aq% and & are well-formed, by Lemma 3 any
event m Q must be either an operation of an access with no
operations m Q or fi, or else a REQUEST-COMMIT for an
access that 1s pendmg m both a and j3 In any case, (~‘0 and
@‘d must be well-formed Therefore cud IS a schedule of X IF
and only If ~‘4 IS a schedule, which 1s true IP and only II B’Q,
1s a schedule and so If and only If ,9qi IS a schedule of X 0

5. R/W Locking Systems
A R/W Lockmg system of a given system type IS composed of

transactlons, a generic scheduler, and R/W Lochmg objects The
non-access transactions are mo d elled by the same automata as m
the serial system, but the generic scheduler has much more freedom
m scheduhng transactions than the serial scheduler, and R/W
Lockmg objects follow the algorithm of PO] m mamtammg lockmg
and state restoration data that basic oblects do not need

5 1 R/W Locking obJects
In this section, we define, for each basic obJect X, a R/W Lockmg

object M(X) which provides a reslhent lock-managmg variant of
X It receives operation mvocatlons and responds hke basic object
X, and also receives mformatlon about the fate of transactions so
that It can mamtam Its lockmg and state restoratlon data The
R/W Lockmg object combmes the features of the reslhent object
and the lock manager of (LM], where, as m many database
management systems, the recovery and concurrency control are
performed separately Combmmg these features, as we do here,
eliminates some redundancy m mamtammg mformatron about the
fate of transactions

M(X) has the followmg operations

Input Operations
CREATE(T), for T an access to X

INFORM-COMMIT-AT(X) T # T,
INFORM~ABORT~AT(X)OF(T), T # T,

Output Operations
REQUEST-COMMIT(T,v), for T an access to X

We give a recursive defmltlon for welt-formedness of schedules of
oblect M(X) Namely, the empty schedule 1s well-formed Also, lf
Q = a’* 1s a sequence of operations of oblect X, then (x 1s well-
formed provided that o’ 1s well-formed and the followmg hold

. If n 1s CREATE(T), then
(I) there IS no CREATE(T) event m CY’

l If ?F 1s a REQUEST-COMMIT for T, then
(I) there 1s no REQUEST-COMMIT event for T m (Y’,
and
(II) CREATE(T) occurs m a’

l If r LS INFORM~COMMlT~AT(X)OF(l), then
(I) there 1s no lNFORM~ABORT~Al(X)OF(T) event
m (Y’, and
(II) rf T 1s an access to X, then a REQUEST-COMMIT
event for T occurs m a’

104

. If ?r IS INFOllhf~AB0RT~RT(X)OF(T), then
(I) there IS no INFORM~COMMIT~AT(X)OF(T)
eY< nt m a’

A state s of M(X) consists of the followmg five components
s write-lockholders, s read-lockholdels, s cxate-requested, and
s run, which are sets of tlansactlons, and s map, which 1s a function
flom write-locbholdels to states of bsslc oblect X We say that a
transactIon m write-lockholders holds a wrote-lock, and slmllarly
that a transactlon m read-lockholders holds a read-lock We say
two locks conflzct of thev are held bv different trAnsactIOn* and nt

least one IS a wllte-lock The mltlal states of M(X) are those m
which write-lockholders = {T,} and map(TJ 1s an mltlal state of
the basic object X, and the other components are empty The
transItIon relation of M(X) 1s given by all triples (s’,r,s) satlsfymg
the followmg pre- and postcondltlons, given separately for each r
As before, any component of s not mentioned m the postcondltlons
IS the same m s as m s’

CREATE(T), T an access to X
PostcondItion

s create-requested = s’ create-requested U {T}

INFORhi~COMMlT~AT(X)OF(T), T # T,
PostcondItIon

of T E s’ write-lochholders then
begm
s wllte-lochholders = (s’ wllte-lockholders - {T}) U {parent(T)}
s map(U) = s’ map(U) for U E s write-lochholders - {parent(T)}
s map(parent(T)) = s’ map(T)

end
If T E s’ read-lockholders then

begm
s read-lockholders = (s’ read-lockholders - (T)) U {parent(T)}

end

NFORAI- 4BORT_AT(X)OF(T), T # T,,
Postcondltlon

s write-lochholders = s’ write-lockholders - {descendants(T)}
s read-loc6holders = s’ read-lockholders - {descendants(T)}
s map(U) = s’ map(U) for all U E s write-lockholders

REQUEST-COMMIT(T,v) for T s. write access to X
Prtcondltlon

T E s’ create _ 1 equested - s’ run

s’ \rrlte-lockholders U s’ read-locbholderb E ancestols(T)
(s’ map(least(s’ write-lockholders)),CREATE(T),t)

and (t,REQUEST-COMMIT(T,v),t’)
are m the transitjon relation of basic object X, for some t

Postcondltlon
s run = s’ run u {T}
s write-lochholders = s’ write-lochholders u {T}
s map(U) = s’ map(U) for all U E s write-lochholders - {T}
s map(T) = t’

REQUEST~COMYMIl(T,v) for T a read access to X
I’recondltlon

TE s’ create-requested - s’ run
s’ write-lockholders C ancestors(T)
(s’ map(least(s’ write-lockholders)),CREATE(T),t)

and (t,REQUEST-COIvfMIT(T,v),t’)
are m the transitIon relation of basic object X, for some t

Postcondltlon
srun=s’runU{r}
s read-lockholders = s’ read-lochholders U {T)

It 1s clear that a R/W Lockmg object preserves well-formedness

When an access tianslctlon 1s crcatcd, 11 j> ~ddcd to the set
create-1 equested A lcsponse, contuumg ILLLIIII value v, to au
access T can be rctulnrd ouly 11” the access has been requested but
not yet responded to, and every holder of a confhctmg loch IS an
ancestor of T, and v IS a value which can be returned by bsslc
object X m the response to T from some state t, obtamcd by
performmg CREATE(T) m the state map(least(wllte-lockholders))
When a response 1s given, the access transactton 1s added to the set
run and granted the appropriate lock, and If the transaction 1s a
write access, the resultmg state 1s stored as map(T) If the

transactlon IS a read access, no change IS made to the stored state
of basic object X, 1 e to map

