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1. Introduction 
A malor part of database 1 eseal ch over several years has been the 

dealgn and analysis of slgollthms to mamtam consistent data m the 
tace of mte~leaved accesses, abolts of operations, rephcatlon of 
mfool mntmn and fadures of system components The most popular 
and simple protocol 1s tao phase locbmg with separate read and 
~llte lochs, other methods Include arbltraly confhct-based lockmg, 
tlmestsmp-based techmques, and lockmg that uses special structure 
of the data (e g a luerarchlcal arrangement) [Gr,T,I<S,I<o,We] A 
powerful theory has been developed to prove the correctnes of 
these algorithms, based on the idea that a protocol 1s correct If It 
ensures that all executions are equivalent to serial executions 
(EGLT,P,BG] This theory proves serlahzabdlty by showing that a 
precedence graph contams no cycles 

Recently, some Ideas m database system design and mole general 
d&lbuted sybtem design have led several research groups to study 
the possib1ht.y of glvtng more structure to the transactlons that ale 
the basic umt of atcmuclty \Vhen a transaction can contain 
concmlent operations that are to be performed atomically, or 
opelarmns wh~h can be abol ted Independently, we say that the 
op~i ations foe! m subtrat~sact~ons of the mlgmal transaction Thus 
\re consider a s) stem whete tiansactlona can be nested This idea 
wti fuat suggested by Davies under the name spheres of control 
[D] A plmlltlve example of this concept 13 Implemented m System 
R, \\ hele a recotely block can be aborted and the transaction 
reataited at the last savepomt In general chstrlbuted systems hke 
Argus /L&,LHJLS\V] or Clouds [4], the basic services are often 
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Dlovlded by Remote Procedure Calls which, at their best (“OnI) 
Once” semantics), are atomic Smce provldmg a service ~111 often 
require usmg other services, the transactmns that Implrmcnt 
selvlces ought to be nested 

The lmplementatlon of a nested transaction system rcquuLs 

extending the algmlthms that have previously been considered fbl 
conamency control, recovery and rephcatlon The work of Reed 
[RI extended multi-version tlmestamp concurlency contlol to 
provide nested transactIon data management MOSS [MO] extended 
two phase lockmg with separate lead and write locks to handle 
nesting, and this algorithm IS the basis of data management m the 
Argus system implemented at MIT 

This paper 1s part of a major research effort to offer clean, 
readable descriptions of algorithms for managmg data m a nested 
transaction system, together w1t.h rigorous proof* of the correctness 
of these algollthms Othei paits of the prolect Include studymg 
rephcated data management algonthms, orphan ehmmatlon 
algorithms and general aton-uclty of abstract objects All this worh 
IS baaed on a simple model of concurrent systems usmg I/O 
automata and an operational style of reasomng about theu 
schedules The first frmts of this program are detailed m [Lhl] 
which proves the correctness of exclusive lockmg, and which 
provides a basic framework for presentmg the Ideas of this paper 

This paper’s contrlbutlon 18 threefold First, It proves for the first 
time the correctnecr?l of Moss’ algorithm, an algorithm which has 
been used m practice Our dlscusslon covers both concurrency 
control and recovery from aborts However, we do not consider all 
the failure cases that the real system must deal with, ss our model 
does not yet include crashes which compromlse the system state 
Second, we provide technical defuutlons (for equzefjeclzveness and 

transparency) which seem to eaptme exactly those propertles of 
read operations that the algollthm depends on Third, this papel 
provides another example of the power and value of the basic 
model of serial correctness first proposed m [MI], and of the 
open atlonal style of reasoning 1) Ith I/O automata 

In this papel we first levlew the I/O automaton model of 

computation This IS velv slrmlsi to models hbe Commumcatmg 
Sequential Processes [Ho], m that automata Interact by 
synchromzmg on shared operations The mam difference from other 
models 1s that we distmgmsh the input and output operations of 
each automaton Any operation shared between components of a 
system can be an output of at most one component, and that 
component 1s m control of the operation, because no automaton 1s 
allowed to refuse to execute an Input Though automata have states 
a~ well as operations, we concentrate our analysis on the sequence 
of opelatmns performed (the schedule of the system) - this 
operatIona mode of reasomng 1s qmte different flom asset tlonal 
mvarmnt methods used elsewhere m reasonmg about &strlbnted 
systems, but we find It very powerful and yet smlple for the set of 
problems we consider 

Next, we show how to use I/O automata to model the paIts ol a 
nested tlansactlon system Each transactIon 1.5 leplesented b) 311 
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auton~ston, as IS each data object The actlons of callmg a 
subtlansactlon, mvokmg an access to an object, and retuimng a 
result are each spht mto two operations, one requestmg the actlon 
dud one dehvelmg the request to the reclplent The request 
opclatlon 1s an output of the caller and an mput to the scheduler 
(nh~ch acts as a commumcatlon system) whde the dehvery 
optrstlon 1s an output of the scheduler and an mput of the 
lcclplent Thus, each transactlon (and each oblect) shares 
opcldtlons only with the scheduler A serzal system 1s the result of 
composmg tlansactlon and object automata with a eerlol 
sc/&u/er, which runs the subtransactlons of any transactlo” 
sequentially (with no concurrency between slbhngs) and only aborts 
tlansactlons before they start runmng The serial scheduler IS very 
simple to understand and 1s used as the basis of our correctness 
condltlon 

\Ve then mtloduce a Rfl Loclzng system to model a system 
usmg hloss’ lockmg algorithm to manage data We use a new sort 
of I/O automaton called a R/W Lo&rag oblect which IS like the 
object automaton of the serml system, but which maintains lock 
tables and %erslons of the object so that It can respond correctly 
when aborts occur It also delays operations until it 1s permltted to 
respond by the lochmg rules \Ve also use a new sort of scheduler 
called a gcner IC scheduler, which transmits requests to the 
?pploprlate reclptent \rlth arbitrary delay, allowmg slbhngs to run 
conculrentlq or to abort after pelformmg some work A R/W 
Lochmg system 1s the result of composmg the transaction 
automata, R/W Lockmg obJecti and generic scheduler 

A R/IV Locl,mg system allows more concurrency than a serial 
slstem, but It 1s correct m the sense (first suggested m [LM]) that 
each tlansactlon wh~h does not have an aborted ancestor 1s unable 
to tell whether It 1s runmng m a R/W Lockmg system or m a serial 
system The proof of this correctness condltlon 1s the mam result 
of this paper 

The proof proceeds by takmg an arbitrary schedule of a R/W 
Lochmg system (d concurrent schedule) and exphcltly showmg how 
to 1 eal1 ange the operations to get a schedule of the serial system 
The permltted rearrangements (which do not alter the sequence of 
events at any transaction) are those that are write-equ8uaZent to 
the orlgmal sequence 

A ley contrlbutlon of this paper 1s m ldentlfymg exactly the 
propertles of read and write accesses which are required to 
guarantee correctness of Moss’ algorithm Write accesses reqmre no 
special properties However, it IS necessary that read accesses leave 
the object m “essentially” the same state as they found It We 
define equwj~ectaue schedules to be those that leave the object in 
“essentially” the same state, where “essentially” means “BS far BS 
later opelatlons can detect” Then an object schedule with a read 

access appended 1s required to be equleffectlve to the same schedule 
without the read access 

There have been several other attempti to provide rigorous proofs 
of the correctness of algorithms for data management m nested 
tlansactlon systems The first was [Ly], which presented a model 
that successfully handled exclusive lockmg, but which proved 
dlfflcult to extend to more complicated problems such as orphan 
ehmmatlon [Go] The mam defrclencles of this earher model seem 
to be the lack of dlstmctlon bettieen mputs and outputs, and the 
lack of exphclt lepresentatlons for transactions and their interfaces 
‘Ihesc deflclencles were remcdled m [LM], where the operational 
model discussed above was defmed, this paper again proved 
co1 LLC~I~CSS of excluswe lockmg This paper contmues the work of 
[I M] by dedllng with an algorithm with separate read and write 
lochs (lhe result of this paper Implies a mam result of [LM], smce 
whc.11 no accesses are dlstmgulshed as read accesses, Moss’ 
algot lthm dpgenel ltes Into exclusive lochmg ) A different program 

to study concurrency control m nested transactIon systems has been 
offered m [BBGLS,BBG], where a major motlvatlon 1s to analyze 
protocols that operate on data at different levels of abstraction, but 
where recovery 1s not consldered The argument for the correctness 
of Moss’ algollthm m [BBG] considers only the lochmg rules and 
not the state mamtenance methods, so correctness 1s proved only 111 
the absence of aborts Concurrency control and recovery 
algorithms are also analyzed m [MGG], but [MGG] 1s also 
concerned mamly with levels of abstractlon 

This paper uses many concepts flom [LM], but we have repeated 
everythmg needed to mahe It self-contamed, and rndlcated whele 
defmltlons or detade differ In Sectlon 2, we review the model of 
I/O automata of [LT,Lh4] In SectIon 3, we define the automata 
that make up the serial system, namely the transactlon automata, 
the basic object automata and the serial scheduler In Sectlon 4, 

we specify the semantic condltlons that read accesses must sat&y, 
usmg the technical notion of eqmeffectlve schedules In Sectlon 5 
we define the automata of the R/W Lochmg system, namely the 
R/W Lockmg objects (which have code based lmmedlately on the 
algorithm of [MO]) and the generic scheduler, and prove the mam 
lemmas that relate the schedules of R/W Lockmg obpxts to the 
schedules of the basic objects Fmally m S&Ion 6 we plove that 
R/W Locking systems are serially correct at transactlons no 
ancestor of which has aborted, and m particular at the root 
transactlon which represents the external environment 

2. I/O Automata 
The followmg 1s a brief mtroductlon to a model uhlch 1s 

described m [Lhl] and developed at length, nlth extensions to 
express mfmlte behavior, m [LT] 

All components m our systems, transactions, oblects and 
schedulers, ~111 be modelled by I/O automata An I/O automaton 
A has a set of states, some of which are designated as ~tlrt~al 
states It has operatrons, each clssslhed as either an znput 
operatron or an output operation Finally, It haa a transltlon 
relation, which 1s a set of triples of the form (s’,rr,s), where s’ and s 
are states, and k IS an operation This triple means that m state s’, 
the automaton can atomically do operation r and change to state s 
An element of the transItIon relation 1s called a step of the 
automaton The output operations are intended to model the 
actlons that are trlggered by the automaton Itself, while the input 
operations model the a&Ions that are trlggered by the envtronment 
of the automaton 

Given a state s’ and an operation lr, we say that r IS enabled in s’ 
If there 1s a state s for which (s’J,s) 1s a step We require the 
followma condltlon 

Input Condltlon Each mput operation r 1s enabled m each state 
S’ 
This condltlon says that an I/O automaton must be prepared to 
receive any input operation at any time 

