
Impossibility of Distributed Consensus with One Faulty Processt

Michael J Fischer Nancy A Lynch

Yale University Massachusetts Institute of Technology*
New Haven, Connecticut Cambridge, Massachusetts

Michael S Paterson

University of Warwick
Coventry, England

Abstract

The consensus problem involves an
asynchronous system of processes, some of
which may be unreliable The problem ~9 for
the reliable processes to agree on a binary
value We show that every protocol for thus
problem has the posslblhty of nontermmatlon,
even with only one faulty process By way of
contrast, solutions are known for the
synchronous case, the “Byzantine Generals”
problem

1. Introduction
The problem of reachmg agreement among

remote processes IS one of the most fundamental
problems m dlstrlbuted computmg It 1s at the core
of many algorithms for distributed data processmg,
dlstrlbuted file management, and fault-tolerant
distributed apphcatlons

‘This work was supported m part by the Office of
Naval Research under Contract NO001482-K-0154, by
the Offlee of Army Research under Contract DAAG29-79-
C-0155, and by the National Science Foundation under
Grants MC%7924370 and MCS8116678

*On leave from Georgia Institute of Technology

Permrssron to copy WI
I!

out fee all or part of this
materml IS granted pro rded that the copres are not
made or dlstrlbuted for direct commercral advantage, the
ACM copyright notice and the title of the pnblrcation
and Its date appear, and notrce IS given that copymg is
by permIssIon of the Assocratron for Compntmg
Machinery To copy otherwrse, or to repnbbsh, reqnrres
a fee and/or specific permrsnon

0 1983 ACM 0-89791-097-4/83/003/0001 $00 75

A well-known form of the problem rs the
Sransactron commit problem” which arrses m
distributed database systems [DSl, G, LS, La, Le,
Lr, R, RLS, S, SS] The problem 1s for all the data
manager processes which have partrcrpated m the
processing of a particular transaction to agree on
whether to Install the transactron’s results m the
database or to discard them The latter action
might be necessary, for example, d some data
managers were for any reason unable to carry out
the required transactron processmg Whatever
decrsron IS made, all data managers must make the
same decrsron III order to preserve the consrstency of
the database

Reaching the type of agreement needed for the
Ycommitn problem UI straightforward d the
partrcipating processes and the network are
completely reliable However, real systems are
subject to a number of possrble faults such as
process crashes, network partrtronmg, and lost,
distorted or duplrcated messages One can even
consider more Byzantine types of failure [DS2, DLM,
DFFLS, FL, LFF, LSP, PSL] m which faulty
processes mrght go completely haywire, perhaps even
sendrng messages accordmg to some malevolent
plan One therefore wants an agreement protocol
which rs as reliable as possible m the presence of
such faults Of course, any protocol can be
overwhelmed by faults that are too frequent or too
severe, so the best that one can hope for rs a
protocol which ICI tolerant to a prescribed number of
“expected” faults

In this paper, we show the surprrsmg result that
no completely asynchronous consensus protocol can
tolerate even a smgle unannounced process death
We do not consider Byzantine failures, and we
assume that the message system rs relrable - It
delivers all messages correctly and exactly once

1

Nevertheless, even with these assumptions, the
stopping of a single process at an rnopportune tune
can cause any distributed commit protocol to fail to
reach agreement Thus, thw rmportant problem has
no robust solutron without further assumptrons
about the computing envrronment or still greater
restrlctlons on the kind of farlures to be tolerated!

Every message is eventually dehvered as long as the
de&matron process makes mf’inrtely many attempts
to receive, but m-sages can be delayed arbitrarrly
long and dehvered out of order

Crucial to our proof w that processing is
completely asynchronous, that IS, we make no
assumptrons about the relatrve speeds of processes
nor about the delay time m dehvermg a message
We also assume that processes do not have access to
synchronized clocks, so algorithms based on
timeouts, for example, cannot be used (In
partrcular, the solutrons m [DSl] are not apphcable)
Finally, we do not postulate the ablhty to detect the
death of a process, so rt rs impossible for one process
to tell whether another has dred (stopped entrrely)
or is Just running very slowly

