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1 In1 roductton 

In the pdst few years there has been consrc’er&le research on 

concurrency control, tncludmg both systems design and 

theoretIcal study The problem IS roughly as follows D&i in a 

large (centrahzed or dlstrlbuted) database IS assumed to be 

accessible to users VIM transactlons, each of wh1c.h IS a sequential 

program which can carry out many steps accessmg lndlvldual 

data objects It 155 Import& that the transactions appear to 

execute “atomically”, I e without intervening steps of other 

transactions However, It IS also desirable to permit as much 

concurrent operation of different transactIons as possible, for 

efficiency Thus, it IS not generally feasible to mslst that 

transactions run completely serially P notion of equivalence for 

executions IS defined, where two executions are equivalent 

provided they “look the same” to all transactions and to all data 

objects The senallzable executions are lust those which are 

equivalent to serial executions One goal of concurrency control 

design IS to insure that all executions of bansactions be 

serlallzable 
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Several characterrzatlon theorems have been proved for 

serlallzablllty, generally, they amount to the absence of cycles In 

some relation descrtbmg the dependencies among the steps of 

the transactlons A very large number of concurrency control 

algorithms have been devised Typlcal algorithms are those based 

on two phase locking [EGLT], and those based on tlmestamps 

[La] Although many of these algonthms are very different from 

each other, they can all be shown to be correct concurrency 

control algorithms The correctness proofs depend on the 

absence of cycles characterlzatlons for serializability 

More recently, it has been suggested [Re, M, LIS] that some 

additional structure on transactlons might be Useful for 

Programmmg dlstrrbuted databases, and even for programmrng 

more general dlstrlbuted systems The suggested structure 

Permits transactlons to be nested Thus, a transaction IS not 

neCeSSarllY a SeqUenhal program, but rather can consist of 

(sequential or concurrent) sub transactlons The mtenhon IS that 

the sub transactlons are to be serialized with respect to each 

other, but the order of seriallzatlon need not be completely 

speLlfled by the VJI~W of the trdnsdctioii Ttlls Ilex~b~l~ly dlluws 

more concurrency In the lmplementatlon than would be possible 

with a single level trdnsaction structure conslstmg of scquentldl 

transactions The general structure allows transactlons to be 

nested to any depth, with only the leaves of the nesting tree 

actually performing accesses to data 

Transactions are often used not only as a unit of Concurrency, 

bUt also as a umt of recovery In a nested transaction structure, It 

IS natural to try to localize the effects of failures wlthm the closest 

possible level of nesting In the transactIon nesting tree One Is 

naturally led to a style of programming which permits a transaction 

to create children, and to tolerate the reported failure of some of 

Its children, using the InformatIon about the occurrence of the 

failures to decide on Its further actlvlty The intention IS that failed 

transacttons are to have no effect on the data or on other 

transactlons This style of programming IS a generalization of the 
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“recovery block” style of [Ra] to the domatn of concurrent 

programmmg Indeed, this style seems to be especially sultable 

for programming dlstnbuted systems, smce many types of failures 

of pieces of programs are likely to occur In Such systems 

Reed IS currently lmplementmg a system which uses multlple 

versions of data to Implement nested transactlons which tolerate 

failures of sub transactions Moss has abstracted away from 

Reed’s specific Implementation of nested transactIonS, and has 

presented a clear mtuitlve descnptlon of the nested tranSactIon 

model He has also developed an alternatlve Implementation of 

the nested transaction model, based on two phase locking This 

model and lmplementatlon are fundamental to the Argus 

dlstnbuted computing language, now under development by 

Liskov’s group at MIT 

The basic correctness crltena for nested transactlons seem to 

be clear enough, mtuitlvely, to allow implementors a sufficient 

understanding of the requirements for their lmplementatlon 

However, some subtle issues of correctness have arisen in 

connection wrth the behavior of failed sub transactions For 

example, the Argus group has decided that a pleasant property for 

an implementation to have IS that dll transacttons, mcludmg even 

“orphans” (subtransactions of failed transactlons), should see 

‘torlsistant vkws of the ddtd (I e views that wuld wcilr duiiny 

an execution in which they are not orphans) The Implementation . 
goes to conslderdble lengths to try to insure this property, but It IS 

difficult for the Implementors to be sure that they have succeeded 

It seems clear that some basic groundwork IS needed before 

such propertles can be proved Namely, the theory already 

developed for concurrency control of single level transaction 

systems without failures needs to be generalized to incorporate 

considerations of nesting and failures The model needs to be 

formal, m order to allow careful specification of all the correctness 

requirements the simple and mtultive ones, as well as the rather 

subtle ones 

TIIIS paper begins to develop this groundwork First, a simple 

“action tree” structure IS defined, which describes the ancestor 

relabonshlps among executing transactions and also describes 

the views which different transactlons have of the data A 

generalization of senallzability to the domam of nested 

transactions with failures, IS defined A characterization IS gtven 

for this generallzatlon of seriallzabrlity, in terms of absence of 

cycles In an appropriate dependency relation on transactions A 

slightly slmpllfled version of Moss’ algorithm IS presented in detail, 

dnd a careful correctness proof IS given 

The style of correctness proof for the algorithm appears to be 

qul;e interesting in its own right The description of the algorithm 

IS presented In a series of levels, each of which IS an “event state” 

algebra with unary operations, and each (but the first) of which 

“simulates” the previous one The basic problem statement IS 

given as the highest level algebra, and successively lower levels 

provide increasing amounts of lmplementatlon detail In 

pdrticular, both the problem speclflcatlon and the Implementation 

are presented as the same kind of mathematical object, an event 

state algebra At every level, we want to present algonthms with 

the maximum possible amount of nondetermmlsm consistent with 

correctness, not forcing any unnecessary implementation 

declslons Therefore, we do not describe algorithms In the usual 

way, using programs with specified flow of control Rather, we 

present algorithms as collections of events with correspondmg 

precondltlons 

Olle IlOVe! d5,M,t C,t ble 5IIIlU~dtlCJil5 We Ube c]lk2l~llt flUIll the 

usual notlons of ‘abstractlon” mappings, IS lhdt ow simul&ons 

map smgle lower level st,ltcs to m of higher level states rather 

than just single higher level states (We cdl1 them “posslbllities” 

mappings ) This extra flexlblllty seems quite convenient for many 

implementations, allowmg the more “concrete” algebra 

sometimes to contain less mformatlon than the more “abstract” 

algebra For example, It might be easy to prove correctness of an 

algorithm which maintains lots of auxiliary mformatlon The 

correctness of an algorithm which maintains less information 

could be proved, m our model, by showing that it simulates the 

algorithm which maintains the auxiliary mformatlon 

While possibllltles mappings are convenient for proving 

correctness of ordinary centralized algonthms, they produce their 

greatest payoff for distributed algorithms Namely, a distnbuted 

algorithm IS described as a speclal case of an event state algebra, 

a “distributed algebra” In a distributed algebra, the state set IS 

lust a Cartesian product, with event preconditions and transltlons 

defined componentwise To show that a distributed algebra 

simulates some other “abstract” algebra, it suffices to define an 

appropriate possibilities mappmg from the global states of the 

distributed algebra, to sets of states of the abstract algebra It 

turns out to be extremely natural to descnbe such a mapping by 

first describing a posslbllltles mapping from the local state of each 

component to sets of abstract states The image of a local state 

under this mapping just represents the Set of possible global 

states consistent with the knowledge of the particular component 

The posslblllties for the entire distr@uted algebra are simply 
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obtamed by takmg the mtersectlon of the posslbllltles consistent 

