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Abs t r ac t  

Easy proofs are given, of the impossibility of soh, ing several consensus 
problems (Byzantine agreement, weak agreement, Byzantine firing 
squad, approximate agreement and clock synchronization) in certain 
communication graphs. It is shown that, in the presence o f m  faults, no 
solution to these problems exists for communication graphs with fewer 
than 3m + 1 nodcs or less than 2m + l connectivity. While some of these 
results had previously been proved, the new proofs are much simpler, 
provide considerably more insight, apply to more general models of 
computation, and (particularly in the case of clock synchronization) 
significantly strengthen the results. 

I. in t ro t luc t ion  

In this paper, we present easy proofs for the impossibility of solving 

several conscnsus problems in particular communication graphs. We 

prove results for Byzantine agreement, weak agrcemcnt, the Byzantine 

firing squad problem, approximate agreement and clock 

synchronization. The bounds are all the same: tolerating m faults 

requires at least 3m + 1 nodes, and requires at least 2m + 1 

connectivity in the communication graph. (The connectivity of a graph 

is the minimum number of nodcs whose removal disconnects the graph.) 
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For ,,a given value of m, we call graphs with fewer than 3m + 1 nodes or 

less than 2m + 1 connectivity inadequate graphs. 

All the proofs use the same general technique, q'his technique allows 

us to give a unified presentation of all of the lower bounds. Each proof 

is an argument by contradiction. We assume a given problem can be 

solved in an inadequate graph, and construct a set of pathological 

executions. These executions are constructed so that they cannot all 

satisfy the correctness conditions for the given problem. Versions of 

many of the rcsuhs were already known. Our proofs differ from earlier 

results in the technique we use to construct these pathological 

executions. 

For Byzantine agreement, both bounds were already known [PSL, D]. 

The 3m + I node lower bound in [PSL] was proved only for a particular 

synchronous model of computation. Although carefully done, the proof 

is somewhat complicated and not as intuitive as one might like. In 

contrast, our proof is very simple and transparent, and applies to very 

general models of computation. A proof of the 2m + 1 connectivity 

lower bound was presented informally in [D]; we prove that bound more 

formally and for more general models. 

For weak Byzantine agreement, the requirement of 3m + 1 nodes was 

known [L}, but was proved using a very complicated construction. The 

new proof is very easy and extends to more general models (although 

not as general as those for Byzantine agreement and approximate 

agreement). The 2m + 1 connectivity requirement was previously 

unknown. The result for tile I~yza.ntine firing squ~id prol)lem follows 

fi'om a reduction to weak agreement in [CI)I)S]. We provide a direct 

proof. For approximate agreemcnt, the 3m + 1 bound was noted, but 

not proved, in [I)I.PSW], while the 2m + l connectivity requirement 

was plcviously unknown. 

For clock synchronization, the 3m + 1 node bound was proved in 

[DHS], with a very complicated proof. 3.'he authors of {I)HS] also 
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claimed that they knew how to prove the corresponding 2m + 1 

connectivity lower bound, but we presume that such a proof would also 

be complicated. We prove both the 3m + l node and the 2m + 1 

connectivity bounds, for a much more general notion of clock 

synchronization than in [DHS]. These synchronization bounds assume 

that there is no direct way nodes can measure the passage of time, other 

than by reading their inaccurate hardware clocks. 

Since we obtain the same lower bounds for each problem, one might 

think that the problems arc equivalent in some sense. This is not the 

case. We see that the bounds for the different problems require 

different assumptions about the underlying model. For example, the 

lower bounds for Byzantine and approximate agreement work with 

virtually any reasonable computational model, while the lower bound 

for weak agreement requires a special assumption, placing a bound on 

the rate of propagation of information through the system. The bound 

for clock synchronization requires a different assumption about how 

devices can measure time. Many of the results are sensitive to small 

differences in underlying assumptions (about such factors as 

communication delay or the behaviors of faulty nodes). Our paper helps 

to clarify these assumptions. 

2. A Model of Distributed Systems 
In order to make the impossibility results clear, concise and general, 

we introduce a very simple model of distributed systems. 

A communication graph is a directed graph G with node set nodes(G) 

and edge set edges(G). We call the edge (u,v) an outedge of u, and an 

inedge ofv. Given U a subset of nodes(G), the subgraph G o induced by' 

U is the graph containing all the nodes in U and all the edges between 

nodes in U. The inedge border of G O is the set of edges from nodes 

outside U into U; that is, edges(G) fq ((nodes(G)\U) × U). 

A system 0 is a communication graph G with an assignment of a 

device and an input to each node of G. Devices are undefined primitive 

objects. The specific inputs we will consider are encodings of Booleans, 

real numbers or real-valued functions of time (e.g. local clocks). The 

particular type of input will depend on the agreement problem 

addressed. If a node is assigned device A in system ~, we say that the 

node runs A. A subsystem q.l of ~ is any subgraph G o of G with the 

associated devices and inputs. 