When the R/W Lochmg ohlect IS Informed of the abort of a
transactlon, it removes all locks held by descendants of the
transactlon When It IS mfolmed of a commit, it passes any lochs
held by the transaction to the parent, and also passes the vcrslon
stored m map, If there 1s one a

We mtroduce some terms to describe what M(X) knows about
commits and aborts of transactions If n 1s 8 sequence of
operations of M(X), T 1s an access to X, and T’ IS an ancestor of T,
we say that T rs commrtted at X to T’ m (I, if Q contams a
subsequence b conslstmg of an INFORM-COMMIT-AT(X
event for every U which IS an ancestor of T and a proper
descendant of T’, arranged m ascendmg order (so the
INFORM-COMMIT for parent(U) 1s preceded by that for U) If
Q IS a well-formed sequence of operations of M(X) and T 1s an
access to X and T’ any transactlon, we say that T 1s vretble at X to
T’ m a of T 1s commltted at X to IcaJT,T’) We denote the
subsequence of Q conslstmg of operations of M(X) whose
transactlons are vlslble at X to T by vlslblex(oc,T) It IS clear that
vlslble.Jru,T) 1s a well-formed sequence of operations of basic oblect
X We say that a transaction T 1s an orphan at X m (I :f
INFORM-ABORT-AT(X occms m [Y for some ancestor L
of T

Here are some slmple facts about the state of M(X) after a
schedule (I

Lemma 21 Let (Y be a schedule of M(X), and s a state of
M(X) reached by applymg cz to an mltlal state Suppose T E
s write-lochholders and T’ E s read-lochholders U s write-
lockholders Then either T IS an ancestor of T’ or else T’ 1s
an ancestor of T

Lemma 22 Let cx be a well-formed schedule of M(X),
and s a state of M(X) reached by applymg (Y to an rnltml
state Let T be an access to X such that
REQUEST-COMMIT(T,v) occurs m (Y and T IS not an
orphan at X m (Y, and let T’ be the highest ancestor of T
such that T 1s commrtted at X to T’ Then if T IS a write
access, T’ must be a member of s write-lochholders, while IF
T 1s a read access, T’ must be a member of s read-
lockholdels

Given any well-formed sequence p of opelatlons of M(X) let
essence@) denote the sequence obtamed from wrlte(,9) by placmg a
CREATE(U) event lmmedlately preceding
REQUEST-COMMIT(U,u) event Smce /3 IS well-formed:
essence(b) consists of a subset of the events of j3 and 1s well-formed
Clearly @ and essence@) are write-equal

g1f the reader wishes to compwe our “ersw” of the algorrthm with that ,n (hlo]
the folhwns may be useful MOSS gtves the name “the associated state9 ror oblect
X and transactron T to what we call s map(T) w h ere T’ 16 the least ancestor of T ,n
8 write-lockholders, and he calls s map(lesst(s wnte lockholders)) ‘the current state’
Of x Also, he rem~“ell & read lock when the owner also holds B wrnte lock (th,s IS an
cptlmlaatlon that does not affect the correctnea proor) MOSS ~SO allows internal
transactions to dweetly ~ccrS8 ObJects, whereas we follow the Argus system by only
having leti transactmns perform data BCCSS

105

,

The followmg lemma shows how the results of operations vrsrble
at X to T are recorded m the state of M(X)

Lemma 23 Let (I be a well-formed schedule of M(X) and
s a state of M(X) reached by applymg cy to an uutml state
If T IS a transaction which IS not an orphan at X m (Y, then
/3 = essence(vrsrblex(o,T)) 1s a well-formed schedule of

X Furthermore, when p IS apphed to an uutlal state of X, It

can leave X m the state s map(T’) whele T’ 1s the least
ancestor of T such that T’ E s wllte-lockholders

Proof By mductlon on the length of LY The basis 1s
tll%ml, so let Q = (Y’H Let s’ denote a state of M(X) after
applymg cr’ such that (~‘,a+) 1s a step of M(X) There are
five cases

(1) IT IS CREATE(U) for an access U to X
Strarghtforward

x() 2 TT IS REQUEST-COMMlT(U,v) for U a read access to

Straightforward

(3) = 1s REQUEST-COMMlT(U,v) for U a write access to
X
We consider separately the cases U = T and U # T
If U = T then T E s write-lockholders so T’ = T Let T”
denote the least ancestor of T m s’ write-lockholders Let fl’
= esznce(vlslble,(cY’,T)) By the mductlve hypothesis, /3’ IS
a well-formed schedule of X which can leave X m state
s’ map(T”) when apphed to an mltlal state Now ,8 =
/?‘CREATE(U)r, by the defuutlon of M(X), /3’CREATE(U)r
IS a (well-formed) schedule of X, and apphed to an lmtlal
state of X It can leave X In the state s map(T)
If U # T, the proof IS straightforward

(4) n 1s INFORM -COMMIT -AT(X
The dlscusslon IS dlvlded Into subcsses, dependmg on the
relation of T and U In the transactlon tree

(da) U IS an ancestor of T
Now vrsrbleX(a,T) = vtsrbleJo’,T), so /9 =

eSSence(vlslbleX(Q’,T)) If U 1s the least ancestor of T m
s’ write-lockholders then by the defimtlon of M(X), T’ must
be parent(U) and s map(T’) = s’ map(U), while If U 1s not
the least ancestor of T m s’ write-lochholders then T’ must
be the least ancestor of T m s’ write-lockholders and
s map(T’) = s’ map(T’) IIJ either case, s map(T’) 1s
s’ map(T”), where T” 1s the least ancestor of T m 8’ write-
lockholders The desrred result follows rmmedlately from the
mductrve hypothesis