with the knowledge of all the components 

It appears that thts techruque extends to give natural proofs of 

many algorithms, especially distributed algonthms, and thus 

warrants further mvestlgatlon Goree [G] presents a more 

complete (and slightly more general) development of the 

technique than IS presented In this paper 

The defmltlons given in this paper express the most 

fundamerltal correctness requirements, but not subtle conditions 

such as correctness of orohans’ views Issues of fairness and 

eventual progress dre not dddresscd, but r,lLIiLr only sdft.ty 

propertlcs, serial~zdb~lity in particular Future work Involves 

erttlndmg the framework presen’k>d here to allow ewpresslon of 

these other properties, dnd to allow correctness proofs for the 

dlfflcult algorithms which guarantee these properties Some 

further work In these directtons has already been carried out 

Goree [G] has given a defmitlon for correctness of orphans’ views, 

and has given a correctness proof for a complicated algorithm 

used In the Implementation of Argus to maintain correctness of 

orphans’ views m the face of transaction aborts 

Other related work IS that of Stark [S] He IS carrying out a very 

general treatment of event state algebras, incorporating 

considerations of modularity to a much greater extent than IS 

present rn this paper, and handling fairness and eventuality 

properties as well as safety properties 

2 Event-State Algebras 

In this section, we describe the event state algebra framework 

An event state alqebra -4 = <A, 0, n>, consists of a set A of 

m, an element D E A, the mltlal state, and a set n of partial 

unary operations In this paper, we wilt usually refer to an event 

state algebra as simply an alsebra 

Let a be a state, and let CJ = (n,, ,nk) be any finite sequence 

of operations chosen from OP Then (1, IS said to be m from a 

provided b = nk(nk ,( (n,(a)) ) IS defined, in this case, b IS 

called the & of @ applied to a An infinite sequence of 

operations IS said to be ya&J from a provided all its finite prefixes 

are vahd from a We say that Cp IS m provided It IS valid from o, 

and the-of Cp IS defined to be the result of 0 applied to u We 

write a l- b provided there IS some finite @, valid from a, for which 

b IS the result of Q, applied to a b IS comoutable provided D I- b 

Now assume A = <A, CJ, II> and A’ = <A’, u’, n’> are two 

algebras An mteroretatlon of A by A’ IS a mapping h n’ -+ n U 

{A) We extend h to map operation sequences of A’ to operation 

sequences of J( m the obvious way (deleting occurrences of h) 

An Interpretation, h, IS a simulation of A by A’ provided that h(@‘) 

IS a vnhd ooeratlon sequence for A whenever @’ IS a valid 

operdtion sequence for A’ 

LernniB 1 Assume that A, ,2’ and A” are 

algebras, that h IS a sirnuidtlon of ,t by A’ and h’ IS d 

simulation of A’ by A” Then h 0 h’ IS a slmulatlon of A 

by A” 

Proof Straightforward 

0 

Next, we give a sufftcient condltlon for a mapping h to be a 

slmulatlon Let h A’ U 11’ + V(A) U I1 U {A) be such that h(a’) E 

‘4A) for all a’ E A, and h restricted to n’ IS an Interpretation Then 

h IS a pm maooinq from A’ to A provtded ihe following are 

true 

(a) u E h(o’) 

Assume n’ E rI Assume a and a’ are computable in d and 

A’, respectively, and a E h(a’) Assume a’ E domam(n’) and b’ = 

n’(a’) 

(b) If h(n’) = n E ll, then a E domam(n) and n(a) E h(b’) 

(c) If h(n’) = A, then a E h(b’) 

Lemma 2 Let h be a posslbllities mapprng from d 

to A If @’ IS a valid operation sequence for A’, and 

h(V) = 0, then @ IS a valid operatton sequence for A 

In addition, if Cp’ IS finite, a’ IS the result of 4)’ and a IS 

the result of @, then a E h(a’) 

Proof By induction on the length of a’ 

cl 

Lemma 3 Any posslbllltles mapping from A’ to A 

IS a simulation of A by A 

Proof Immediate by Lemma 2 

cl 

If we think of A’ as a “concrete” algebra, and A as a more 

“abstract” algebra, then we see that a possibilities mapping 

allows single “concrete” states to be mapped to sets of “abstract” 

states rather than lust single abstract states 

An algebra, A = <A, O, n>, IS sard to be distributed over a fmite 

index set I usmg d, provided Lhnt A IS the Cartesian product of sets 
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A,, I E I, d IS a mapping, d II -+ I, CJIVIII~ the doer” of e&h 

operation, and the followmg two conclltionn are satlslled 

(Local Domain) Let I - d(7r) If a, b E A and a, = b,, then a E 

domain(n) if and only If b E domam(n) 

(Local Changes) If a, b E domain(n), a’ = n(a), b’ = n(b) and 

a, = b,, then a’, = b’, 

We now consider the simulahon of an algebra by a dlstnbuted 

algebra Namely, we defme a “local mapping”, from the local 

state of each component of the distnbuted algebra to a set of 

abstract states The result of this mappmg should be thought of 

as the set of possible abstract states, as far as a particular node 

can tell The mapping from a global state of the distributed 

algebra can then be defined to yield the mtersection of the Images 

of all the component states The condlttons we require for local 

mappings are lust those which guarantee that the derived global 

mapping IS a posslbllltles mapping 

Let A’ = <A’, u’, Jl’> be an algebra, dlstnbuted over I usmg 

d Let A = <A, O, fl> be any algebra Let h be an mterpretatlon 

from A’ to A For each I 6 I, let h, A’ + q(A) be such that h I 
depends on A’, only I e if a, = b, then h,(a) = h,(b) Then we say 

that h and h,, I E I, form a w maoomq from A’ to A provided the 

following condltlons are satisfied 

(a) For all I E I, u E h,(o’) 

Assume n’ E Ill, d(n) = I Assume a and a’ are computable In 

A and A’, respectively Assume a E h,(a’) Assume a’ E 
I 

domam(n’), and b’ = n’(a’) 

(b) If h(n’) = n E n, then a E domain(n) 

(c) Assume h(n’) = n E n, J E I and a E h/a’) Then n(a) E 

hi(b’) 

(d) Assume h(n’) = A, f E I and a E h,(a’), Then a E h/b’) 

Lemma 4 Let A and A’ = <A’, u’, ll’> be algebras, 

where A’ IS dlstnbuted over I Assume that h and h,, I E 

I form a local mappmg from A’ to d Extend h to A’ U 

n’ by defmmg h(a’) = fl, E ,h,(a’) Then h IS a 

posslbllltles mappmg from j4’ to A 

Proof We che(,k the thiee properttes of the 
posslbllltles mapping defmltlon 

(a) To see that u E h(u’), it suffices to r,how that (I E 

h,(u’) for all I E I But this IS exactly the statement of 

property (a) of the local mapping defmitlon 

Now we assume the hypotheses supplied for parts 

(b) and (c) of the posslbilitles mapping defmltlon 

Assume also that d(n’) = I 

(b) Since a E h(a’), it IS obvtous that a E h,(a’) 

Property (b) of the local mapping defmition tmplies that 

a E domain(n) In order to show that n(a) E h(b’), it 

suffices to fix an arbitrary ) E I and show that n(a) E 

h,(b’) Since a E hja’), the needed property follows 

from (c) of the local mapping defmltlon 

(c) It suffices to show that a E’h,(b’) for any l E 

I This follows as in the preceding argument from (d) of 

the local mapping definition 

cl 

If the defmltlons in this section are to be used in correctness 

proofs for the widest possible class of algorithms, they will 

probably need to be generalized In particular, it seems 

appropriate to permit single operations of a more concrete 

algebra to be interpreted by sequences of operations of a more 

abstract algebra (See Goree (G) for defmlttons and uses for this 

generalization ) Also, sets of initial states rather than single initial 

states are probably useful 

3 Action Trees 

In this section, basic defmltions are given for action trees and 

senallzabMy 

Let &be a universal set of data objects For each x E obf, let 

valuesfx) denote the set of values x can assume, including a 

distinguished mitral value m) A w assianment IS a total 

mapping, f, from obj to values(obf), having the property that f(x) c 

values(x) for all x E obj 

Let & be a universal set of actions (I e transactions) Let u 

be a dlstmgulshed action We assume that the actions are 

configured a priori into a tree, representing their nesting 

relatlonshlp, with U as the root For every A E act {U}, let 

parent(A) denote a umque parent action for A Let m denote 

((A,B) E act* parent(A) = parent(B)} If A E act, let children(A) 

denote {B E act parent(B) = A) If A, B E act, let Ica(A.B) denote 

the least common ancestor of A and B If A E act, let desc(A) 