Every system ~ has a system behavior, g, which is a tuple containing a 

behavior of every node and edge in G. (We will also describe g as a 

behavior of the communication graph G. Note that a system has exactly 

one behavior, while a graph may have several, depending on the devices 

and inputs assigned to the nodes.) "lhe restriction of a system behavior g 

to the behaviors of the nodes and edges of a subgraph G U of G is the 

scenario gO ° f G u  in g. 

For now, we will take node and edge behaviors as primitives. In more 

concrete and familiar models, a node or edge behavior might be a finite 

or infinite sequence of states, or a mapping from the positive reals to 

some state set., denoting state as a function of time. (We will use the 

latter interpretation for later results). Less familiar models might 

interpret behaviors as mappings from reals to states, or from transfinite 

ordinals to states. To obtain our first results, the precise interpretation of 

node and edge behaviors is unimportant, We need only restrict our 

model so that the following two axioms hold. 

Locality Axiom 1,et 0J and ~" be systems with behaviors g and g', 
respectively, and isomorphic subsystems q.t and q.t', 
(with vertex sets U and U'). If the corresponding 
behaviors of the inedge borders of U and U' in g and 
g" are identical, then scenarios gu  and 8u'  ,are 
identical. 

At heart, the l.ocality axiom says that communication only takes place 

over the edges of the communication graph. In particular, it expresses 

the following property: The only parameters affecting the behavior of 

any local portion of a system are the devices and inputs at each local 

node, together with any information incoming over edges from the 

remainder of the system. If  these parameters are the same in two 

behaviors, the local behaviors (scenarios) are the same.lClearly, some 

such locality property must hold, or agreement is trivially achievable by 

having devices read other device's inputs directly. 

Fault Axiom Let A be any device. Let Ei,...,E d be d edge 
behaviors, such that each E i is the behavior of the i'th 
outedge, in some system behavior gi, of  a node 
running A. Let u be any node with d outedges 
(u,vl),...,(U,Vd). There is a device F such that in any 
system in which u runs F, the behavior of each 
outedge (u,vi) is E i. [ ]  

In this case, we will write FA(Er...,Ed) for F. This axiom expresses a 

powerful masquerading capability of failed devices. Any behavior 

exhibited by a device over different edges in different system behaviors 

can be exhibited by a failed device in a single system behavior. When 

this axiom is significantly weakened (say, by adding an unforgeable 

signature assumption), the following impossibility results do not hold 

IPSLI. 

In order to establish the relevance of our impossibility results to more 

concrete models of distributed systems, it is sufficient to interpret our 

]For wm.k ~reemmt and the Iking squad problem, we will need toextend this locality 
property to include time. as well. 
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definitions in the particular model and then to prove the Locality and 

Fault axioms. 

Our prool~s utilize the graph-theoretic notion of a covering. For any 

graph G, let neighl~ors = {(u,V) [ u is a node of G and V is the set of all 

nodes v such that there is an cdge from v to u in G}. A graph S coversG 

if there is a mapping from the nodes of S to the nodes of G that 

preserves "ncighbors." Under such a mapping, S looks locally like G. 

Graph coverings play an important role in our understanding of  the 

interaction of network topology and distributed computation. A 

discussion appears in [A], and indeed, some of our proofs are 

surprisingly similar to Angtuin's. Similar techniques also appear in [IR], 

IBI and elsewhere. 

3. Byzantine Agreement 

Wc will say that Byzantine agreement is possible in a graph G (with n 

nodes) if there exist n devices Ai,...,A n (which we will call agreement 

devices), with the following properties. 

Each agreement device A u takes a Boolean input, and chooses 1 or 0 as 

a result, fl 'o model choosing a result, assume there is a function 

CHOOSE from behaviors of nodes running agreement devices to the set 

{03}.) A node u of G is correct in a behavior g of G if node u runs A u 

in g. Any system behavior g of G in which at least n - m nodes are 

correct is a correct system behavior. Correct system behaviors must 

satisfy the following conditions. 

Agreement: Every correct node chooses the same value. 

Validity: If all the correct nodes have the same input, that input must 

be the value chosen. 

Theorem 1: Byzantine agreement is not possible in 
inadequate graphs. 

3.1. Number of Nodes 

We begin with the lower bound of 3m + 1 for the number of nodes 

required for Byzantine agreement. First consider the case where IGI = 

n = 3 and m = 1. Assumc that the problem can be solved for the 

communication graph G consisting of ~rce nodes fully connected by 

communication edges. Let the three nodes of G be A, B and C, and 

assume that they run agreement devices A, B and C respectively. (Here 

and later we will often u~e the same names for the nodes in G and the 

devices they run.) 

A 

/ \  

The covering graph S will be as follows: 

12 - Z  

/ \ 
v y 

\ / 
W - X  

This graph looks Focally like G (with every node attached to two others 

by communication edges). 

Now spccify the system by assigning devices and inputs for the nodes 

in S as follows: 

A C /o 1\ 
B B o\ / 

C A 
0 1 

By this we mean that node u runs device A with input 0, node v runs B 

with input 0, and so on. Let ~f denote the resulting behavior of  tke 

system; 3' includes a behavior for every node and edge in S. 

