Nested Transactions and Read/Write Locking

(Preliminary Report)

Alan Fekete!
Nancy Lynch2
Michael Merntt?
William Wethl?

1. Introduction

A major part of database 1eseaich over several years has been the
design and analysis of algonithms to maintain consistent data in the
tace of 1nteileaved accesses, aboits of operations, replication of
mformation and failures of system components The most popular
and simple protocol 1s two phase locking with separate read and
wiite locks, other methods include arbitrary conflict-based locking,
timestamp-based techniques, and locking that uses special structure
of the data (e g a hierarchical ariangement) [Gr,T,KS,Ko,We] A
poweiful theory has been developed to prove the correctness of
these algorithms, based on the i1dea that a protocol 1s correct if 1t
ensures that all executions are equivalent to serial executions
[EGLT,P,BG] This theory proves seriahzability by showing that a
precedence graph contains no cycles

Recently, some 1deas 1n database system design and more general
distributed system design have led several research groups to study
the possibility of giving more stiucture to the transactions that are
the basic umt of atomicity When a transaction can contain
concurient operations that are to be performed atomically, or
operations which can be aboited independently, we say that the
opuations form subtransactions of the ongmal transaction Thus
we consider a systcm wheie tiansactions can be nested Tlis 1dea
was fust suggested by Davies under the name spheres of control
[D] A pimitive example of this concept 1s implemented 1n System
R, whete a recovery block can be aborted and the transaction
restarted at the last savepoint In general distributed systems litke
Argus [LiS,LHILSW] or Clouds [A], the basic services are often

]Department of Mathematics, Harvard Umiversity Cambridge, Mass

2Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge Mass

2'%T&.T Bell Laboratories, Murray Hill, New Jersey

4Labor4tory for Computer Science Massachusetts Institute of Technology,
Cambridge Mass

The work of the second author was supported in part by the Office of Naval
Research under Contract N00O14 85 KK 0168, by the Office of Army Research under
contract DAAG29 84 K 0058, by the National Science Foundation under Grants
MCS 8306854, DCR 83-02301, and CCR 8611442, and by the Defense Advanced
Research Projects Agency (DARPA) under Contract N0OOO14 83-IK 0125 The work
of the fourth author was supported 1n part by the National Science Foundation
under Grant DCR-8510014, and by the Defense Advanced Research Projects Agency
(DARPA) under Contract N00014 83-K 0125

Permussion to copy without fee all or part of this matenal 1s granted provided that
the copies are not made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date appear, and notice 15
given that copying 1s by permission of the Association for Computing Machinery
To copy otherwise, or to republish, requires a fee and / or specific permussion

© 1987 ACM 0-89791-223~-3/87/0003 /0097 75¢

97

provided by Remote Piocedure Calls which, at their best (“Only
Once" semantics), are atomic Since providing a seirvice will often
require using other services, the transactions that implcment
services ought to be nested

The implementation of a nested transaction system rcquitcs

extending the algonthms that have previously been considered for
concurrency control, recovery and replication The work of Reed
[R] extended multi-version timestamp concuriency contiol to
provide nested transaction data management Moss [Mo] extended
two phase loching with separate 1ead and wnite locks to handle
nesting, and this algorithin is the basis of data management 1n the
Argus system implemented at MIT

This paper 1s part of a major research effort to offer clean,
readable deseriptions of algorithms for managing data in a nested
transaction system, together with rigorous proofs of the correctness
of these algoitthms Other paits of the project include studying
rephicated data management algorithms, orphan elimiation
algorthms and general atomicity of abstract objects All this work
1s based on a simple model of concurrent systems using /O
automata and an operational style of reasonmng about then
schedules The first fruits of this program are detaied n [LM]
which proves the correctness of exclusive locking, and which
provides a basic framework for presenting the 1deas of this paper

This paper’s contribution 1s thieefold First, 1t proves for the first
time the correctness of Moss’ algorithm, an algorithm which has
been used in practice Our discussion covers both concurrency
control and recovery from aborts However, we do not consider all
the failure cases that the real system must deal with, as our model
does not yet mclude crashes which compromise the system state
Second, we provide technical defimtions (for equieffectiveness and
transparency) which seem to captule exactly those properties of
read operations that the algonithm depends on Third, this pape:
provides another example of the power and value of the basic
model of serial correctness first proposed mn [LM], and of the
operational style of reasonmng with 1/O automata

In this paper we first 1eview the I/O automaton model of

computation This 1s verv similar to models ke Communicating
Sequential Processes [Ho|, in that automata interact by
synchromzing on shared operations The main difference from other
models 1s that we distinguish the mput and output operations of
each automaton Any operation shared between components of a
system can be an output of at most one component, and that
component s wn control of the operation, because no automaton 1s
allowed to refuse to execute an input Though automata have states
as well as operations, we concentiate our analysis on the sequence
of opeirations peiformed (the schedule of the system) - ths
operational mode of reasoning 1s quite different ftom assertional
invariant methods used elsewhere in reasoning about distributed
systems, but we find 1t very powerful and yet simple for the set ot
problems we consider

Next, we show how to use I/O automata to model the paits of a
nested tiansaction system FEach transaction is 1epiesented by an

automaton, as 1s each data object The aciions of callng a
subtiansaction, mvoking an access to an object, and retuinng a
tesult are each split into two operations, one requesting the action
aund one deliveiing the request to the recipient The request
operation 1s an output of the caller and an input to the scheduler
(which acts as a communication system) while the dehvery
operation 1s an output of the scheduler and an input of the
1eciptent Thus, each transaction (and each object) shares
opciations only with the scheduler A sertal system is the result of

composing tiansaction and object automata with a serial

transaction

subtransactions of
runs ol

anv
suniransaciions any

scheduler, which the
sequentially (with no concuriency between sibhings) and only aborts
transactions before they start running The seral scheduler 1s very
simple to understand and 1s used as the basis of our correctness

condition

We then mtioduce a B/W Loching system to model a system

using Moss’ loching algorithm to manage data We use a new sort
of 1/0O automaton called a R/W Locking object which 1s hke the
object automaton of the serial system, but which mamtains lock
tables and versions of the object so that 1t can respond correctly
when aborts occur It also delays operations until it 1s permitted to
1espond by the loching rules We also use a new sort of scheduler
called a generic scheduler, which transmits requests to the
apptopriate reciptent with arbitrary delay, allowing siblings to run

______ A R/W
Locking system 1s the result of composing the transaction
automata, R/W Locking objects and generic scheduler

A R/W Loching system allows more concurrency than a serial
system, but 1t 1s correct 1n the sense (first suggested mn [LM]) that
each tiansaction which does not have an aborted ancestor 1s unable
to tell whether 1t 1s running in a R/W Locking system or 1n a serial
system The proof of this correctness condition 1s the man result
of this paper

The proof proceeds by taking an arbitrary schedule of a R/W
Locking system (a concurrent schedule) and explicitly showing how
to 1eatrange the operations to get a schedule of the serial system
The permitted rearrangements (which do not alter the sequence of
events at any transaction) are those that are write-equivalent to
the original sequence

A Ley contribution of this paper 1s in identifying exactly the
properties of read and write accesses which are required to
guarantee correctness of Moss’ algorithm Write accesses require no
special properties However, 1t 1s necessary that read accesses leave
the object in “essentially” the same state as they found it We
define equieffective schedules to be those that leave the object n
“essentially” the same state, where "essentially” means “as far as
later operations can detect” Then an object schedule with a read
access appended 1s required to be equieffective to the same schedule
without the read access

There have been several other attempts to provide rigorous proofs
of the correctness of algorithms for data management in nested
tiansaction systems The first was [Ly], which presented a model
that successfully handled exclusive locking, but which proved
difficult to extend to more complicated problems such as orphan
elimmation [Go] The main deficiencies of this earher model seem
to be the lack of distinction between inputs and outputs, and the
lack of exphicit 1epresentations for transactions and their interfaces
These deficrencies were remedied 1 [LM], where the operational
modcl discussed above was defined, this paper again proved
cortectness of exclusive locking This paper continues the work of
[(IM] by dealing with an algorithm with separate read and write
locks (The 1esult of this paper implies a main result of [LM], since
when no accesses are distinguished as read accesses, Moss’
algonthm degener ites 1to exclusive locking) A different program

98

to study concuirency control in nested transaction systems has b
offered 1n [BBGLS,BBG}, where a major motivation 1s to analyze
protocols that operate on data at different levels of abstraction, but
where recovery 1s not considered The argument for the coriectness
of Moss’ algonthm 1n [BBG] considers only the loching rules and
not the state maintenance methods, so correctness 1s proved only 1n
the absence of aborts Concurrency control and recovery
algorithms are also analyzed m [MGG], but [MGG] 1s also
concerned mainly with levels of abstraction

everything needed to make 1t self-contained, and indicated whete
definitions or details differ In Section 2, we review the model of
1/0 automata of [LT,LM] In Section 3, we define the automata
that make up the serial system, namely the transaction automata,
the basic object automata and the serial scheduler In Section 4,

Thi ts fiom [LM], but we have repeated

we specify the semantic conditions that read accesses must satisfy,
usmg the technical notion of equieffective schedules In Section 5
we define the automata of the R/W Locking system, namely the
R/W Locking objects (which have code based immediately on the
algorithm of [Mo]) and the generic scheduler, and prove the main
lemmas that relate the schedules of R/W Locking objects to the
schedules of the basic objects Finally in Section 6 we pirove that
R/W Locking systems are serially correct at transactions no
ancestor of which has aborted, and in particular at the root

transaction which renresents the external environment
transaction wnich represents the external environment

2. I/O Automata

The following 1s a brief introduction to a model which 1s
described in [LM] and developed at length, with extensions to
express infinite behavior, in (LT}

All components 1n our systems, transactions, objects and
schedulers, will be modelled by I/O automata An I/O automaton
A has a set of states, some of which are designated as initial
states It has operations, each classified as either an input
operatson or an output operatton Finally, 1t has a transition
relation, which 1s a set of triples of the form (s’,m,s), where s’ and s
are states, and 7 1s an operation This triple means that in state s’,
the automaton can atomically do operation 7 and change to state s
An element of the transition relation 18 called a step of the
automaton The output operations are intended to model the
actions that are triggered by the automaton itself, while the input
operations model the actions that are triggered by the environment
of the automaton

Given a state s’ and an operation m, we say that r 1s enabled 1n &’
if there 15 a state s for which (s',1,s) 1s a step We require the
following condition

Input Condition Each nput operation 7 15 enabled 1n each state

s’

This condition says that an I/O automaton must be prepared to
recelve any input operation at any time

An ezecution of A 1s an fimte alternating sequence Sy
STy T8 of states and operations of A, beginning and ending

with a state Furthermore, s, 16 a start state of A, and each triple

(s’,m,3) which occurs as a consecutive subsequence 1s a step of A
From any execution, we can extract the schedule, which 1s the
subsequence of the execution consisting of operations only Because
transitions to different states may have the same operation,
different executions may have the same schedule We say that a
schedule o of A can leave A 1n state s 1f there 1s some execution of
A with schedule o and final state s We say that an operation m1s
enabled after a schedule o of A if there exists a state s such that «
can leave A 1n state s and 7 1s enabled in s Since the same
operation may occur several times 1n an execution or schedule, we