(resp u)) be the set of descendants (resp ancestors) of A Let 

prooer desc(A) (resp prooer ancfA)) be the set of proper 

descendants (resp ancestors) of A 
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It might be conventent for the reader to thmk of this a prfon 

configuration of all possible actions into a tree as a preassigned 

“nammg scheme” for actlons That IS, the “name” of any action IS 

assumed to carry within it mformatlon whtch locates that action in 

this universal tree of actions In any particular execution, only 

some of these possible actlons will be “activated” The (virtual) 

action U, the parent of all top level acbons, has been added for the 

sake of uniformity 

Let m E siblings be any ftxed partial order, representrng 

sequential dependency If (A,B) E seq, it means that A IS 

constrained to run before B For the sake of notational slmpllaty, 

we are assuming this relation IS also fixed a pnon, this amount to 

assuming that the “name” of any action carries within It 

information about which siblings the action can assume have 

completed The use of an arbitrary parbal order IS a generallzatlon 

of both the total order usually specified for the steps which occur 

within a single level transaction, and the unconstrained order 

usually specified among the transactions themselves We also 

assume a priori determination of which actions actually access 

data, which objects they access and the functions they perform on 

those obfects let gccesses denote the leaves of the tree described 

above (We assume that U @ accesses, so that the set of actlons IS 

nontnvlal) Let w accesses + obf be a fIxed function If 

object(A) = x, we say that A E an access fn x For A E accesses, 

let godate values(obfect(A)) + values(obfect(A)) be a fixed 

function Let gameoblect denote {(A,@ E accesses * object(A) = 

obfect(B)} 
I am departmg from the usual approach in senallzahlllty theory 

IJY IIIL/U‘,III~I I Il~llh.l~kif lur Ictlon (ralher 111dil till ulilnlbi,,rctc4 

functlonj ir lhi f6hnitlon of dn dLtion which C1ccesses datd Th1-i 

15 beCd1 52 l \~rlt to ilale correLtnesr, condltlons In terms of 

preserving ccrtam relationships among the datd values seen and 

wnlten Thus ’ semantic” style of correctness condltron seems to 

me to be more basic than the usual correctness defmltlons In 

serializablllty theory, m th,tt tt says less to constram the 

implementation 

Note that the usual read and write operations of serializability 

theory can be regarded as specidl case; of my accesses Namely, 

“read accesses” have the Identity frmction as their assoclcated 

update function, while “write accesses” have an a%Oclated 

update function which IS a constant function 

Next, I give a way of descnbmg a “snapshot” of a particular 

executton, using a structure called an “action tree” An action 

tree can be regarded as the generallzatlon of the log from ordinary 

senallzabillty theory 
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An w &e T has components -, active,, 

committed,, aborted, and UT, where 

vertices, IS a fmlte subset of act, closed under the parent 

operation If A E vertlcesT {U}, then parent(A) E vertlcey, 

(These represent the actlons whtch have ever been created during 

the current execution ) 

active,, commlttedT and aborted, comprise a partltlon of 

vertices,, (These classifications indicate the current status of 

each action that has ever been created When a non access 

action IS first created, it IS classlfled as active At some later time, 

its classification can be changed to either committed or aborted 

By “committed”, we mean that the actlon IS committed relative to 

Its parent, but not necessanly committed permanently Permanent 

commit of an action would be represented by classlflcatlon of all 

ancestors of the action, except for IJ, as committed ) 

Iabe+ datasteps, -+ values(obf), (where datasteas, = 

commlttedT fl accesses), with Iabe+ E values (object(A)) (The 

label of an access to an object IS intended to represent the value 

read by that access Since the access has an associated function, 

the value which the access writes tnto the object IS deductble from 

the v&e lead, dnd therefore need not be expllcllly represented ) 

Let &OJ+ denote committed T U abortedT Let &&, be 

defined by status,@) = ‘active’ (resp ‘committed’, ‘aborted’) 

provided A E actlveT (resp committed r, abortedT) Let accesses? 

= vertices, rl accesses, accesses &) -----T = {B F accebsesT 

object(B) = x) and datasteos, (xl = (R E datasteps, object(B) = 

x} Let m, denote seq fl (vertices,)* 

Next, we d-scribe actions whose evlstence ts Intended to be 

known to other actions (I e not masked ft om those other actions 

by Intervening failures or active actions) For A E vertices,, let 

vlslble, (Al denote {B E vertlcesr ant(B) fl proper desc(lca(A,B)) 

C committed,} That IS, vislble+A) IS just the set of actions whose 

existence IS known to action A, because they and all their 

ancestors, up to and not including some ancestor of A, have 

committed For A E vertices,, x E obf, let vIsible+A.x) denote 

vlslble,(A) fl datastep% The followmg lemma describes 

elementary properties of “vlslblllty” 

Lemma 5 Let T be an action tree, A, B, C E 

vertices, 

a If A E desc(B), then B E visible,(A) 

b A E vlslble+B) If and only if A c 

vlslble,(lca(A,B)) 



c If A E wslble+B) and B E wslble+C), then 

A E vls~ble+) 

d If A E desc(B) and C E vlslbleJB), then C 

E vtslbleJA) 

e If A E desc(B) and A E v\ableT(C), then B 

E nslble,(C) 

Proof 

a Immediate 

b Immediate from the fact that Ica(A,B) = 

Ica(A,lca(A,E)) 

c Let D E ant(A) fl proper desc(lca(A,C)) 

We must show that D C commltted If D 
c ploper desc(lcd(A,B)), then the fact 

that A E visible,(B) ImplIes the result So 

assume that D $ proper desc(lca(A,B)) It 

must be the case that D E anr(lca(A,B)), 

and that Ica(B,C) = Ica(A,C) Thus, D E 

ant(B) n proper desc(lca(B,C)), so the 

fact that B E visible,(C) ImplIes the result 

d Immediate from parts a and c 

e Immediate from parts a and c 

0 

If A E vertices,, then we say A s & m T provided ant(A) fl 

aborted, = 0, and we say A IS dead in T otherwtse 

Lemma 6 If A, B E vertlce+ A IS live in T, and B E 

vlslble+A), then B IS live In T 

Proof If E? IS dead in T, then there exists C E 

ant(B) rl aborted7 We know C $ proper 

desc(lca(A,B)), since B E wslbleT(A) Thus, C E 

anc(lca(A,B)) C_ ant(A), so A IS dead In T, a 

contradiction 

0 

If x E obj and s IS a finite sequence of datasteps, then we 

define result(u) as follows If s IS the empty sequence, then 

result(x,s) = mlt(x) Otherwise, let s = s’A Then result(x,s) = 

update(A)(result(x,s’)) if A involves x, = result(x,s’) otherwise 

If S IS a set, and 2 IS a total order on the elements of S, then 

we let <<S, s>> denote the sequence conslstmg of the elements of 

S, m the order given by 5 

Let T be an action tree A partial order p c siblings IS 

lmeanzlng for T provided p totally orders all slbllngs In T A 

lmeanzmg partial order p induces a total order, MT,,, on 

datastep+ m the obvious way If A E datasteps+x) and P Is a 

lmeanzmg partial order for T, let QE&#Y denote <<IB E 

vlslbleT(A,x) @,A) E mducedT p and B # AI, induced, p>> 

A llnearlzmg partial order p for T IS said to be a serlallzlnq 

partial order for T provided p IS consistent with sect, and ISbe+ 

= WSUk(X,pWdsrp(A)) for dll A t ddtdStepS+X) r I& Sdltl to be 

senallzable provided there exists some senalizmg partial order for 

T 

Statmg the smiplest correctness requirements only requires 

consideration of actlons whose effects become ’ permanent” 

Therefore, we restrict attention to a portion of T, as follows A new 

action tree perm(T) IS defined as follows 

vertices PeWTl = visible+U) (Lemma 5e shows that perm(T) 

IS a tree ) 

If A E verticesper,,, , then statuspe,m(Tj(A) = status,(A) 

If A E datastepspermfTj , then labelp,rm(Tj(A) = label,(A) 

Lemma 7 If T IS an action tree and A, B E 

vertlceswrmlT), then B E vislblepe,,,,&A) 