Now consider scenarios ~w' ~ x  and Yxy in ~, where each consists of  

the behaviors of the two indicated nodes in S, along with the activity 

over the two connecting edges. We will argue that each of these 

scenarios is identical to a scenario in a correct behavior of G. 

Scenario ~vw' first scenario in the chain: 

A C 

/ \  
1 B C 

A , 0  0 
1 

This scenario is the behay, ior in ~f of  nodes v and w, together with that 

of the communication edges between v and w. Now consider the 

behavior gl of G in which B runs B on input 0, C runs C on input 0, and 

A runs a device that mimics u in talking to B, and mimics x in talking to 

C. Formally, if F,(,,~) and E~x,w ) are the indicated edge behaviors in L A 

runs device FA(E~,~rE~x.w)) (we have written just F in the figure). This 

device exists, by the Fault axiom, and in the resulting behavior, edges 

from A to B and C have behaviors E(u,v j and E(x,w }, respectively. By the 

Locality axiom, the scenario containing B and C's behavior in g~ is 
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. . . . .  ' ~  , : ~ .  • .  = ~  ~ , ~ ¢ : ~ ' . ; , , . , ¢ , b z ~ , ~ ~ , - ~ , , ~ , g ~ . : , ~ ; ~ ; , . . ~ , ~ . ~ , W , - , , ~ . ¢ . , , ~ , l . ~ = ~ , ~  • 



identical to Yvw" Validity requirements insure that B and C must choose 

0 in ~ r  Since their beh~Lvior is idcntical in :f, w and x choose 0 in 3'. 

Scenario ~a ,  second scenario in the chain: 

g2 

A C /° , \  
B B 

C A 
0 1 

b" 

This scenario includes the behavior of w and x in ~. It is also the 

behavior of A and C in a behavior 6 2 of G which results when they both 

run their devices (on inputs 1 and 0, respectively), and B is faulty, 

exhibiting the same behavior to C that v exhibits to w in ~f, and behavior 

to A that y exhibits to x in ~f. 

The behavior of C in E2 is identical to that ofw in 3', so C chooses 0 in 

82' from the argument above. By agreement, A decides 0 in 62. Thus x 

decides 0 in 3'. 

~3 

A C 

B 1 B 

o\ 
C 
o 

Third scenario, Yxy' 

% 
This scenario is the bchavior ofx and y in ~f. It is also the behavior of 

A and B in a behavior 63 of G which results when they both run their 

devices on input 1, and C is faulty, exhibiting the same behavior to A 

that w exhibits to x in :t, and the same behavior to B that z exhibits to y 

in 3'. Validity requirements insure that A and B must choose 1. Thus x 

and y ch~se  1. But we have already established that x must choose 0, a 

contradiction. 

Now consider the general case of IG] = n < 3m. Partition the nodes 

of G into three groups, A, B and C, each with at least I and at most m 

nodes, qlfis means that any two groups together contain at least n-m 

nodes. The nodes in each group are nmning agreement devices, and we 

will identify the collection of devices run within each group with the 

name of the group, as beforc. Let the covering graph S and assigned 

devices look exactly as above, where each node in S represents a set of 

nodes in G, with their connecting edges, and edges between two nodes 

of S, say A and B, are now a shorthand representation for all the edges in 

G between nodes in A and nodes in B. The inputs assigned to the 

symbols A, B and C are now assigned to all the nodes in the respective 

groups in S. The arguments proceed exactly as in the preceding pictures. 

We consider only one in detail. 

A ¢ 

B 
/ 

A 
1 

F 

. . , /  \ ,  

1'o col 

This scenario is now the behavior of the sets of nodes in v and w in the 

behavior ~'. It is the same as the behavior of the sets B and C in a 

behavior 61 of G in which all nodes in both sets run their devices with 

input 0 and the nodes in A exhibit the same behavior to nodes in B that 

the corresponding nodes in u exhibit to the members of v in ~, and the 

same behavior to nodes in C that the corresponding nodes in y exhibit to 

the members of x in ~f. Since B and C together contain at least n-m 

correct nodes, 61 is a correct behavior of  G. Thus, all the nodes in B and 

C must decide 0, by the validity condition. 

3.2. Connectivity 

Now we carry out the 2rn + I connectivity lower bound proof. Let 

c(G) = connectivity of G. We will assume we can achieve Byzandne 

agreement in a graph G with c(G) < 2m, and derive a contradiction. 

For now, wc consider the case m = 1 and the comnmnication graph G 

and devices indicated beloW. 

A / \  
B e D  \ c /  

The connectivity of G is two; the two nodes B and D disconnect G 

into two pieces, the nodes A and C. 

We consider the following system, with the eight-node graph S and 

devices and inputs as indicated. 
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D ~ B  / 1  ! \  
A A 
o\  /t 

C 
0 

The resulting behavior of the system is Y. We consider three scenarios 

in Y: Yl' Y2 and Yy 

The first scenario, Yr is shown below. 