An ezecutron of A 1s an fimte alternatmg sequence sO,rl, 

SIJ*, ,R”,s,, of states and operations of A, begmmng and ending 
with a state Furthermore, s,, IS a start state of A, and each triple 
(s’,x,s) which occurs as a consecutive subsequence 1s a step of A 
From any execution, we can extract the schedule, which 1s the 
subsequence of the execution conslstmg of operations only Because 
transltlons to different states may have the same operation, 
different executions may have the same schedule We say that a 
schedule cx of A can leave A in state s If there IS some execution of 
A with schedule Q and final state s We say that an operation = IS 
enabled alter a schedule cy of A lf there exists a state s such that Q 
can leave A m state s and A 1s enabled m s Smce the same 
opelatlon may occur several times m an execution or schedule, we 
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\Ve ~LXI ~bt sybtLms as conslstmg of rntel actmg components, each 
of \F~IIL~ 1s an I/O automaton It IS convenient and natural to view 
sl&ems as I/O automata, also Thus, we defme a composltlon 
opclatlon for I/O automata, to yltld a new I/O automaton A set 
of I/O automata may be composed to create a system S, If the sets 
of output operatlous of the various automata are palrwlse disJomt 
(Thus, every output operation m .S WIN be tllggered by exactly one 
component) A state of the composed automaton IS a tuple of 
states, one for each component, and the stal t states are tuples 
conslstmg of start states of the components The operations of the 
composed automaton are those of the component automata Thus, 
each operation of the composed automaton IS an operation of a 
subset of the component automata An operation IS an output of 
the composed automaton exactly of It 1s an output of some 
component (The output operations of a system are Intended to be 
exactly those that are trlggered by components of the system, while 
the Input operations of a system are those that are trlggered by the 
system’s envuonment ) Durmg an operation k of a composed 
automaton, each of the components which has operation IT carries 
out the operation, while the remamder stay m the same state 

An etecutton or schedule of a system 1s defined to be an 
executton or schedule of the automaton composed of the mdlvldual 
automata of the system If o 1s a schedule of a system with 
component A, then we denote by a)A the subsequence of cy 
contammg all the operations of A Clearly, ~I]A IS a schedule of A 

The followmg lemma from [LM] expresses formally the Idea that 
an operation IS under the control of the component of which It IS 
an output 

Lemma 1 Let a’ be a schedule of a system S, and let a 
= CY’R, where lr IS an output operation of component A If 
cu]A 1s a schedule of A, then (Y IS a schedule of S 

We say that automaton A preserves a property P of schedules of 
A If cy = @‘A satlsfles P whenever (1 1s a schedule A, a. satlsfles P 
and T IS an output of A 

3. Serial Systems 
In this paper we define two hmds of systems “serial systems” 

and “R/W Locking systems” Serial systems describe serial 
execution of transactlons They are defined for the purpose of 
glvmg a correctness condition for other systems, namely that the 
schedules of another svstem should look hhe schedules of the serial 
svstem to the transactlons As with serial executions of smgle-level 
transaction systems, serial systems are too InefficIent to use in 
practice Thus, we defme R/W Locking systems, which allow 

transactlons to run concurrently or abort after performmg some 
wolh, these systems use Moss’ algorithm to mamtam locks and 
enough mformatlon to restore the states of objects after aborts 
occur 

In this section of the paper we defme sellal systems, which consist 
of tlansactlons and bJslc objects commumcatmg with a seraal 
scheduler TransactIons and basic objects describe user programs 
and data, respectively The serial scheduler controls commumcatlon 
between the other components, and thereby controls the orders m 
which the tlansactlons create children or access data All the 
system components are modelled as I/O automata Most of this 
sectldn 1s taken from [LM], with shght modlflcatlons to accomodate 
shght changes m defmltlons 

We represent the pattern of transactlon nestmg, which we call a 
system type, by a set of transactlon names, orgamzed mto a tree by 
the mappmg “parent()“, with T, as the root In referrmg to this 

tlce, we use tladltlolld tLImlll(>Iogy, SUCK 1.5 clllld, 1~ lf, IL&t 
common ancestor (lea), ancestor and dcscenddnt (A tr?ns?cLlon 1s 
Its own ancestol and descendant ) The leaves of this tree 81 e called 
acces.¶es The accesses ale paltltloned, whele each element of the 
partltlon contams the accesses to a particular object The bee 

structure can be thought of as a predefmed naming scheme for all 
possible transactIons that might ever be Invoked In any particular 
execution, however, only some of these transactions ~111 actuali) 
take steps We lmagme that the tree structure 1s known m advance 
by all components of a system The tree ~111, in general, be an 
mfmlte structure with mfmlte branchmg 

The &sslcal transactlons of concurrency control theory (wlthout 
nestmg) appear m our model as the children of a “mythical” 
transactlon, T,, the root of the transactlon tree (In worh on 

nested transactlons, such as Argus, the children of T, are often 

called “top-level” transactlons ) It IS very convenient to mtloduce 
the new root transactlon to model the environment In which the 
rest of the transaction system runs TI ansactlon T, has operations 
that describe the mvocatlon and return of the classIcal tlansactlons 
It 1s natural to reason about T, m the same way as about all of the 
other transactions The only transactlons which actually access 
data are the leaves of the transactlon tree, and thus they are 
dlstmgulshed as “accesses” The Internal nodes of the tree model 
transactions whose function 1s to create and manage 
subtransactlons, but not to access data directly 

We also assume that a system type mcludes a designated set V of 
values. to be used as return values of transactlons 

A serial system of a given system type 1s the cornposItIon of a set 
of I/O automata This set contams a transactlon automaton for 
each rnternal (I e non-leaf, non-access) node of the transactlon 
tree, a basic object automaton for each object, and a sellal 
scheduler These automata are described below 

3 1 Trsnsactlons 
This paper differs flom other work such as [BBG] m that we 

model the transactlons exphcltly A non-access transactron T IS 
modelled as an I/O automaton, with the followmg operations 

Input operations 
CREATE(T) 
REPORT-COMMIT(T’,v), for T’ a chdd of T, and v a value 
REPORT-ABORT(T’), for T’ a child of T 

Output operations 
REQUEST-CREATE(T’), for T’ a chdd of T 
REQUEST-COMMIT(T,v), for v a value 

Ihe CREATE input operation “wabes up” the transaction The 
REQUEST-CREATE output operation 1s a request by T to cleate 
a particular child transactlon ’ The REPORT-COMhfIT mput 
operation reports to T the successful completion of one of Its 
children, and returns a value recordmg the results of that child’s 
execution The REPORT-ABORT input operation reports to T 
the unsuccessful completion of one of Its chddren, wlthout 
retulnmg any other informatmn We Cdl 
REPORT_COh4h4IT(T’,v), for any v, and REPORT-ABORT(T’) 
report opetatlons for transactlon T’ The REQUEST- COMMIT 
operation 1s an announcement by T that It has fmrshed Its wolh, 
and mcludes a value recording the results of that work 

6 
Note that there IS no provision for T to pass lnformatmn to I& chdd in this 

request In B programmmg language, T might be permllted to pass parameter 
values to & subtransactmn Although this may be a convewent descrlptwe aId it IF 
not necessary to Include it in the underlymg formal model Instead, we consider 
trsnsact~~~s that have dlfkrent wput parameters to be dlffwent transactwns 
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It IS c0nven1ent to use two separate operations, 
REQUEST-CREATE and CREATE, to describe what takes place 
when a subtransactlon 1s activated The REQUEST-CREATE 1s 
an opelatlon of the transactlon’s parent, while the actual CREATE 
tahta piace at the subtransactlon Itself In actual systems such as 
Algus, this separation does occur, and the dlstmctlon ~111 be 
unpoltant m our results and proofs Sumlar remarks hold for the 
REQUEST -COMMIT and COMMIT operations ’ We Imvr the 

executions of pal tlculsr t,i ansactlon automata largely unspeclfled, 
the choice of which chddren to create, and what value to return, 
\r 111 depend on the pal tlcular lmplementatlon For the purposes of 
the schedulers studled hLre, the transactions (and m large part, the 
objects) are “biach boles * Nevertheless, it 1s convement to 
az+ume that schedules of transactlon automata obey certain 
syntsctlc constrsmts We therefore require that all transaction 
automata preserve well-Cormedness, as defined m the next 
pslaglaph We do not constrsm the operatmn of a transaction 
automaton after schedules that violate well-formedness, but we will 
plove later that, when placed m any of thP systems we consider, a 
transaction generates only well-formed schedules 

We lecurslvely defme well-fonnedtxus for sequences of operations 
of tl ansactlon T Namely, the empty schedule IS well-formed Also, 

of o = LY’K 1s a sequence of operations of T, where R 1s a single 
event, then LY LS well-formed provided that Q’ IS well-formed, and 
the follon mg hold 

. If k 1s CREATE(T), then 
(1) thele 1s no CREATE(T) event m ti’ 

. If R IS REPORT_COMh4IT(T’,v) for a chdd T’ of T, 
then 
(I) REQUEST_CRE4TE(T’) appears m (I’ and 
(a) there IS no REPORT-ABORT(T’) event m (Y’ and 
(111) there IS no REPORT-COMMIT(T’,v’) event with 

F’#V in (Y’ 

l If r 1s REPORT-ABORT(T’) for a chdd T’ of T, then 
(1) REQUEST _ CREATE( T’) appears m a’ and 
(II) there 1s no REPORT-COMMIT event for T’ m a’ 

. If t 1s REQUEST-CREATE(T’) for a child T’ of T, 
then 

(I) there 1s no REQUEST-CREATE(T’) m Q’ and 
(11) there 1s no REQUEST-COMMIT event for T m cy’ 
m d 
(111) CREATE(T) appears m a’ 

. If IT IS a REQUEST-COMMIT for T, then 
(1) there 1s no REQUEST-COMMIT event for T m cy’ 
and 
(II) CREATE(T) appears m 0’ 

These restrictions are very basic, they simply say that a 
transactIon does not get created more than once, does not receive 
conflicting information about the fates of its children, and does not, 
receive information about the fate of any chdd whose creation It 
has not requested, also, a transactIon does not perform any output 
opelatlons before it has been created or after lt has requested to 
cornnut, and does not lequest the creation of the same &Id more 
thin once Except fool these mnumal condltlons, there are no a 

7 Note that we do not mclude a REQUEST-ABORT opcratlon for B transaction 
we do not model the sltuatton m wluch a transactmn deader that lb own exmtence 
IS a m&eke Rather we aagn dccwons to abort trsnsactmns to another 
component of the system the scheduler In practice, the scheduler must have some 
POW-~ to deade to abort transactms, as when ,t detect., deadlocks 01 failures In 
Argus, transactions are permltted to request to abort, we regard this request simply 
as a ‘hmt- to the scheduler to restrwt Its allowable exeeutlons III L partwular way 

pl1or1 rest1 actions on allowable tl ansactlon behavior 

The followmg easy lemma summarizes the properties of well- 
formed sequences of tlansactlon operations 

Lemma 2 Let a be a well-formed sequence of operations 
of transactlon T Then the Collowmg condltlons hold 

The first event m (I 1s a CREATE(T) event, and 
there are no other CREATE events 

If a REQUEST-COMMIT event for T occurs m (Y, 
then there are no later output events of T m (Y 

There 1s al, most one REQUEST-CREATE(T’) 
event for each child T’ of T, m cv 

4 There are not two Mferent repel t operations m a 
for any cluld T’ of T (However, there may be 
several events which are repeated mstances of a 
single report operation) 

5 Any report event for a ciuld T’ of T IS preceded by 
REQUEST-CREATE(T’) m ~1 

Conversely, any sequence of operations of T satlsfymg these 
conchtlons 1s well-Calmed 