1eful to a single occunience ol 1n opuration as an event

We deseinbe systums as consisting of inteiracting components, each
of which 15 an I/O automaton It is convenient and natural to view
systems as I/O automata, also Tlus, we define a composition
operation for I/O automata, to yicld a new I/O automaton A set
of I/O automata may be composed to create a system $, if the sets
of output operations of the various automata are pairwise disjoint
{Thus, every output operation in S will be triggered by exactly one
component) A state of the composed automaton 1s a tuple of
states, one for each component, and the stait states are tuples
consisting of start states of the components The operations of the
composed automaton are those of the component automata Thus,
each operation of the composed automaton 1s an operation of a
subset of the component automata An operation 1s an output of
the composed automaton exactly 1if 1t 1s an output of some
component (The output operations of a system are intended to be
exactly those that are triggered by components of the system, while
the mput operations of a system are those that are triggered by the
system’s envuonment) During an operation 7 of a composed
automaton, each of the components which has operation = carries
out the operation, while the remainder stay 1n the same state

An execution or schedule of a system 1s defined to be an
execution or schedule of the automaton composed of the individual
automata of the system If o 1s a schedule of a system with
component A, then we denote by a|A the subsequence of «
contamning all the operations of A4 Clearly, o|4 1s a schedule of A

The following lemma from [LM] expresses formally the 1dea that
an operation 1s under the control of the component of which 1t 1s
an output

Lemma 1 Let o’ be a schedule of a system S, and let «
= a'm, where 7 1s an output operation of component A If
a|A 1s a schedule of A, then o 15 a schedule of §

We say that automaton A preserves a property P of schedules of
Af a = o'n satisfies P whenever a 1s a schedule 4, o' satisfies P
and 7 1s an output of A

3. Serial Systems

In this paper we define two kinds of systems “serial systems"
and “"R/W Locking systems" Serial systems describe serial
execution of tranmsactions They are defined for the purpose of
giving a correctness condition for other systems, namely that the
schedules of another svstem should look like schedules of the serial
system to the transactions As with serial executions of single-level
transaction systems, serial systems are too inefficient to use in
practice Thus, we define R/W Locking systems, which allow

transactions to run concurrently or abort after performing some
work, these systems use Moss’ algorithm to mawmntain locks and
enough information to restore the states of objects after aborts
occur

In this section of the paper we define serial systems, which consist
of tiransactions and basic objects communicating with a sertal
scheduler Transactions and basic objects describe user programs
and data, respectively The serial scheduler controls communication
between the other components, and thereby controls the orders in
which the tiansactions create children or access data All the
system components are modelled as I/O automata Most of this
sectién 1s tahen from [LM], with shight modifications to accomodate
shight changes in definitions

We 1epresent the pattern of transaction nesting, which we call a
system lype, by a set of transaction names, organized nto a tree by
the mapping “parent()", with T, as the root In referring to this

99

tice, we use tiaditional tumnology, such 1w cluld, leuf, laast
common ancestor (lca), ancestor and descendant (A transaction 1s
1ts own ancestor and descendant) The leaves of this tree are called
aceesses The accesses ate paititioned, where each element of the
partition contains the accesses to a particular object The tiee
structure can be thought of as a predefied naming scheme for all
possible transactions that might ever be invohed In any particular
execution, however, only some of these transactions will actually
take steps We imagine that the tree structure 1s known in advance
by all components of a system The tree will, 1n general, be an
nfinite structure with mfimte branching

The classical transactions of concurrency control theory (without
nesting) appear in our model as the children of a "mythical"
transaction, T, the root of the transaction tree (In work on

nested transactions, such as Argus, the children of T, are often

called “top-level* transactions) It 1s very convenient to intioduce
the new root transaction to model the environment in which the
rest of the transaction system runs Tiansaction T, has operations
that describe the invocation and return of the classical tiansactions
It 1s natural to reason about T0 1 the same way as about all of the

other transactions The only transactions which actually access
data are the leaves of the transaction tree, and thus they are
distingwished as "accesses” The internal nodes of the tree model
transactions whose function 18 to create and manage
subtransactions, but not to access data directly

We also assume that a system type includes a designated set V of
values, to be used as retuin values of transactions

A serial system of a given system type 1s the composition of a set
of 1/O automata This set contains a transaction automaton for
each snternal (1e non-leaf, non-access) node of the transaction
tree, a basic object automaton for each object, and a senal
scheduler These automata are described below

31 Transactions

This paper differs fiom other work such as {BBG] in that we
model the transactions explicitly A non-access transactton T 1s
modelled as an I/O automaton, with the following operations

Input operations
CREATE(T)
REPORT _ COMMIT(T’,v}, for T* a child of T, and v a value
REPORT _ABORT(T’), for T’ a child of T

Output operations
REQUEST _ CREATE(T’), for T’ a child of T
REQUEST _ COMMIT(T,v), for v a value

The CREATE input operation *wakes up" the transaction The
REQUEST _ CREATE output operation 1s a request by T to cieate
a particular child transaction 8 The REPORT _COMMIT mput
operation reports to T the successful completion of one of 1ts
children, and returns a value recording the results of that child’s
execution The REPORT _ ABORT input operation reports to T
the unsuccessful completion of one of 1ts children, without
retuining any other information We call
REPORT _ COMMIT(T’,v), for any v, and REPORT _ ABORT(T"’)
report operations for transaction T’ The REQUEST _COMMIT
operation 1s an announcement by T that 1t has fimshed its woik,
and mncludes a value recording the results of that work

6
Note that there 18 no provision for T to pass information to its chid 1n this

request In a programming language, T might be permitted to pass paiameter
values to a subtransaction Although this may be a conventent descriptive aid 1t 1s
not necessary to include 1t 1n the underlying formal model Instead, we consider
transactions that have different input parameters to be different transactions

It 18 convenient to use two separate operations,
REQUEST _ CREATE and CREATE, to describe what takes place
when a subtransaction 1s activated The REQUEST_ CREATE 1s
an operation of the transaction’s parent, while the actual CREATE
takes place at the subtransaction itself In actual systems such as
Argus, this separation does occur, and the distinction will be
tmportant 1n our results and proofs Similar remarks hold for the
REQUEST _COMMIT and COMMIT operations? We leave the

executions of paiticular tiansaction automata largely unspecified,
the choice of which children to create, and what value to return,
will depend on the paiticular implementation For the purposes of
the schedulers studied here, the transactions (and 1n large part, the
objects) are "blackh boxes ® Nevertheless, 1t 1s convenient to
assume that schedules of transaction automata obey certain
syntactic constraints We therefore require that all transaction
automata preselve well-formedness, as defined in the next
paragraph We do not constrain the operation of a transaction
automaton after schedules that violate well-formedness, but we will
prove later that, when placed 1n any of the systems we consider, a
transaction generates only well-formed schedules

We recursively define well- formedness for sequences of operations
of t1ansaction T Namely, the empty schedule 1s well-formed Also,
if @ = a'm 15 a sequence of operations of T, where 7 15 a single
event, then a 1s well-formed provided that a’ 15 well-formed, and
the f{ollowing hold

o If m1s CREATE(T), then
{1) there 1s no CREATE(T) event 1n o’

o If 7 1s REPORT _ COMMIT(T’,v} for a ¢child T’ of T,
then
(1) REQUEST _ CREATE(T") appears 1n o’ and
(n) there 1s no REPORT _ ABORT(T’) event 1n o’ and
(i} there 1s no REPORT _ COMMIT(T’,v’) event with
v$Ev i o

o If 715 REPORT _ABORT(T’) for a chuld T’ of T, then
(1) REQUEST _ CREATE(T’) appears 1n a’ and
(n) there 15 no REPORT _ COMMIT event for T’ in o’

o If 15 REQUEST _CREATE(T’) for a chuld T’ of T,
then

(1) there 1s no REQUEST _ CREATE(T’) in o’ and
(11) there 13 no REQUEST _ COMMIT event for T 1n o’
and

{m) CREATE(T) appears m o

o If 715 a REQUEST _ COMMIT for T, then

(1) there 15 no REQUEST _ COMMIT event for T 1n o’
and

(1) CREATE(T) appears in o’

These restrictions are very basic, they simply say that a
transaction does not get created more than once, does not receive
conflicting mformation about the fates of its children, and does not
recerve information about the fate of any child whose creation 1t
has not requested, also, a transaction does not perform any output
operations before 1t has been created or after it has requested to
commit, and does not request the creation of the same child more
than once Except foi these mummal conditions, there are no a

7Not.e that we do not include a REQUEST_ ABORT operation for a transaction
we do not model the situation 1 which a transaction decides that 1ts own existence
1s a mistake Rather we asmgn decisions to abort transactions to another
component of the system the scheduler In practice, the scheduler must have some
power to decide to abort transactions, as when it detects deadlocks or fallures In
Argus, transactions are permitted to request to abort, we regard this request simply
as a "hint* to the scheduler to restrict its allowable executions 1n a particular way

100

prion restiictions on allowable tiansaction behavior

The following easy lemma summarizes the properties of well-
formed sequences of tiansaction operations
Lemma 2 Let o be a well-formed sequence of operations
of transaction T Then the following conditions hold

1 The first event 1n a 1s a CREATE(T) event, and
there are no other CREATE events

2 If a REQUEST _ COMMIT event for T occurs n a,
then there are no later output events of T 1n o

3 There 15 av most one REQUEST_CREATE(T’)
event for each cluld T’ of T, 1n o

4 There are not two different report operations m o
for any cmld T’ of T (However, there may be
several events which are repeated nstances of a
single report operation)

5 Any report event for a chld T’ of T 1s preceded by
REQUEST _ CREATE(T’) m «

Conversely, any sequence of operations of T satisfying these
conditions 1s well-formed

3 2 Basic Objects

Recall that I/O automata are associated with non-access
transactions only Since access transactions model abstract
operations on shared data objects, We associate a single 1/0
automaton with each object, rather than one for each access The
operations for each object are just the CREATE and
REQUEST _ COMMIT operations for all the corresponding access
transactions Although we give these operations the same names as
the operations of non-access transactions, 1t 1s helpful to think of
the operations of access transactions 1n other terms also a
CREATE corresponds to an nvocation of an operation on the
object, while a REQUEST _ COMMIT corresponds to a response by
the object to an invocation Actually, these CREATE and
REQUEST _ COMMIT operations generahze the usual mvocations
and responses 1n that our operations carry with them a designation
of the position of the access in the transaction tree Thus, a basic
object X 15 modelled as an automaton, with the following
operations

Input operations
CREATE(T), for T an access to X
Output operations
REQUEST _ COMMIT(T,v), for T an access to X