Y ~1 

D" B 

1 \A. D 

\C OD 0 

This is also a scenario in a correct behavior ~1 of G. In ~1' A, B and C 

are correct. The device at D is fatflty, exhibiting the same behavior to A 

as one D in the covering graph, and the same behavior to B and C as the 

other D exhibits in the covering. Then A, B and C must choose 0 in gi, 

and so must the A, B and C in Yl" 

Second scenario, 3 2 . 

g2 

This scenario in Y is also a scenario in a correct behavior g2 of G. This 

time, B is faulty. The faulty device exhibits the same behavior to C and 

D as one B in the covering, and tbe same beha~.or to A as the other 

B. So A, C and I) must agree in ~2' and so do die corresponding nodes 

in Y2" Since this C chooses 0 fi'om the argument above, the I) and A in 

Y2 choose 0, too. 

1 .ast scenario Y3' 

Y g3 

0 

This scenario is again the same as a scenario in a behavior g3 of G in 

which A, B and C are non-faulty, but have input 1. The device at D is 

Faulty, and exhibits the same behavior to A that one D in the covering 

graph exhibits to A, and the same behavior to B and C as the other D in 

the covering exhibits. Then A, B and C choose 1 in gy and so must the 

A, B and C in ~f3' contradicting the argument above that this A chooses 

0. 

The general case for arbitrary c(G) < 2m is an easy generalization of 

the case for m = 1. The same pictures are used, Just choose B and D to 

consist of at most m nodes each, such that removing the nodes in B and 

D from G disconnects G into two nonempty sets A and C. The edges of 

G now represent all possible edges between A, B, C and D. 

This completes the proof of Theorem 1. [ ]  

As we indicated in the introduction, Theorem I was previously known, 

and the structure of our proof is very similar to that of earlier proofs 

[LSP], [D]. Our proof differs in the construction of the pathological 

behaviors ~1' ~2 and ~y Earlier proofs included a choice of a detailed 

model for devices, and the inductive construction of these behaviors 

within the model. We avoid this construction by examining the 

behavior of agreement devices in the covering graph. The validity and 

agreement conditions impose no direct restriction on this behavior, as 

they refer only to behaviors in the original graph. However, the Locality 

and Fault axioms impose restrictions indirectly on the behavior in the 

covering graph, as they imply that scenarios in the covering grapil are 

also found in correct behaviors of the original inadequate graph. 
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While the model used to obtain these results is an extremely general 

one, but it does assume that systems behave deterministicatly. (For 

every set of inputs, a system has a single behavior). This simplifying 

assumption was made to keep the exposition as clear as possible. By 

considering a system and inputs as determining a weighted set of 

behaviors, nondeterminism and probability may be introduced in a 

straightforward manner. With the appropriate alterations to the Locality 

and Fault axioms, tile same proofs suffice to show that nondetcrministic 

algorithms cannot guarantee Byzantine agreement. 

4. W e a k  Agreemen t  

Now we give our impossibility results for the weak agreement 

problem. As in the Byzantine agreement case, nodes have Boolean 

inputs, and must choose a Boolean output. The agreement condition is 

the same as for Byzantine agreement--all correct nodes must choose the 

same output. The validity condition is weaker, however. 

Agreement: Every correct node chooses the same value. 

Validity: If  all nodes are correct and have the same input, that input 

must be the value chosen. 

The weaker validity condition has an interesting impact on the 

agreement problem. If any correct node observes disagreement or faulty 

behavior, they are all free to choose a default value, so long as they still 

agree. 

Lamport notes that there are devices for reaching a form of  

approximate weak consensus, which work when IGI _< 3m. Running 

these for an infinite time produces exact consensus (at the limit) ILl. In 

such infinite behaviors, if any correct node observes disagreement or 

faulty behavior, it has plenty of time to notify the others before they 

choose a value. Thus, strengthening the choice condition, to prohibit 

such in finite sohltiolJS, is neccs,~try to obtain tile lower bound. 

We must also bound communication delays away from zero, or a 

similar type of infinite behavior is possible. In fact, if we assume there is 

no lower bound on transmission delay, and that devices can control the 

delay and have synchronized clocks, we have found an algorithm for 

reaching weak consensus. "llfis algorithm requires at most two 

broadcasts per node, all with non-zero transmission delay, and works 

with any number of faults. Again, this is because any correct node 

which observes disagreement or faulty behavior has plenty of time to 

notify the others before they choose a value. 2 As we will see, in more 

realistic models it is impossible to reach weak consensus in inadequate 

graphs. To show this, the minimal semantics introduced in the previous 

sections must be extended to exclude these infinitary solutions. We do 

this as follows. Previously, behaviors of nodes and edges were elements 

of some arbitrary set. Hencefi)rth, we will consider them to be mappings 

from time (from [0,oo)) to arbitrary state sets. Thus, if E is a behavior of 

node u, then u is in state E(0 at time t. 

We add tbe following condition to the weak agreement problem. 

Choice: A correct node must choose 0 or 1 after a finite amount of 

time. 