Proof Since B E verticesperm(Ti = vlslble,(U), 

Lemma 5d implies that B E vlsibleT(A) Then B E 

visible perm(T+A), since the status of each vertex IS the 

same tn T and perm(T) 

0 

We will require that any tree T created by our algorithm have 

perm(T) serializable 

Note that the style in which senallzablllty IS defmed here 

constrains the implementation less than the type of defmdion used 

In ‘traditional” concurrency control theory The earlier defmihons 

regard the data as external to the concurrency control algorithm, 

the algorithm IS to take requests for data accesses and translate 

them into actual accesses, observmg appropriate rules 

Generally, the accesses performed by the concurrency control 

algorithm simply obtain the latest version of the data object A 

clue that the earher definitions are too constraining IS that they do 

not apply unchanged to algorithms such as Reed’s, whtch use 

sophisticated management of versions of the data The earlier 

defmitlons require extensions (KP, BG) to handle algorithms such 

as Reed’s These extensions still regard the data as external to 
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the concurrency control algonthm, and so the modIf& 

correctness condmons contam exphclt tnformatlon about 

Particular “versrons” of the data objects It seems to me, however 

that the douedldll( e ot seridlizdbllity, 111 lerms of the vdlueb seen 

by the dCCCSSdS, IS really all that mattprs it IS posstbie that this 

appearance could be preserved by some algorllhrri v~l;~ch does 

not operate in terms of versions at all 

The less constraining approach which IS taken here IS to 

regard the data as internal to the concurrency control dlgonthm, 

at least for the purpose of stating the basic correctness 

condltlons Thus, the defmltlons Introduced m this paper are 

intended to be applicable to algorithms which use single versions 

of data objects, algorithms that use multiple versions of data 

objects, as well as to other implementations as yet unforeseen 

4 An Algebra Based on Action Trees 

We now define a set of operations on action trees That IS, we 

define an algebra A = <A, u, fl>, where A IS the set of action 

trees, IJ IS the trivial actlon tree with the smgle vertex U, with status 

‘active’, and n contams the four kmds of operations described in 

(a) (d) below We defme the operations as follows First, we let C 

denote the set of all action trees, T for which perm(T) IS 

senallzable (In particular, u E C ) We constrain the ranges of all 

of the operations to be subsets of C WIthin this constraint, we 

define the domain by giving a precondition on action trees T, and 

use assignment notation to describe the effect of the operation on 

T 

In all operations, we assume that A E act {U} 

(a) createA 

(al) Precondltton 
(al 1) A e vertices, 
(al 2) parent(A) E vertices, committed, 
(a13) If (B,A) E seq and B f A, then B E 

doneT 

(a2) Effect 
(a21) vertlce% + vertlce% U {A} 
(a22) stat+(A) + ‘active’ 

(b) commitA, A $ accesses 

(bl) Precondition 
(bll) A E actlveT 
(b12) children(A) fl v&Ices, C done, 

(b2) Effect 
(1321) stntus,(A) +- committed 

(c) abort A 

(cl) Precondition 
(cl I) A E actlveT 

(~2) Effect 
(~21) Sldtu+A) +- ‘aborted’ 

(d) perform, “, A E accesses, x = object(A), u E 
values(x) ’ 

(dl) Precondition 
(dll) A E activeT 

(d2) Effect 
(d21) status,(A) +- ‘committed’ 
(d?‘) label,(A) + u 

5 Augmented Action Trees 

The defmltlons which make speclflc reference to versions are 

still useful In con)unction with the approach of this paper Their 

hole IS In supplying sufflclent conditions for serlallzabllrty, and 

thereby helping to organize correctness proofs 

In this sectlon, a new structure called an “augmented action 

tree” IS defmed Augmented actlon trees are just action trees with 

a IlltIe additional information Namely, m the spmt of the earlier 

defmltlons, some information IS added which describes a 

sequence of versions for each data object Senalizablllty IS 

defined for augmented actlon trees It IS seen that serializability 

for augmented action trees ImplIes senallzablllty for 

corresponding actlon trees Moreover, sertalizability for 

augmented action trees has a cycle free charactenzntlon slmllar 

to those In usual concurrency control theory Thus, this structure 

can be useful In proofs of serializablllty for action trees 

An auqmented action tree (AAT), T, IS a pair (S,D), where S IS 

an action tree and D C sameobjects IS a partial order on 

ddtastepss which totally orders the d&steps for each object In 

this case, we write a, for D We extend action tree notation to 

T, for example, we write tlatasteos, to denote datastepss If T IS 

an AAT then let ,Ih~iadar denote ((A,B) E slbllncfi (CD) E 

dLLtdT for sonle L t &SC(A), D t dcsc (tj)} If 14 t ddld.A bz,(x) 

then let vclatal(A) denote (B E vlslble$A,r) (B,A) E data, 2nd B 

f Al 

The followmg 8s a technical lemma needed for the 

characterization theorem 

Lemma 8 Let T be an AAT If there IS a cycle of 

length greater than one In seq U sibling datar then 

there IS a cycle of length greater than one In seq, U 
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srblmg data, 

Proof Assume not Choose a cycle, C, of mmknum 

length greater than one, m seq U srbhny data, There 

must be an achon, A, on e wrth A a vertices, Let (B,A) 

and (AC) be the two pairs on e involving A Then both 

pairs are elements of seq Thus, (B,C) C seq and B * 

C since seq IS a partial order Removmg A frorn C 

leaves a cycle wrth at least two elements (B and C), 

having one fewer element than e Thrs contradtcts the 

mm~mality of e 

0 

If T = (SD) IS an AAT, then erase(T) IS just the actron tree 

S We extend the defmrtrons of m, &, &&, !!%ZtG!?g, 

Induced. oreds and serializable to an AAT, T, by applying tlleln to 

erase(T) An AAT, T, IS data seriahzable provrded there exists p, a 

senalrzmg partral order for T, with the addrtional property that 

mducedr p IS conststent with datar Data serraflzabrlrty for AAT’s 

provides a suffrcrent condrhon for correctness 

Lemma 9 Let T be an AAT Let p be a linearrzmg 

partial order for T, x E obt, and A E datasteps, 

Assume that Induced, p IS consistent wtth data, Then 

preds, n(A) = <<v dataT(A), dab+> 

Proof Strarghtforward 

0 

Data serralnabrlrty for AAT’s has a cycle free characterlzatron 

Frrst, we give a defmrtron which says that the label of each access 

describes the correct object value which the access should See, If 

the versrons of ohtects are ordered according to the datdr order 

Formally, an AAT IS version comonhble provided for every X E obt, 

and every A E datastepsJx), 11 IS the else that label,(A) = 

resu)t(x,s), where s = <<v data,(A), ddla,>> 

Theorem 10 An AAT, T, IS datd serrahzdble If dnd 

only If both of the followmg are true 

a T IS version compattble 

b There are no cycles of length greater than 

one m seq, U stbhng datar 

Proof Assume T IS data serraltzable, and obtain p, 

a serlalrzmg parhal order for T for whrch rnducedr p IS 

consistent wrth dataT 

a Let A E datasteps,( s = <<v dataT(A), 

data,>> Then label,(A) = 

result(x,preds, ,,(A)), by the defmdton of 

serralrzabrkty, = result(x,s), by Lemma 9 

b seq, U sibling data, C p Thus, there are 

no cycles of length greater than one m 

seq, U srblmg datar 

Now assume a and b Lemma 8 rmplres that there 

are no cycles of length greater than one In seq U 

srblmg data, Let P be any partrat order which totally 
orders all stblmgs and IS consrstent wrth seq U 

srblmg data, Then p IS lmeanzmg for T, and 
Induced T p IS consrstent with datar We WIII show that p 
IS a seriakzmg parhal order for T Let x E obj, A E 

datasteps, We must show that Iabe+ = 

result(x,Preds., n(A)) Since T IS versron compahbfe, we 

know that Iabe+ = result(x,s), where s = <<v datar, 

data,>> Then Lemma 9 Implies that s = predsT n(A)! 