As with transactions, while speaific objects are left largely
unspecified, 1t 1s convement to requre that schedules of basic
objects satisfy certain syntactic conditions We recursively define
well-formedness for sequences of operations of basic objeéts
Namely, the empty schedule 1s well-formed Also, f a = &’m15 2
sequence of operations of basic object X, where 7 1s a single event,
then o 1s well-formed provided that o’ 1s well-formed, and the
following hold

o If 7 1s CREATE(T), then
(1) there 1s no CREATE(T) event 1n o’

o If 715 REQUEST _ COMMIT for T, then
(1) there 1s no REQUEST _ COMMIT event for T m o’,
and
(n) CREATE(T) appears mn o

These restrictions simply say that the same access does not get
created more than once, and that a basic object does not respond
more than once to any access, and only responds to accesses that

have previously boen craated Lhese requuements constrain the
anviroument of the object shightly less than those in [LM], the
addud f1cedom mmahes some of the arguments slightly simpler We
requue that every basic object preserve well-formedness (this 1s a
sunple syntactic condition) The following easy lemma summartzes
the pioperties of wdli-formed scquences of basic object operations
Lemma 3 Let a be a well-formed sequence of operations
of basic object \ Then for any access T to X, a contruns
one of the following

1 no CREATE(T) and no REQUEST _ COMMIT(T,v)

events, ot

2 one CREATE(T) and
REQUEST _ COMMIT(T,v) events, or

no

3 one CREAT1E(T) event and following that one
REFQUEST _ COMMII(T,v) event for some v

Conversely, any o satisfying this condition 1s well-formed

If « 1s a well-formed sequence of operations of X and T 1s an
actess to X such that o contams CREATE(T) but no
REQUEST _ COMMIT(T,v), we say that T 1s pending n &

3 3 Serial Scheduler

The third kind of component in a serial system 1s the serial
scheduler The serial scheduler 1s also modelled as an automaton
Whereas the transactions and basic objects have been specified to
be any I/O automata whose operations and behavior satisfy simple
syntactic restrictions, the serial scheduler 1s a fully specified
automaton, particular to each system type It runs transactions
according to a depth-first traversal of the transaction tree The
serial scheduler can choose nondetermimistically to abort any
transaction after its parent has requested its creation, as long as
the transaction has not actually been created In the context of
this scheduler, the "semantics* of an ABORT(T) operation are that
tiansaction T was never created FEach child of T whose cieation
was requested must be either aborted or run to commitment with
no siblings oveilapping its execution, before T can commt The
operations of the serial scheduler are as follows

Input Operations
REQUEST _ CREATE(T)
REQUEST _ COMMITI(TL,v)

Output Operations
CRLCATE(T)
COVMIT(T) T 5 T,
ABORT(T), T # T,
REPORT _ COMMIT(T,v), T 5 T,

REPORT _ABORT(T), T 5 T,

The RFQUEST _CREATE and REQUEST_COMMIT inputs
are ntended to be wdentaficd with the corresponding outputs of
transaction and object automata, and correspondingly for the
CREATE, REPORT _COMMIT and REPORT _ABORT output
operations The COMMIT and ABORT operations are internal,
marking the point n time where the decision on the fate of the
t1ansaction 1s irrevocable We call COMMIT(T) and ABORT(T)
return operations for T

Each state s of the serial scheduler consists of six sets, named
with 1ecord notation » create__requested, s created,
s commit_requested, s comrmtted, s abotted and s returned The
set s commit__requesicd 1s a set of (transaction,value) pawrs The
others are sets of transactions There 13 exactly one mitial state, 1n
which the set create_requested 1s {TO}, and the other sets are

empty

101

The transition 1elation consists of exactly those tuples {s°,7,s)
satisflying the pie- and postconditions below, wheie 7 15 the
indicated operation For bievity, we include in the postconditions
only those conditions on the state s which miy change with the
operation If a component of s 1s not mentioned 1n the
postcondition, 1t 1s implicit that the sct s the same in s’ and s

REQUEST _ CREATE(T)
Postcondition
s create__requested = s’ create__rcquested U {T}

REQUEST _ COMMI1(T,v)
Postcondition
s commut_requested = s’ commut__requested U {([,v)}

CREATRIT)

CREATE(T)
Precondition

T € s’ create__requested - (s’ created U s’ aborted)

siblings(T) N s’ created C s’ returned
Posteondition

s created = s’ created U {T}

COMMIT(T), T 5 T
Precondition

(T,v) € s’ commt _requested for some v

T ¢ s’ returned

children(T) N s’ create__requested C s’ 1eturned
Postcondition

s committed = s’ commutted U { '}

sreturned = s’ retuined U {T}

ABORT(T), T # T,
Precondition
T € s’ create_requested - (s’ created U s’ aborted)
siblings(T) N s’ created C s’ returned
Postcondition
s aborted == s’ aborted U {T}
s returned = s’ returned U {T}

REPORT _ABORT(T), T # T,
Precondition
T € s’ aborted

REPORT _ COMMIT(T,v), T # T,
Precondition

T € s’ committed

(T,v) € s’ commit_requested

The mput operations, REQUEST _ CREATE and
REQUEST _ COMMIT, simply result in the request being recorded
A CREATE operation can only occur if a corresponding
REQUEST _CREATE has occurred and the CREATE has not
already occurred The second precondition on the CREATE
operation says that the senal scheduler does not create a
transaction until all 1ts previously created sibling transactions have
returned That 13, siblings are run sequentially The precondition
on the COMMIT operation says that the scheduler does not allow a
transaction to commit until 1its children have returned The
precondition on the ABORT operation says that the scheduler does
not abort a transaction while there 1s activity going on on behalf of
any of its siblings That 1s, aborted t1ansactions are dealt with
sequentially with respect to then siblings The result of a
transaction can be reported to 1ts parent at any tume after the
(purely 1nternal) commut or abort has occurred In particular,
siblings might run 1n one order and be reported to their parent in
the opposite order

One significant difference between our serial scheduler and the
one i [LM] 1s that there the return operation and the repoit to the

patent of the return aie combined as a single operation, giving the
parent the extra information of the oider mn which 1ts children are
1un

The next lemma relates a schedule of the serial scheduler to the
state which 1esults from applying that schedule
Lemma 4 Let o be a schedule of the senal scheduler, and
let s be a state which can result from applying o to the
mtial state Then the following conditions are true

1 T 1s 1n s create_requested exactly if T = T or &
contains a REQUEST _ CREATE(T) event

2 T 1s1n s created exactly if a contasns a CREATE(T)

event

3 (T,v) 15 m s commut __1equested exactly if a contains
a REQUEST _ COMMIT(T,v) event
contains a

4+ T 15 1n scommtted exactly if o

COMMIT(T) event

5 I 1snsaboited exactly if a contains an ABORT(T)
event

6 sreturned = s commtted U s aborted

7 s committed M s aborted = @

3 4 Serial Systems and Serial Schedules

The composition of transactions with basic objects and the serial
scheduler for a given system type is called a sertal system, and 1ts
operations and schedules are called serial operations and sersal
schedules respectively A sequence o of serial operations 1s said to
be well formed piovided that its projection at every transaction
and basic object 1s weli-formed

Lemma 5 Let a be a serial schedule Then a 1s well-

formed

Proof A straightforward induction on the length of
schedules The mnductive step involves a case analysis based

on the possible operations [J

If a 1s a sequence of serial operations and T 1s a transaction such
that a contains CREATE(T) but no return event for T, we say
that T 1s hve in « The following lemma states that only related
transactions can be live concurrently, 1n a serial schedule

Lemma 8 Let o be a seual schedule, and T and T’
tiansactions each of which 1s live in @ Then either T 1s an
ancestor of T? or T’ 1s an ancestor of T

In order to talk about schedules, we mmtroduce some terms to
desciibe the fate of transactions Let o be any sequence of
operations (We will use these spme terms later for schedules of
R/W Locking systems, so we make the definitions for general
sequences] If T 1s a transaction and T’ an ancestor of T, we say
that T 15 commutted to T' in o if COMMIT(U) occurs mn o for
every U which 1s an ancestor of T and a proper descendant of T* If
1 and T’ are transactions we say that T 1s vissble to T’ 1n af T s
commtted to lea(T,T’) If m1s one of the operations CREATE(T),
REQUEST _ CREATE(T’), COMMIT(T’), ABORT(T’),
REPORT __COMMIT(T’,v"), REPORT _ ABORT(T’v’) or
REQULST _ COMMIT(T,v) where T’ 15 a child of T, then we
dcline transaction(n) to be T If 1 1s a non-access transaction then
the operations m with transaction(m} = T are the operations of the
automaton T togither with the rcturn operations for children of
{ W denote by wistble{a, [} the subsequence of o« consisting of
events m with transaction(n) to T 1n @ Notice that every operation
oceurring 1n visible(e,T) 1s a serial operation

102

We collect here some straghtforward consequences of these
definitions
Lemma 7 Let o be a sequence of operations, and T, T’
and T transactions

1 If T 1s an ancestor of T”, then T 15 visible to T" in &

2 T 1s visible to T in o 1if and only if T’ 18 visible to
Iea(T, T’} in

3 If T* 1s visible to T? 1n @ and T 15 visible to T 1n o,
then T” 15 visible to T 1n o

4 If T" 1s a proper descendant of T, T 1s visible to T’
m a, but T 1s not visible to T 1n o, then T” 15 a

descendant of the child of T which 1s an ancestor of
T)

Lemma 8 Let a and 8 be sequences of operations, such
that 8 consists of a subset of the events of o

1 If transaction T 15 visible to transaction T’ n S,
then T 1s visible to T’ 1n «

2 If event 715 1n visible(4, T}, then m1s 10 visible(e,T)

Lemma 9 Let a be a sequence of operations, and let T
and T be transactions Then visible(a,T)|T’ 1s equal to a|T
if T” 15 vistble to T 1n @, and 1s equal to the empty sequence
otherwise

Lemma 10 Let a be a sequence of operations Let T, T*
and T” be transactions such that T’ is visible to T’ and to
T in @ Then T” 1s visible to T’ 1n visible(e,T)

Lemma 11 Let T be a transaction, and let am be a
sequence of operations, where 7 15 a single event

1 If transaction(n} 1s not visible to T in am, then
visible{an,T) = visible(e,T)

2 If transaction(n} 18 visible to T 1n o and if 715 not
a COMMIT event, then wisible{an,T) =
visible(a, T)m

3 If transaction(r) 18 visible to T m om, and 7 1s
COMMIT(U), then the events in wvisible{an,T) are
those visible 1 o to either T or U, together with =«
1tself

Lemma 12 Let a be a well-formed sequence, and T any

transaction Then visible(a, T} 1s well-formed

The next two lemmas are taken from [LM] (There, they are
proved with shghtly different defimitions, but the essentially the
same proofs wotk here)

Lemma 13 Let o be a senal schedule and T a
transaction Then visible(a,T) 1s a serial schedule

Lemma 14 Let a be a semal schedule and T a
transaction Let g = visible{a,T) Then v = fla - f) 15 2
serial schedule