3 2 Basic ObJects 
Recall that I/O automata are associated with non-access 

transactions only Smce access transactIons model abstract 
operations on shared data objects, we associate a single I/O 
automaton with each ob)ect, rather than one for each access The 
operations for each object are Just the CREATE and 
REQUEST-COMMIT operations for all the correspondmg access 
transactions Although we give these operations the same names as 
the operations of non-access transactions, It IS helpful to think of 
the operations of access transactIons m other terms also a 
CREATE corresponds to an mvocatlon of an operation on the 
oblect, while a REQUEST -COMMIT corresponds to a response by 
the oblect to an mvocatlon Actually, these CREATE and 
REQUEST-COMMIT operations generahze the usual mvocatlons 
and responses m that our operations carry ~lth them a designation 
of the positIon of the access m the transactIon tree Thus, a basrc 
obpct X IS modelled as an automaton, with the followmg 
operations 

Input operations 
CREATE(T), fool T an access to X 

Output operations 
REQUEST-COMMIT(T,v), for T an access to X 

As with transactions, wlnle speelfic oblects are left largely 
unspecified, It IS convenient to reqmre that schedules of basic 
oblects satisfy certam syntactic conditions We recursively defme 
we&formednees for sequences of operations of bs.slc ob]eCts 
Namely, the empty schedule 1s well-formed Also, d (Y = Q’A 1s a 
sequence of operations of bastslc object X, where ff IS a smgle event, 
then cz 1s well-formed provtded that cz’ 1s well-formed, and the 
Collowmg hold 

l If r IS CREATE(T), then 
(I) there IS no CREATE(T) event m n’ 

l If R IS REQUEST-COMMIT for T, then 
(I) there 1s no REQUEST-COMMIT event for T m CY’, 
and 
(n) CREATE(T) appears m (Y’ 

These restrlctlons simply say that the same acces does not get 
created more than once, and that a basx object does not, respond 
more than once to any access, and only responds to accesses that 
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IIZVL ,” Lvlo”sly bl CII c, c ILL‘1 I IlL’lfJ I equllelnellts const1 am the 
Cll\llOlllllC'll~ 01 tilt OhJCLt all;tlllj' k=Tb tb?" thOSC I" [Lhf], the 
adtld f~wdom mlhtb so”,e of the algulne”ts shghtly sm~pler We 
1equ”e that every basslc object preserve well-formedness (this 1s a 
simple syntactic condlt,lon) The follotimg easy lemma summarizes 
the plopertles of \\~Il-fol”~~d s‘quences of ba.w object operations 

Lemma 3 Let cy be a ~~ll-fo~“~ed sequenw of operations 
01 btislc object \ lhen fol a”y access T Lo Y, (Y co”t?lns 
one of the folio\\ mg 

1 no CREATE(T) and no REQUEST-COMMIT(T,v) 
events. 0, 

2 one CREATE(T) and IlO 
REQUEST-COMMIT(T,v) events, or 

3 one CREAlE(T) event and followmg that one 
RFQUES I’- COMMI r(T,v) event for solne v 

Conversely, any cr sztlsfymg tins condltlon 1s well-formed 

If a 1s a well-fol “led sequence of operations of X and T IS a” 
access to X such that ~1 contams CREATE(T) but no 
REQUEST-COMhlIT(T,v), we say that T 1s pendmg m (I 

3 3 Serial Scheduler 
The third kmd of component I” a serml system 1s the serial 

scheduler The serial scheduler 1s also modelled aa a” automaton 
Whereas the transactmns and basic oblects have bee” speclhed to 
be any I/O automata whose operations and behawor sat&y simple 
syntactic restrlctlons, the serial scheduler IS a fully spe&ed 
automaton, particular to each system type It runs transactlons 
accordmg to a depth-first traversal of the transactlon tree The 
sellal scheduler can choose nondetermmlstlcally to abort any 
tra”aactlon after Ita parent has requested Its cleatIon, as long as 
the transaction has not actually been created In the context of 
thlb scheduler, the “aemantlcs” of an ABORT(T) operation are that 
tlansactlon T was ne,er created Each child of T whose cleatmn 
%\ as requested must be either aborted or run to comrnltrnent wth 
no slblmgs ovellappmg Its execution, before T can commit The 
operations of the serial scheduler are as follows 

Input Operations 
REQUEST _ CREATE(T) 
REQlrEST -COhIMI r( r,v) 

Output OpLr?tlo”s 
CREATE(T) 
COVMIT(T) T f T, 
4BORT(T), T # T,, 
REPORT _ COi\~IIT(T,v), T # T, 

REPORT- 4BORT(T), T # T, 

1 he RFQUIZS r _ C,I1EATE and REQUEST _ COMMlT mputs 
JI P mtwded to be tde”tlflcd wth the correspondmg outputs of 
trwsactlon arld obIwt automata, and correspondmgly for the 
CREATE, REPORT-COMMIT and REPORT-ABORT output 
operations The COMMIT and ABORT operations are Internal, 
malhmg the pomt m tnne where the decwon on the fate of the 
tla”sactlon 1s wrevocabie We call COMMIT(T) and ABORT(T) 
return operations for T 

Each state s of the aerial scheduler consists of SIX sets, named 
with 1 word notation s create-requested, s created, 
s cornnut-requested, s committed, s abolted and s returned The 
set s commit-requesttd 1s a set of (transactlowvalue) pairs The 
others ale sets of tra”aactlo”s There 1s exactly one mltlal state, 1” 
which the set create-requested 1s {T,}, and the other sets are 
empty 

The transltmn lelatlo” conslstz of exactly tlwbe tllples (s’,~T,s) 
satlsfymg the pie- and poatcmldrtlons belo\\, whele x IS thL 
mdlcated operation Fol blevlty, we Include m the postco”dltlonb 
only those condltlons 011 the state s wluch m ly change with the 
operation If a component of s LS not nwntloned I” tlrc 
postcondltlon, It 1s lxnplwt that the stt IS the same I” s’ and s 

REQUEST-CREAlE(T) 
Postcondltlon 

s create-requested = s’ create_rLquesttd u {T} 

REQUEST-COMMIl(T,v) 
Postcondltlon 

s commit-requested = s’ comrmt- requested U (( I’,v)) 

CREATE(T) 
Precondltlon 

T E s’ create-requested - (b’ created U s’ aborted) 
slbhngs(T) II s’ CI eated C s’ returned 

Postconchtlon 
s created = s’ created U {T} 

COMMIT(T), T f T, 
Preconchtlon 

(T,v) E s’ commit-requested for some v 
T p s’ returned 
children(T) n s’ cl eate-requested C s’ 1 eturned 

Postcondrtlon 
s commItted = s’ committed u {r} 

s returned = s’ Ietul”ed U {T} 

ABORT(T), T # T, 
Preconrhtlon 

T E s’ create requested - (s’ created U s’ aborted) 
slhhngs(T) n: created c s’ returned 

Postcondltlon 
s aborted = s’ aborted U {T} 
s returned = s’ returned U {T} 

REPORT-ABORT(T), T # T, 
Preconchtlon 

T E s’ aborted 

REPORT- COMMIT(T,v), T # T,, 
Precondltlon 

T E s’ commItted 
(T,v) E s’ comrnlt-requested 

The Input operations, REQUEST-CREATE and 

REQUEST-COMMIT, simply result m the request bemg recorded 
A CREATE operation ca” only occur If a correspondmg 
REQUEST-CREATE has occurred and the CREATE has “ot 
already occurred The second precondltlon on the CREATE 
opelatlon says that the serial schrduler does not create a 
transaction untd all Its previously created slbl”lg transactIons have 
returned That IS, srblmgs are run sequentially The precondltlon 
on the COMMIT operation says that the scheduler does not allow a 
transactIon to comrnlt until Its chrldren have returned The 
preconchtlon on the ABORT operation says that the scheduler does 
not abort a transaction while there 1s actwty gmng on on behalf of 
any of Its slblmgs That IS, aborted tlansactlons are dealt wth 
sequentially wth respect to the” slbhngs The result of a 
transactlon can be reported to Its parent at any time after the 
(purely Internal) commit or abort has occurred In paltlcular, 
slblmgs rnlght run m one order and be reported to thew parent I” 
the opposite order 

One slgmflcant difference between our serial scheduler and the 
one m [LM] 1s that there the return operation and the repmt to the 
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paltnt of the return ale combmed as a smgle operation, glvmg the 
palent the extra mformatmn of the older m which Its children are 
L”Cl 

The next lemma relates a schedule of the serial scheduler to the 
state 1, huh 1 esults from applymg that schedule 

Lemma 4 Let o be a schedule of the sellal scheduler, and 
let s be a state which can result from applymg o to the 
nntml state Then the followmg conchtlons are true 

1 T IS In s create-requested exactly If T = T,, or a 
contam:. a REQUEST-CREATE(T) event 

:! T 1s m s created exactly of CY contuns a CREATE(T) 

event 

3 (T,v) IS m s commlt_1equ&ed exactly If (Y contams 
a REQUEST-COMMlT(T,v) event 

1 T 1s m s cornnutted exactly If (Y contains a 
COMMIT(T) event 

5 r 1s m s abol ted exactly of cy contams an ABORT(T) 
e\ ent 

G s returned = s cornnutted U s aborted 

7 s commlttcd n s aborted = 0 

3 4 Serial Systems and Serml Schedules 
The cornposItIon of transactions with basic objects and the serial 

scheduler for a given system type 1s called a serzal system, and its 
operatmns and schedules are called serral operatrone and sefral 
sclredules respectively A sequence u of serial operations 1s said to 
be c~ell {armed plovlded that Its proJectIon at every transactIon 
and bask obleLt IS well-formed 

Lemma 5 Let CI be a serial schedule Then (Y 1s well- 
fool nird 

Proof A straightforward mductlon on the length of 
schedules The mductlve step mvolves a case analysis based 
on the possible operations 0 

If Q 1s a sequence of serial operations and T IS a transaction such 
that Q contams CREATE(T) but no return event for T, we say 
that T IS Izve m CY The following lemma states that only related 
transactions can be hve concurrently, m a serial schedule 

Lemma 8 Let (Y be a sellal schedule, and T and T’ 
tlansactlons each of wtnch 1s hve m cy Then either T LS an 
ancestor of T’ or T’ 1s an ancestor of T 

In older to talk about schedules, we mtroduce some terms to 
descllbe the fate of transactions Let 01 be any sequence of 
opcratlons (We will use these same terms later for schedules of 
R/W Lockmg systems, 90 we make the defmltlons for general 
sequences ) If ‘I 1s a transactmn and T’ an ancestor of T, we say 
that 1 1s committed to T’ m CY of COMMIT(U) occurs m a for 
every U wh~h IS an ancestor of T and a proper descendant of T’ If 
1 and T’ are transactions we say that T 1s wasable to T’ m a If T IS 
cornnutted to lca(T,T’) If t 1s one of the operations CREATE(T), 
REQUEST- CREATE(T’), COMMIT(T’), ABORT( T’), 
REPORT-COMMIT(T’,v’), REPORT-ABORT(T’,v’) or 
REQUEST-COMMIT(T,v) where T’ 1s a child of T, then we 
dLflne Itonsactaon(lr) to bc T If 1 LS a non-access transaction then 
thr operations R with transactIon = T are the operations of the 
automaton T togLthe1 wtlr the lcturn operatmns for children of 
1 W’CL dcuote by vlslble(u,T) the subsequence of a conslstmg of 

events II with transactIon to T m a Notice that every operation 
o~cmrmg m vlsrble(cr,T) IS a serial operation 

We collect here some straightfmward consequences of these 
delmltlons 

Lemma 7 Let a be a sequence of operstlons, and T, T’ 
and T” transactIons 

If T IS an ancestor of T’, then T IS vmble to T’ In a 

T’ 1s visible to T m a If and only If T’ 1s amble to 
lca(T,T’) m a 

If T” IS vlslble to T’ m CY and T’ 1s amble to T In a, 
theu T” 1s visible to T in (I 