as needed 

q 

6 An Algebra Based on Augmented 
Actron Trees 

tn order to prove that an algorithm generates only correct 

operation sequences, it IS helpful to include the addrtronaf 

Information present in AAT’s Thus, we defme operahons on 

AAT’s, analogously to the defmtttons for action trees Once agam, 

we carry out the defrmttons wrthm the algebra framework deft& 

edrlrer We define d stew alyebra A’ = <A , (I’, II’), where A IS the 

set of AAT’s, u’ IS the tnvtal AAT which has a smgle vertex U wrth 

status ‘achve’, and the operations III fl’ correspond closely to the 

operahons of 31, and are designated by the same names (We will 

rely on context to distmgursh the two cases ) The only differences 

are that there IS no global constramt corresponding to C, and 

perform* u introduces two addlhonal precondrhons and an 

additional change These new condrtrons can be thought of as 

capturmg the abstract effect of a varlant of Moss’ locking 

algorithm 

(dl) Precondrhon 
(d12) Let B E datastepsr(x), B live In T 

Then B E vlsibler(A,x) 
(d13) If A IS hve m T, then u = result(x,s), 

where s = <<vrsrbler(A,x), data,>> 

(d2) Effect 
(d23) data, t-data, U {(B,A) B E 

datasteps,( U {(A,A)} 
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Lemma 11 If T IS computable m A’, then the 

followmg are true 

a If A E vertlcesr and parent(A) E 

commtttedT, then A E doneT 

b If A E vertlcesT and (B,A) E seq and B f 

A, then B E doneT 

c Ll E actweT 

d If (B,A) E data,, then either B IS dead in T, 

or else B E visible,(A) 

e If A E committedT and B E desc(A) II 

vertlcesT then either B IS dead m T or else 

B E visible,(A) 

Proof Most of the arguments are straightforward 

We argue cases d and e 

d If Ei = A, the result IS mimedlate If B f A, then 

the only way we get @,A) E datar IS by virtue of some 

performA u event That IS, there exists T’ such that T 

I- T, such that the precondltlon for some step 

perfcm* ” I5 b<lllbtlcd III 1 rh 13 I‘, dtdd III i ol u 

E vlslhlc, (A) Thsrc>foI( tr IS cl~,~l In T or B C 

visible,(A) 

e If 13 = A, the result IS Immediate So aS.sume A # 

B Let A C committed,, 0 C desc(A) (1 vertlce+ B IIW 

in T, and B c vIsiblei Then there exist C, D E 

desc(A) n ant(G) for which C = parent(D), C E 

commlttcdr and D C actlveT But this contradicts part 

a 

Lemma 12 Let r dnd T’ be computable In A’, and 

assume that T l- T 

a vertlcesT C vertlcesT, comrmttedT C 

commltted, , aborted, E nbortedT, and 

data, C data, 

b If A E datasteps, then Iabe+ = 

label, (A) 

c If A E datastcpsT and (B,A) E data, , then 

@,A) E dataT 

d If A E vertlce+ then visibleT(A) C 

vlslbleT (A) 

e If A f verticesT and A IS live in T’, then A 

IS live in T 

f If A = parent(B) and A E commItted, and 

B E verticesT , then B’E done, 

Proof The only case that takes some arguing IS 

f Let A = parent(B), A C commlttedT and B E vertlcesT 

Let T’ be the result of Ct, applred to T, and let T be the 

result of + Then \I’ contams a step n of the form 

commitA, dild *(I, contains a step p of the form 

create, n cannot precede p, since the precondition 

for p would be vlolated So p precedes n Then the 

precondltlon for n lmplles that B E done, 

0 

Note that there IS no corrcctnc ‘ib contlltlon for AAT’s eYpllrltly 

nientimiiny seridhzdbihty lhis I> bcaust for AA1 J 

computablllty alone IS sulficient to rJuarantec scrlallrablllty of 

perm(T), as we show m the next theorem 

I emma 13 If T ts computable in A’, then perm(T) 

IS version compdtible 

Proof Let A E datastepsper,cT,(x) We mtlst show 

that u (= labelpenntTj (A)) = result(x,s), where s - 

<<v datape,n,(Tj(B), datapermIT)>> A IS Inserted into the 

tree by a performA u step n, so let the operotlon 

sequence producmg T be written as @n* Let T 

denote the result of @, and T” the result of @V The 

precondltlons for “r show that Iabe+ (A) = result(x,s’), 

where s’ = <<vislble,(A,x) dataT>> By Lemma 12b 

and the defmltlon of perm(T), It follows that 

label perm(T+A) = result(x,s ) Thus, It suffices to show 

that s = s’ Smce both data, and datapetmtTj are 

consistent with data, it suffices to show that s and s’ 

contain the same elements 

First, let B E s Then (B,A) E data, and so by 

Lemma 12~ B E datasteps, (x) Since A IS the only 

element m T” which IS not in T’, B E datasteps, (x) 

Since A E verticesp,r,(Tj = vlstble,(U), and U $ 

aborted, (by Lemma It), it follows that A IS live m 

T Since B E vlslbleT(A), Lemma 6 shows that l3 15 live m 

T Thus, B IS IIW in T’, by Lemma 12e The 

precondition for n Implies that B C vlslble, (A,x), so B E 

S’ 

Conversely, suppose B E s’ Then B f A since A $ 

vertices, Then (B,A) E data, , so by Lemma 12a, 

(B,A) E dataT By Lemma 12d, B E vlslble,(A,x) By 

Lemma 7, it suffices to show that B E vertIcesper, = 

vlslbleT(U) But B E visible,(A) and A E visible,(U), so 
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Lemma 5c suffices 

cl 

Lemma 14 If T IS computable III A’, then there are 

no nontrlvml cycles m seqperm(Tj U slblmg dataFrmtTj 

Proof Assume the contrary let (o,A,, ,A,= a), k 

2 2, be a mmlmum length cycle such that (A,,A,+ ,) E 

seqper,,,tTJ U slbllng datapermtTj for all I, 0 5 I 2 k 1 

Let a sequence (I, of operations be defined SO that T 1s 

the result of @ We WIII show that for each I, 0 5 I < 

k 1, tllere exists d prelix \1’, of 9 such that If r IQ the 

result of \L, then A, E done, , and A, + , ff doneT If we 

fix I for which \1’, IS of maxlmum length and let T’ be the 

result of this q,, then we see that A, + , cf done, But 

‘I, ,+ , IS no longer than ‘I’,, so Lemma 12a implies that 

A ,+, EdoneT , which IS a contradlctlon 

FIX I If (Al A, + ,) E seqpe,nl(Tj, then 6 has a prefix 

\l’n, where n IS a create, operation Let T’ be the 

result of + The precon&&s for n imply that A, E 

done, Thus q, = 9suffices 

Now assume that (A,,A,+,) E sibling datapermtTj 

Then there exist B E desc(A,), C E desc(A,+,) with 

(RC) E datapermIT) Since B, C E vertices~,,(,), it 

follows that (ant(B) U ant(C)) fl proper desc(U) C 

committed, Now, Cp has a prefix \I’n, where n IS a 

performc u step Let T’ be the result of 9, and T” the 

result of 4, Lemma 12c ImplIes that (B,C) E data, , 

so that B E datasteps, Since B IS live In T (using 

Lemma llc), Lemma 12e lmpltes that B IS live in T’ 

Then the precondition for n implies that B E 

vtslble,(C), which means that A, E ant(B) tl proper 

desc(lca(B,C)) C_ committedT C done,, We must 

show that A, + , e doneT, if we can do this, then taking 

9, = i’ yields the result Assume A, ~, E done,, Then 

let D be the lowest ancestor of C for which D E done,,, 

It must be the case that D E ant(C) fl proper 

desc(lca(B,C)) C commtttedT so D E committedT 

Since C cf vertrcesT , we know that D f C Let E be the 

single element of children(D) fl ant(C) Then E d 

done, Then E tf verticesT by Lemma 12f This means 

C Q vertices, This IS a contradiction 

cl 

Theorem 15 If T IS computable in A’, then 

perm(T) IS data serlahzable 

Proof Immediate from Lemma 13, Lemma 14 and 

Theorem 10 

q 

Next, we show that It IS sufflclent to restrict attention to 

correctness of operation sequences for AAT’s We define a 

mapping h from A’ to A as follows If T IS an AAT then h(T) = 

(erase(T)} If 71 IS 111 II , then II(+) IS just the operdllon m I I with 

the same name 

Lemma 16 h IS a slmulatlon of A bi A’ 