The asynchronous commrt protocols m current
use all seem to have a “wmdow of vulnerabihty” -
an Interval of tune durmg the execution of the
algorithm m whrch the delay or macceasrblhty of a
single process can cause the entrre algorithm to wart
mdefmrtely It follows from our rmpossrblhty result
that every commrt protocol has such a “wrndow”,
confrrmmg a wrdely-believed tenet m the folklore

Our nnpossrbrhty result applies to even a very
weak form of the conuen8u8 problem Assume every
process starts with an mltlal value in (0, 1) A
nonfaulty process decides on a value in (0, 1) by
entering an appropnate decrslon state Au
nonfaulty processes which decide are requrred to
choose the same value For the purpose of the
lmposslbrhty proof, we requue only that dome
process eventually make a declsron (Of course, any
algorithm of interest would requrre that all
nonfaulty processes make a declsron) The trrvml
solutron m which, say, 0 rs always chosen rs ruled
out by stlpulatlng that both 0 and 1 are possible
declsron values, although perhaps for drfferent mrtral
configurations

Our system model rs rather strong so as to make
our lmposslblhty proof as widely applicable as
possible Processes are modelled as automata (wrth
possrbly mfmltely many states) which commumcate
by means of messages In one atomrc step, a process
can attempt to receive a message, perform local
computatron based on whether or not a message was
delivered to It and 11 so on which one, and send an
arbrtrary but fmlte set of messages to other
processes In particuIar, an “atomic broadcast”
capability w assumed, so a process can send the
same message m one step to all other processes with
the knowledge that of any nonfaulty process receives
the message, then all the nonfaulty processes wdl

2. Consensus Protoeols
A conbendub protocd P is an asynchronous

system of N processes (N 2 2) Each process p hzr
a one-brt mput register 5 an output tegiater y

P
with values I {b, 0, l}, and an unbounded amount
of Internal storage The values m the mput and
output regrsten together with the program counter
and internal storage comprise the inter& et&e
Inrtral etates prescnbe fiied starting values for all
but the input regrster, m particular, the output
regrster starts wrth value b The states m whrch the
output regrster has value 0 or 1 are dlstmgulshed as
bang decaa:on state8 p acts determmrstically
accordmg to a transrtaon function The transrtlon
function cannot change the value of the output
regrster once the process has reached a decuron
state, that is, the output regrster rs “wr&once”.
The entire system P is specrfred by the transitron
functions assocrated wrth each of the processes and
the mrtral values of the Input regwters

Processes commumcate by sendmg each other
messages. A memzge is a parr (p, m), where p is the
name of the de&matron process and m w a “message
valuen from a ftxed unrverse M The message
system marntams a multiset, calkd the message
bujfcr, 01 messages that have been sent but not yet
dehvered It supports two abstract operations

send(p, m) places (p, m) in the message buffer;

receae(p) deletes some message (p, m) from the
buffer and returns m, m whrch case
we say (p, m) KJ deltuered, or returns
the special null marker 0 and leaves
the buffer unchanged

2

Thus, the message system acts nondetermmistically,
subject only to the condrtlon that if recerve(p) rs
performed mfmltely many times, then every message
(p, m) m the message buffer IS eventually delrvered
In particular, the message system rs allowed to
return I# a finite number of times in response to
receive(p) even though a message (p, m) is present m
the buffer

A confqwratron of the system consists of the
internal state of each process together wrth the
contents of the message buffer An mrtd
con/cgutat;on rs one m which each process starts at
an mitral state and the message buffer is empty

A step takes one configuration to another and
con&s of a primitive step by a single process p.
Let C be a configuration The step occurs in two
phases First, receive(p) rs performed on the
message buffer m C to obtam a value m E M U (4)

Then, depending on p’s internal state m C and on
m, p enters a new mternal state and sends a finite
set of messages to other processes Since processes
are determmlstlc, the step is completely determined
by the pair e = (p, m), which we call an event
(This “event” should be thought of as the receipt of
m by P) e(C) d enotes the resulting configuration
and we say that e can be applted to C Note that
the event (p, 4) can always be applied to C, so It rs
always possible for a process to take another step

A schedule from C is a finite or mfmite sequence
o of events which can be apphed, m turn, startmg
from C The associated sequence of steps w called a
run If 0 IS finite, we let d(c) denote the resulting
configuration, which rs said to be reachable from C
A configuration reachable from some mltml
configuration ts said to be acce88sbte Hereafter, all
configurations mentioned are assumed to
accessible

The following lemma expresses
“commutatmlty” property of schedules

Lemm8 1. Suppose that from some
confrguratlon C the schedules or, ua lead to
configurations C,, C, respectively If the
sets of processes taking steps m or and ua
respectively are disjoint, then 6s can be
applied to C, and or can be applied to C,,
and both lead to the same configuration

be

a

C, (See Figure 1.)