(4b) U IS not an ancestor of T, but parent(U) 1s an ancestor
of T
Hele we give separate arguments, dependmg on whether U IS
m s’wrlte-lockholders or not If U E s’wrlte-lockholders
then Lemma 21 rmpbes that no ancestor of T that IS a strict
descendant of parent(U) can be m s’ write-lockholders The
defmltlon of M(X) therefore shows that T’ = parent(U) and
that s map(T’) = s’ map(U) Also we note that valble,Ja’,U)
IS write-equal to vtsrblex(a,T), smce any write access that IS
commltted at X to an ancestor of T m a’ must be committed
at X to parent(U) m (I’ and thus vlslble at X to U in (I
(OtherwIse, by Lemma 22, some ancestor of T that IS a
proper descendant of parent(U) would be m s’wrrte-
lochholdels)) Thus, p = essencc(vlslbleX(a,T)) =
essence(vlslblex(cr’,U)) By the mductlve hypothesis, B IS a

well-formed schedule of X which, when applied b an lnltlal
state of X, can leave X m state s’ map(U) = s map(T’)

On the other hand, of U $Z s’ write-locl\holders then s write-
lockholders = s’ write-lockholders and s map = s’ map
Also, vlslbleJa’,T) 1s write-equal to vislbleX(a,T) This 1s
true because any operation vlslble at X to T in Q 1s either
vlslble at X to T m (Y’ 01 else LS an operation of an access

that IS committed at X to U m CI’, and any write access that
IS committed at X to U m Q’ must be committed at X to
parent(U) (and hence vunble at X to T) m Q’, by Lemma 22
and the assumptlrn that U p s’ write-lockholders Thus, @
= essence(vlable,(cy,T)) = essence(v1slbleJ(Y’,T)) By the
mductlve hypothesis, @ 1s a well-formed schedule of X \nhrch,
when apphed to an m&al state of X, can leave X m state
s’ map(T’) = s map(T’)

(4~) parent(U) IS not an ancestor of T
Then vlslble&,T) = vlslbleJcu’,T), so p =
essence(vlslbleJa’,T) Also T’ IS the least ancestor of T m
8’ write-lockholders and s’ map(T’) = s map(T’) The
desired result follows lmmedlately from the mductlve
hypothesis

(5) r IS INFORM-ABORT-AT(X
Stralghtforward •I

A consequence of this 1s the followmg lemma, which explams a
iense m which M(X) IS a reslhent variant of X

Lemma 24 Let a be a well-formed schedule of M(X) and
T a transactlon which 1s not an orphan at X m [I Then
vlslble.Ja,T) 1s a well-formed schedule of X

Proof We prove that vlslblel((cr,T) 1s a schedule of X by
mductlon on the prefixes of vlslble,Jcr,T) The base case is
trivial So consider an event r m vlslbleJa,T), and the
prefix j3 of vlable.Ja,T) endmg a&h r Let /3 = /?‘r By the
rnductlve hypothesis p IS a well-formed schedule of X We
must show that ?r IS enabled ss an operation of X after B’

If n 1s a CREATE event this follows from the Input

Condltlon on all l/O automata, so suppose that r 1s
REQUEST-COMMlT(U,u) Consider vlslblex(7’,U) where 7
= 7’r 1s the prefix of CI ending with f Let s’ denote the
state of M(X) lmmedlately before s occurs, and let U’ denote
the least ancestor of U m s’ write-lockholders By Lemma 23,
j3 = essence(vlsrbleX(7’,U)) 1s a well-formed schedule of X,
which can leave X In state s’ map(U’) when apphed to an
mitial state By the precondrtrons for the operatron rr of
M(X), PCREATE(U)n 1s a schedule of X (Of course It 1s
well-formed) We now show that /3’ and @CREATE(U) are
equleffictive Smce each IS a schedule of X, it suffices by
Lemma 20 to show that they are write-equal Now
@CREATE(U) and vlslble.J7’,U) are write-equal, so we need
only show that vlslbleX(7’,U) and @’ are write-equal Since U
IS vlslble at X to T m a, any access visible at X to U m 7’
must be vlslble at X to T m Q, so the events m vlslble,J-(‘,U)
are a subset of the events m fi’ Now, by the precondltlons
for A as an operation of M(X) every element of s’ nrlte-
lockholders 1s an ancestor of U so If
REQUEST-COMMlT(V,v) occurs m 8’ for a write access V
to X, then Lemma 22 rmphes that V must be committed at
X to lca(V,U) m 7’ (smce V 1s not an orphan at X m 7’, as It
IS vlslble at X to T m a) Thus V 1s vlslble at X to U m 7’,
so REQUEST-COMMlT(V,v) occurs m vlsrbleJ7’JJ) Also
all REQUEST-COMMIT events for write accesses m
vlableX(7’,U) occur m the same order as m (I, and slmdarly

106

5 2 Generic Scheduler
The genellc scheduler 1s a very nondetermmlstlc automaton It

passes requests for the creation of sub-transactlons or accesses to
the appropllate reclplent, passes responses back to the caller and
Informs oblects of the fate of transactions, but It may delay such
messages for arbitrary lengths of time or umlaterally decide TV
abort a subtransactlon which has been created MOSS PO] devotes
conslderable effort to descrlbmg a distributed impiementatlon of
the scheduler that copes with commumcatlon failures and loss of
system mfolmatlon due to crashes, yet stdl commits a
subtransactIon whenever possible These concerns are orthogonal ~JJ
the correctness of the data management algorithms and we do not
address them here 9

The generic scheduler has mne operations

Input Operations
REQUEST _ CREATE(T)
REQUEST-COMMlT(T,v)

Output Operations
CREATE(T)
COMMIT(T), T # To
&BORT(T), T # T,
REPORT-COmlT(T,v), T # T,
REPORT-ABORT(T), T # T,
lhFORhl~COMMIT~AT(X)OF(T), T # T,

IhTORM-ABORT-AT(X) T # T,

These play the same roles as m the serial scheduler, except for the
1~FORM~COMMlT and INFORM-ABORT operations which
pass mformatlon about the fate of transactlons to the R/W
Locbmg oblects