Let a be any sequence of operations If T 1s a tiansaction we say
T 1s an orphan 1 « if ABORT(U) occurs in « for some ancestor U

of T

3 65 Serial Correctness

‘We use senal schedules as the basis of ou1 cotiectness definition,
which was first given 1in [LM] Namely, we sav that a sequence of
operations 1s serally correct for a transaciion I provided that its
projection on I 1s identical to the projection on 1 of some suial
schedule That 1s, the sequence "looks like" a serial schedule to

T Later mn this paper we will define "R/W Locking systems® and
show that then schedules aie senially correct for every non-orphan
transaction, and in paiticular that these schedules are serially
correct for the 100t t1ansaction T(J

Motivation for our use of serial schedules to define correctness
denives from the simple behavior of the senal scheduler, which
determines the sequcnce of interactions between the transactions
and objects We believe the depth-first traversal of the transaction
tree to be a natural notion of correctness which corresponds
precisely to the intuition of how nested transaction systems ought
to behave Furthermore, 1t 18 a natural generalization of

seriahizability, the correctness condition generally chosen for
classical transaction systems Seilal correctness for T 1s a condition
which guarantees to implementors of T that their code will
encounter only situations which can arise 1n serial executions
Correctness for TO 18 a special case which guarantees that the
external world will encounter only situations which can arise m
se11al executions

It would be best 1f every transaction (whether an orphan or not)
saw consistent data Ensuring this requires a much more intricate
scheduler than the simple R/W Locking systems we describe In
[HLMW], we describe and prove correctness of several algorithms
for mainintaming coirectness for orphan transactions

Our approach 1s an example of a general technique for studying
system algonithms A siumple, intuitive and inefficient algorithm
(automaton) 1s used to specify an acceptable collection of schedules
for the system component The actual system component 1s more
efficient or robust, but provides the same user interface The user
1s guaranteed that applications (transactions, in our work) which
worh well when run with the simple algorithm will work the same
way when run with the actual system

4. Semantic Conditions

In the serial systems to be considered in this paper, accesses are
classified as either read or write accesses In this section, we state
the properties which these accesses are required to satisfy First,
we define the fundamental concept of *equieffectiveness" of
schedules, which 1s in turn used to define *“transparency® of
operations, an operation 1s said to be transparent if later accesses
to the same object return values which are the same as in the
situation where the operation did not occur We then prove certain
consequences of these definitions, which will be used in the ensuing

proofs Finally, we use the notion of transparency to specify the
precise semantic conditions which read and write accesses must
satisfy

4 1 Equieffective Schedules

We troduce the concept of equieffective schedules of a basic
object X, 1n order to define precisely what schedules we will regard
as "essentially" the same Intwitively, these are schedules which
leave the automaton in states which are the same However, we are
really interested in schedules, not states, so 1t 1s enough that they
be mdistinguishable by later operations

Formally, given two well-formed sequences e and 8 of operations
of X, we say that a 1s equieffective to 8 1f for every sequence ¢ of
operations of X such that both a¢ and B¢ are well-formed, a¢ is a
schedule of X 1f and only if 8¢ 15 a schedule of X

Notice that 1f neither o nor 8 1s a schedule of X, then a 1s
tivially equieffective to § Also, notice that 1f « 1s equieffective to
B and B 1s a schedule of X, then a 1s a schedule of X In the sense
of semantic theory, equeffective schedules pass the same tests,

103

whete a test mnvolves determuimng il a given scquonce of operations
can occur after the sequence being tested Wi limit the tests to
sequences which do not violate well-formedness, for technical
reasons, because we have not required the objects to behave
sensibly if the inputs violate well-formedness Clearly, a 1s
equieffective to B 1f and only if 8 15 equieffective to o and n this
case we say that a and g are equieffective sequences We have a
restricted foim of transitivity
Lemma 15 Let o, 8 and « be sequences of operations of

X such that the events in B aie a subset of the events in «

and the events 1n <y are a subset of the events in g (perhaps

in different orders) If o and B are equieffective and also g

and 7 are equieffective, then a and ~ are equieffective

We also have an extension result

Lemma 16 If o and f are equeffective sequences of
operations of X which contamn the same events, and ¢ 1s a
sequence of operations of X such that a¢ 1s a well-formed
schedule of X, then 8¢ 1s a well-formed schedule of X which
18 equieffective to agd

We say that an operation 7 of basic object X 15 transparent if for
any well-formed schedule ar of X, ar 1s equieffective to o Thus,
later operations which do not violate well-formedness cannot detect
whether 7 happened (Notice that we only require m to be
undetectable 1n situations where 1t can occur, 1e when am 1s a
schedule }

Lemma 17: Let a be a well-formed schedule of basic
object X, and S a set of accesses to X such that any
operation of a transaction in S that occurs m o 1s
transparent Let A be the subsequence of o obtamned by
removing all the operations of accesses in S Then 8 1s a
well-formed schedule of X which 1s equieffective to a

4 2 Reordering and Combining Serial Schedules
In this subsection, we describe ways 1n which serial schedules can
be modified and combined to yield other serial schedules These
lemmas are used n the proof of Lemma 33, 1n Section 6 3 The
first generalizes a lemma in [LM], taking into account the special
properties of transparent operations The second is essentially the
same as a lemma of [LM]
Lemma 18 Let o COMMIT(T’) and af, be two serial
schedules and T, T’ and T” three transactions such that the
following conditions hold

1 T’ 15 a child of T" and T 1s a descendant of T” but
not of T,

2 af; = visible(af, T’),
3 af, = visible(af,,T),
4 a = visible(af,T”) = visible(ar8,, T") and

5 if any basic object has an output operation in B,
then all 1ts operations in Bl are transparent

Then a8, COMMIT(T")4, 1s a serial schedule

Proof Straightfoiward by induction on the length of
prefixes of af, COMMIT(T"), O

Lemma 19. Let aABORT(T’) and af be two serial
schedules, and let T, T’ and T” be transactions, such that
the following conditions hold

1 T’ 1s a child of T” and T 1s a descendant of T* but
not of T,

2 aff = visible(aB,T), and

3 a = visible(a,T”) = visible(aB,T")
Then cABORT(T’)S 1s a serial schedule

4 3 Semantics of Read Accesses

Finallv, we aie ready to state the conditions to be satisfied by
read and write accesses Namely, we require that each basic object
X satisfy the following conditions

Semantic Conditions

1 Every CREATE(T) ope1ation 1s transparent

(8]

For any o and a, for which o CREATE(T)a, and

o, a,CREATE(T) are both well-formed schedules of X,
they are equieffective schedules

3 Every REQUEST _COMMIT(T,v) operation, for T a
1ead access, 1s transparent

Condition (1) means that whether or not an access was created 1s
mvisible to other accesses Condition (2) means that when an
access was created 1s not detectable by later operations Condition
(3) means that later operations cannot deteimine whether or not a
REQUEST _ COMMIT operation for a read access has occurred
The third condition captures the fundamental feature of read
accesses that allows Moss’ algorithm, as given in the construction of
R/W Locking objects 1n Section 5 1, to work In contrast, the first
two conditions are a convenience, without which the proof of
correctness 1n Section 6 3 would be less tidy, as we would have to
reairange a concurrent schedule 1n more ways, to produce a serial
schedule that looked the same to each transaction Note that we
make no assumption about the semantics of REQUEST _ COMMIT
operations for write accesses, and so 1t 1s legitimate to designate all
accesses as wiites If this 15 done, Moss’ algorithm as given in this
paper degenerates 1nto exclusive locking

An example of a basic object satisfying these conditions would
have as 1ts state a set of transactions, called "pending* and an
mstance of an abstract data type The nput operation
CREATE(T) would simply add T to pending At any time, a
tiansaction T 1n pending could be chosen, and the corresponding
function apphed to the instance of the abstract data type, yrelding
return value v, and a possibly altered instance of the abstract type
I’ would be removed from pending, the new instance would replace

the old one 1n the state of the basic object, and
REQUEST _ COMMIT(T,v) would be output (The whole sequence
from choosing T to the output 1s an atomic step of the basic
object)

The following lemma combines all the information in the
semantic conditions to give a simple sufficient condition for proving
that schedules are equieffective This test 1s used throughout this
paper Given a sequence o of operations of X, define write(a) to be
the subsequence of o consisting of the REQUEST _ COMMIT(T,v)
events for write accesses T If o and 8 are sequences of operations
of X and write{a) = write(§) then we say that o and g are
write-equal This 15 clearly an equivalence relation on sequences of
operations of X

Lemma 20 Let o and 8 be well-formed schedules of X
which are wiite-equal Then « and g are equieffective

Proof Suppose ¢ 15 a sequence of operations of X such
that a¢ and B¢ are both well-formed We must prove that
Bé 1s a schedule of X if and only if ad 1s a schedule of
X Consider the set, A of accesses to X which 1s the union of
the set of wriite accesses for which a REQUEST _ COMMIT
opaation occuts 1w o (awnd so also 1 B) and the set of

104

accesses which are pending m both a and § Let o' denote
the subsequence of o consisting of the events of accesses n
A Similarly let 8 denote the subsequence of § consisting of
the events of accesses in A Since o’ 1s obtamned from o by
removing all the operations of accesses not in A, and all such
operations are transparent (by conditions 1 and 3), by
Lemma 17, we deduce that o’ 1s a well-formed schedule of X
equieffective to @ Sumularly f’ 1s a well-formed schedule
equeffective to 8 Also, since a’ can be formed from 8’ by
moving CREATE events, we deduce from condition 2,
Lemma 16 and Lemma 15 that o’ and 8’ are equieffective
Since both a¢ and B¢ are well-formed, by Lemma 3 any
event 1n ¢ must be either an operation of an access with no
operations 1n a or 8, or else a REQUEST _ COMMIT for an
access that 1s pending in both @ and § In any case, a’¢ and
B¢ must be well-formed Therefore a¢ 1s a schedule of X 1if
and only if a’¢ 1s a schedule, which 1s true 1f and only 1if §’¢
1s a schedule and so 1if and only 1f 8¢ 1s a schedule of X 3

5. R/W Locking Systems

A R/W Locking system of a given system type 1s composed of
transactions, a generic scheduler, and R/W Loching objects The
non-access transactions are modelled by the same automata as
the serial system, but the generic scheduler has much more freedom
mn scheduling transactions than the serial scheduler, and R/W
Locking objects follow the algorithm of [Mo} in maintaining locking
and state restoration data that basic objects do not need

51 R/W Locking objects

In this section, we deline, for each basic object X, a R/W Locking
object M(X)} which provides a resihent lock-managing vanant of
X It receives operation 1nvocations and responds like basic object
X, and also receives information about the fate of transactions so
that 1t can mamntain 1ts locking and state restoration data The
R/W Locking object combines the features of the resilient object
and the lock manager of [LM], where, as i many database
management systems, the recovery and concurrency control are
performed separately Combining these features, as we do here,
elimiates some redundancy in mamntaiming information about the
fate of transactions