This means there is a ~nction CHOOSE from behaviors of  nodes 

running weak agreement devices to {0,1}, with the following property: 

Every such behavior E has a finite prefix E t (E restricted to the interval 

[0,t]) such that all behaviors E' extending E t have CHOOSE(E) = 

CHOOSE(E'). 

This choice condition prohibits Lamport's infinite solution. To 

prohibit the second solution, we bound the rate at which information 

can traverse the network. To do so, we replace the I,ocality axiom with 

the following. 

Bounded-I)elay Locality Axiom 
There exists a positive constant 8 such that the 
following is true. Let (j and ~' be systems with 
behaviors g and g', respectively, and isomorphic 
subsystems q.t and q.t', (with vertex sets LI and U'). If 
the corresponding behaviors of the inedge borders of 
U and U' in g and g'  are identical through time t, 
then scenarios gu  and gu'  are identical through time 
t+6. 

Thus, news of events k edges away from some subgraph G'  takes time 

at Feast k6 to arrive at G'. In a model with explicit messages, this axiom 

could be proven from an assumption that the transmission delay is at 

least 8, and the edge behaviors in our model would correspond to state 

descriptions of the transmitting end of each communications link. 

Theorem 2: Weak agreement is not possible in inadequate 
graphs. 

Again, we will first sketch the 3m + 1 node bound. In this case, the 

previously published proof ILl was very difficuiL As before, we restrict 

our attention to the case IG] = n = 3, m = 1. (The ease for general m 

follows immediately, just as above.) 

2NOdes slan at time 0, and will decide at time 1. They broadcast their value at lime 0, 
specifying it to arrive at time 1/2. I fa  node tinct detects disagreement ~ failure (at time 
l-t), it broadcasts a "failure detected, choose default value" ~ a g e ,  specifying it to art/ve 
at time l-t/2. 1he obvious decision is made by eye.one at time 1. 
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Assume there are weak agreement devices for the triangle graph G 

containing nodes A, B and C. Consider the two behaviors of G in which 

all nodes are correct, and all have input 0 or all have input 1. Let t' be an 

upper bound on the time it takes all nodes to choose 0 or 1 in both 

behaviors. Choose k > t'/dl to be a multiple of 3. 

The covering graph S consists of 4k nodes, arranged in a circle and 

assigned devices and inputs as follows: 

C~B~A ..... B~A~C~B ..... C~B~A 
[ I  l l i l I l i l l 1 
= - B - c - .  - B - - C - - A - - B - .  - A - - B - - C "  
0 0 0 0 0 0 0 0 0 0 

Consider the resulting behavior Y, and each successive two-node 

scenario, such as the two below. 

. . . .  c - ~ - ~ _ ~ _  Ao O ~ ' '  ° 

As usual, this scenario is identical to a scenario of an behavior in G of 

the appropriate two weak consensus devices. Since each pair of 

successive scenarios overlaps in one node behavior (here B's), all the 

nodes in both scenarios must choose the same value in G and in S. By 

induction, every node in S must choose the same value. Without loss of 

generality, assume they choose 1. 

Consider the k scenarios indicated below. 

. . . . .  . . . . .  

_ _ ~ . _ . _ ~ _ _ :  1 l t 1 l t 

• 7727- 7 '  . . . .  A - -  
i o  [ o o i o l  o~  o I o l  o 

[iLL" 
4 

Let ~ be the behavior of G in which A, B and C are correct and each 

has input 0, and denote the resulting behaviors of A, B and C by EA, FE B 

and E¢, respectively. 

Lemma 3: The behavior in scenario Y. of a node running 
device k (or B ~r C) is identical to E A (o~" E a or EC) throngh 
time i& 

Proof: The proof is an easy induction using the Bounded-Delay 

Locality axiom. []  

By Lemma 3, the nodes running devices C and A in scenario ~fk have 

behaviors identical to E c and E A through time k& Since devices C and 

A in G have chosen output 0 by this time, so have the corresponding 

devices in ~flt' a contradiction. 

The general case ofJG[ < 3m and the connectivity bound follow as for 

Byzantine agreement. El 

There are strong similarities between this argument and a proof by 

Angluin, concerning leader elections in rings and arbitrarily hmg lines of 

processors [A]. Both rcsuks depend crucially on the existence of a lower 

botmd on the rate of information flow. Under this assumption, devices 

in different communication networks can be shown to see the same local 

behavior for some fixed time. 

5. Byzan t ine  F i r ing  Squad  

The Byzantine firing squad problem addresses a form of 

synchronization in the presence of Byzantine failures. The problem is to 

synchronize a response to an input stimulus. The response is to enter a 

designated FIRE state. The problem was studied originally in [BL]. In 

[CDDS], a redtlction of weak agreement to the Byzantine firing squad 

problem demonstrates that the latter is impossible to solve in inadequate 

graphs. We provide a direct proof that a simple variant of the original 

problem is impossible to solve in inadequate graphs. (In the original 

version, the stimulus can arrive at any time. We require it to arrive at 

time 0, or not at all. Our validity condition is slightly different.) The 

proof is very similar to that for weak agreement. 