Each state s of the generic scheduler consists of SIX sets
s cleate-requested, s created, s commit- requested, s committed,
3 aLol ted and s returned The set s commit-requested 1s a set of
(tlansactlon,value) palm, and the others are sets of transactlons
111 are empty m the mltlal state except for create-requested,
1, hlch IS {T,,}

1 he operations are defmed by pre- and postcondltlons as follows

REQUEST _ CREATE(T)
Postcondltlon

s create-requested = s’ create-requested u {T}

REQUEST-COMMlT(T,v)
Postcondrtlon

s commit-requested = s’ commit- requested U {(T,v)}

CREATE(T), T a transactlon
PI econdltlon

T E s’ create-requested - s’ created

‘The genme scheduler IS very slmdar to the weak concurrent Controller Of ILMI
,t d,lFers shghtly ,n the names or Its operattions, I” the separation or return and
repo,t operatms, and III the eoadbons under whxh CREATE weratlons 8~

permltted to occur

(T,~) E s1 comnut-requested for some v
T e S’ returned
children(T) f-j 5’ create requested c_ s’ returned

Postcondltlon
s committed = s’ committed u {T}
s returned = s’ returned u {T}

ABORT(T), T # To
Precondltlon

T E s’ create-requested - s’ returned
Postcondltlon

s abol ted = s’ aborted IJ {T}
s returned = s’ returned u {T}

REPORT-COMMlT(T,v), T # T,
Precondltlon

T E s’ commltted
(T,v) E s’ commit-requested

REPORT-ABORT(T), T # To
Precondltlon

T E s’ aborted

lNFORM~COMMlT~AT(X)OF(T), T # T,
Precondltlon

T E s’ commltted

INFORMJEiORT-AT(X) T # T,
Precondltlon

T E s’ aborted

Lemma 25 Let cy be a schedule of the genergc scheduler,
and let s be a state which can result from applymg Q to the
nutial state s,, Then the followmg condltlons are true

T IS m s create-requested exactly If (Y contains a
REQUEST-CREATE(T) event

T 1s m s created exactly If (Y contains a CREATE(T)
event

(T,v) IS m s commit-requested exactly IF (I contams
a REQUEST-COMMlT(T,v) event

T 1s m s comnntted exactly if (Y contams a
COMMIT(T) event

T 1s In s aborted exactly lf (Y contams an ABORT(T)
event

s returned = s commltted U s aborted

s commltted n s aborted = 0

5 3 R/W Lockmg Systems
The composltlon of transactlons with R/W Locbmg objects and

the generic scheduler IS called a R/W LocLang system, and Its
operations and schedules are called concurretlt operattons and
concurrent echedules, respectively lo A sequence CY of concurrent
operations IS said to be well-formed provided that Its proJectlon at
every transactlon and R/W Lockmg oblect 1s well-formed

“Note that this wge dIMem from that III [LM]

107

Lemma 26. If cr 1s a concurrent schedule, then a IS well-
formed

The followmg lemma 1s straightforward

Lemma 27 Let (Y be a concurrent schedule If T IS a
t!ansactlon that IS not an orphan m o and T’ 1s vmble to T
m (Y, then T’ 1s not an orphan m CY

Note that If LY 1s a concurrent schedule then any
INFORM-COMMIT-AT(X IS pleceded by a COMMIT(T)
event (by the scheduler precondrtlons) and slmdarly any
INFORM~ABORT~AT(X)OF(T) IS preceded by ABORT(T)
Thus, If T 1s vlslble at X to T’ m a then T 1s vmble to T’ m (Y,
and If T 1s an orphan at X m a then T 1s an orphan m (I Thus,
v~s~ble~(c~,T) 1s a subsequence of vlslble(a,T)IX when Q 1s a
concm 1 ent schedule

A key property of R/W Lockmg systems IS given next
Lemma 28 Let a be a concurrent schedule, T a

trnnsactlon that IS not an orphan m (Y and M(X) a R/W
Lockmg oblect Then vlslble(a,T)jX 1s a schedule of basic
object X

Proof Let S denote the set of transacttons with COMMIT
events m (I Construct a sequence @ by appendmg to a a
sequence of lNFORM~COMMIT~AT(X)OF(U) events,
uhere the U give a post-order traversal of S Since (I
contams a COMMIT(U) event for each U m S, /3 1s a
concullent schedule, and by Lemma 24 vlslblex(P,T) IS a
schedule of X Smce the INFORM~COMMIT~AT(X)OF(U)
events at the end of ,D are m ascendmg order, and occur for
every U that 1s vlslble to T m p, vlslble&S,T) =
vlslble(P,T)IX Also vlslble(@,T) = vlslble(cY,T) smce
INFORM-COMMIT operations have no mfluence on what
tlsnsactlons are vmble to T Thus vmble(a,T)IX 1s a
schedule of X q

6. The Proof of Serial Correctness
We prove that a R/W Locking system generates schedules that

are sellally correct for each non-orphan transaction T, by takmg a
concurrent schedule a, extractmg the subsequence vlslble(a,T) of
ebenta whose effects might have been detected by T, and then
resrrangmg the operations m this to give a serial schedule fi The
learlsngements permltted are those that transform one sequence
mto a “wrlte-equlvalent” one

6 1 Write-Equivalence
Two sequences of serial operatrons, (Y and /3, are wtrte-equzwaletat

If

1 they contam the same events,

3 for each transactlon U, alU = #J, and

3 for each basic oblect X, crlX and j3lX are
write-equal sequences of operations of X

Thus, the rearrangements allowed m&de mterchangmg the order
of two events of dlffelent tlansactlons or oblects, and also

mterchangmg the order of events of a smgle oblect, provided that
they ale not both REQUEST-COMMITS for write accesses By
the sernantlc condrtlons of Sectlon 4 3, such rearrangements at
objects are such that the difference between the orders IS not
detectable by any later operations of that oblect This property 1~

expressed by the followmg lemma

Lemma 29 If a and /3 are wrne equivalent sequences, and
a/X and p/X are well formed schedules of X, then for each basic
object X, alX and /31X are eqmeffectlve sequences