If T’ 1s a proper descendant of T, T” IS vslble to T’ 
in Q, but T” IS not vznble to T m (Y, then T” 1s a 
descendant of the child of T whrch 1s an ancestor of 
T’ 

Lemma 8 Let, a and j3 be sequences of opelatlons, such 
that j3 cons1st.s of a subset of the events of a 

1 If transactIon T 1s amble to transactIon T’ m p, 
then T 1s vmble to T’ m (Y 

2 If event )r 1s In vmble@,T), then t 1s m \rslble(a,T) 

Lemma 9 Let 01 be a bequence of operations, and let T 
and T’ be transactIons Then x Iwble(a,T)IT’ IS equal to crjT 
if T’ IS vlslble to T m Q, and 1s equal to the empty sequence 
otherwise 

Lemma 10 Let o be a sequence of operations Let T, T’ 
and T” be transactIons such that T” 1s vlslble to T’ and to 
T m a Then T” 1s amble to T’ m vlslble(a,T) 

Lemma 11 Let T be a transaction, and let Q?T be a 
sequence of operations, where A 1s a smgle event 

1 If transactIon IS not amble to T m crk, then 
vmble(arr,T) = vnlble(cr,T) 

2 If transactIon IS vlslble to T m as and If A 1s not 
a COMMIT event., then vwble(on,T) = 
vmble(cY,T)r 

3 If transaction(n) 1s vmble to T m a~, and r 1s 
COMMIT(U), then the events m vmble(arr,T) are 
those vlslble m cx to &her T or U, together with n 
itself 

Lemma 12 Let (Y be a well-formed sequence, and T any 

transactlon Then vislble(a,T) IS well-formed 

The next two lemmas are taken from [LM] (There, they are 
proved with shghtly different defmltlons, but the essentially the 
same proofs WOI k here ) 

Lemma 13 Let u be a serial schedule and T a 
transaction Then vlslble(cr,T) 1s a se& schedule 

Lemma 14 Let (I be a serial schedule and T a 
transactIon Let p = vnlble(rY,T) Then 7 = j3(a - p) IS a 
serial schedule 

Let o be any sequence of operations If T 1s a tlansactlon we say 
T IS an orphan m a If ABORT(U) occurs m a for some ancestor U 
of T 

3 5 Serml Correctness 
We use serrsl schedules as the baaIs of OUI collectness defmltlon, 

whrch WBS first grven m ILM] Namely, we sav that a sequence of 
operations 1s serralfr~ correct for a ~tansaclron r plovlded Lhat Its 
prolectlon on r IS ldentlcal to the ploJect.loll on 1 of some sulal 

schedule That IS, the sequence “looks hhe” a serml schedule to 
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T Later m tlus pdpcr WL ~111 dJme UOIZ/W LocLmg systems” and 
show that then sth~dules isle sellally ccurect for every non-orphan 
tlansactlon, snd m psltlcular that these schedules are srrlally 
correct for lhe loot tlansactlon T, 

Motlvatlon for our use of sellal schedules to define correctness 
dellves from the smlple behavior of the sellal scheduler, wh~h 
determmes the sequtnce of mteractlons between the transactions 
and oblects We beheve the depth-first traversal of the transaction 
tree to be a natural notion of correctness wluch corresponds 
preclscly to the mtmtlon of how nested transaction systems ought 
to behave Furthermore, It IS a natural generahzatlon of 

sermhzablhty, the correctness con&Ion generally chosen for 
classical transactIon systems Serial correctness for T IS a condltlon 
winch guarantees to Implementors of T that their code will 
encounter only sltuatlons which can arise m serial executions 
Cmrectness for To 1s a special case which guarantees that the 
external world wdl encounter only sltuatmns which can arise In 
selisl executions 

It would be best IF every transaction (whether an orphan or not) 
saw comnstent data Ensurmg this reqmres a much more mtrlcate 
scheduler than the simple R/W Lockmg systems we describe In 
IHLMW], we describe and prove correctness of several algorithms 
for mammtammg correctness for orphan transactIons 

Our approach 1s an example of a general techmque for studymg 
system algmlthms A simple, mtmtlve and mefficlent algorithm 
(automaton) 1s used to specify an acceptable collection of schedules 
for the system component The actual system component 1s more 
efflclent or robust, but provides the same user Interface The user 
1s guaranteed that apphcatlons (transactlons, m our work) which 
wolh well when run with the simple algorithm wdl work the same 
way ahen run w1t.h the actual system 

4. Semantic Conditions 
In the serial systems to be considered m this paper, accemes are 

classllled as either read or lorrte accesses In tins se&Ion, we state 
the propertIes ahlch these accesses are reqmred to satisfy First, 
He defme the fundamental concept of “eqmeffectlveness” of 
schedules, whuzh IS m turn used to defme “transparency” of 
operations, an operation 1s said to be transparent of later accesses 
to the same object return values which are the same as m the 
sltuatmn whele the operation did not occur We then prove certam 
consequences of these defmltlons, winch wdl be used m the ensumg 

proofs Fmally, we use the notIon of transparency to speelfy the 
precise semantic condltlons which read and write accesses must 
sat&y 

4 1 Equmffectrve Schedules 
\Ve mtroduce the concept of eqmeffectlve schedules of a basic 

object X, m order to define precisely what schedules we ~111 regard 
as “essentially” the same Intmtlvely, these are schedules wluch 
leave the automaton m states w&h are the same However, we are 
really Interested m schedules, not states, so It 1s enough that they 
be mdlstmgmshable by later operatmns 

Formally, given two well-formed sequences (Y and @ of operations 
of X, we say that Q 1s equrefject~ue to @ If for every sequence 4 of 
operations of X such that both ad and fid are well-formed, (~4 IS a 
schedule of X IF and only If 84 1s a schedule of X 

Notlce that of nelther cy nor p IS a schedule of X, then (Y 1s 
tllvlally eqmeffectlve to /9 Also, notIce that IF cy 1s eqmeffectlve to 
p and B 1s a schedule of X, then cr IS a schedule of X In the sense 
of semantrc theory, eqmeffectlve schedules pass the same tests, 

whele a test mvolves dettrmmmg lf a glvcu squ( nce of op~allons 
can occur after the sequence berng tested \VL lmnt the tests to 
sequences wluch do not violate well-formedness, for techmcal 
reasons, because we have not reqmred the objects to behave 
sensibly If the inputs vIolate well-formedness Clearly, a 1s 
eqmeffective to p if and only of @ 1s eqmeffectl\e to (Y and m this 
case we say that Q and /3 are eqmeffectlve sequences We have a 
restrIcted fol m of t.1 ansltlvlty 

Lemma 16 Let CY’, /3 and 7 be sequences of operations of 
X such that the events m B itle a subset of the events m (Y 
and the events m 7 are d subset of the events m /3 (perhaps 
m different orders) If (I and /9 are eqmrffectlve and also p 

and 7 are eqmeffectme, then (Y and 7 are eqmeffcrtlve 

We also have an extension result 

Lemma 16 If (Y and B are eqmeffectlve sequences of 
operations of X wluch contam the same events, and 4 1s a 
sequence of operations of X such that u$ 1s a well-formed 
schedule of X, then 84 IS a well-formed schedule of X wluch 
1s equieffectlve to cub 

We say that an operation ?r of basic oblect X 1s transparent If for 
any well-formed schedule (YA of X, CYK 1s eqmeffectlve to (Y Thus, 
later operations which do not vIolate well-formedness cannot detect 
whether = happened (Notlee that we only require IF to be 
undetectable m sltuatlons where It can occur, 1 e when CUT 1s a 
schedule ) 

Lemma 17: Let Q be a well-formed schedule of basic 
oblect X, and S a set of accesses to X such that any 
operation of a transactIon m S that occurs m cy 1s 
transparent Let /3 be the subsequence of P obtamed by 
removmg all the operations of accesses m S Then p IS a 
well-formed schedule of X which 1s eqmeffectlve to Q 

4 2 Reordermg and Combmmg Serral Schedules 
In this subsectIon, we describe ways m which serial schedules can 

be modified and combmed to yield other serial schedules These 
lemmas are used m the proof of Lemma 33, m Section 6 3 The 
first generalizes a lemma m [LM], taLmg mto account the special 
properties of transparent operations The second 1s essentrally the 
same as a lemma of [LM] 

Lemma 18 Let (YP~COMMIT(T’) and o’p, be two serial 
schedules and T, T’ and T” three transactIons such that the 
following condltlons hold 

1 T’ 1s a child of T” and T 1s a descendant of T” but 
not of T’, 

3 a@, = vlslble(aBz,T), 

4 (Y = vislble(cYP1,T”) = .‘,‘ble(o@2,T”) and 

5 If any basic obJect has an output operation m j3, 

then all Its operations m 8, are transparent 

Then a@,COMMIT(T’)P2 IS a serial schedule 

Proof Strmghtfolward by mductlon on the length of 
prefixes of (ralCOMMIT(T’)B, IJ 

Lemma 19. Let aAEiORT(T’) and ~$3 be two serial 
schedules, and let T, T’ and T” be transactions, such that 
the followmg condltlons hold 

1 T’ 1s a chdd of T” and T 1s a descendant of T” but 
not of T’, 

2 (YB = vlslble(cY@,T), and 
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3 (Y = vlslble(cr,T”) = vlslble(a@,T”) 

Then aABORT( 1s a serial schedule 

4 3 Semantics of Read Accesses 
Fmallv, we ale ready to state the condltlons to be satisfied by 

lead and write accesses Namely, we reqmre that each basic object 
X satisfy the followmg condltlons 

Semantx Condhons 

1 Every CREATE(T) opelatlon IS transparent 

2 For any al and ‘Y? for which a,CREATE(T)(r2 and 
aln2CREATE(T) are both well-formed schedules of X, 
they are eqmeffectlve schedules 

3 Every REQUEST-COMMIT(T,v) operation, for T a 
1 cad access, 1s transparent 

Condltlon (1) means that whether or not an access was created 1s 
mvlalble to other accesses Condltlon (2) means that when an 
access was created 1s not detectable by later operations Condltlon 
(3) means that later operations cannot detelmme whether or not a 
REQUEST-COMMIT operation for a read access has occurred 
The third condltlon captures the fundamental feature of read 
accesses that allows Moss’ algorithm, as given m the constructlon of 
R/W Lockmg oblects m Sectlon 5 1, to work In contrast, the first 
two condltlons are a convemence, wlthout which the proof of 
correctness m Seetlon 6 3 would be less tidy, as we would have to 
realrange a concu~ent schedule m more ways, to produce a serial 
schedule that looked the same to each transactlon Note that we 
make no assumption about the semantics of REQUEST-COMMIT 
operations for write accesses, and so it 1s legltlmate to deslgnate all 
accesses as wlltes If this 1s done, Moss’ algorithm as given m this 
paper degenerates Into exclusive locking 

An example of a basic object satlsfymg these condltlons would 
ha\e as Its state a set of transactlons, called “pendmg’ and an 
mstance of an abstract data type The input operation 
CREATE(T) would simply add T to pendmg At any time, a 
tlansactlon T m pending could be chosen, and the correspondmg 
function apphed to the mstance of the abstract data type, yleldmg 
return value v, and a possibly altered Instance of the abstract type 
l? would be removed from pending, the new instance would replace 

the old one in the state of the basic oblect, and 
REQUEST-COMMIT(T,v) would be output (The whole sequence 
from choosmg T to the output 1s an atomic step of the basic 
oblect ) 