One or more devices may receive a stimulus at time 0. We model the 

stimulus as an input of 1, and absence of the stimulus as an input of 0. 

Correct executions must satisfy the following conditions. 

Agreement: If  a correct node enters the FIRE state at time t, every 

correct node enters the FIRE state at time c 

Validity: If  all nodes are correct and the stimulus occurs at any node, 

they enter the FIRE state after some finite delay. If the stimulus does 

not occur and all nodes are correct, no node ever enters the FIRE state. 

As in the case of weak agreement, solutions to the Byzantine firing 

squad problem exist in models in which there is no minimum 

communication delay. Thus the following result requires the Bounded- 

Delay Locality axiom, in addition tO the Fault axiom. 

Theorenl 4: The Byzantine firing squad problem cannot be 
solved in inadequate graphs. 

We will sketch the 3m + 1 node bound. As before, we examine the 

case IOI = n = 3, m = 1. 

Assume there are Byzantine firing squad devices for the triangle graph 

G containing nodes A, B and C. Consider the two behaviors of G in 
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which all nodes are correct, and all have input 0 or all have input 1. l.et 

t be thc time at which the correct devices enter the FIRE state in the case 

that the stimulus occured (the input 1 case). Since the correct nodes 

never enter the FIRE state in the absence of the stimulus, they certainly 

do not enter the FIRE state at time t. Choose k > t/8 to be a multiple 

of 3. (Recall that 8 is the minimum transmission delay defined in the 

Bounded- Delay Locality axiom). 

The covering graph S consists of 4k nodes, arranged in a circle and 

assigned devices and inputs as follows: 

C ~ B - - A  . . . . .  B~A--C~B . . . . .  C--B--A 
[1 1 l 1 1 l 1 t l l / 
"A--B--C -. --B--C--A--B ..... A--B--C- 
O 0 0 0 O 0 0 0 0 O 

Similarly to the proof for weak agreement, the middle two devices 

receiving the stimulus will enter the FIRE state at time t, as their 

behavior through time t is the same as that of the correct nodes in O 

which have received the stimulus and fire at time t. Because of the 

communication delay, there is not enough time for "news" from the 

distant nodes to reach these devices. By repeated use of the agreement 

property, all the devices in S must fire at time t. But through time t, the 

middle two devices not receiving the stimulus behave exactly as correct 

nodes in G which do not receive the stimulus (the input 0 case). Thus 

they will not fire at time t, a contradiction. D. 

6. A p p r o x i m a t e  A g r e e m e n t  

Next, we turn to two versions of the approximate agreement problem 

[LSP, DLPSW,MS]. We will call them simple approx#nate agreenzent 

and (e,~,-f)-agreement. In these problems, nodes have real values as 

inputs and choose real numbers as a result. The goal is to have the 

results close to each ()tiler and to the inpuLs. In order to obtain the 

strongest possible impossibility resulL we fnrmulate very weak versions 

of the pa)blems. 

In the following we will be using tile Locality and Fault axioms We 

will not need the Bounded-Delay Locality axiom used for the weak 

agreement and firing squad results. 

6.1. Simple Approximate Agreement 

First, we turn to the simple approximate agreement problem 

[LSP, DLPSW]. "File version we examine is based on that in [DLPSW]. 

F.ach correct node has a real value from [0,1] as input, runs its device and 

chooses a real value. Correct behaviors {those in which at least n - m 

nodes are correct) must satisfy the following conditions. 

Agreement: The maximum difference between values chosen by 

correct nodes must be strictly smaller than the maximum difference 

between the inputs, or be equal to the latter difference flit is zero. 

Validity: Each correct node chooses a value within the range of the 

inputs of tile nodes. 

Theorem 5: Simple approximate agreement is not possible 
in inadequate graphs. 

The proof is almost exactly that for Byzantine agreement. Here, we 

consider devices which take as inputs numbers from the interval [0,1], 

and choose a value from [0,1] to output. (Outputs are modeled by a 

function CHOOSE from behaviors of nodes running the devices to the 

interval [0,1].) As before, assume simple approximate agreement can be 

reached in the triangle graph G. Consider the following three scenarios 

from the indicated behavior in the covering graph S. 

A C 

Again, each sccnariu Is also a scenario m a correct behavior of G. In 

the first scenario, the only value C can choose is 0. In the third, the only 

value A can choose is 1. This means the values chosen by A and C in the 

the second scenario arc at most 0 and at least'l, so that the outputs are 

no closer than file inputs, violating the agreement condition. 

The general case of IGI _< 3m and the connectivity bounds follow as 

for Byzantine agreement. 

6.2(e,&Y)Agreement 

Fhis version of approximate agreement is based on that in [MSI. Let 

c, 8 and 'y be positive real numbers. The correct nodes receive real 

numbers as inputs, with rmi n and qnax the smallest and largest such 

inputs, respectively. These inputs are aU at most 8 apart (i.e. the interval 

of inputs [rmin, rmax] has length at most 8). They must choose a real 

number as output, such that correct behaviors (those in which at least n - 

m nodes are correct) satisfy the following conditions. 