Proof (d) and (c) are Immediate To see (b), the 

first conclusion follows lmmedlately from the fact that 

a E domam(n’) (since only <iddltional cotlstramts are 

added for a’), note that Theorem 15 ImplIes that the 

C constramt IS always satisfied The second 

conclusion IS then straightforward Thus, h IS a 

posslbllltles mapping Lemma 3 shows that h IS a 

simulation 

cl 

7 An Algebra Based on Version Maps 

In this section, .ve introduce another data structure Thus one 

records, for each object and actlon, the sequence of accesses to 

the object whose result IS available to the acbon 

A version maq IS a partial mappmg V from obt x act to 

sequences of accesses, such that the followmg propertres are 

satisfied 

V(x,U) IS defined for all x, 

each V(x,A) consists of accesses to x, 

for each x, If V(x,A) and V(x,B) are both dehned, then either A 

E desc(B) or B E desc(A), 

if V(x,A) and V(x,B) are both defmed and B E desc(A), then 

V(x,B) IS an extension of V(x,A) 

If A IS the least action for which V(x,A) IS defmed, then we call 

A the pnncmal w for x In V, m this case, if result(x,V(x,A)) = u, 

we say that u IS the grmcmal &of x n V 

We define another algebra, A” = <A”, u”, II”>, as follows A” 

IS the set of pairs (T,V), where T IS an AAT and V IS a version map 

(I” consists of the trivial AAT consisting of a single node U with 

status ‘active’, and the version map which has V(x,U) equal to the 

empty sequence, for all x, and IS otherwise undefined I-I” 

consists of the SIX operations defined below In (a) (f) 

175 



In dll the operdtions to follow we d55ume tlldt A t dLt (U) 

Operations (a) (c) are ldentlcal to (a) (c) of Jz 

(d) performA,“, A E accesses, x = object(A), u E 
values(x) 

(dl) Precondltlon 
(dll) A E achveT 
(d12) (B V(x 8) IS defined) C 

proper ant(A) 
(d13) u IS the prmctpal value of x in V 

(d2) Effect 
(d21) status,(A) +- ‘committed’ 
(d22) IabelJA) +- u 
(d23) data, t dataT U ((B,A) B E 

accesses,(x)) U {(A,A)} 
(d24) V(x,A) +- V(x,E) 0 (A) 

(e) release lock, x, x E obl 

(el) Precondition 
(ell) V(x,A) IS defined 
(e12) A E commltted, 

(e2) Effect 
(e21) V(x,parent(A)) +- V(x,A) 
(e22) V(x,A) + undefined 

(f) lose lockA,+, x E obj 

(fl) Precondition 
(fll) V(x,A) IS defined 
(f12) A IS dead in T 

(f2) Effect 
(f21) V(x,A) + undefined 

Lemma 17 If (T,V) IS computable In A”, then the 

following are true 

a If V(x,A) IS dehned, then A E vertices, 

b If B E datasteps, and B IS live m T, then 

there exists A E ant(B) with V(x,A) 

defrned and Ban element of V(x,A) 

c If V(x,A) IS defmed, then each element of 

V(x,A) IS rn wslble,(A) 

d If V(x,A) IS defined, then the elements of 

V(x,A) are In data, order 

Proof Stralghtforward We argue b , for example 

Imniedldtf+ dltei un operation porformB u owzurs, we 

see that V(x B) IS defined, and G C V(x,B) Assume 

mductlvelk that there IS SOIW ,ncestot C, ot i? nlth 

V(x,C) defmed dnd B E V(x C) Smce 0 remdIns live, 

there are no steps of the form lose lockc x Thus, if 

V(x,C) IS ever changed, it must be because of a 

release lock step There are two posslbllltles First, the 

change could occur because of a release lockCx 

step But SlJCh a step causes V(x,parent(C)) to tdke on 

the old value of V(x,C), ther-by preserving the needed 

property Second, the change rould occur because 

V(x,C) gets redcftned to be Ihe previous value of V(x,D), 

where D E children(C) But because the succosslve 

sequences are extensions of each other, B IS an 

element of V(x,D) as well Thus, the needed property IS 

preserved in this case also 

q 

Define a mapping h’ from A” to A’ as follows h’ maps (T,V) to 

{T), and maps operations (a) (d) to operdions of the s&me name, 

and operations (e) and (f) to A 

Lemma 18 h’ IS a simulation of A’ by A” 

Proof It suffices to show that h IS a po%lblhtles 

mapping The first and last properties are easy to 

check We consider the second property Let n’ E II”, 

where h’(n’) = n E ll’ Then n’ IS either of the form 

create*, commitA, abortA or performA,+ In the frrst 

three cases, the second property IS easy to check So 

assume that n’ IS of the form performA u Assume 

(T,V) IS computable In A” and n’ IS defmkd on (T,V), 

yielding (T’,V’) We must show that performA u (I e 

the operation of 4’) IS defined on T Let x = obfe&A) 

Condition (dll) for JI’ follow ImmedOately from the 

corresponding condlhon foi A” We consider (d12) 

Let B E datasteps&x), and assume that B IS live m 

T Since (T,V) IS computable in A”, Lemma 17 implies 

that there IS some C E ant(B) for which V(x,C) IS 

defined and for which B IS an element of V(x,C) Then 

Lemma 17 implies that B 6 vlslbleT(C) Since n’ IS 

defined on (T,V), (dl1) for A” implies that C E ant(A) 

Since A E verhcesT Lemma 5 ImplIes that B E 

vIabIer( ds needed 
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Next, we conslJer (d 13) Assu~ne A Is live In r, dnd 

let s = <<vlslbleT(A,x), data,>> We must show that u 

= result(x,s) Let B be the principal action for x in 

V Condition (d13) for A” implles thdt u = 

result(x V(x B)) It suffices to show that s and V(x,B) 

are Identical Since the elements of V() ,B) are in data, 

order (by Lemma lr), it suffices to show that s dnd 

V(x,B) contain the same srt of elements 

First dssume C IS in s, I e C E vIslbleT(A,x) Since A 

IS live m T, Lemma 6 implies that C IS live in T Then 

Lemma 17 Implies that there exists D E ant(C) for 

which V(x D) IS defmed and C IS an element of V(x,D) 

Since B IS the pnncipal element for x In V, the 

sequence extension property of the defimtion of 

version maps ImplIes that C IS also an element of 

W,B) 

Conversely, assume that C IS an element of V(x,B) 

Lemma 17 implies that C C visibleT(B) Condition (d12) 

for A” Implies that B E ant(A) Thus, C E vlslble+A) 

It IS easy to check thdt the changes correspond 

correctly, once we know that the defmabllity conditions 

correspond Therefore, h’ IS a posslbilitles mapping 

cl 

Theorem 19 h 0 h’ IS a simulation of A by A” 

Proof lmmedlate from Lemmas 16,18and 1 

cl 

8 An Algebra Based on Value Maps 

In this section, we Introduce another data structure rhls one 

records, for each object and action, the latest value of the object 

which IS available to the action 

A value maD IS a partial mapping V from obf x act to 

values(obf), such that the followmg properties are satlsfled 

V(x,U) IS defined for all x, 

each V(x,A) E values(x), and 

lor e&11 x, 11 V(x A) dlic1 V(x,U) are both defined, t111.n elll,er A 

E desc(l3) or B C desc(A) 

If A IS the least action for which V(x,A) IS defmed, Lhen we call 

A the principal dctlon for x In V, in this case, if V(x,A) = u, we call 

u the prrnclpaf u of x In V 

We define another algebra, A”’ = <A”‘, u”‘, n”‘>, as follows 

A”’ IS the set of pairs (T V), where T IS an AAT and V IS a value 

map u’ consists of the tnvlal AAT conslstmg of a smgle node U 

with status active , and the value map whtch has V(x,U) equal to 

init for di1 x and IS otherwise undefmed II”’ cons& of the SIX 

operations defined below In (a) (f) 