The followmg lemma combines all the mformatlon m the 
semantic condltlons to give a simple sufficient condltlon for provmg 
that schedules are eqmeffectlve This test IS used throughout this 
paper Given a sequence Q of operations of X, define wnte(a) to be 
the subsequence of Q conslstmg of the REQUEST-COMMIT(T,v) 
events for write accesses T If (Y and p are sequences of operations 
of X and wrlte(ru) = write(b) then we say that o and /3 are 
write-equal This 1s clearly an eqmvalence relation on sequences of 
operations of X 

Lemma 20 Let Q and p be well-formed schedules of X 
wluch are wllte-equal Then a and /3 are equleffectlve 

Proof buppose 4 1s a sequence of operations of X such 
that a& and @#I ale both well-formed We must prove that 
+#J 1s a schedule of X IC and only IF cr# IS a schedule of 
X Consldtr the set A of acctsse3 to X which 1s the umon of 
the stt of wl~te RCCLSSLS for which a REQUEST-COMMIT 
opc~.~t~on occurs 111 a (znd so also m p) and the set of 

accesses which are pendmg 111 both (Y and B Let a’ denote 
the subsequence of Q conslstrng of the events of accesses m 
A Slmllarly let /3’ denote the subsequence of p conslstmg of 
the events of accesses m A Smce (Y’ 1s obtamed from (I by 
removmg all the operations of accesses not m A, and all such 
operations are transparent (by condltlons 1 and 3 ), by 
Lemma 17, we deduce that 0’ 1s a well-formed schedule of X 
equleffectlve to 0 Slmllarly @” IS a well-formed schedule 
equleffectlve to p Also, smce Q’ can be formed from @’ by 
movmg CREATE events, we deduce from condltlon 2, 
Lemma 16 and Lemma 15 that (Y’ and p’ are equleffectlve 
Smce both aq% and & are well-formed, by Lemma 3 any 
event m Q must be either an operation of an access with no 
operations m Q or fi, or else a REQUEST-COMMIT for an 
access that 1s pendmg m both a and j3 In any case, (~‘0 and 
@‘d must be well-formed Therefore cud IS a schedule of X IF 
and only If ~‘4 IS a schedule, which 1s true IP and only II B’Q, 
1s a schedule and so If and only If ,9qi IS a schedule of X 0 

5. R/W Locking Systems 
A R/W Lockmg system of a given system type IS composed of 

transactlons, a generic scheduler, and R/W Lochmg objects The 
non-access transactions are mo d elled by the same automata as m 
the serial system, but the generic scheduler has much more freedom 
m scheduhng transactions than the serial scheduler, and R/W 
Lockmg objects follow the algorithm of PO] m mamtammg lockmg 
and state restoration data that basic oblects do not need 

5 1 R/W Locking obJects 
In this section, we define, for each basic obJect X, a R/W Lockmg 

object M(X) which provides a reslhent lock-managmg variant of 
X It receives operation mvocatlons and responds hke basic object 
X, and also receives mformatlon about the fate of transactions so 
that It can mamtam Its lockmg and state restoratlon data The 
R/W Lockmg object combmes the features of the reslhent object 
and the lock manager of (LM], where, as m many database 
management systems, the recovery and concurrency control are 
performed separately Combmmg these features, as we do here, 
eliminates some redundancy m mamtammg mformatron about the 
fate of transactions 

M(X) has the followmg operations 

Input Operations 
CREATE(T), for T an access to X 

INFORM-COMMIT-AT(X) T # T, 
INFORM~ABORT~AT(X)OF(T), T # T, 

Output Operations 
REQUEST-COMMIT(T,v), for T an access to X 

We give a recursive defmltlon for welt-formedness of schedules of 
oblect M(X) Namely, the empty schedule 1s well-formed Also, lf 
Q = a’* 1s a sequence of operations of oblect X, then (x 1s well- 
formed provided that o’ 1s well-formed and the followmg hold 

. If n 1s CREATE(T), then 
(I) there IS no CREATE(T) event m CY’ 

l If ?F 1s a REQUEST-COMMIT for T, then 
(I) there 1s no REQUEST-COMMIT event for T m (Y’, 
and 
(II) CREATE(T) occurs m a’ 

l If r LS INFORM~COMMlT~AT(X)OF(l), then 
(I) there 1s no lNFORM~ABORT~Al(X)OF(T) event 
m (Y’, and 
(II) rf T 1s an access to X, then a REQUEST-COMMIT 
event for T occurs m a’ 
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. If ?r IS INFOllhf~AB0RT~RT(X)OF(T), then 
(I) there IS no INFORM~COMMIT~AT(X)OF(T) 
eY< nt m a’ 

A state s of M(X) consists of the followmg five components 
s write-lockholders, s read-lockholdels, s cxate-requested, and 
s run, which are sets of tlansactlons, and s map, which 1s a function 
flom write-locbholdels to states of bsslc oblect X We say that a 
transactIon m write-lockholders holds a wrote-lock, and slmllarly 
that a transactlon m read-lockholders holds a read-lock We say 
two locks conflzct of thev are held bv different trAnsactIOn* and nt 

least one IS a wllte-lock The mltlal states of M(X) are those m 
which write-lockholders = {T,} and map(TJ 1s an mltlal state of 
the basic object X, and the other components are empty The 
transItIon relation of M(X) 1s given by all triples (s’,r,s) satlsfymg 
the followmg pre- and postcondltlons, given separately for each r 
As before, any component of s not mentioned m the postcondltlons 
IS the same m s as m s’ 

CREATE(T), T an access to X 
PostcondItion 

s create-requested = s’ create-requested U {T} 

INFORhi~COMMlT~AT(X)OF(T), T # T, 
PostcondItIon 

of T E s’ write-lochholders then 
begm 
s wllte-lochholders = (s’ wllte-lockholders - {T}) U {parent(T)} 
s map(U) = s’ map(U) for U E s write-lochholders - {parent(T)} 
s map(parent(T)) = s’ map(T) 

end 
If T E s’ read-lockholders then 

begm 
s read-lockholders = (s’ read-lockholders - (T)) U {parent(T)} 

end 

NFORAI- 4BORT_AT(X)OF(T), T # T,, 
Postcondltlon 

s write-lochholders = s’ write-lockholders - {descendants(T)} 
s read-loc6holders = s’ read-lockholders - {descendants(T)} 
s map(U) = s’ map(U) for all U E s write-lockholders 

REQUEST-COMMIT(T,v) for T s. write access to X 
Prtcondltlon 

T E s’ create _ 1 equested - s’ run 

s’ \rrlte-lockholders U s’ read-locbholderb E ancestols(T) 
(s’ map(least(s’ write-lockholders)),CREATE(T),t) 

and (t,REQUEST-COMMIT(T,v),t’) 
are m the transitjon relation of basic object X, for some t 

Postcondltlon 
s run = s’ run u {T} 
s write-lochholders = s’ write-lochholders u {T} 
s map(U) = s’ map(U) for all U E s write-lochholders - {T} 
s map(T) = t’ 

REQUEST~COMYMIl(T,v) for T a read access to X 
I’recondltlon 

TE s’ create-requested - s’ run 
s’ write-lockholders C ancestors(T) 
(s’ map(least(s’ write-lockholders)),CREATE(T),t) 

and (t,REQUEST-COIvfMIT(T,v),t’) 
are m the transitIon relation of basic object X, for some t 

Postcondltlon 
srun=s’runU{r} 
s read-lockholders = s’ read-lochholders U {T) 

It 1s clear that a R/W Lockmg object preserves well-formedness 

When an access tianslctlon 1s crcatcd, 11 j> ~ddcd to the set 
create-1 equested A lcsponse, contuumg ILLLIIII value v, to au 
access T can be rctulnrd ouly 11” the access has been requested but 
not yet responded to, and every holder of a confhctmg loch IS an 
ancestor of T, and v IS a value which can be returned by bsslc 
object X m the response to T from some state t, obtamcd by 
performmg CREATE(T) m the state map(least(wllte-lockholders)) 
When a response 1s given, the access transactton 1s added to the set 
run and granted the appropriate lock, and If the transaction 1s a 
write access, the resultmg state 1s stored as map(T) If the 

transactlon IS a read access, no change IS made to the stored state 
of basic object X, 1 e to map 

When the R/W Lochmg ohlect IS Informed of the abort of a 
transactlon, it removes all locks held by descendants of the 
transactlon When It IS mfolmed of a commit, it passes any lochs 
held by the transaction to the parent, and also passes the vcrslon 
stored m map, If there 1s one a 

We mtroduce some terms to describe what M(X) knows about 
commits and aborts of transactions If n 1s 8 sequence of 
operations of M(X), T 1s an access to X, and T’ IS an ancestor of T, 
we say that T rs commrtted at X to T’ m (I, if Q contams a 
subsequence b conslstmg of an INFORM-COMMIT-AT(X 
event for every U which IS an ancestor of T and a proper 
descendant of T’, arranged m ascendmg order (so the 
INFORM-COMMIT for parent(U) 1s preceded by that for U) If 
Q IS a well-formed sequence of operations of M(X) and T 1s an 
access to X and T’ any transactlon, we say that T 1s vretble at X to 
T’ m a of T 1s commltted at X to IcaJT,T’) We denote the 
subsequence of Q conslstmg of operations of M(X) whose 
transactlons are vlslble at X to T by vlslblex(oc,T) It IS clear that 
vlslble.Jru,T) 1s a well-formed sequence of operations of basic oblect 
X We say that a transaction T 1s an orphan at X m (I :f 
INFORM-ABORT-AT(X occms m [Y for some ancestor L 
of T 

Here are some slmple facts about the state of M(X) after a 
schedule (I 

Lemma 21 Let (Y be a schedule of M(X), and s a state of 
M(X) reached by applymg cz to an mltlal state Suppose T E 
s write-lochholders and T’ E s read-lochholders U s write- 
lockholders Then either T IS an ancestor of T’ or else T’ 1s 
an ancestor of T 

Lemma 22 Let cx be a well-formed schedule of M(X), 
and s a state of M(X) reached by applymg (Y to an rnltml 
state Let T be an access to X such that 
REQUEST-COMMIT(T,v) occurs m (Y and T IS not an 
orphan at X m (Y, and let T’ be the highest ancestor of T 
such that T 1s commrtted at X to T’ Then if T IS a write 
access, T’ must be a member of s write-lochholders, while IF 
T 1s a read access, T’ must be a member of s read- 
lockholdels 

Given any well-formed sequence p of opelatlons of M(X) let 
essence@) denote the sequence obtamed from wrlte(,9) by placmg a 
CREATE(U) event lmmedlately preceding 
REQUEST-COMMIT(U,u) event Smce /3 IS well-formed: 
essence(b) consists of a subset of the events of j3 and 1s well-formed 
Clearly @ and essence@) are write-equal 

g1f the reader wishes to compwe our “ersw” of the algorrthm with that ,n (hlo] 
the folhwns may be useful MOSS gtves the name “the associated state9 ror oblect 
X and transactron T to what we call s map(T ) w h ere T’ 16 the least ancestor of T ,n 
8 write-lockholders, and he calls s map(lesst(s wnte lockholders)) ‘the current state’ 
Of x Also, he rem~“ell & read lock when the owner also holds B wrnte lock (th,s IS an 
cptlmlaatlon that does not affect the correctnea proor) MOSS ~SO allows internal 
transactions to dweetly ~ccrS8 ObJects, whereas we follow the Argus system by only 
having leti transactmns perform data BCCSS 
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The followmg lemma shows how the results of operations vrsrble 
at X to T are recorded m the state of M(X) 