Agreement: The values chosen by correct nodes are all at most e 

apart. 
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Validity: Each correct node chooses a value in the interval 

[rmin'7,rma x + 7]" 

Note that if t > ~, (e,8,7)-agreement can be acheived trivially by 

choosing the input value as output. 

Theorem 6: If e < ~, (t,6,7)-agreement is not possible in 
inadequate graphs. 

Proof: Let ¢, ~ and 7 be positive real numbers with e < 8. We will 

prove only the 3m+ 1 bound on the number of nodes. Assume that 

devices A, B and C exist which solve the (e,8,7)-approximate agreement 

problem in the complete graph G on three nodes, for particular values 

o f t ,  ~ andy, where e < ~. 

Choose k sufficiently large that 8 > 27/(k-1) + e, and k+2 is divisible 

by thrcc. The cnvcring graph S will cnntain k+2 nodes arranged in z 

circle, with devices and inputs assigned to create the follnwing system. 

C A ~ l ~  . . . . .  B ~ C  ~ 
node  0 1 . . .  k k + l  

• " i n p u t  0 B k8 (k+l)8 

Let ~i' for 0 < i < k, denote the two-node scenario in if containing the 

behaviors of nodes i and i + I. By the Fault Axiom, each scenario Yi is a 

scenario of a correct behavior of G, in which the largest input value to a 

correct node is (i + ])B. [] 

Lemma 7: For 0 < i < k, the value chosen by the device at 
node i+ 1 is at most 6 + 7 + it. 

Proof: The proof is a simple induction. The device at node 1 chooses 

at most 8 + 7, by validity applied to scenario ~f0' Assume inductively 

that the device at node i chooses at most ~ + Y + (i-l)t, for 0 < i < k + 1. 

By agreement applied to scenario ~fi' the device at node i+ 1 chooses at 

most8 + 7 + i t . [ ]  

In particular, Lemma 7 implies the device at node k chooses at most 

+ 7 + (k-1)t. But validity applied to scenario Ik implies the device at 

node k chooses at least k6 - 7. So k8 - 7 <_ 8 + 7 + (k-1)e. This 

implies 8 < 27/(k-1 ) + e, a contradiction. 

The general case oflGI _< 3m and the connectivity bounds follow as in 

previous proofs. [] 

7. Clock Synchronization 
Each ncule has a hardware clock and maintains a logical clock. The 

hardware docks are real-valued, invertible and increasing functions of  

time. In general, different hardware clocks run at different rates, and 

the nodes wish to synchronize their logical clocks more closely than their 

hardware clocks, We also want the logical clocks to be reasonably close 

to real time--setting them to be constantly zero should probably be 

forbidden. Thus, we will require the logical clocks to stay within some 

envelope of  the hardware clocks. 

This problcm was studied in [I)HS] for the case of linear clock and 

envelope functions, where it was shown that it is impossible to 

synchronize to within a constant in inadequate graphs. Some questions 

concerning more general synchronization problems were raised. It was 

pointed out, for example, that diverging linear clocks can easily be 

synchronized to within a constant if nodes can run their logical clocks as 

the logarithm of thcir hardware clocks. For a large class of clock and 

envelope tractions (increasing and invertible clocks, non-decreasing 

envclopcs), we are able to characterize the best synchronization possible 

in inadequate graphs. This synchronization rcquires no communication 

whatsoever. 

We model node i's hardware clock, D i, as an input to the device at 

node i that has value Di( 0 at time t. ']'he value of  the hardware clock at 

time t is assumed to be part of the state of the node at time t. ']~e time 

on node i's logical clock at real time t is given by a function of the entire 

state of node i. Thus, if E i is a behavior of node i (such that node i is in 

state El(t) at time 0, then we express i's logical clock value at time t as 

Ci(E~(0). 

We assume that any aspect of the system which is dependent upon 

time (such as transmission delay, minimum step time, maximum rate of 

message transmission) is a function of the states of the hardware clocks. 

Having made this assumption, it is clear that speeding up or slowing 

down the hardware clocks uniformly in different behaviors cannot be 

observable to the nodes, so the only impact on the behaviors should be 

that they speed up or slow down in the same way as the hardware clocks. 

To formalize this assumption, we need to talk about scaling clocks and 

behaviors. Let h be any invertible function of  time. If E is a behavior 

(of a edge or node), then Eh, the behavior E sealed by h, is such that 

Eh(t)=F&h(0), for all times L Similarly, Dh is the hardware clock D 

scaled by h: Dh(0=D(h(t)). l f~  is a system behavior or scenario, Ch is 

the system behavior or scenario obtained by scaling every node and edge 

behavior in g by h. Similarly, if ~ is a system, then ./h is the system 

obtained by scaling every clock in ~f by h. lntnitively, a scaled clock or 

behavior is in the state at time t that the corresponding unsealed clock or 

behavior is in at time h(t). 

Scaling Axiom If 8 is the behavior of  system 2f, then Igh is the 
behavior of  system 2fh. 1:3 
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If Otis axiom is significandy weakened, as by bounding the 

transnfission delay or the maximum rate of message transmission, clock 

synchronization may be possible in inadequate graphs [I)HS]. 