M(X) has the following operations

Input Operations
CREATE(T), for T an access to X

INFORM _ COMMIT _ AT(X)OF(T), T # T,
INFORM _ ABORT _AT(X)OF(T), T 5 T,

Output Operations
REQUEST _ COMMIT(T,v), for T an access to X

We give a recursive definition for well-formedness of schedules of
object M(X) Namely, the empty schedule 15 well-formed Also, 1f
a = a'm1s a sequence of operations of object X, then a 15 well-
formed provided that o’ 1s well-formed and the following hold

 If 7 1s CREATE(T), then
(1) there 1s no CREATE(T) event in o’

o If 715 a REQUEST _ COMMIT for T, then
(1) there 15 no REQUEST _ COMMIT event for T m o,

and
(1) CREATE(T) occurs 1n o’

o If 7 1s INFORM _ COMMIT _ AT(X)OF(1), then
(1) there 1s no INFORM __ ABORT _ A1(X)OF(T) event
n o’, and
(1) 1 T 15 an access to X, then a REQUEST_ COMMIT
event for T occurs 1n o’

o If 7 1s INFORM _ ABORT _ AT(X)OF(T), then
(1) there 15 no INFORM_COMMIT _AT(X)OF(T)

event i o’

A state s of M(X) consists of the following five components
s write-lockholders, s read-lockholders, s create_requested, and
s run, which are sets of t1ansactions, and s map, which 1s a function
fiom write-lockholdeis to states of basic object X We say that a
transaction 1n write-lockholders holds a write-lock, and similarly
that a transaction in read-lockholders holds a read-lock We say
two locks con flict 1f thev are held bv different transactions and at
least one 1s a wite-lock The initial states of M(X) are those m
which write-lockholders = {T} and map(T,) is an imtial state of
the basic object X, and the other components are empty The
transition relation of M(X) 1s given by all triples (s',71,s) satisfying
the following pre- and postconditions, given separately for each =
As before, any component of s not mentioned 1n the postconditions
1s the same 1n s as 1n s’

CREATE(T), T an access to X
Postcondition
s create__requested = s’ create__requested U {T}

INFORM _ COMMIT _AT(X)OF(T), T % T,
Postcondition
if T € s’ wnite-lochholders then
begin
s wite-lockholders = (s’ wiite-lockholders - {T}) U {parent(T)}
s map(U) = s’ map(U) for U € s write-lockholders - {parent(T)}
s map(parent{T)) = s’ map(T)

end
if T € s’ read-lockholders then
begin
s read-lockholders = (s’ read-lockholders - {T}) U {parent(T)}
end

INFORM_ ABORT _AT(X)OF(T), T # T,

Postcondition
s write-lochholders = s’ write-lockholders - {descendants(T)}
s read-lockholders = s’ read-lockholders - {descendants(T)}
s map(U) = s’ map(U) for all U € s write-lochholders

REQUEST _ COMMIT(T,v) for T a write access to X
Precondition
T € s’ create__iequested - s’ run

s’ write-Jockholders U s’ read-lochholders C ancestois(T)
(s’ map(least(s’ write-lockholders))},CREATE(T),t)
and (t, REQUEST _ COMMIT(T,v),t")
are 1n the transition relation of basic object X, for some t
Postcondition
stun == 8’ run U {T}
s write-lochholders = s’ write-lockholders U {T}
s map(U) = s’ map(U) for all U € s write-lockholders - {T}
s map(T) = ¢

REQUEST _ COMMI1(T,v) for T a read access to X
Precondition
T € s’ create __1equested - s’ run
s’ write-lockholders C ancestors(T)
(s’ map(least(s’ write-lockholders)), CREATE(T),t)
and (¢, REQUEST _ COMMIT(T,v),t’)
are in the transition relation of basic object X, for some t
Postcondition
srun = s’ run U {T}
s read-lockholders = s’ read-lockholders U {T}

It 1s clear that a R/W Locking object preseives well-formedness

105

When an access transaction is created, 1L 15> wdded to the set
create-1equested A 1esponse, contumng rcbwn value v, to an
access T can be retuincd only 1f the access has been requested but
not yet responded to, and every holdet of a conflicting lock 15 an
ancestor of T, and v 1s a value wiich can be returned by basic
object X in the response to T from some state t, obtaincd by
performing CREATE(T) 1n the state map(least(wiite-lockholders))
When a response 1s given, the access transaction 1s added to the set
run and granted the appropriate lock, and if the transaction 1s a
write access, the resulting state 15 stored as map(T) If the

transaction 18 a read access, no change 1s made to the stored state
of basic object X, 1e to map

When the R/W Loching object 1s informed of the abort of a
transaction, 1t removes all locks held by descendants of the
transaction When 1t 15 informed of a commit, 1t passes any locks
held by the transaction to the parent, and also passes the version
stored in map, if there 1s one 8

We introduce some terms to describe what M(X) knows about
commits and aborts of transactions I a 15 a sequence of
operations of M(X), T 1s an access to X, and T’ 1s an ancestor of T,
we say that T 1s commatted at X to T’ i a, if a contans a
subsequence § consisting of an INFORM__ COMMIT _ AT(X)OF(U)
event for every U which 1s an ancestor of T and a proper
descendant of T°, arranged 1n ascending order (so the
INFORM _ COMMIT for parent(U) 1s preceded by that for U} If
a 18 a well-formed sequence of operations of M(X} and T 1s an
access to X and T’ any transaction, we say that T 1s vnistble at X to
T m o of T 1s committed at X to lea(T,T’) We denote the
subsequence of a consisting of operations of M(X) whose
transactions are visible at X to T by visbley(a,T) It 1s clear that
v1snblex(a,T) 1s a well-formed sequence of operations of basic object
X We say that a transaction T 1s an orphan at X mn « if
INFORM _ ABORT _ AT(X)OF(U) occuis 1n o for some ancestor L
of T

Here are some sunple facts about the state of M(X) after a
schedule o

Lemma 21 Let o be a schedule of M(X), and s a state of
M(X) reached by applymng o to an initial state Suppose T €
s write-lockholders and T’ € sread-lockholders U s write-
lochholders Then either T 1s an ancestor of T’ or else T’ 1s
an ancestor of T

Lemma 22 Let o be a well-formed schedule of M(X),
and s a state of M(X) reached by applying o to an imtial
state Let T be an access to X such that
REQUEST _ COMMIT(T,v) occurs m o« and T 1s not an
orphan at X 1n «, and let T’ be the highest ancestor of T
such that T 1s commtted at X to T’ Then if T 1s a write
access, T’ must be a member of s write-lochholders, while \f
T 1s a read access, T’ must be a member of sread-
lockholders

Given any well-formed sequence 8 of operations of M(X) let
essence(8) denote the sequence obtained from write(8) by placing a
CREATE(U) event immediately preceding a
REQUEST _COMMIT(U,u) event Since S 1s well-formed,
essence(f) consists of a subset of the events of # and 1s well-formed
Clearly § and essence(g) are write-equal

8". the reader wishes to compare our version of the algonthm with that in Mo
the following may be useful Moss gives the name “the associated state® for object
X and transaction T to what we call s map(T) where T" 15 the least ancestor of T in
8 write-lockholders, and he calls s map(least(s write lockholders)) *the current state"
of X Also, he removes a read lock when the owner also holds a write lock (this is an
optimization that does not affect the correctness proof) Moss also allows internal
transactions to directly access objects, whereas we follow the Argus system by only
having leaf transactions perform data access

The following lemma shows how the results of operations visible

at X to T are recorded n the state of M(X)

Lemma 23 Let « be a well-formed schedule of M(X) and
s a state of M(X) reached by applying a to an imtial state
If T 1s a transaction which 1s not an orphan at X in «, then
f = essence(visibley(a,T)) 15 a well-formed schedule of

X Furthermore, when 8 1s applied to an 1mtial state of X, 1t

can leave X in the state s map(T’) where T’ is the least
ancestor of T such that T’ € s wiite-lockholders

Proof By induction on the length of @ The basis 1s
tivial, so let @ = o’r Let s’ denote a state of M(X) after
applymng o’ such that (s’,m,s) 15 a step of M(X) There are
five cases

(1) m1s CREATE(U) for an access U to X
Straightforward

(2} = 1s REQUEST _ COMMIT(U,v) for U a read access to
X
Straightforward

(3) m1s REQUEST _ COMMIT(U,v) for U a write access to
X
We consider separately the cases U= T and U5 T
If U= T then T € s write-lockholders so T' = T Let T”
denote the least ancestor of T n s’ write-lockholders Let 8’
= essence(vnslblex(a’,T)) By the inductive hypothesis, 8’ 1s
a well-formed schedule of X which can leave X 1n state
s’ map(T”) when apphed to an imtial state Now g =
B’CREATE(U)r, by the definition of M(X), ’'CREATE(U)r
15 a {well-formed) schedule of X, and applied to an mtial
state of X 1t can leave X 1n the state s map(T)
If U 54 T, the proof 1s straightforward

(4) m1s INFORM _ COMMIT _ AT(X)OF(U)
The discussion 1s divided 1nto subcases, depending on the
relation of T and U in the transaction tree

(42} U 1s an ancestor of T

Now visibley(e,T) = wvisbley(a"T), so f =

essence(visible,(a’,T)) If U 1s the least ancestor of T 1n
s’ write-lockholders then by the defimtion of M(X), T' must
be parent(U) and s map(T’) = s’ map(U), while 1f U 1s not
the least ancestor of T 1n s’ write-lockholders then T’ must
be the least ancestor of T 1n s’ write-lockholders and
s map(T’) = s’ map(T’) In ether case, smap(T’) 1s
s’ map(T”’), where T"’ 1s the least ancestor of T in 8’ write-
lockholders The desired result follows immediately from the
inductive hypothesis

(4b) U 1s not an ancestor of T, but parent(U) 1s an ancestor
of T
Here we give separate arguments, depending on whether U 1s
in s’ write-lockholders or not If U € s’ wnite-lockholders
then Lemma 21 imphes that no ancestor of T that 1s a strict
descendant of parent(U) can be 1n 8’ write-lockholders The
defimition of M(X) therefore shows that T® = parent(U) and
that s map(T’) = s’ map(U} Also we note that visibley(a’,U)
15 write-equal to visible,(,T), since any write access that 18
committed at X to an ancestor of T 1n a’ must be committed
at X to parent(U) in &’ and thus visible at X to U mn o
(Otherwise, by Lemma 22, some ancestor of T that 1s a
proper descendant of parent(U} would be 1n s’ wrnite
lockholdets)) Thus, B = essence(visbley(ar,T)) =

essence(wsnblex(a’,U)) By the inductive hypothesis, #1s a

106

well-formed schedule of X which, when applied to an imtial
state of X, can leave X i state s’ map(U) = s map(T’)