In all the operations to follow, we assume that A E act (U} 

Operations (a) (c), (e) and (f) are identical to the correspondtng 

operations of A” Operation (d) IS dlso identical, except for the 

change indicated below 

(d2) Effect 
(d24) V(x,A) +- update(A)(u) 

If V IS a version map, then let eval(V) be the value map defined 

on exactly the same domain, so that eval(V)(x,A) = 

result(x,V(x,A)) 

Lemma 20 Let V be a version map, x E obf Then 

the prmclpal action for x in V IS the same as the 

principal actlon for x In eval(V), and the prmclpal value 

of x In V IS the same as the principal value of x tn 

eval(V) 

Proof Straightforward 

Define a mapping h” from A”’ to A” ds follows Let h”(T,V) = 

{(T,W) eval(W) = V} h” maps all operations to operations of the 

same name 

Lemma 21 h ’ IS a simulation of .A” by A”’ 

Proof It suffices to show that h” IS a possibilities 

mapping The first and last properties are easy to 

check We consider the second property Let n’ E 

n” If n’ IS one of (a) (c), (e) or (f), then the second 

property IS obvious 

Assume n’ IS performA,” Assume (T,V) IS 

Lomputable 111 4 , (I iv) t n (1,V) (T,W) 1s 

computable I 1 .l ’ n’ IS defmr>d for (1 V) 11~1 (r ,V’) = 

n (TV) Le nma 20 im;llrq that the definability 

condition holds, I c that n = performA u IS deflred on 

(T,W) It follows from the effects of the two operntlons 

that n(T,W) = (T W’) for some version map W’ It 

suffices to show thdt eval(W’) = V Since eval(W) = V, 

we only need to consider the values which change 

because of the present operation I e we need to show 

that result(x W’(x,A)) = V (x,A) But result(K,W’(x A)) = 

resuN(x,W(x B) 0 (A)), where B IS the prmclpal action 

for x in W, = upddte(A)(result(r,W(x,B))), = 
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update(A)(V(x,B)) stnce evaI = V But B IS the 

prmcrpal actron for Y m V, by 1 emma 20, so u = V(x,B) 

Therefore, the latest term m the extended equality IS 

equal to update(A)(u), which IS equal to V’(x,A) by 

definition 

0 

Theorem 22 h 0 h’ 0 h” IS a stmulation of A by 

A”’ 

Proof Immediate from Lemmas 19,21 and 1 

Cl 

9 The Algorithm 

A shghtly slmplrfred version (which doesn’t drstmgursh read 

and write steps) of Moss’ algorithm IS described using a 

distributed algebra 

Let [k] denote { 1, ,k} 

We frx a particular k, as the number of nodes 

convenience, we deslgnate the nodes by Identifiers in [k] 

For 

Let home (act {U)) U ob) + [k], with home(A) = 

home(obfect(A)) for all A E accesses Thus, home partitions the 

actions and objects among the nodes Let g~g!~ (act {t-f)) + [k] 

be defined so that origin(A) = home(A) if parent(A) = U, and = 

home(parent(A)) otherwise 

In order to describe the local state of each node, It IS 

convenient to delme a generalrzahon of actron trees Thus, we 

define an actloll summdry r to consist of components verticesT 

active: cornmrttedT and dbortedr, where verhcesr IS any frmte 

subset of dct (not necessarily closed under the parent operation) 

and the remaining three components form a partrtron of verhcesr 

The notatron &ngr and &tE, IS also extended In the obvious 

way If T and T’ are action summanes or action trees, w e say that 

T 2 T’ provided vertrcesr c veltrces, , and correspondmgly for 

commrtted, and abortedr We also defme T” = T U T’ so that 

verbzesT = verticesr U vertrcesr , and srmrlarly for commlttedr 

and aborted,,, 

We describe the algorithm as yet another algebra, % = <B, 7, 

P>, which IS distributed over ] = [k] U {‘buffer’} The components 

are defined as follows B IS the Cartesran product of B,, where I E 

I If I E [k], then B, consrsts of the values of variables I T which can 

contain an action summary, and I V, which can contain a value 

map defined only for pairs (x,A) having home(x) = I If I = ‘buffer’ 

then B, consrsts of the values of variables Ml, J E [k], each of whrch 

can contain an action summary (The contents of M, are Intended 

to denote mformabon which has been sent to node) ) 

7 IS a vector of mitral states for all the components If I E [k], 

then 7, has I T initialized as the tnvral action summary, havrng no 

vertices, and I V mrtralrzed so that I V(x,U) = mit(x) for all x wrth 

home(x) = I, and otherwise undefined If I = ‘buffer’, then 7, has 

each M, equal to the tnvral achon summary 

The algorithm has eight kinds of operations SIX correspond 

closely to the SIX operations of A”’ four record the creatron, 

commit and abort of actions and the performance of data 

accesses and two manipulate locks The other two correspond to 

the sending and recelvmg of messages The operations are lrsted 

below As usual, we present them by lrstmg a precondrtron and 

the effect on the state In addrtron, we defme d(n), the doer of 

each step 

In all cases, we assume that A E act {U), 

(a) create,,*, origin(A) = I 

(al) Precondrtron 
(al 1) A @ I verticesT 
(a12) If parent(A) f U, then parent(A) E 

I verhcesT I commrttedT 

(did) lf (B A) C saq dnd B f A, 
then B F I doneT 

(a2) Effect 
(a21) I vertices, +- I vertices, U {A) 
(a22) I stdtusr(A) + - ‘acttve’ 

(a3) Doer I 

(b) commit,,,, A $ accesses, home(A) = I 

(bl) Precondrtron 
(bll) A E I achve, 
(b12) children(A) fl I vertrcesr C I done, 

(b2) Effect 
(b21) I status,(A) + ‘committed’ 

(b3) Doer I 

(c) abort, A, A 4 accesses, home(A) = I 

(cl) Precondrtron 
(cl 1) A E I actrver 

(~2) Effect 
(~21) I status+A) +- ‘aborted’ 

(~3) Doer I 
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W Perform,,A,ut A E accesses, x = object(A), u E 
values(x), 

home(A) = I, home(x) = I 

(dl) Precondmon 
(dll) A E I active, 
(dl?) {B I V(x,B)) IS dehned} C_ 

proper ant(A) 
(d13) u IS the prmclpal value of x III I V 

(d2) Effect 
(d21) I statusT(A) c ‘committed’ 
(d22) I V(x,A) t update(A)(u) 

(d3) Doer I 

(e) release lock, A x, home(x) = I ? I 

(el) Precondition 
(et 1) I V(x,A) IS defined 
(e12) A E I commrttedT 

(e2) Effect 
(e21) I V(x,parent(A)) +- I V(x,A) 
(e22) I V(x,A) + undefmed 

(e3) Doer I 

(f) lose lock, A x, home(x) = I 

(fl) Precondition 
(fll) I V(x,A) IS defined 
(112) ant(A) fl I aborted, f fi 

(12) Effect 
(f21) I V(x A) + undefined 

(f3) Doer I 

(!d send ,,,,T,, T’ an action summary 

(gl) Precondmon 
(gll)T’<~T 

(92) Effect 
(921) M, + M, U T 

(93) Doer I 

(h) recelve,,T,, T’ an action summary 

(hl) Precondmon 
(hll)T’ <M, 

(h2) Effect 
(h21)rT+-ITUT 

(h3) Doer buffer 

That IS, any communication IS allowed at any time, which 

sends any of the action summary mformahon from I to f 

Lemma 23 9 IS an algebra, which IS drstnbuted 

over I using d 

Proof Straightforward 

III 

Now define an mterpretahon h”’ from ‘?6 to A”’ by mappmg the 

first SIX types of operahons to the operations of the same name, 

suppressing the index m [k], and the other two types of operahons 

to A 

If b E B, then we add “[b]” to the end of a variable name to 

denote the value of that variable In state b 

For each I E I we define a mapping h, from B to G3(A”‘) as 

follows If I E fk], then (T,V) E h,(b) exactly If (T,V) IS computable m 

A and the following are true 

verhces, fl {A origin(A) = I} C I vertlces,[b] C verhcesT 

commlttedT fl {A home(A) = I} C_ ~commrtted,[b] 5 

commlttedT 

aborted r fl {A home(A) - I} 5 I aborted,[b] c abortedT 

I V[b] IS the restnctlon of V to {(x,A) home(x) = I] 