Write-eqmvdence 1s obviously an eqmvalence lelatlon We have
some strrughtforward results

Lemma 30 If c and /3 are well-formed sequences of operations
which are write-equivalent, then /I# ts wrote-equtvalent to a+

Lemma 31 If 01 and fi are sellal schedules wluch are
write-eqmvalent and ad 1s a sells1 schedule then /3Q 1s a
serml schedule

6 2 A Techmcal Lemma
In this subsectlon, we prove an extension of Lemma 14, fol use m

the proof of Lemma 33, m Sectlon (I 3
Lemma 32 Let a be a concurrent schedule, and let T and

T’ be two non-orphan transactlons with T’ vlslble to T m Q
Let /3 and p, be serial schedules, such that B 1s write-

equivalent to vlslble(a,T) and p, IS write-eqmvalent to
vlslble(a,T’) Then -y = p,(j3 - a,) 1s a serial schedule which
1s write-eqmvalent to vlable(a,T)

Proof First we prove that p’ = vlslble(P,T’) 1s wrne-equivalent
to PI By Lemma 10 and Lemma 8, /3’ and /3, contam the same
events For any basic oblect X, wnte@“lX) = wrlte(/3,IX) smce
REQUEST-COMMIT events for write accesses to X occur In
/Y m the same order as they occur m /3, which 1s the same as the
order they occur m (I, which 1s the same as the order they occur
m /?, For any transactlon U which IS vlslble to T’m a (and hence
In /3), /3’lU = fl[U = olU, by Lemma 9 and write-equivalence,
and slmllarly /3,lU = a/U On the other hand, If U LS not vlslble
to T’ m (I, /YlU and /3,lU are both empty For later use ue note
that p 1s a serial schedule, by Lemma 13, and & IS a serial schedule,
so /YlX and /3,/X are schedules of X

By Lemma 14, @‘(a - p’) 1s a serial schedule Smce B - 8’
= j3 - jj’, (BS @’ and j3, contam the same events) we deduce

from Lemma 31 and the fact that p’ and 8, are urite-
eqmvalent, that 7 1s a serial schedule

Next, we prove that wllte(vlslble(a,T’)IX) IS a prefix of
write(vlslbIe(P,T)IX) for any object X So suppose that
vlslble(a,T) contams a REQUEST-COh&lIT(U,u) event for
a write access U to X which 1.3 not m vlslble(cr,T’) Let
REQUEST-COh@iIT(U’,u’) be a subsequent event, where
U’ IS a write access to X which IS vlslble to T m (Y We must
show that U’ 1s not vlslble to T’ m (1 Consider the prefix 6
of n which precedes the REQUEST-COMMIT(U’,u’), and
let s denote the state of the R/W Lockmg object M(X) after
6 If we denote by U” the highest ancestor of U to which U
has commltted m c~; then U” 1s a proper descendant of
Ica(U,T’), smce U 1s not visible to T’ m Q Then the highest
ancestor of U to which U IS commltted at X m 6 must be a
descendant of U”, and so by Lemma 22 some descendant of
U” IS m s write-lockholders By the precondltlons for the
operation REQUEST-COMMIT(U’,u’) of M(X), U’ must be
a descendant of U”, and therefore U’ IS not commltted m (x
to Ica(U’,T’) = lca(U”,T’) = lca(U,T’) Therefoole U’ 1s not
vtstble to T’ m Q, estabhshmg that wl~te(vlalble(c~,T’)IX) IS a
prefix of wrlte(vlslble(~,T)IX)

Now we show that +y IS write-eqmvalent to fl They cleally
contain the same events, smce every event of p, occurs m B
(because any operation vlslble to T’ m (Y 1s also vlslble to T
m (1 by Lemma 7) If P 1s a basic object, wl&(j311P) =

108

,“I ,ll(vlalble(cu, J ‘)il’) kJ 5 ,” tT1x 01 n IIt+ lall)le(a,T)IP) =

,c,,te(#q, so thJt WI ILC(-#) = (,llte(p,lp))(wrlte(plP) -

wte(PJP)) = w11te(PII’) II P 1s a tlansactmn that 1s

v,a,ble to T’ ,,, a thin &IF’ = VI~IIJ~L(LY,T’)]P = a\P =

v~a~blr(n,T)(l’ = B]P, so 7]P = (p,]l’)(P]P - a,]P) = a]P

On the other hand, of P 1s a tlansxt,on not vlslble to T’ m
CY then &]P IS empty, so tl~v~nlly 7]P = B]P

Smce 7 Is w*rte-equivalent to @, It 1s wllte-equivalent to
v~s~blt((~,T) o

6 3 The Main Results
We are now ready to prove that R/W Lockmg systems are

sellally correct for every transactlon that IS not an orphan We
actually state a stronger property, which carries useful mvarmnts
through the mductlon

Lemma 33 Let (Y be a concurrent schedule, and T any
transactlon which IS not an orphan m (Y Then there 1s a
serial schedule fi whxh 1s write-eqmvafent to vlslble(a,T)

Proof The proof follows the outhnes of that of the mam
theorem of [LM] We proceed by mductlon on the length of
LY As before, let a = Q’A We must show that there IS a
serml schedule /3 which 1s write-eqmvalent to vunble(ru,T)
We can assume that transactIon IS vmble to T m Q
There are seven cases, and m each we relate vlslble(a,T) to
vmble(cY’,U) for one or more transactlons U, and build B
from serial schedules write-eqmvalent to vlsxble(a’,U)