Proof. The result follows at once from the
system definltlon since 0, and u2 do not mteract 0

A configuration C has dectswn value v d some
process p rs m a declslon state with y, = v. A
consensus protocol w partially correct if it satisfies
two conditions

1

2

No accessible configuration has
more than one deculon value
For each v E (0, l}, some
accessible configuration has
decuuon value v.

A process p IS non/a&g m a run provided it
takes mfmltely many steps, and w /au&g otherwrse.
A run is adm:ss:ble provided at most one process is
faulty, and provided all messages sent to nonfaulty
processes are eventually received

A run is a dectdlng run provided some process
reaches a decrslon state in that run A consensus
protocol P w totally cmect in spate 01 one /ault if
it IS partially correct, and every admrssible run is a
deciding run. Our main theorem shows that every
partmlly correct protocol for the consensus problem
has some admwible run which rs not a decldmg ND

3. Main Result

Theorem L No consensus protocol is
totally correct in spite of one fault

Prooi. Assume to the contrary that P is a

3

consensus protocol which 19 totally correct in spite of
one fault We prove a sequence of lemmas whrch
eventually lead to a contradlctlon

The basic idea IS to show circumstances under
which the protocol remains forever mdecunve Thus
involves two steps First, we argue that there rs
some mltlal confrguratlon m which the declslon rs
not already predetermined Secondly, we construct
an admissible run which avoids ever takmg a step
that would commit the system to a particular
decision

Let C be a configuration and let V be the set of
decision values of confrguratlons reachable from C
C is bwalent If IV1 = 2 C is unrualent if IV1 = 1,
let us say O-vale& or 1-uatent according to the
correspondmg decnuon value By the total
correctness of P, and the fact that these are always
admissible runs, V # 4

Lemma 2. P has a brvalent lnltlal
configuration

Proof. Assume not Then P must have both &
valent and 1-valent mrtral confrguratrons by the
assumed partial correctness Let us call two initial
configurations &ace& d they differ only m the
mitral value xp of a single process p Any two mitral
configurations are joined by a chain of initial
configurations, each adjacent to the next Hence,
there must exrst a (Fvalent mrtlal configuration C,
adjacent to a l-valent initial configuration C, Let
p be the process m whose lnltral value they differ

Now consider some admlsslble decldmg run from
C, m which process p takes no steps, and let 0 be
the associated schedule Then D can be applied to
Cl also, and correspondmg configurations m the two
runs are identical except for the internal state of
process p It IS easily shown that both runs
eventually reach the same decision value If the
value 1s 1, then C, 1s blvalent, otherwise, C, rs
brvalent Either case contradicts the assumed
nonexistence of a brvalent mitral conhguratlon 0

Lemma 3. Let C be a blvalent
confrguratlon of P, and let e = (p, m) be
an event which rs applicable to C Let C
be the set of conhguratrons reachable from
C without applying e, and let D = e(C) =

{e(E)1 E E C and e rs applicable to E)
Then D contams a brvalent conhguratron

Proof. Since e rs applicable to C, then by
defmltlon 01 C and the fact that messages can be
delayed arbitrarily, e rs apphcable to every E E C

Now assume that D contains no blvalent
confrguratrons, so every confrguratron D E D IS
univalent We proceed to derive a contradrctron

Let E, be an r-valent conflguratron reachable from
c, 1 = 0, 1 (q exrsts since C rs blvalent) If E.i E
C, let F, = e(E,) E D Otherwrse, e was apphed m
reaching E,, and so there exrsts F, E D from whrch
E, 1s reachable In either case, F, rs r-valent since F,
1s not blvalent (by assumptron) and one of E, and F,
IS reachable from the other Smce F, E D, I = 0, 1,
D contains both O-valent and 1-valen t
configurations