If I = ‘buffer’, then (T,V) E h,(b) exactly If (T,V) IS computable 

m A”’ and M,[b] < T for each J E [k] 

If (T,V) E h,(b), then we also say that (T,V) IS I consistent with 

b 

Lemma 24 For all I E I, u”’ E h,(r) 

Proof Immediate from the defmmons 

cl 

Lemma 25 Assume I E I Assume n’ E P, d(n) = I, 

w = h”‘(n) E W’, a and a’ are computable in A”’ and 

9, respectively, a E h,(a’) and a’ E domain(+) Then a 

E domain(n) 

Proof Let a be (T,V) 

First, assume that n’ IS create, A’ so that n IS 

createA Then origin(A) = I Since a” E domain(n), A 

6 I vertmcs,[a’] Since (T,V) IS I consistent with a’, A e 

vertmesT, thus showing (all) If parent(A) = U, then 

the fact that (T,V) IS computable and Lemma 17 imply 

that parent(A) E active,, thus showing (a12) for this 

case On the other hand, If parent(A) f U, then the 

precondmon for n’ shows that parent(A) E 

I vertrces,[a’] I commrtted,[a’] The fact that (T,V) IS 

I consmtent with a’ ImplIes that parent(A) E vertices, 

commrttedT Thus, (a12) holds If (B,A) E seq and B 

f A, then the precondmon for n’ shows that B E 

I done,[a’] The fact that (T,V) IS I consrstent with a’ 

Implies that B E done,, thus showing (a13) 



Second, consider n’ = commtt, A, so that n IS 

commit, The precondmon for n’ khows that A E 

I active,[a’] The fact that (T V) IS I consistent with a’ 

implies that A E actlveT, thus showmg (bll) The 
precondition for n’ shows that rlnlrtren(A) fl 

I vertlces,(d ] C I doneJa ] The fact tndt (r,v) IS I 
conslstellt with a’ ImplIes that children(A) n vet ticesr 

c done,, thus showmg (b12) 

Third, assume n’ = abort, *,so that n IS abortA 

This case IS slmllar to the first half of the previous case 

Fourth, assume n’ = performlA “, so that n IS 

performA u Then home(A) = I As&/me object(A) = 

x, so that home(x) = I (dll) IS argued as m the 

precedmg two cases We show (d12) Choose B so 

thdt V(x,B) IS defined Since (T V) IS I consistent with a’ 

and home(x) = I, I V(x,B)[a’] IS also defmed The 

precondltton for n’ ImplIes that B E proper ant(A), as 

needed Next, we show (d13) The precondition for n’ 

implies that u IS the prmcipal value for x in I V[a’] 

Smce (T,V) IS I consistent with a’, u IS also the prmclpal 

value for x In V, as needed 

If n’ IS one of (e) or (f), then n’ involves some x with 

home(x) = I Assume that n’ involves A The 

precondltlon for ?r’ Implies that I V(x,A)[a] IS defmed 

Since (T,V) IS I conststent with a’, it follows that V(x,A) 

IS defined, thus showing both (ell) and (fll) 

If n’ IS a release lock, A x step, then the 

precondition for n’ Implies that b, i I commltted,[a’]) 

Since (T,V) IS I consistent with a’, A E committedT, thus 

showing (e12) 

Finally, If n’ IS a lose lock, Ax step, the 

precondition for n’ implies that ant(A) ‘?l’~ aborted,[a’] 

f 0 Since (T,V) IS I consistent with a’, It follows that A 

IS dead in T, thus showmg (f12) 

Lemma 26 Assume I, J E I Assume n’ E P, d(n’) 

= I, r = h”‘(n’) E OP” , a and a are computable m 

R and Eb, respectively, a E h,(a’) fl h,(a’), and a’ f 

domain If b’ = n’(a), then n(a) E h/b’) 

Proof Let a = (T,V) and n(a) = (T’,V’) Lemma 

25 Implies that a E domam(n) 

If t f I, then it IS easy to see that all the 

contamments are preserved, since the sets of aLhons 

on the riQlit ,I&S are only Increased, while the sets on 

the left srdes are unchanged The property mvolvmg V 

IS also easily seen to bc preserved So dssume t = 

I We consider the SIX kinds of ooeratlons In turn 

First, assume n’ IS of the form create, A, 

commit, 4 or abort, A Then V’ = V, and T’ IS exactly 

like T except that A IS added to vertlcesT, committed, 

or aborted, as appropndle Also, b’ IS lust like a’ 

except that A IS added to I verhcesT, I commlttedT, or 

I abortedT, as appropriate Since (T,V) IS I consistent 

with a’, it IS easy to see that all the contamments 

change In such a way as to insure that (T’,V’) IS I 

consistent with b 

If n’ IS of the form perform, A “, then home(A) = 1 I 
I Let x = object(A) Then home(x) = I T’ IS just like T 

except that A IS added to committed, and IS given label 

u, and datar IS augmented with all pairs in {(B,A) B E 

datasteps,( U (A,A) V’ IS just like V except that 

V (x,A) IS defined to be update(A)(u) b’ IS just like a’ 

except that A IS added to I committed,, and I V(x,A) IS 

defined to be update(A)(u) Since (T,V) IS I consistent 

with a’, It IS easy to see that (T’ V’) IS I consistent with 

b’ most of the propertles are immediate We just 

check the last property, the only change involves A We 

have already noted that I V(x,A)[b’] = update(A)(u) = 

V’(x,A) This IS as needed 

If n’ IS of one of the forms (e) or (f), then T’ = T and 

I T[b’] = I,T[a’] Thus, it IS clear that the contamments 

are all preserved It IS also easy to check that the final 

property is preserved 

Lemma 27 Assume I, I E I Assume n’ E P, d(n’) 

= I, h(n’) = A, a and a’ are computable in A”’ and J, 

respectively, a E h,(a’) fl hl(a’), and a’ E domam(n’) If 

b’ = n’(a’), then a E h/b’) 

Proof Let a = (T,V) 

First, assume that n’ IS send, ,, T, If J f ‘buffer’, 

then bll = a’,, and the conclusiok’is Immediate SO 

assume that J = ‘buffer’ Since (T,V) IS J consistent 

with a’, each action summary MJa’] < T The 

precondition for n’ implies tnat T’ _< I T[a’] Since (T,V) 

Is I consistent with a, it follows that I T[a’] _< T, dnd 

hence T’ 5 T Now, each Ml[b’] < M,[a’] U T’ 

Therefore, each Ml[b’] 5 T, as needed 



Next, assume that n IS of the form rccelve, ,T,, SO 

that I = ‘buffer’ The only nontnvlal case IS J = I’ We 

must show that 1 T[b’] < T But ] T[b’] = j T[a’l U T’ 

The 1 consistency of (T,V) with a’ shows that J T[a’] < 

T The precondltlon for n’ shows that T’ 2 M,[a’] 

Smce (T,V) IS I consistent with a’, M/a’] 5 T Thus, T’ 

5 T Therefore, 1 T[b’] 5 T, as needed 

q 

Lemma 28 h”’ and h,, I E I, form a local mapping 

from J to A”’ 

Proof lmmedlate from Lemmas 24,25,26, and 27 

q 

Now extend h”’ to E? U P, by defmmg h”‘(b) = fl, E ,h,(b) 

Lemma 29 h”’ IS a slmulatlon of A”’ by 56 

Proof lmmedlate by Lemma 28, Lemma 4 and 

Lemma 3 

q 

We are now ready to prove the main correctness theorem 

Theorem 30 The mappmg h 0 h’ 0 h” 0 h”’ IS a 

simulation of A by J 

Proof lmmedlate from Lemma 29, Lemma 1 and 

Theorem 22 

q 
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