Lemma 23 Let (I be a well-formed schedule of M(X) and 
s a state of M(X) reached by applymg cy to an uutml state 
If T IS a transaction which IS not an orphan at X m (Y, then 
/3 = essence(vrsrblex(o,T)) 1s a well-formed schedule of 

X Furthermore, when p IS apphed to an uutlal state of X, It 

can leave X m the state s map(T’) whele T’ 1s the least 
ancestor of T such that T’ E s wllte-lockholders 

Proof By mductlon on the length of LY The basis 1s 
tll%ml, so let Q = (Y’H Let s’ denote a state of M(X) after 
applymg cr’ such that (~‘,a+) 1s a step of M(X) There are 
five cases 

(1) IT IS CREATE(U) for an access U to X 
Strarghtforward 

x( ) 2 TT IS REQUEST-COMMlT(U,v) for U a read access to 

Straightforward 

(3) = 1s REQUEST-COMMlT(U,v) for U a write access to 
X 
We consider separately the cases U = T and U # T 
If U = T then T E s write-lockholders so T’ = T Let T” 
denote the least ancestor of T m s’ write-lockholders Let fl’ 
= esznce(vlslble,(cY’,T)) By the mductlve hypothesis, /3’ IS 
a well-formed schedule of X which can leave X m state 
s’ map(T”) when apphed to an mltlal state Now ,8 = 
/?‘CREATE(U)r, by the defuutlon of M(X), /3’CREATE(U)r 
IS a (well-formed) schedule of X, and apphed to an lmtlal 
state of X It can leave X In the state s map(T) 
If U # T, the proof IS straightforward 

(4) n 1s INFORM -COMMIT -AT(X 
The dlscusslon IS dlvlded Into subcsses, dependmg on the 
relation of T and U In the transactlon tree 

(da) U IS an ancestor of T 
Now vrsrbleX(a,T) = vtsrbleJo’,T), so /9 = 

eSSence(vlslbleX(Q’,T)) If U 1s the least ancestor of T m 
s’ write-lockholders then by the defimtlon of M(X), T’ must 
be parent(U) and s map(T’) = s’ map(U), while If U 1s not 
the least ancestor of T m s’ write-lochholders then T’ must 
be the least ancestor of T m s’ write-lockholders and 
s map(T’) = s’ map(T’) IIJ either case, s map(T’) 1s 
s’ map(T”), where T” 1s the least ancestor of T m 8’ write- 
lockholders The desrred result follows rmmedlately from the 
mductrve hypothesis 

(4b) U IS not an ancestor of T, but parent(U) 1s an ancestor 
of T 
Hele we give separate arguments, dependmg on whether U IS 
m s’wrlte-lockholders or not If U E s’wrlte-lockholders 
then Lemma 21 rmpbes that no ancestor of T that IS a strict 
descendant of parent(U) can be m s’ write-lockholders The 
defmltlon of M(X) therefore shows that T’ = parent(U) and 
that s map(T’) = s’ map(U) Also we note that valble,Ja’,U) 
IS write-equal to vtsrblex(a,T), smce any write access that IS 
commltted at X to an ancestor of T m a’ must be committed 
at X to parent(U) m (I’ and thus vlslble at X to U in (I 
(OtherwIse, by Lemma 22, some ancestor of T that IS a 
proper descendant of parent(U) would be m s’wrrte- 
lochholdels) ) Thus, p = essencc(vlslbleX(a,T)) = 
essence(vlslblex(cr’,U)) By the mductlve hypothesis, B IS a 

well-formed schedule of X which, when applied b an lnltlal 
state of X, can leave X m state s’ map(U) = s map(T’) 

On the other hand, of U $Z s’ write-locl\holders then s write- 
lockholders = s’ write-lockholders and s map = s’ map 
Also, vlslbleJa’,T) 1s write-equal to vislbleX(a,T) This 1s 
true because any operation vlslble at X to T in Q 1s either 
vlslble at X to T m (Y’ 01 else LS an operation of an access 

that IS committed at X to U m CI’, and any write access that 
IS committed at X to U m Q’ must be committed at X to 
parent(U) (and hence vunble at X to T) m Q’, by Lemma 22 
and the assumptlrn that U p s’ write-lockholders Thus, @ 
= essence(vlable,(cy,T)) = essence(v1slbleJ(Y’,T)) By the 
mductlve hypothesis, @ 1s a well-formed schedule of X \nhrch, 
when apphed to an m&al state of X, can leave X m state 
s’ map(T’) = s map(T’) 

(4~) parent(U) IS not an ancestor of T 
Then vlslble&,T) = vlslbleJcu’,T), so p = 
essence(vlslbleJa’,T) Also T’ IS the least ancestor of T m 
8’ write-lockholders and s’ map(T’) = s map(T’) The 
desired result follows lmmedlately from the mductlve 
hypothesis 

(5) r IS INFORM-ABORT-AT(X 
Stralghtforward •I 

A consequence of this 1s the followmg lemma, which explams a 
iense m which M(X) IS a reslhent variant of X 

Lemma 24 Let a be a well-formed schedule of M(X) and 
T a transactlon which 1s not an orphan at X m [I Then 
vlslble.Ja,T) 1s a well-formed schedule of X 

Proof We prove that vlslblel((cr,T) 1s a schedule of X by 
mductlon on the prefixes of vlslble,Jcr,T) The base case is 
trivial So consider an event r m vlslbleJa,T), and the 
prefix j3 of vlable.Ja,T) endmg a&h r Let /3 = /?‘r By the 
rnductlve hypothesis p IS a well-formed schedule of X We 
must show that ?r IS enabled ss an operation of X after B’ 

If n 1s a CREATE event this follows from the Input 

Condltlon on all l/O automata, so suppose that r 1s 
REQUEST-COMMlT(U,u) Consider vlslblex(7’,U) where 7 
= 7’r 1s the prefix of CI ending with f Let s’ denote the 
state of M(X) lmmedlately before s occurs, and let U’ denote 
the least ancestor of U m s’ write-lockholders By Lemma 23, 
j3 = essence(vlsrbleX(7’,U)) 1s a well-formed schedule of X, 
which can leave X In state s’ map(U’) when apphed to an 
mitial state By the precondrtrons for the operatron rr of 
M(X), PCREATE(U)n 1s a schedule of X (Of course It 1s 
well-formed) We now show that /3’ and @CREATE(U) are 
equleffictive Smce each IS a schedule of X, it suffices by 
Lemma 20 to show that they are write-equal Now 
@CREATE(U) and vlslble.J7’,U) are write-equal, so we need 
only show that vlslbleX(7’,U) and @’ are write-equal Since U 
IS vlslble at X to T m a, any access visible at X to U m 7’ 
must be vlslble at X to T m Q, so the events m vlslble,J-(‘,U) 
are a subset of the events m fi’ Now, by the precondltlons 
for A as an operation of M(X) every element of s’ nrlte- 
lockholders 1s an ancestor of U so If 
REQUEST-COMMlT(V,v) occurs m 8’ for a write access V 
to X, then Lemma 22 rmphes that V must be committed at 
X to lca(V,U) m 7’ (smce V 1s not an orphan at X m 7’, as It 
IS vlslble at X to T m a) Thus V 1s vlslble at X to U m 7’, 
so REQUEST-COMMlT(V,v) occurs m vlsrbleJ7’JJ) Also 
all REQUEST-COMMIT events for write accesses m 
vlableX(7’,U) occur m the same order as m (I, and slmdarly 
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5 2 Generic Scheduler 
The genellc scheduler 1s a very nondetermmlstlc automaton It 

passes requests for the creation of sub-transactlons or accesses to 
the appropllate reclplent, passes responses back to the caller and 
Informs oblects of the fate of transactions, but It may delay such 
messages for arbitrary lengths of time or umlaterally decide TV 
abort a subtransactlon which has been created MOSS PO] devotes 
conslderable effort to descrlbmg a distributed impiementatlon of 
the scheduler that copes with commumcatlon failures and loss of 
system mfolmatlon due to crashes, yet stdl commits a 
subtransactIon whenever possible These concerns are orthogonal ~JJ 
the correctness of the data management algorithms and we do not 
address them here 9 

The generic scheduler has mne operations 

Input Operations 
REQUEST _ CREATE(T) 
REQUEST-COMMlT(T,v) 

Output Operations 
CREATE(T) 
COMMIT(T), T # To 
&BORT(T), T # T, 
REPORT-COmlT(T,v), T # T, 
REPORT-ABORT(T), T # T, 
lhFORhl~COMMIT~AT(X)OF(T), T # T, 

IhTORM-ABORT-AT(X) T # T, 

These play the same roles as m the serial scheduler, except for the 
1~FORM~COMMlT and INFORM-ABORT operations which 
pass mformatlon about the fate of transactlons to the R/W 
Locbmg oblects 

Each state s of the generic scheduler consists of SIX sets 
s cleate-requested, s created, s commit- requested, s committed, 
3 aLol ted and s returned The set s commit-requested 1s a set of 
(tlansactlon,value) palm, and the others are sets of transactlons 
111 are empty m the mltlal state except for create-requested, 
1, hlch IS {T,,} 

1 he operations are defmed by pre- and postcondltlons as follows 

REQUEST _ CREATE(T) 
Postcondltlon 

s create-requested = s’ create-requested u {T} 

REQUEST-COMMlT(T,v) 
Postcondrtlon 

s commit-requested = s’ commit- requested U {(T,v)} 

CREATE(T), T a transactlon 
PI econdltlon 

T E s’ create-requested - s’ created 

‘The genme scheduler IS very slmdar to the weak concurrent Controller Of ILMI 
,t d,lFers shghtly ,n the names or Its operattions, I” the separation or return and 
repo,t operatms, and III the eoadbons under whxh CREATE weratlons 8~ 

permltted to occur 

(T,~) E s1 comnut-requested for some v 
T e S’ returned 
children(T) f-j 5’ create requested c_ s’ returned 

Postcondltlon 
s committed = s’ committed u {T} 
s returned = s’ returned u {T} 

ABORT(T), T # To 
Precondltlon 

T E s’ create-requested - s’ returned 
Postcondltlon 

s abol ted = s’ aborted IJ {T} 
s returned = s’ returned u {T} 

REPORT-COMMlT(T,v), T # T, 
Precondltlon 

T E s’ commltted 
(T,v) E s’ commit-requested 

REPORT-ABORT(T), T # To 
Precondltlon 

T E s’ aborted 

lNFORM~COMMlT~AT(X)OF(T), T # T, 
Precondltlon 

T E s’ commltted 

INFORMJEiORT-AT(X) T # T, 
Precondltlon 

T E s’ aborted 

Lemma 25 Let cy be a schedule of the genergc scheduler, 
and let s be a state which can result from applymg Q to the 
nutial state s,, Then the followmg condltlons are true 