(I) 7~ 1s an output operation of a non-access transactton T’
Smce T IS not an orphan m a’, the mductlve hypothesis
lmphes the ellstenee of a serial schedule p’ which IS write-
equrvalent to vlslble(cY’,T) Let p = fi’r We ~111 show that
fl IS a serial schedule that 1s write-eqmvalent to vlslble(cY,T)
By Lemma 1, to check that p IS a serial schedule we need
only check that P’nlT’ IS a schedule of T’ However B’]T’ =
vlslble(a’,T)]T’ = (Y’]T’ by Lemma 9 (smce T’ IS vmble to
T) Thus /?x]T’ = (Y’RJT’ = rr]T’ Hhlch IS a schedule of T’
Thus, p IS a se, Ia1 schedule

BI Lemma 11, vlslble(a,T) = vlslble(cu’,T)n and smce ,i3’ IS
write-equl\ alent to vlslble(a’,T), we may apply Lemma 30 to
deduce that p IS write-equivalent to vlslble(cu,T)

(2) T IS an output operation of an access T’ to a R/W
Lochmg oblect hi(X)
Defme p’ and B as m the previous case As before, to check
that #J IS a serial schedule, we need only check that /?‘n]X IS a
schedule of X However, Lemma 29 lmphes that @‘IX 1s
equleffectlve to and contains the same events as
x lslble(a’,T)]X Now vlslble(cr’,T)x]X = vmble(cY’a,T)]X =
vlslble(a,T)]X wh~h IS a schedule of X by Lemma 28 Thus
by Lemma 16, p’n]X 1s a schedule of X Thus, @ IS a serial
schedule

Smce vlslble(cr,T) = vlslble(cu’,T)x, /J = p)z, and 8’ IS
wllte-eqmvalent to vmble(cr’,T), we may apply Lemma 30 to
deduce that 0 IS writs-equivalent to vlslble(a,T)

(3) A IS a CREATE(T’) operation
Then transactIon = T’, and so T’ 1s vmble to T m a By
well-fool medness and the scheduler precondltlons, any
opelatlon of a proper descendant of T’ must be preceded by
a REQUEST-CREATE for a child of T’, and by well-
foolmedness any operation of T’ must follow CREATE(T’)
Thus, r 1s the first event whose transactlon IS a descendant
of T’, so T’ = T Now, parent(T) 1s not an orphan m (Y, and

hence 111 (Y’, so the mductlvL hypothrsls ~mphrs the exlsteuce
of a serial schedule fl which IS write-equivalent to
vlsrble(a’,parent(l)) Let p = ,8’r We ~111 show that ,9 IS a
serial schedule that 1s write-eqmvalent to vlslble(a,T)

To show that j3 1s a sellal schedule, we need only chc~j\
that @‘lr 1s a schedule of the SCII+I sc1~eduh.I Let s’ bc the
state of the serml schedulel after ,8’, and s” the state of the
generic scheduler after (1’ Smce IT 1s enabled m s”, Lemmas
25 and 4 and the precondltlons imply that IT IS enabled m s’,
hence j3’n IS a schedule of the serial scheduler, and p 1s serial
schedule

Smce vmble(a,T) = vmble(a’,parent(T))n, @ = @‘r and p’
1s write-eqmvalent to vlslble(cY’,parent(T)), we may deduce
from Lemma 30 that B IS write-eqmvalent to vlslble(cY,T)

(4) k IS a COMMIT(T’) operation
Then T” = parent 1s vlslble to T m a, smce
transactron = T” Then COMMIT(T’) does not occur m
n’, and so T must be a descendant of T” (smce T” 1s vlslble
to T) Also, by Lemma 27, T” 1s not an orphan m (Y and so
also T” IS not an orphan m (Y’ From this, we deduce that
T’ 1s not an orphan m Q’ We dlstmgmsh two cases,
dependmg on whether T IS a descendant of T’ or not

If T IS a descendant of T’, the argument IS strslghtforward
If T IS not a descendant of T’, the mductlve hypothesis
yields three serial schedules, B’, B” and 7, which are write-
eqmvalent to vlable(a’,T’), vlslble(a’,T) and vlslble(cu’,T”)
respectively Let 0, = @’ - 7 and ,9, = @” - 7 Let fi =

-la,@* We show that fl 1s a se& schedule that 1s write-
eqmvalent to vlable(a,T) That B IS serial follows from
Lemma 18, provided we can show that

(4 a) 7aln IS a serial schedule,

(4 b) 7pz IS a serial schedule,

(4 C) 7fi, f vlslble(7@l,T’),

(4 d)rB, = vlslble(-r&T),

(4 e) 7 = vmble(7P1,T”) = vmble(7Pz,T”) and

(4 f) IF any basic object X has an output operation m @?
then every operation m /?,]X IS transparent

(4 a) By Lemma 32, 7a, 1s a serml schedule (and 1s wllte-
eqmvalent to vmble(cY’,T’)) We must therefore show that A
IS enabled at the serial scheduler after 7@, The serial
scheduler precondltlons and Lemma 4 show that we must
prove that REQUEST-COMMIT(T’,v) occurs m 7fl, for
some v, that no return for T’ occurs m 7p,, and that for
every chdd U of T’ with a REQUEST-CREATE(U) m 7p,
there 1s a return event m 7@, Smce A IS enabled m the
generx scheduler after OI’, each of these IS true with a’
replacing 7@, Smce all these operations are vlslble to T’ m
a’, all these statements are also true of vlslble(cr’,T’) and
thus of the write-equivalent sequence 7@,, as required Thus
7flln IS a serial schedule We also note that Lemma 30 proves
that -7Lp ‘S write-equivalent to vlslble(a,T’) =

vlslble(a’,T’)n

(4 b) By Lemma 32, 7pz 1s serial (and write-equivalent to
vlslble(cr’,T))

109

.