On the other hand, if U ¢ s’ write-lockholders then s write-
lockholders = s’ write-lockholders and s map = s’ map
Also, v1sxblex(a’,T) 1s write-equal to visnblex(a,T) This 18
true because any operation visible at X to T in a 1s either
visible at X to T 1n o’ o1 else 1s an operation of an access

that 1s committed at X to U n a’, and any write access that
1s committed at X to U in o’ must be commtted at X to
parent{U) (and hence visible at X to T) in o’, by Lemma 22
and the assumptin that U ¢ s’ wnite-lockholders Thus, 8
= essence(visibley(a,T)) = essence(visibley(a’,T)) By the
inductive hypothesis, 8 1s a well-formed schedule of X which,
when applied to an mitial state of X, can leave X 1n state
s’ map(T’) = s map(T’)

(4c) parent(U) 1s not an ancestor of T

Then visbley(a,T) = wvisibley(a’,T), so B =
essence(visibley(a’,T) Also T’ 1s the least ancestor of T in
s’ write-lockholders and s’ map(T’) = smap(T’) The
desired result follows immediately from the inductive
hypothesis

(5) = 1s INFORM _ ABORT _ AT(X)OF(U)
Straightforward 0O

A consequence of this 1s the following lemma, which explamns a
sense 1n which M(X) 15 a resilient variant of X

Lemma 24 Let a be a well-formed schedule of M(X) and
T a transaction which 1s not an orphan at X in @« Then
visibley(a, T} 1s a well-formed schedule of X

Proof We prove that v15|blex(a,T) 1s a schedule of X by
induction on the prefixes of visibley(a,T) The base case is
trivial So consider an event 7 in v1snblex(a,T), and the
prefix 8 of vxs1b]ex(a,T) ending with # Let 8 = §’r By the
inductive hypothesis #’ 1s a well-formed schedule of X We
must show that 7 1s enabled as an operation of X after §’

If # 1s a CREATE event this follows fiom the Input

Condition on all I/O automata, so suppose that = 1s
REQUEST _ COMMIT(U,u) Consider v1slblex('y’,U) where 7y
= 4'r 15 the prefix of a ending with 7 Let s’ denote the
state of M(X) immediately before m occurs, and let U’ denote
the least ancestor of U in s’ write-lockholders By Lemma 23,
B = essence(vnsnblex('y’,U)) 1s a well-formed schedule of X,
which can leave X n state s’ map(U’) when applied to an
mitial state By the preconditions for the operation 7 of
M(X), BCREATE(U)r 1s a schedule of X (Of course 1t 1s
well-formed) We now show that f’ and SCREATE(U) are
equieffective Since each 13 a schedule of X, 1t suffices by
Lemma 20 to show that they are write-equal Now
BCREATE(U) and visibley (7',U) are write-equal, so we need
only show that v1sxblex('7’,U) and @ are write-equal Since U
1s visible at X to T in «, any access visible at X to U mm
must be visible at X to T 1n @, so the events in v1s1blex(7’,U)
are a subset of the events in 7 Now, by the preconditions
for m as an operation of M(X) every element of s’ write-
lockholders 18 an ancestor of U So Wf
REQUEST _ COMMIT(V,v) occurs n 8’ for a write access V
to X, then Lemma 22 implies that V must be committed at
X to lca(V,U) mn +’ (since V 1s not an orphan at X in +, as 1t
1s visible at X to T in a) Thus V 15 visible at X to U 1n 7,
so REQUEST _ COMMIT(V,v) occurs 1n visible,(v',U) Also
all REQUEST_COMMIT events for write accesses 1n
visibley(7",U) occur i the same order as in «, and similarly

the REQUIEST _CONMMIT «vents for wiite accessts 1n i
oceut i the sumc orda s m a LThus vmhlt\('y’,U) and g’
are witt-cqul, complebing the proof that SCREATE(U) and
B are equicdfective Smce SCREALL(U)r 1s a well-formed
schedule of X wmd 8 = @'r 1s well-formed, the defimtion of
equieffuctive implics that 8 1s a well-formed schedule of X, as
requued Thus, by induction, visible, (e, T) 1s a well-formed

schedule of X O

5 2 Generic Scheduler

The geneiic scheduler 1s a very nondeterministic automaton It
passes requests for the creation of sub-transactions or accesses to
the appropliate recipient, passes responses back to the caller and
informs objects of the fate of transactions, but 1t may delay such
messages for arbitrary lengths of time or unilaterally decide to
abort a subtransaction which has been created Moss {Mo] devotes
considerable effort to describing a distributed implementation of
the scheduler that copes with communication falures and loss of
system mfoimation due to crashes, yet stll commits a
subtransaction whenever possible These concerns are orthogonal to
the correctness of the data management algorithms and we do not

address them here ®

The generic scheduler has nine operations

Input Operations
REQUEST _ CREATE(T)
REQUEST _ COMMIT(T,v)
Output Operations
CREATE(T)
COMMIT(T), T # T,
ABORT(T), T # T,
REPORT _ COMMIT(T,v), T # T,
REPORT _ABORT(T), T # T,
INFORM _ COMMIT _ AT(X)OF(T), T # T,

INFORM _ABORT _AT(X)OF(T), T 5 T,

These play the same roles as in the senal scheduler, except for the
INFORM _ COMMIT and INFORM_ ABORT operations which
pass information about the fate of transactions to the R/W
Locking objects

Each state s of the generic scheduler consists of six sets
s cieate _requested, s created, scommut_requested, scommitted,
s aborted and sreturned The set s commit _requested 1s a set of
{(t1ansaction,value) pairs, and the others are sets of transactions
All are empty m the initial state except for create_requested,
which s {Tg}

The operations are defined by pre- and postconditions as follows

REQUEST _ CREATE(T)
Postcondition
s create _requested = s’ create__requested U {T}

REQUEST _ COMMIT(T,v)
Postcondition
s commit_requested == s’ commt_requested U {(T,v)}

CREATE(T), T a transaction
P1econdition
T € s’ create _requested - s’ created

9The generic scheduler 1s very similar to the weak concurrent controller of [LM]
It differs shightly 1n the names of its operations, 1n the separation of return and
report operations, and in the conditions under which CREATE operations are
permitted to occur

107

Postcondition
saeted - S etatcd U {1}

COMMIT(T), T # T,
Precondition
(Tv)es commut _requested for some v
T ¢ s returned
children(T) N 8 create__requested C s’ returned

Postcondition
s committed = s’ commutted U {T}
s returned = s’ returned U {T}

ABORT(T), T # T,
Precondition

T € s’ create-requested - s’ returned
Postcondition

s aborted = s’ aborted U {T}

s returned = s’ returned U {T}

REPORT _COMMIT(T,v}), T 5 TO
Precondition

T € s’ committed

(T,v) € s’ commit _requested

REPORT _ABORT(T), T # T,
Precondition
T € s’ aborted

INFORM _ COMMIT _ AT(X)OF(T), T T,
Precondition
T € s’ commutted

INFORM _ ABORT _ AT(X)OF(T), T # To
Precondition
T € s’ aborted

Lemma 25 Let o be a schedule of the generic scheduler,
and let s be a state which can result from applying o to the
mtial state s, Then the following conditions are true

1 T 1s 1n screate _requested exactly if a contains a

REQUEST _ CREATE(T) event

2 T s m s created exactly if o contains a CREATE(T)
event

3 (T,v) 1s 1n s commt_ requested exactly if o contains

a REQUEST _ COMMIT(T,v) event

4 T 15 1n scommtted exactly if o contams a
COMMIT(T) event

5 T 1s1n s aborted exactly if a contains an ABORT(T)
event

6 s returned = s commtted U s aborted

7 s committed N s aborted = ¢

53 R/W Locking Systems

The composition of transactions with R/W Locking objects and
the generic scheduler 1s called a R/W Locking system, and 1ts
operations and schedules are called concurrent operations and
concurrent schedules, respectively 10 A sequence a of concuirent
operations 1s said to be well-formed provided that its projection at
every transaction and R/W Locking object 1s well-formed

100ote that this usage duffers from that ILM]

Lemma 26. If o 15 a concurrent schedule, then a 1s well-
formed

The following lemma 1s straightforward

Lemma 27 Let o be a concurrent schedule If T 15 a
tiansaction that 1s not an orphan in @ and T’ 15 visible to T
i a, then T” 1s not an orphan n «

Note that if « 15 a concurrent schedule then any
INFORM _ COMMIT _ AT(X)OF(T) 1s preceded by a COMMIT(T)
event (by the scheduler preconditions) and similarly any
INFORM _ ABORT _AT(X)OF(T) 1s preceded by ABORT(T)
Thus, 1if T 1s visible at X to T’ in @ then T 1s visible to T’ 1n «,
and if T 15 an orphan at X in « then T 1s an orphan in @ Thus,
visible (@, T) 15 a subscquence of visible(o,T){X when o 15 a

concurient schedule

A key property of R/W Locking systems 1s given next

Lemma 28 Let o be a concurrent schedule, T a
transaction that 1s not an orphan mn a and M(X) a R/W
Locking object Then visible(er,T}{X 1s a schedule of basic
object X

Proof Let S denote the set of transactions with COMMIT
events 1n @ Construct a sequence 8 by appending to a a
sequence of INFORM_ COMMIT _AT(X)OF(U) events,
where the U give a post-order traversal of S Since a
contains 2 COMMIT(U) event for each U m S, # 15 a
concutient schedule, and by Lemma 24 vnslblex(ﬂ,T) 1S a
schedule of X Since the INFORM __ COMMIT _ AT(X)OF(U)
events at the end of # are in ascending order, and occur for
every U that 15 wisible to T m B, wvisible,(8,T) =
visible(3,T)[X Also visible(8,T) = wisible(e,T) since
INFORM _ COMMIT operations have no influence on what
tiansactions are visible to T Thus wvisible(a,T)X 15 a
schedule of X O

8. The Proof of Serial Correctness

We prove that a R/W Locking system generates schedules that
are senally correct for each non-orphan transaction T, by taking a
concurrent schedule «, extracting the subsequence visible(a,T) of
events whose effects might have been detected by T, and then
rearranging the operations in this to give a serial schedule § The
1ear1angements permitted are those that transform one sequence
into a "write-equivalent” one

8 1 Write-Equivalence
Two sequences of serial operations, a and f, are write-equivalent
if

1 they contain the same events,
2 for each transaction U, a|U = g|U, and

3 for each basic object X, a|X and B|X are
write-equal sequences of operations of X

Thus, the rearrangements allowed include interchanging the order
of two events of different transactions or objects, and also
iterchanging the order of events of a single object, provided that
they aie not both REQUEST _ COMMITs for write accesses By
the semantic conditions of Section 4 3, such rearrangements at
objects are such that the difference between the orders 1s not
detectable by any later operations of that object This property 1s
expressed by the following lemma

Lemma 29 If a and f are write equivalent sequences, and
a/X and /X are well formed schedules of X, then for each basic
object X, X and B|X are equieffective sequences

108

.