T IS m s create-requested exactly If (Y contains a 
REQUEST-CREATE(T) event 

T 1s m s created exactly If (Y contains a CREATE(T) 
event 

(T,v) IS m s commit-requested exactly IF (I contams 
a REQUEST-COMMlT(T,v) event 

T 1s m s comnntted exactly if (Y contams a 
COMMIT(T) event 

T 1s In s aborted exactly lf (Y contams an ABORT(T) 
event 

s returned = s commltted U s aborted 

s commltted n s aborted = 0 

5 3 R/W Lockmg Systems 
The composltlon of transactlons with R/W Locbmg objects and 

the generic scheduler IS called a R/W LocLang system, and Its 
operations and schedules are called concurretlt operattons and 
concurrent echedules, respectively lo A sequence CY of concurrent 
operations IS said to be well-formed provided that Its proJectlon at 
every transactlon and R/W Lockmg oblect 1s well-formed 

“Note that this wge dIMem from that III [LM] 
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Lemma 26. If cr 1s a concurrent schedule, then a IS well- 
formed 

The followmg lemma 1s straightforward 

Lemma 27 Let (Y be a concurrent schedule If T IS a 
t!ansactlon that IS not an orphan m o and T’ 1s vmble to T 
m (Y, then T’ 1s not an orphan m CY 

Note that If LY 1s a concurrent schedule then any 
INFORM-COMMIT-AT(X IS pleceded by a COMMIT(T) 
event (by the scheduler precondrtlons) and slmdarly any 
INFORM~ABORT~AT(X)OF(T) IS preceded by ABORT(T) 
Thus, If T 1s vlslble at X to T’ m a then T 1s vmble to T’ m (Y, 
and If T 1s an orphan at X m a then T 1s an orphan m (I Thus, 
v~s~ble~(c~,T) 1s a subsequence of vlslble(a,T)IX when Q 1s a 
concm 1 ent schedule 

A key property of R/W Lockmg systems IS given next 
Lemma 28 Let a be a concurrent schedule, T a 

trnnsactlon that IS not an orphan m (Y and M(X) a R/W 
Lockmg oblect Then vlslble(a,T)jX 1s a schedule of basic 
object X 

Proof Let S denote the set of transacttons with COMMIT 
events m (I Construct a sequence @ by appendmg to a a 
sequence of lNFORM~COMMIT~AT(X)OF(U) events, 
uhere the U give a post-order traversal of S Since (I 
contams a COMMIT(U) event for each U m S, /3 1s a 
concullent schedule, and by Lemma 24 vlslblex(P,T) IS a 
schedule of X Smce the INFORM~COMMIT~AT(X)OF(U) 
events at the end of ,D are m ascendmg order, and occur for 
every U that 1s vlslble to T m p, vlslble&S,T) = 
vlslble(P,T)IX Also vlslble(@,T) = vlslble(cY,T) smce 
INFORM-COMMIT operations have no mfluence on what 
tlsnsactlons are vmble to T Thus vmble(a,T)IX 1s a 
schedule of X q 

6. The Proof of Serial Correctness 
We prove that a R/W Locking system generates schedules that 

are sellally correct for each non-orphan transaction T, by takmg a 
concurrent schedule a, extractmg the subsequence vlslble(a,T) of 
ebenta whose effects might have been detected by T, and then 
resrrangmg the operations m this to give a serial schedule fi The 
learlsngements permltted are those that transform one sequence 
mto a “wrlte-equlvalent” one 

6 1 Write-Equivalence 
Two sequences of serial operatrons, (Y and /3, are wtrte-equzwaletat 

If 

1 they contam the same events, 

3 for each transactlon U, alU = #J, and 

3 for each basic oblect X, crlX and j3lX are 
write-equal sequences of operations of X 

Thus, the rearrangements allowed m&de mterchangmg the order 
of two events of dlffelent tlansactlons or oblects, and also 

mterchangmg the order of events of a smgle oblect, provided that 
they ale not both REQUEST-COMMITS for write accesses By 
the sernantlc condrtlons of Sectlon 4 3, such rearrangements at 
objects are such that the difference between the orders IS not 
detectable by any later operations of that oblect This property 1~ 

expressed by the followmg lemma 

Lemma 29 If a and /3 are wrne equivalent sequences, and 
a/X and p/X are well formed schedules of X, then for each basic 
object X, alX and /31X are eqmeffectlve sequences 

Write-eqmvdence 1s obviously an eqmvalence lelatlon We have 
some strrughtforward results 

Lemma 30 If c and /3 are well-formed sequences of operations 
which are write-equivalent, then /I# ts wrote-equtvalent to a+ 

Lemma 31 If 01 and fi are sellal schedules wluch are 
write-eqmvalent and ad 1s a sells1 schedule then /3Q 1s a 
serml schedule 

6 2 A Techmcal Lemma 
In this subsectlon, we prove an extension of Lemma 14, fol use m 

the proof of Lemma 33, m Sectlon (I 3 
Lemma 32 Let a be a concurrent schedule, and let T and 

T’ be two non-orphan transactlons with T’ vlslble to T m Q 
Let /3 and p, be serial schedules, such that B 1s write- 

equivalent to vlslble(a,T) and p, IS write-eqmvalent to 
vlslble(a,T’) Then -y = p,(j3 - a,) 1s a serial schedule which 
1s write-eqmvalent to vlable(a,T) 

Proof First we prove that p’ = vlslble(P,T’) 1s wrne-equivalent 
to PI By Lemma 10 and Lemma 8, /3’ and /3, contam the same 
events For any basic oblect X, wnte@“lX) = wrlte(/3,IX) smce 
REQUEST-COMMIT events for write accesses to X occur In 
/Y m the same order as they occur m /3, which 1s the same as the 
order they occur m (I, which 1s the same as the order they occur 
m /?, For any transactlon U which IS vlslble to T’m a (and hence 
In /3), /3’lU = fl[U = olU, by Lemma 9 and write-equivalence, 
and slmllarly /3,lU = a/U On the other hand, If U LS not vlslble 
to T’ m (I, /YlU and /3,lU are both empty For later use ue note 
that p 1s a serial schedule, by Lemma 13, and & IS a serial schedule, 
so /YlX and /3,/X are schedules of X 

By Lemma 14, @‘(a - p’) 1s a serial schedule Smce B - 8’ 
= j3 - jj’, (BS @’ and j3, contam the same events) we deduce 

from Lemma 31 and the fact that p’ and 8, are urite- 
eqmvalent, that 7 1s a serial schedule 

Next, we prove that wllte(vlslble(a,T’)IX) IS a prefix of 
write(vlslbIe(P,T)IX) for any object X So suppose that 
vlslble(a,T) contams a REQUEST-COh&lIT(U,u) event for 
a write access U to X which 1.3 not m vlslble(cr,T’) Let 
REQUEST-COh@iIT(U’,u’) be a subsequent event, where 
U’ IS a write access to X which IS vlslble to T m (Y We must 
show that U’ 1s not vlslble to T’ m (1 Consider the prefix 6 
of n which precedes the REQUEST-COMMIT(U’,u’), and 
let s denote the state of the R/W Lockmg object M(X) after 
6 If we denote by U” the highest ancestor of U to which U 
has commltted m c~; then U” 1s a proper descendant of 
Ica(U,T’), smce U 1s not visible to T’ m Q Then the highest 
ancestor of U to which U IS commltted at X m 6 must be a 
descendant of U”, and so by Lemma 22 some descendant of 
U” IS m s write-lockholders By the precondltlons for the 
operation REQUEST-COMMIT(U’,u’) of M(X), U’ must be 
a descendant of U”, and therefore U’ IS not commltted m (x 
to Ica(U’,T’) = lca(U”,T’) = lca(U,T’) Therefoole U’ 1s not 
vtstble to T’ m Q, estabhshmg that wl~te(vlalble(c~,T’)IX) IS a 
prefix of wrlte(vlslble(~,T)IX) 

Now we show that +y IS write-eqmvalent to fl They cleally 
contain the same events, smce every event of p, occurs m B 
(because any operation vlslble to T’ m (Y 1s also vlslble to T 
m (1 by Lemma 7) If P 1s a basic object, wl&(j311P) = 
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,“I ,ll(vlalble(cu, J ‘)il’) kJ 5 ,” tT1x 01 n IIt+ lall)le(a,T)IP) = 

,c,,te(#q, so thJt WI ILC(-#) = (,llte(p,lp))(wrlte(plP) - 

wte(PJP)) = w11te(PII’) II P 1s a tlansactmn that 1s 

v,a,ble to T’ ,,, a thin &IF’ = VI~IIJ~L(LY,T’)]P = a\P = 

v~a~blr(n,T)(l’ = B]P, so 7]P = (p,]l’)(P]P - a,]P) = a]P 

On the other hand, of P 1s a tlansxt,on not vlslble to T’ m 
CY then &]P IS empty, so tl~v~nlly 7]P = B]P 

Smce 7 Is w*rte-equivalent to @, It 1s wllte-equivalent to 
v~s~blt((~,T) o 

6 3 The Main Results 
We are now ready to prove that R/W Lockmg systems are 

sellally correct for every transactlon that IS not an orphan We 
actually state a stronger property, which carries useful mvarmnts 
through the mductlon 

Lemma 33 Let (Y be a concurrent schedule, and T any 
transactlon which IS not an orphan m (Y Then there 1s a 
serial schedule fi whxh 1s write-eqmvafent to vlslble(a,T) 

Proof The proof follows the outhnes of that of the mam 
theorem of [LM] We proceed by mductlon on the length of 
LY As before, let a = Q’A We must show that there IS a 
serml schedule /3 which 1s write-eqmvalent to vunble(ru,T) 
We can assume that transactIon IS vmble to T m Q 
There are seven cases, and m each we relate vlslble(a,T) to 
vmble(cY’,U) for one or more transactlons U, and build B 
from serial schedules write-eqmvalent to vlsxble(a’,U) 

(I) 7~ 1s an output operation of a non-access transactton T’ 
Smce T IS not an orphan m a’, the mductlve hypothesis 
lmphes the ellstenee of a serial schedule p’ which IS write- 
equrvalent to vlslble(cY’,T) Let p = fi’r We ~111 show that 
fl IS a serial schedule that 1s write-eqmvalent to vlslble(cY,T) 
By Lemma 1, to check that p IS a serial schedule we need 
only check that P’nlT’ IS a schedule of T’ However B’]T’ = 
vlslble(a’,T)]T’ = (Y’]T’ by Lemma 9 (smce T’ IS vmble to 
T) Thus /?x]T’ = (Y’RJT’ = rr]T’ Hhlch IS a schedule of T’ 
Thus, p IS a se, Ia1 schedule 

BI Lemma 11, vlslble(a,T) = vlslble(cu’,T)n and smce ,i3’ IS 
write-equl\ alent to vlslble(a’,T), we may apply Lemma 30 to 
deduce that p IS write-equivalent to vlslble(cu,T) 

(2) T IS an output operation of an access T’ to a R/W 
Lochmg oblect hi(X) 
Defme p’ and B as m the previous case As before, to check 
that #J IS a serial schedule, we need only check that /?‘n]X IS a 
schedule of X However, Lemma 29 lmphes that @‘IX 1s 
equleffectlve to and contains the same events as 
x lslble(a’,T)]X Now vlslble(cr’,T)x]X = vmble(cY’a,T)]X = 
vlslble(a,T)]X wh~h IS a schedule of X by Lemma 28 Thus 
by Lemma 16, p’n]X 1s a schedule of X Thus, @ IS a serial 
schedule 

Smce vlslble(cr,T) = vlslble(cu’,T)x, /J = p)z, and 8’ IS 
wllte-eqmvalent to vmble(cr’,T), we may apply Lemma 30 to 
deduce that 0 IS writs-equivalent to vlslble(a,T) 