Parts (4 c)-(4 e) are rmmedlate

(4 f) We prove that If a basic object X has an output
Opel atmn I” f3? then no event m fi,lX 1s a
REQUEST-COMMIT for a write access Suppose this were
false Then /?, contams a REQUEST-COMMIT(V1,vI) for

V, a wrrlte access to X, and 0, contams a
REQUEST-COhJMIT(V,,v,) for V, an access to X Smce
V, IS vlslble m CI to T’ but not to T”, V, must be a
descendant of T’, and not an orphan m Q, and V, must not
be commltted at X to T” m (Y By Lemma 22, some
descendant of T’ 1s m s write-lockholders, where s 1s a state
of M(X) after applymg a Slmllarly Vz must be a
descendant of some slblmg U of T’ but not commltted at X
to T” m n, so by Lemma 22, some descendant of U 1s m
s readlockholders U s write-lo&holders But these two
statements about lo&holders contradict Lemma 21

Now we must prove that p 1s write-eqmvalent to
vlslble(o,T) Smce any transactlon vlslble to T m (I 1s either
vlslble to T m CI’ or vmble to T’ m (I’ and If both then It IS
\lslble to T” m a’, It 1s clear that @ and vlslble(o,T) contam
the same events If P IS a basic obJect, either @, contams no

output operations of P or else no operation in pllP Is a
REQUEST-COMMIT for a write access In the first case
I\rlte(pLiP) 1s empty, and smce wrtte(qB1frIP) =
arlte(vlslble(a’,T’)IP), we have write(@IP) =
wrlte(vlslble(cr,T)IP) In the second case wrlte(@l)P) IS

empty, and smce wrlte($.JP) = wnte(vlslble(cx’,T)IP), we
agam have wrlte(plP) = wnte(vlslble(o,T)IP) If P 1s a non-
access transactlon which IS not vlslble to T m a, then no
operations occur at P m either @ or vmble(cr,T) For P any
non-access transactlon which 1s vlslble to T m a, either P IS
vlslble to T m a’ or P LS vlslble to T’ m Q’ In the first case,
p,JP 1s empty so PIP = 7/3,r(P = vlslble(cr,T’)IP as we saw
above that -&llr and vlslble(cy,T’) are write-eqmvalent, and
\lslble(cx,T’)IP = aJP = vlslble(a,T)IP Slmllarly m the
srcond case PInIP 1s empty and PIP = ~,9~lP =

\Islble(cu’,T)IP = vlslble(cY,T)IP In every case, we have
checked that PIP = vlslble(cY,T)IP Thus B and vlslble(cu,T)
ai e write-equivalent

(5) r IS an ABORT(T’) operation
Thtn T” = parent IS vmble to T m LY, smce A has
tl ansactlon T” Then COhJMIT(T”) does not occur m Q’
and so T must be a descendant of T” (since T” IS vrslble to
T) Also by Lemma 27, T” 1s not an orphan m (Y and so
also T” 1s not an orphan m a’ Smce T 1s not an orphan m
Q, T 1s not a descendant of T’ Thus the mductlve
hypothesis yields two serial schedules, p and q, which are
write-equivalent to vlslbIe(a’,T) and vxuble(a’,T”)
respectively Let p, = /3’ - 7 Let B = m+, We show that
p 1s a serial schedule that 1s write-equivalent to vlslble(a,T)
That B IS serial follows from Lemma 19, provided we can
show that

(5 a) 7n IS a serial schedule,

(5 b)qb, 1s a sellal s.hedule,

(5 c) rP, = vlslble(rPl,T),

(5 d)r = vlslble(-f,T”) = vlslble(+l,T”)

(5 a) Smce 7 1s a serld schedule, we must show that * IS
enabled at the serml scheduler after 7 The serial scheduler

.
precondltlons and Lemma 4 show that we must Prove that
REQUEST CREATE(T’) occurs m 7, and that no
CREATE@) 01 ABORT(T’) occurs m 7 Since x IS enabled
in the generic scheduler after a’, (Y’ contams a
REQUEST CREATE(T’) event, and since this operation
has transactIon T”, REQUEST-CREATE(T’) IS 111
vlslbIe(m’,T”) and hence m 7 Thus, T’ 1s not commlttcd m
o’, so that any CREATE(T’) event m o’ 1s not vlslble to T”,
and SO does not occm m vlslble(cr’,T”) and hence does not
occur m 7 There IS no ABORT(T’) event m (Y’, so
ABORT(T’) does not occur m 7 Thus 7m 1s a sellal
schedule We rlso note that Lemma 30 proves that yrr IS
write-equivalent to vlslble(ru,T’) = vlslble(cY’,T’)ri, smce 7
and vmble(a’,T’) are write-equivalent

(5 b) By Lemma 32, +‘, IS a sellal schedule (and It 1s write-
eqmvalent to vlslble(cr’,T))

Parts (5 c) and (5 d) are lmmedlate

Now we must prove that j3 D write-equivalent to
vlable(cr,T) Smce any transactlon vnxble to T m a 1s
vmble to T m (Y’, and either vlslble to T” m (Y’ or not, It IS
clear that p and vmble(a,T) contam the same events If P IS
a basic oblect, smce wrlte(y/31jP) = wrlte(vlslble(cr’,T’)IP)
we have wllte(/3JP) = wnte(vmble(cx,T)IP) For P any non-
access transactlon, PIP = 7j3,lP = vlslbIe(a’,T)IP =
vlslble(a,T)IP, smce rrlP IS empty and 78, and \lslble(cr’,T)
are write-eqmvalent This completes the demonstration that
fl and vlslble(cY,T) are write-equivalent

(6) 1~ 1s REPORT-COMMIT(T’,v)
Smce T 1s not an orphan m Q’ there IS a serial schedule p’
which 1s write-equivalent to vlslble(u’,T) Put /3 = fi’f By
the precondltlons of the generic scheduler and Lemma 25,
REQUEST-COhfMIT(T’,v) and COMMIT(T’,v) occur m
(Y’ Smce the report 1s m vlable(cY’,T), parent IS vmble
to T m (I’, thus, COMhlIT(T’,v), and hence
REQUEST-COMMIT(T’,v), are m vlslble(a’,T) So

COMhJIT(T’,v) and REQUEST-COMMIT(T’,,) occur m
,Q’ The serial scheduler precondltlons and Lemma 4 Imply
that TV 1s enabled after @’ at the serial scheduler, and so by
Lemma 1 and Lemma 30, p 1s a serial schedule that 1s wllte-
equivalent to vlslble(cr,T) = vlslble(cy’,T)n