Call two configurations nerghbore if one results
from the other III a single step By an easy
mductlon, there exrst neighbors C,, C, E C such
that D, = e(C,) rs bvalent, I = 0, 1 Without loss
of generality, Cl = e’(C,,) where e’ = (p’, m”)

CASE 1 If p’ # p, then D, = e’(D,,) by Lemma
1 Thus IS rmpossrble smce any successor of a &
valent conhguratlon rs O-valent (See Figure 2)

Figure 2.

CASE 2 If p’ = p, then conslder any hmte
deciding p-free run from C, with correspondmg
schedule u, and let A = o(C,) By Lemma 1, o rs
applicable to D,, and it leads to an r-valent
confrguratlon q = o(D,), I = 0, 1 Also by Lemma

1, e(A) = E, and e+‘(A)) = E,. (See Frpre 3)

Ffgure 8.

Hence, A is bnalent, which rs impossible since A is
univalent

In each case, we reached a contradiction, so D
contams a blvalent configuration. 0

Any deciding run from a blvalent initial
configuration goes to a univalent configuration, so
there must be some single step which goes from a
brvalent to a univalent configuration Such a step
determmes the eventual decision value We now
show that it m always possible to run the system in
a way that avoids such steps, leading to an
admlsslble nondecidmg run.

The run is constructed m stages, starting from an
initial configuration We ensure that the run rs
admissible in the followmg way. A queue of
processes IS maintamed, initially m an arbitrary
order, and the message buffer in a configuration rs
ordered according to the time the messages were
sent, earliest first Each stage consrsts of one or
more process steps The stage ends with the first
process m the process queue taking a step in whvh,
11 rts message queue was not empty at the start of
the stage, Its earliest message u received Thu
process rs then moved to the back of the process
queue. In any infmite sequence of such stages every
process takes mfmrtely many steps and receives
every message sent to it The run is therefore
admlsslble Our problem of course rs to do this in
such a way as to avoid a decision ever being
reached.

Let C, be a bivalent mitral configuration whose
existence is assured by Lemma 2. Execution begins
in C,, and we ensure that every stage begins from a
bivalent configuration. Suppose then that
configuration C is brvalent and that process p heads
the priority queue. Let m be the earliest message to
p m C’s message buffer, II any, and # otherwise
Let e - (p, m) By Lemma 3, there is a blvalent
confiiuration C’ reachable from C by a schedule m
which e w the last event apphed. The corresponding
sequence of steps defines the stage

Since each stage ends m a bivalent configuration,
every stage in the construction of the mfmite
schedule succeeds. The resulting run is admlssrble,
and no decision is ever reached It follows that P u
not totally correct II

4. Initially Dead Processes
In this section, we exhibit a protocol which solves

the consensus problem for N processes as long as a
majority of the processes are non-faulty and no
process dies during the execution of the protocol
No process knows m advance, however, which of the
processes are mitia dead and which are not

The protocol works in two stages. Durmg the
fiit stage, the processes construct a directed graph
G with a node correspondmg to each process Every
process broadcasts a message contammg Its process
number and then listens for messages from L-l
other processes, where L = [(N + 1)/21. G has an
edge from i to j if1 j receives a message from i
Thus, G has mdegree L-l

In the second stage, the processes construct G+,
the transitive closure of G, m the sense that upon
completion of thu stage, each process k knows
about all of the edges (J, k) incident on k m G+ 85
well as the initial vahics of ah such J

To carry out this stage, each process broadcasts
to all other processes its process number and mrtml
value together with the names 01 the L-l processes
It heard from during the first stage It then wah
until it has received a stage 2 message from every
ancestor m G which It knows about Imtlally it
knows only about the L-l processes from which it
heard directly during the hrst stage, but it learns
about addltlonal ancestors from the stage 2

messages that it receives Waltmg contmues until
such time as all currently known about processes
have been heard from

At thus point, each process knows all of its own
ancestors and the edges of G mcident on them, so 3
can compute all of the edges of G+ incident on each
of its ancestors This enables rt to determine which
of its ancestors belong to an initial clique of G+,
that rs, a clique with no incoming edges, for node k
1s III an mltlal clique rff k 1s Itself an ancestor of
every one of its ancestors Since every node in G+
has at least L-l predecessors, there can be only one
mitral clique, it has cardmahty at least L, and every
process which completes the second stage knows
exactly the set of processes comprlsmg it.