(3) A IS a CREATE(T’) operation 
Then transactIon = T’, and so T’ 1s vmble to T m a By 
well-fool medness and the scheduler precondltlons, any 
opelatlon of a proper descendant of T’ must be preceded by 
a REQUEST-CREATE for a child of T’, and by well- 
foolmedness any operation of T’ must follow CREATE(T’) 
Thus, r 1s the first event whose transactlon IS a descendant 
of T’, so T’ = T Now, parent(T) 1s not an orphan m (Y, and 

hence 111 (Y’, so the mductlvL hypothrsls ~mphrs the exlsteuce 
of a serial schedule fl which IS write-equivalent to 
vlsrble(a’,parent(l)) Let p = ,8’r We ~111 show that ,9 IS a 
serial schedule that 1s write-eqmvalent to vlslble(a,T) 

To show that j3 1s a sellal schedule, we need only chc~j\ 
that @‘lr 1s a schedule of the SCII+I sc1~eduh.I Let s’ bc the 
state of the serml schedulel after ,8’, and s” the state of the 
generic scheduler after (1’ Smce IT 1s enabled m s”, Lemmas 
25 and 4 and the precondltlons imply that IT IS enabled m s’, 
hence j3’n IS a schedule of the serial scheduler, and p 1s serial 
schedule 

Smce vmble(a,T) = vmble(a’,parent(T))n, @ = @‘r and p’ 
1s write-eqmvalent to vlslble(cY’,parent(T)), we may deduce 
from Lemma 30 that B IS write-eqmvalent to vlslble(cY,T) 

(4) k IS a COMMIT(T’) operation 
Then T” = parent 1s vlslble to T m a, smce 
transactron = T” Then COMMIT(T’) does not occur m 
n’, and so T must be a descendant of T” (smce T” 1s vlslble 
to T) Also, by Lemma 27, T” 1s not an orphan m (Y and so 
also T” IS not an orphan m (Y’ From this, we deduce that 
T’ 1s not an orphan m Q’ We dlstmgmsh two cases, 
dependmg on whether T IS a descendant of T’ or not 

If T IS a descendant of T’, the argument IS strslghtforward 
If T IS not a descendant of T’, the mductlve hypothesis 
yields three serial schedules, B’, B” and 7, which are write- 
eqmvalent to vlable(a’,T’), vlslble(a’,T) and vlslble(cu’,T”) 
respectively Let 0, = @’ - 7 and ,9, = @” - 7 Let fi = 

-la,@* We show that fl 1s a se& schedule that 1s write- 
eqmvalent to vlable(a,T) That B IS serial follows from 
Lemma 18, provided we can show that 

(4 a) 7aln IS a serial schedule, 

(4 b) 7pz IS a serial schedule, 

(4 C) 7fi, f vlslble(7@l,T’), 

(4 d)rB, = vlslble(-r&T), 

(4 e) 7 = vmble(7P1,T”) = vmble(7Pz,T”) and 

(4 f) IF any basic object X has an output operation m @? 
then every operation m /?,]X IS transparent 

(4 a) By Lemma 32, 7a, 1s a serml schedule (and 1s wllte- 
eqmvalent to vmble(cY’,T’)) We must therefore show that A 
IS enabled at the serial scheduler after 7@, The serial 
scheduler precondltlons and Lemma 4 show that we must 
prove that REQUEST-COMMIT(T’,v) occurs m 7fl, for 
some v, that no return for T’ occurs m 7p,, and that for 
every chdd U of T’ with a REQUEST-CREATE(U) m 7p, 
there 1s a return event m 7@, Smce A IS enabled m the 
generx scheduler after OI’, each of these IS true with a’ 
replacing 7@, Smce all these operations are vlslble to T’ m 
a’, all these statements are also true of vlslble(cr’,T’) and 
thus of the write-equivalent sequence 7@,, as required Thus 
7flln IS a serial schedule We also note that Lemma 30 proves 
that -7Lp ‘S write-equivalent to vlslble(a,T’) = 

vlslble(a’,T’)n 

(4 b) By Lemma 32, 7pz 1s serial (and write-equivalent to 
vlslble(cr’,T)) 

109 

. 



Parts (4 c)-(4 e) are rmmedlate 

(4 f) We prove that If a basic object X has an output 
Opel atmn I” f3? then no event m fi,lX 1s a 
REQUEST-COMMIT for a write access Suppose this were 
false Then /?, contams a REQUEST-COMMIT(V1,vI) for 

V, a wrrlte access to X, and 0, contams a 
REQUEST-COhJMIT(V,,v,) for V, an access to X Smce 
V, IS vlslble m CI to T’ but not to T”, V, must be a 
descendant of T’, and not an orphan m Q, and V, must not 
be commltted at X to T” m (Y By Lemma 22, some 
descendant of T’ 1s m s write-lockholders, where s 1s a state 
of M(X) after applymg a Slmllarly Vz must be a 
descendant of some slblmg U of T’ but not commltted at X 
to T” m n, so by Lemma 22, some descendant of U 1s m 
s readlockholders U s write-lo&holders But these two 
statements about lo&holders contradict Lemma 21 

Now we must prove that p 1s write-eqmvalent to 
vlslble(o,T) Smce any transactlon vlslble to T m (I 1s either 
vlslble to T m CI’ or vmble to T’ m (I’ and If both then It IS 
\lslble to T” m a’, It 1s clear that @ and vlslble(o,T) contam 
the same events If P IS a basic obJect, either @, contams no 

output operations of P or else no operation in pllP Is a 
REQUEST-COMMIT for a write access In the first case 
I\rlte(pLiP) 1s empty, and smce wrtte(qB1frIP) = 
arlte(vlslble(a’,T’)IP), we have write(@IP) = 
wrlte(vlslble(cr,T)IP) In the second case wrlte(@l)P) IS 

empty, and smce wrlte($.JP) = wnte(vlslble(cx’,T)IP), we 
agam have wrlte(plP) = wnte(vlslble(o,T)IP) If P 1s a non- 
access transactlon which IS not vlslble to T m a, then no 
operations occur at P m either @ or vmble(cr,T) For P any 
non-access transactlon which 1s vlslble to T m a, either P IS 
vlslble to T m a’ or P LS vlslble to T’ m Q’ In the first case, 
p,JP 1s empty so PIP = 7/3,r(P = vlslble(cr,T’)IP as we saw 
above that -&llr and vlslble(cy,T’) are write-eqmvalent, and 
\lslble(cx,T’)IP = aJP = vlslble(a,T)IP Slmllarly m the 
srcond case PInIP 1s empty and PIP = ~,9~lP = 

\Islble(cu’,T)IP = vlslble(cY,T)IP In every case, we have 
checked that PIP = vlslble(cY,T)IP Thus B and vlslble(cu,T) 
ai e write-equivalent 

(5) r IS an ABORT(T’) operation 
Thtn T” = parent IS vmble to T m LY, smce A has 
tl ansactlon T” Then COhJMIT(T”) does not occur m Q’ 
and so T must be a descendant of T” (since T” IS vrslble to 
T) Also by Lemma 27, T” 1s not an orphan m (Y and so 
also T” 1s not an orphan m a’ Smce T 1s not an orphan m 
Q, T 1s not a descendant of T’ Thus the mductlve 
hypothesis yields two serial schedules, p and q, which are 
write-equivalent to vlslbIe(a’,T) and vxuble(a’,T”) 
respectively Let p, = /3’ - 7 Let B = m+, We show that 
p 1s a serial schedule that 1s write-equivalent to vlslble(a,T) 
That B IS serial follows from Lemma 19, provided we can 
show that 

(5 a) 7n IS a serial schedule, 

(5 b)qb, 1s a sellal s.hedule, 

(5 c) rP, = vlslble(rPl,T), 

(5 d)r = vlslble(-f,T”) = vlslble(+l,T”) 

(5 a) Smce 7 1s a serld schedule, we must show that * IS 
enabled at the serml scheduler after 7 The serial scheduler 

. 
precondltlons and Lemma 4 show that we must Prove that 
REQUEST CREATE(T’) occurs m 7, and that no 
CREATE@) 01 ABORT(T’) occurs m 7 Since x IS enabled 
in the generic scheduler after a’, (Y’ contams a 
REQUEST CREATE(T’) event, and since this operation 
has transactIon T”, REQUEST-CREATE(T’) IS 111 
vlslbIe(m’,T”) and hence m 7 Thus, T’ 1s not commlttcd m 
o’, so that any CREATE(T’) event m o’ 1s not vlslble to T”, 
and SO does not occm m vlslble(cr’,T”) and hence does not 
occur m 7 There IS no ABORT(T’) event m (Y’, so 
ABORT(T’) does not occur m 7 Thus 7m 1s a sellal 
schedule We rlso note that Lemma 30 proves that yrr IS 
write-equivalent to vlslble(ru,T’) = vlslble(cY’,T’)ri, smce 7 
and vmble(a’,T’) are write-equivalent 

(5 b) By Lemma 32, +‘, IS a sellal schedule (and It 1s write- 
eqmvalent to vlslble(cr’,T)) 

Parts (5 c) and (5 d) are lmmedlate 

Now we must prove that j3 D write-equivalent to 
vlable(cr,T) Smce any transactlon vnxble to T m a 1s 
vmble to T m (Y’, and either vlslble to T” m (Y’ or not, It IS 
clear that p and vmble(a,T) contam the same events If P IS 
a basic oblect, smce wrlte(y/31jP) = wrlte(vlslble(cr’,T’)IP) 
we have wllte(/3JP) = wnte(vmble(cx,T)IP) For P any non- 
access transactlon, PIP = 7j3,lP = vlslbIe(a’,T)IP = 
vlslble(a,T)IP, smce rrlP IS empty and 78, and \lslble(cr’,T) 
are write-eqmvalent This completes the demonstration that 
fl and vlslble(cY,T) are write-equivalent 

(6) 1~ 1s REPORT-COMMIT(T’,v) 
Smce T 1s not an orphan m Q’ there IS a serial schedule p’ 
which 1s write-equivalent to vlslble(u’,T) Put /3 = fi’f By 
the precondltlons of the generic scheduler and Lemma 25, 
REQUEST-COhfMIT(T’,v) and COMMIT(T’,v) occur m 
(Y’ Smce the report 1s m vlable(cY’,T), parent IS vmble 
to T m (I’, thus, COMhlIT(T’,v), and hence 
REQUEST-COMMIT(T’,v), are m vlslble(a’,T) So 

COMhJIT(T’,v) and REQUEST-COMMIT(T’,,) occur m 
,Q’ The serial scheduler precondltlons and Lemma 4 Imply 
that TV 1s enabled after @’ at the serial scheduler, and so by 
Lemma 1 and Lemma 30, p 1s a serial schedule that 1s wllte- 
equivalent to vlslble(cr,T) = vlslble(cy’,T)n 

(7) x IS REPORT-ABORT(T’) 
This 1s Just hhe case (G) 

Thus m every case we have produced a serial schedule p 
that IS write-equwalent to vunbIe(a,T) q 

Theorem 34. Every concurrent schedule 1s serially correct 
for every non-orphan non-access transactlon 

Proof Let T be a transaction that 1s not an orphan m the 
concurrent schedule a By Lemma 33 there 1s a serial 
schedule p that 1s write-equivalent to vmble(a,T) Then nlT 
= vlable(cY,T)IT by Lemma 9, and by write-equivalence, 
vlslble(cr,T)IT = ,8IT q 

Corollary 36 Every concurrent schedule IS sellally 
correct for T, 
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