(7) x IS REPORT-ABORT(T’)
This 1s Just hhe case (G)

Thus m every case we have produced a serial schedule p
that IS write-equwalent to vunbIe(a,T) q

Theorem 34. Every concurrent schedule 1s serially correct
for every non-orphan non-access transactlon

Proof Let T be a transaction that 1s not an orphan m the
concurrent schedule a By Lemma 33 there 1s a serial
schedule p that 1s write-equivalent to vmble(a,T) Then nlT
= vlable(cY,T)IT by Lemma 9, and by write-equivalence,
vlslble(cr,T)IT = ,8IT q

Corollary 36 Every concurrent schedule IS sellally
correct for T,

7. Acknowledgements
We thank the members of the Theory of Dlstrlbuted Systems

semmar at MIT for many helpful suggestlons

110

8 References

PI

[UUG]

[BBGLS]

I=1

PI

[EGLT]

IGOI

PI

[LIIJLSW]

Allchm, J E , “An Architecture for Rehahle
Decentrahzrd Systems”, Ph D Thesis, School of
Info and Comp SC, , Georgia Institute of
rechnology, September 1983

Beeli, C , Belnstem, P A , and Goodman, N ,
“A Model for Concurrency m Nested Transaction
Systems,” Techmcal Report, Wang Institute
I’R-8G-03, March 198G

Beerl, C , Bernstem, P A , Goodman, N , Lal,
M Y, and Shasha, D E, “A Concurrency
Control Theory for Nested Transactions,” fioc
1989 Second Annual ACM Sympoerum on
F’rznc~ples a/ Dwtrrbuted Computrng, Montreal,
Quebec, Canada, August 17-19, 1983, pp 45-62

Bernstein, P A, and Goodman, N,
“Concurrency Control m Dlstrtbuted Database
Systems,” ACM Computmg Surveys 13,2 (June
1981), pp 185-221

Da%les, C T , “Recovery Semantics for a DBJDC
System,” Rot ACM Natronal Conference 28,
1973, pp 136-141

Eswaren, I< P , Gray, J N , Lorle, R A, and
Tralger, I L , “The NotIons of Consistency and
Predicate Locks m Database Systems,”
Communacatrons of the ACM, Vol 19, No 11,
November 1976, pp 624-633

Goree, J , “Internal Consistency Of A
Dlstrlbuted Transaction System With Orphan
Detection,” MS Thesis, TR-?8G, Laboratory for
Computer Science, MIT, January 1983

Gray, J, “Notes on Database Operating
Systems,” m Bayer, R, Graham, R and

Seegmuller, G (eds), Operatmg Systems an
Adlanced Course, Lecture Notes m Computer
Science, Vol GO, Sprmger-Verlag, 1978

Herhhy, M , Lynch, N , Merritt, M , and Welhl,
w , “On the Correctness of Orphan Ehmmatlon
Ugorlthms,” submitted for pubhcatlon

Hoare, C A R , “Commumcatmg Sequentml
Processes,” Prentxe Hall InternatIonal, 1985

Korth, H F , “Deadlock Freedom Usmg Edge
Locks,” ACM Trans on Database Systems, Vol
7, No 4, December 1982, pp 632-652

Iiedem, Z , and Sllberschatz, A , “Non-two phase
lockmg protocols with shared and exclusive
locks,” A-oc Int Conference on Very Large
Data Baaee, 1980, pp 309-320

Llskov, B , Herhhy, M , Johnson, P , Leavens,
G , Schelfler, R , and Welhl, W , “Prehmmary
Argus Reference Manual,” Programmmg
Methodology Group Memo 39, October 1983

bS1

WI

ILTI

FYI

[MGGI

WI

PI

PI

PI

Pel

Llshov, B , and bche&-r, R , “Gualdl ills and
Actlons Llllgulstlc support for Robust,
Dlstrlbuted Programs”, ACM T?ansactzons on
Aogramnrrng Languages alzd Systems Vol 5,
No 3, July 1983, pp 381-404

Lynch, N , and MellItt, M , “Introduction to the
Theory of Nested Transactions,” Tcchnlcal
Report MIT/LCS/lR-367, MIT Laborntoly fool

Computer Science, CambrIdge, MA , July 1986

Lynch, N, and Tuttle, M , “Correctness Ploofs
for Dlstrlbuted Algorithms,” m progress

Lynch, N A, “Concurrency Control For
Reslhent Nested TransactIons,” Advances in
Computrng Research 3, 198G, pp 335-373

Moss, J E B , Gnffeth, N D , and Graham,
M H , “Abstraction m Concurrency Control and
Recovery Management” Techmcal Report 8G-20,
COINS Umverslty of Massachussetts, Amherst,
MA, May 1986

Moss, J E B, “Nested TransactIons An
Approach TO Rehable Dlstrlbuted Computmg,”
PhD Theals, Techmcal Report
MIT JLCS JTR-260, MIT Laboratory for
Computer Science, CambrIdge, MA , Apl11 1981
Also, published by MIT Press, March 1985

Papadlmltrlou, C H , “The Serlahzablhty of
Concurrent Database Updates,” JACM Vol ?G,
No 4, October 1979, pp 631-653

Reed, D P , “Nammg and S,nchromzatlon m a
Decentralized Computer System,” Ph D Thesla
Techmcal Report MIT/LCS/TR-205, llIT
Laboratory for Computer Science, CambrIdge,
hIA 1978

Thomas, R H, “A hlalorlty Consensus
Approach to Concurrency Control for Multtple

Copy Databases,” ACM Trans on Database
Systems, Vol 4, No 2, June 1979, pp 180-209

Welhl, W E , “Speclflcatlon and Implementatlo*
of Atomic Data Types,* Ph D Thesis, Techmcal
Report/MIT/LCS/TR-314, MIT Laboratory fol
Computer Science, Cambridge, MA , March
1984

111