Finally, each process makes a de&on based on
the mitral values of the processes m the mrtral chque
usmg any agreed-upon rule Since all processes
know the mitral values of all members of the initial
clique, they all reach the same decuuon

The correctness of this protocol proves the
followmg theorem

Theorem IL There IS a partially correct
consensus protocol m which all nonfaulty
processes always reach a decuuon, provrded
no processes die during Its executron and a
strrct maJorlty of the processes are ahe
initially

Acknowledgement
The authors would like to thank John Guttag for

helpful dIscussIons during the mltml
work, and Gene Stark for drscusslon
and a careful reading of the text

References

phase of thus
of the results

[DFFLS] Dolev, D , Fischer, M , Fowler, R , Lynch,
N and Strong, R. An Efficient Byzantme
Agreement Without Authentlcatlon IBM
Ruearch Report RJ3&?3 (1982), 29pp

[DLM) DeMrllo, R , Lynch, N and Merntt, M
Cryptographic Protocols Rot l&h ACM
Symp on Theory o/ Computtng (1982),
383400

WI

IDS21

PI

PI

Pw

La1

IL4

ILlI

WI

WI

IPSLl

WI

PA

Dolev, D. and Strong, R. Dlstrrbuted
Commit With Bounded Warting. Rot. &d
Annual IEEE S~mpoaium on Reliability in
Dcstt:buted Software and Databade
S@ems (1982)

Dolev, D. and Strong, R Polynomml
Algorithms for Byzantme Agreement
Rot l&h ACM Sump. on Tlreory 01
Computing (1982) 401-407

Frscher, M and Lynch, N A Lower Bound
for the Time to Assure Interactwe
Consistemy Informatron Roce88:ng
Cetteru 14,4 (1982), 183-186

Garcia-Molma, I-L Electrons in a
Distributed Computmg System IEEE
lYansad;ons on Computer8 Vol C-31, No
1 (1982)

Lynch, N, Fucher, M and Fowler, R A
Simple and Effkient Byzantine Generals
Algorithm.. Rot. &end Annual IEEE
Sympoawm on Retrabclcty in Dastnbuted
Sojtware and Database Systems (1982)

Lampson, B Replicated Commit CSL
Notebook Entry, Xerox Palo Alto Research
Center (1981).

LeLann, G Prrvate communication, quoted
in [La].

Lindsay, B et al. Notes on Dlstrlbuted
Databases IBM Research Report RJf371
(1979)

Lampson, B and Sturgis, H Crash
Recovery in a Distributed Data Storage
System Xerox Palo Alto Research Center
Manuscnpt (1979).

Lamport, L, Shostak, R. and Pease, M.
The Byzantine Generals Problem ACM
lFansactron8 on Rogramming Language8
and Systems 4, 3 (1982) 882401

Pease, M, Shostak, R and Lamport, L
Reaching Agreement m the Presence of
Faults. J. ACM f?7, 2 (1980), 228-284.

Reed, D Nammg and Synchronizatron in a
Decentralized Conputer System
Ph D. Theses, Massachusetts Instrtute of
Technology Technicczl Report
MIT’CS/TR-f?O5 (1978)

Rosenkrantz, D , Stearns, R. and Lews, P
System Level Concurrency Control for

6

Dlstrrbuted Database Systems ACM
TFanaactton8 on Database Systems 3, 2
(1978), 178-198

[Sj Skeen, D A Decentrahzed Termmatlon
Protocol Rot i?nd Annual IEEE
Symposmm on Rel:ab:l:tg :n D:stnbuted
Software and Databaae Syatemu (1982)
27-32

[SS] Skeen, D and Stonebraker, M A Formal
Model of Crash Recovery m a Distributed
Database Systems Rot 5th Berkeley
Workshop on Dtatrabuted Data
Management and Computer Networks
(1981), 129142.