Write-equivalence 1s obviously an equivalence 1elation We have
some straightforward results

Lemma 30 If @ and f are well-formed sequences of operations
which are write-equivalent, then f8¢ 1s write-equtvalent to e

Lemma 31 If a and A are senal schedules which are
write-equivalent and a¢ 1s a seiial schedule then 8¢ 1s a
serial schedule

8 2 A Technical Lemma
In this subsection, we prove an extension of Lemma 14, for use mn
the proof of Lemma 33, in Section 6 3

Lemma 32 Let o be a concurrent schedule, and let T and
T’ be two non-oiphan transactions with T’ visible to T mn o
Let 8 and ﬁl be serial schedules, such that 8 1s write-
equivalent to visible{e,T) and ﬂl 1s write-equivalent to
visible(a,T°) Then v = ﬂl(ﬂ - ﬂl) 1s a serial schedule which
1s write-equivalent to visible(a,T)

Proof First we prove that f° = visible(,T°) 1s write-equivalent
to f; By Lemma 10 and Lemma 8, #’ and 3, contain the same
events For any basic object X, wrte(f’|X) = write(8,|X) since
REQUEST__ COMMIT events for write accesses to X occur in
P’ 1n the same order as they occur in 8, which 1s the same as the
order they occur 1n a, which s the same as the order they occur
in B, For any transaction U which 1s vistble to T’ in a (and hence
in f), B|U = BJU = a|U, by Lemma 9 and write-equivalence,
and similarly §,|U = aJU On the other hand, if U 1s not visible
to T’ 1in a, B|U and #,{U are both empty For later use we note
that ' 1s a serial schedule, by Lemma 13, and B, 1s a serial schedule,
so '|X and B,|X are schedules of X

By Lemma 14, #'(§ - £’) 1s a senal schedule Since 8 - §°
=p-5 (as B and #, contain the same events) we deduce

from Lemma 31 and the fact tha} 3’ and ,31 are Wwrite-
equivalent, that 4 1s a serial schedule

Next, we prove that wiite(visible(a,T')|X) 1s a prefix of
write(visible{e,T)|X) for any object X So suppose that
visible{a,T) contains a REQUEST _ COMMIT(U,u) event for
a wnte access U to X which 1s not n visible(a,T’) Let
REQUEST _ COMMIT(U",u’) be a subsequent event, where
U’ 1s a wnite access to X which 1s visible to T in @ We must
show that U’ 1s not visible to T’ mn « Consider the prefix §
of a which precedes the REQUEST _ COMMIT(U’,u’), and
let s denote the state of the R/W Locking object M(X) after
6 If we denote by U” the highest ancestor of U to which U
has committed in o, then U” 1s a proper descendant of
1ca(U,T), since U 1s not visible to T’ in & Then the highest
ancestor of U to which U 1s committed at X in § must be a
descendant of U”, and so by Lemma 22 some descendant of
U” 18 m s wnite-lockholders By the preconditions for the
operation REQUEST _ COMMIT(U’,u’) of M(X), U’ must be
a descendant of U”, and therefore U’ 1s not commtted 1n o
to lea(U",T) = lea(U”,T") = lca(U,T’) Therefore U’ 1s not
visible to T” in a, establishing that wiite(vistble(a,T°)}X) 15 a
prefix of write(visible(a, T)|X)

Now we show that ~ 1s write-equivalent to 8 They cleaily
contain the same events, since every event of ﬂl occurs 1n B
(because any operation visible to T’ in a 15 also visible to T
mn a by Lemma 7) If P 1s a basic object, wiite(g,|P) =

wiit(visible{a, I’)|I”} 15 a prefix of wite(visible{a, T)|P) ==
witte(8|P), so that wnt(+|P) = (wnlte(ﬂllp))(wrlte(ﬁlP) -
wte(8,|P)) = wite(dP) If P 1s a tiansaction that 1s
visible to T’ m a tha §|P = vistble(a,)P = alP =
vistble(a, TP == P, so 4P = (B,IP)(BIP - B,IP) = BIP

On the other hand, iIf P 15 a transaction not visible to T 1n
o then B,|P 1s empty, so tuwvially ~|P = 8|P

Since + 15 wiite-equivalent to A, 1t 1s wiite-equivalent to
visible(e, T) O

6 3 The Main Results

We are now ready to prove that R/W Locking systems are

senally correct for every transaction that 1s not an orphan

We

actually state a stronger property, which carries useful mvariants

through the induction

Lemma 33 Let a be a concurrent schedule, and T any
transaction which 1s not an orphan in @ Then there 15 a
serial schedule @ which 1s write-equivalent to visible{a,T)

Proof The proof follows the outlines of that of the man
theorem of [LM] We proceed by induction on the length of
a As before, let « = a’sr We must show that there 1s a
serial schedule g which 1s write-equivalent to visible(a,T)
We can assume that transaction(s) 1s visible to T mn «
There are seven cases, and 1n each we relate visible(a,T) to
visible(a’,U) for one or more transactions U, and bwld B
from serial schedules write-equivalent to visible(a’,U)

(1) 715 an output operation of a non-access transaction T’
Since T 1s not an oiphan 1n o', the inductive hypothesis
implies the existence of a serial schedule £° which 15 wnite-
equivalent to visible(a’,T) Let 8 = @'t We will show that
8 1s a serial schedule that 1s write-equivalent to visible(a,T)
By Lemma 1, to check that 8 1s a serial schedule we need
only check that @’n|T’ 1s a schedule of T° However gl =
visible(a’, T)|T’ = o’|T’ by Lemma 9 (since T’ 1s visible to
T) Thus 8'7|T" = o’n]T’ = a|T’ which 15 2 schedule of T’
Thus, 8 1s a serial schedule

By Lemma 11, visible{a,T) = visible(a’, T} and since 8’ 1s
write-equit alent to visible{e’,T), we may apply Lemma 30 to
deduce that 3 1s write-equivalent to visible(a,T)

(2) = 15 an output operation of an access T’ to a R/W
Loching object M(X)
Define §’ and # as in the previous case As before, to check
that £ 1s a serial schedule, we need only check that #'=|X 1s a
schedule of X However, Lemma 29 implies that A’[X 1s
equieffective to and contains the same events as
wisible(a’, T)]X Now wisible(a’,T)}n|X = wvisible(a’m, T)[X =
visible(e, T)]X which 1s a schedule of X by Lemma 28 Thus
by Lemma 10, #'r|X 1s a schedule of X Thus, 3 1s a serial
schedule

Since visible(a,T) = wisible(a’,T)x, B = B'x, and B 1s
wiite-equivalent to visible(a’,T), we may apply Lemma 30 to
deduce that 8 1s write-equivalent to visible(a,T)

(3) m1s a CREATE(T’) operation
Then transaction(r) = T’, and so T’ 15 visible to T in @ By
well-formedness and the scheduler preconditions, any
operation of a proper descendant of T’ must be preceded by
a REQUEST_ CREATE for a child of T’, and by well-
formedness any operation of T’ must follow CREATE(T’)
Thus, 7 15 the first event whose transaction 1s a descendant
of T’, so T’ = T Now, parent{T) 1s not an orphan in «, and

109

hence in o, so the inductive hypothesis 1mplies the existeuce
of a serial schedule B which s write-equivalent to
visible{a’,parent{1)) Let 3 = B'r We will show that §1s a
serial schedule that 1s write-equivalent to visible(a,T)

To show that 8 1s a serial schedule, we need only chcck

that 8’m 1s a schedule of the sertal scheduler Let s’ be the
state of the serial scheduler after 8°, and s” the state of the

generic scheduler after @’ Since 1s enabled 1n 5", Lemmas
25 and 4 and the preconditions 1mply that 7 is enabled in s’
hence 8’7 15 a schedule of the serial scheduler, and g 1s senal
schedule

Since visible(or,T) = visible(a’,parent(T))r, 8 = F’r and B’
1s write-equivalent to visible(a’,parent(T)), we may deduce
from Lemma 30 that 8 1s write~equivalent to visible(a,T)

(4) 715 a COMMIT(T’) operation

Then T” = parent(T’) 1s visible to T 1 «, since
transaction(n) = T” Then COMMIT(T") does not occur 1n
o’, and so T must be a descendant of T {since T” 15 visible
to T) Also, by Lemma 27, T*' 1s not an orphan in « and so
also T°? 1s not an orphan 1n o’ From this, we deduce that
T' 15 not an orphan mm o’ We distinguish two cases,
depending on whether T 1s a descendant of T’ or not

If T 1s a descendant of T’, the argument 1s straightforward
If T 1s not a descendant of T, the inductive hypothesis
yields three seral schedules, 8’, " and 5, which are write-
equivalent to visible(a’,T’), visible(a’,T) and visible(a’,T”)
respectively Let ﬂl = " - 4 and ﬂ2 = g7 -5 Let §=
'1/3‘7r/32 We show that 8 1s a serial schedule that 1s write-

equivalent to visible(a,T) That S 1s serial follows from
Lemma 18, provided we can show that

(4a) 'yﬂlw 15 a serial schedule,

(4 b)"/ﬂ2 18 a ser1al schedule,

(4¢) '7/31 == vnsxble('yﬂl,T’),

(4 d)98, = visible(6,,T),

(4e) v= vxsxble(fyﬁl,’l‘”) = vxslble(qﬂz,T") and

(4 f) if any basic object X has an output operation n 8,
then every operation 1n ﬂl|X 1s transparent

(4 2) By Lemma 32, 96, 1s a serial schedule (and 1s write-

equvalent to visible(a’,T’)) We must therefore show that =
is enabled at the seral scheduler after 7}91 The serial

scheduler preconditions and Lemma 4 show that we must
prove that REQUEST_COMMIT(T'v) occurs in ~f, for
some v, that no return for T’ occurs n 78, and that for
every child U of T’ with a REQUEST _ CREATE(U) in 3,
there i1s a return event in '161 Since 7 15 enabled in the

generic scheduler after a’, each of these 1s true with o’
replacing fyﬂl Since all these operations are visible to T’ 1n

a’, all these statements are also true of visible{a’,T") and
thus of the write-equivalent sequence '7/91, as required Thus

Y8 m1s a ser1al schedule We also note that Lemma 30 proves
that 87 15 visible(a,T’) =
visible(a’, T)

write-equivalent to

(4b) By Lemma 32, 7}92 1s serial (and write-equivalent to
visible{a’,T}}

Parts (4 c)-(4 e) are immediate

(4f) We prove that 1f a basic object X has an output
operation in ﬂz then no event m ﬂI]X 1S a
REQUEST _ COMMIT for a write access Suppose this were
false Then §, contamns a REQUEST_ COMMIT(V,,v,) for

V1 a write access to X, and }92 contains a
REQUEST _ COMMIT(V,,v,) for V, an access to X Since
v, s vistble 1n a to T° but not to T”, V| must be a
descendant of T’, and not an orphan in «, and V1 must not
be committed at X to T” in o By Lemma 22, some
descendant of T’ 1s 1n s write-lockholders, where s 1s a state
of M(X) after applymg « Simlarly Vz must be a
descendant of some sibling U of T’ but not commtted at X
to T in a, so by Lemma 22, some descendant of U 1s 1
s readlockholders U s write-lockholders But these two
statements about lockholders contradict Lemma 21

Now we must prove that G 1s write-equivalent to
visible(a,T) Since any transaction visible to T 1n « 1s either
visible to T in o’ or visible to T’ 1n o’ and 1f both then 1t 1s
visible to T’ 1n o’, 1t 15 clear that 8 and visible(a,T) contain
the same events If P 1s a basic object, erther ﬂ2 contains no
output operations of P or else no operation n ﬂl|P 15 a
REQUEST __ COMMIT for a write access
write(f,{P) 15 empty, and since
wnite(visible(a’, T7)|P), we have
write(visible(a,T)|P)
empty, and since write(78,|P) = wrnite(visible(a’, T)|P), we
agamn have write{8|P) = write(visible(a,T}|P) If P 1s a non-
access transaction which 1s not visible to T 1n @, then no
operations occur at P in either 8 or visible(a,T) For P any
non-access transaction which 1s visible to T m «, either P 1s
visible to T 1n @’ or P 1s visible to T’ 1n o’ In the first case,
B,|P 1s empty so S|P = 4By #|P == visible(a,T*)|P as we saw
above that '7ﬁl1r and visible{a,T’) are write-equivalent, and
visible(a,T)|P = a|P = wisible(a,T)|P
second case ﬂ17r|P 1s empty and B[P =

In the first case
wnte(vﬂlfr]P) =
write(8|P)
In the second case write(4,[P) 1s

i

Similarly 1n the
1B,IP =

visible(a’, T)|P = wisible{a,T)[P In every case, we have
checked that S|P = visible(e,T){P Thus 8 and visible{e, T)
ale write-equivalent

(5) m1s an ABORT(T") operation

Then T” = parent(T’) 1s visible to T i @, since # has
tiansaction T” Then COMMIT(T”) does not occur mn o’
and so T must be a descendant of T"’ (smnce T” 18 visible to
T) Also by Lemma 27, T” 1s not an orphan mn & and so
also T 1s not an orphan 1n o’ Since T 1s not an orphan mn
a, T 1s not a descendant of T’ Thus the inductive
hypothesis yields two serial schedules, 8’ and ~, which are
write-equivalent to visible(o’,T) and wisible(a’,T”)
respectively Let ﬂ‘ = f'-q Let § =B We show that
B 1s a serial schedule that 1s write-equivalent to visible{a,T)
That B 1s serial follows from Lemma 19, provided we can
show that

(5 a) ym 1s a serial schedule,

(5 b)7B, 15 a senal schedule,

(5¢) 18, = v151ble('7ﬂ1,T),

(5 d)y = visible(~,T") = vlsxble('yﬂl,T”)

(5 a) Since v 15 a serial schedule, we must show that = 1s
enabled at the seral scheduler after v The senal scheduler

110

pr;condltxons and Lemma 4 show that we must prove that
REQUEST_ CREATE(T’) occurs m =+, and that no
CREATE(T’) ot ABORT(T") occurs m vy Since 7 15 enabled
mn the generic scheduler after o', o’ contams a
REQUEST _ CREATE(T’) event, and since this operation
has transaction T”, REQUEST_CREATE(T’}) 15 m
visible(a’,T’) and hence 1n 4 Thus, T? 1s not commutted 1n
a’, so that any CREATE(T’) event in a’ 1s not vistble to T”,
and so does not occur 1n visible(a’,T”) and hence does not
occur mm v There 1s no ABORT(T’) event m a’, so
ABORT(T’) does not occur in v Thus 47 15 a senal
schedule We uso note that Lemma 30 proves that vr 1s
write-equivalent to visible(e,T’) = wvisible(a’,T")7, since 7
and visible(a’, T’} are wnte-equivalent

(5 b) By Lemma 32, 7B, 15 a set1al schedule (and 1t 15 write-
equivalent to visible(a’,T))

Parts (5 ¢) and (5 d) are 1mmediate

Now we must prove that A 1s write-equivalent to
visible{er,T) Since any transaction visible to T m o 1s
visible to T 1n o’, and either visible to T" 1n o’ or not, 1t 1s
clear that 8 and visible(a,T) contain the same events If P 1s
a basic object, since write(y,[P) = write(visible(a’, T")P)
we have wite(8|P) = wnite(visible(a,T)|P) For P any non-
access transaction, B[P = Af|P = wvisible(a’T)IP =
visible{ar, T)|P, since n|P 1s empty and '1/91 and visible(a’,T)
are write-equvalent This completes the demonstration that
B and visible(a,T) are write-equivalent

(6) m1s REPORT _ COMMIT(T’,v)
Since T 1s not an orphan 1n o’ there 1s a serial schedule §’
which 1s write-equivalent to visible(a’,T) Put 8 = f'= By
the preconditions of the generic scheduler and Lemma 25,
REQUEST _ COMMIT(T’,v) and COMMIT(T’,v) occur n
«’ Since the report 1s in visible(a’,T), parent(T’) 1s visible
to T 1 a’, thus, COMMIT(T",v), and hence

REQUEST _ COMMIT(T’,v), are in wvisible(a’,T) So

COMMIT(T’,v) and REQUEST _COMMIT(T’,v) occur in
A" The senal scheduler preconditions and Lemma 4 imply
that 7 15 enabled after 8’ at the serial scheduler, and so by
Lemma 1 and Lemma 30, 8 1s a serial schedule that 1s wiite-
equivalent to visible(a,T) = visible(a’, T)m

(7) 7 1s REPORT _ ABORT(T’)
This 15 just like case (6)

Thus 1n every case we have produced a serial schedule 8
that 1s wnite-equivalent to visible(a,T) 0O

Theorem 34+ Every concurrent schedule 1s serially coriect
for every non-orphan non-access transaction

Proof Let T be a transaction that 1s not an orphan n the
concurrent schedule &« By Lemma 33 there 1s a serial
schedule 8 that 1s write-equivalent to visible(or,T) Then «|T
= visible(a,T)|T by Lemma 8, and by write-equivalence,
visible(a, T)|T = B|T O

Corollary 35 Eveiy concurrent schedule 1s senally
correct for T0

7. Acknowledgements
We thank the members of the Theory of Distributed Systems
seminar at MIT for many helpful suggestions

8 References

(A}

[BBG]

[BBGLS]

[BG]

g

[EGLT]

[Got

|G1]

%
(HLATW)

J

[Ho]

[Ko]

(8]

[LILILSW]

Allchin, JE, "An Architecture for Rehable
Decentralized Systems®”, Ph D Thesis, School of
Info and Comp Sci, Georgia Institute of
Lechnology, September 1983

Beeri, C, Beinstein, P A, and Goodman, N,
“A Model for Concurrency in Nested Transaction
Systems,” Technical Report, Wang Institute
T'R-86-03, March 1986

Beer:, C, Bernstemn, P A, Goodman, N, Lai,
M Y, and Shasha, D E, ®"A Concurrency
Control Theory for Nested Transactions,* Proc
1988 Second Annual ACM Symposium on
Principles of Distributed Computing, Montreal,
Quebec, Canada, August 17-19, 1983, pp 45-62

Bernstetn, P A, and Goodman, N,
“Concurrency Control in Distributed Database
Systems," ACM Computing Surveys 13,2 (June
1981), pp 185-221

Davies, C T, “Recovery Semantics for a DB/DC
System,* Proc ACM National Conference 28,
1973, pp 136-141

Eswaren, K P, Gray, J N, Lorie, R A, and
Traiger, I L, “The Notions of Consistency and
Predicate Locks 1n Database Systems,*
Communaications of the ACM, Vol 19, No 11,
November 1978, pp 624-633

Goree, J, *Internal Consistency Of A
Distributed Transaction System With Orphan
Detection,* MS Thesis, TR-286, Laboratory for
Computer Science, MIT, January 1983

Gray, Y, “Notes on Database Operating
Systems,” 1n Bayer, R, Graham, R and

Seegmuller, G (eds), Operating Systems an
Advanced Course, Lecture Notes in Computer
Science, Vol 60, Springer-Verlag, 1978

Herhihy, M, Lynch, N, Merritt, M, and Wehl,
W, “On the Correctness of Orphan Elimnation
Algorithms,* submitted for publication

Hoare, C A R, “Communicating Sequential
Processes,"” Prentice Hall International, 1985

Korth, H F, “"Deadlock Freedom Using Edge
Locks,* ACM Trans on Database Systems, Vol
7, No 4, December 1982, pp 632-652

Kedem, Z , and Silberschatz, A, *Non-two phase
locking protocols with shared and exclusive
locks,* Proc Int Conference on Very Large
Data Bases, 1980, pp 309-320

Liskov, B, Herhhy, M, Johnson, P, Leavens,
G, Scheifler, R, and Weihi, W, *Prehmmary
Argus Reference Manual," Programming
Methodology Group Memo 39, October 1983

(LS]

M)

LT]

[Ly]

[MGG]

[Mo]

i3

[R]

(T]

[We]

111

Lishov, B, and Schefler, R, "Guaidins and
Actions Lingwstic Support for Robust,
Distributed Piograms®, ACA! Tiansactions on
Programnung Languages and Systems Vol 5
No 3, July 1983, pp 381-404

3

Lynch, N, and Meimitt, M, *Introduction to the
Theory of Nested Transactions," Tcchnical
Report MIT/LCS/1R-367, MIT Laboratory for

Computer Science, Cambridge, MA | July 1986

Lynch, N, and Tuttle, M, *Correctness Pioofs
for Distributed Algorithms," 1n progress

Lynch, N A, “Concurrency Control For
Resilient Nested Transactions,” Advances in
Computing Research 3, 1986, pp 335-373

Moss, J E B, Gnffeth, N D, and Graham,
M H, *Abstraction 1n Concurrency Control and
Recovery Management" Technical Report 86-20,
COINS University of Massachussetts, Amhest,
MA |, May 1986

Moss,] E B, “Nested Transactions An
Approach To Rehable Distributed Computing,*
PhD Thess, Technical Report
MIT/LCS/TR-260, MIT Laboratory for
Computer Science, Cambridge, MA , Apnl 1981
Also, published by MIT Press, March 1985

Papadimitriou, C H, “"The Serializability of
Concurrent Database Updates," J ACM Vol 26,
No 4, October 1979, pp 631-653

Reed, D P, “Nammng and Svnchronization 1n a
Decentralized Computer System,* Ph D Thesis
Technical Report MIT/LCS/TR-205, MIT
Laboratory for Computer Science, Cambridge,
MA 1978

Thomas, R H, *A Majority Consensus
Approach to Concurrency Control for Multiple

Copy Databases,* ACM Trans on Database
Systems, Vol 4, No 2, June 1979, pp 180-209

Wehl, W E, "Specification and Implementation
of Atomic Data Types,* Ph D Thesis, Technical
Report/MIT/LCS/TR-314, MIT Laboratory for
Computer Science, Cambridge, MA, March
1984