In the following we will be using the Locality, Fault and Scaling 

axioms. We will not necd the Bounded-Delay Locality axiom used for 

the weak agreement and firing squad results. 

The synchronization problem can be stated as follows. I.et correct 

hardware clocks run either at fit) or g(O, where f and g are increasing, 

invertible functions, with f(O _< g(O, for all It. Let the envelope 

functions I and u be non-decreasing functions such that l(Q < u(t), for 

all L 

Consider what happens if everyone runs their logical clocks at the 

lower envelope, C(E(0)=I(D(0). Then the logical clocks will be 

synchronized to within l(g(t))-l(f(t)). The goal then, is to improve this 

trivial synchronization, We show that logical clocks cannot be 

synchronized to within l(g(t))-l(f(t))-a, for any positive a. 

That is, nontrivial synchronization is achieved by synchronization 

devices in G if there exist positive constant a and time t' such that every 

correct system behavior g satisfies the following conditions. 

Agreement: For any two correct nodes i and j in g, ICi(Ei(0) - 

~(~(t))l <_ l(g(t))- l(ff0)- a, 

for all times t > t'. 

Validity: For any correct node i in g, with hardware clock D i and 

resulting behavior E a, 

l(f(t)) < Ci(Ei(t)) < u(gtt)). 

Theorem 8: Nontrivial synchronization is not possible in 
inadcquatc graphs. 

We show that for every integer k>2, there is a behavior g of G in 

which node i is correct, has hardware clock D i = f(that is, Di(t) = If(t)), 

and in which Ci(Ei(t')) > l(f(t')) + ka. For k big enough, this violates 

the upper envelope condition, Ci(l~(t')) < u(g(t')). 

Define h = f-lg. (That is, h(t) = f-l(g(t)).) Then h 4 = gqf. Note 

that h(t) _> t for all t, since f(t) < g(t). 

We will begin with the three node, one fault case. The argument is 

very similar to the proof of Theorem 6. 

Assume theexistence of  devices A, B and C, time t' and positive 

constant a such that logical clocks of correct nodes obey the agreement 

and validity conditions: 

lCi(Ei(t)) - Cj(Ej(t))I < l(g(O) - l(f(O) - a, for all times t > t'. 

l(f(t)) < C(Ei(t)) < u(g(t)), for all times t. 

Choose an integer k ) 2, such that k+2 is a multiple of three, and such 

that l(f(t')) + ka > u(g(t')). The covering graph S will contain k+2 

nodes arranged in a circle, with devices and clock inputs assigned to 

create the following system. 

~ A ~ B  . . . . .  B ~ C  ) 
node 0 1 • . .  k k+l  

c lock g gh "1 . . .  gh-k gh-(k+t) 

behav ior  E 0 E1 "'" Ek [k+l 

Let ~t be the behavior of this system. An initially troubling concern is 

that the hardware c h ,  ks in :f are much slower in most of the devices in 

the ~t than they would be in a correct behavior in G. But consider ~i' the 

two-node scenario containing the behaviors of nodes i and i + 1, where 0 

<i_<k. 

. . . .  A ~ B  . . . .  
node 

i i+! 

hardware clocks gh-t gh-(i+t) 

resul t ing behavior El Et+! 

Nowconsider~hi,~e scenario ~ scaled by h i. 

. . . .  A ~ B  . . . .  

node i i ÷ l  

hardware c locks g f 

resul t ing behavior Eih t Et+lhi 

In this scenario, the hardware clocks have values within the constraints 

for correct behaviors of G. Thus we have the following. 

Lemma 9: Scenario ~ih i, for 0 ~ i < k, is a scenario 
containing the behaviors of two correct nodes in a correct 
behavior of  G. 

Lenuna 10: For all i, 0 ~ i ~ k, and all t >.hi(C), 
ICi+ l(Ei+ l(t)) - Ci(Ei(t))[ ~ l(g(h'i(t))) - l(f(h'*(t))) - a. 
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Proof: Fix t > hi(t'). Then hi(t) > t'. By Lemma 9, i and i + l  are 

correct in 3'i hi, so by the agreement assumption ICi+ l(Ei+lhi(hi(t))) " 

Ci(Eihi(hi(t)))l < l(g(h'i(t))) - l(f(hi(O)) - a. The result is immediate. 13 

Let time t" = hk(t'). Note that t" _> hi(O, for i ~ k. 

Lemma l l :  For all i, 1 _< i < k+ 1, Ci(Ei(t")) _> l(gh(i)(t")) 
+ (i-1)a 

Proof: The proof is by induction on i. By Lemma 9, scenario ~f0 is a 

scenario in G of correct nodes A and B, with hardware clocks g and f, 

respectively. From the validity condition, for all t, Ci(Ei(t)) > l(f(t)). 

Setting t = t", and substituting gh q for f, we have the basis step: 

Ci(EI(t")) _> l(gh'l(t")). 

Now make the inductive assumption Ci(Ei(t")) > I(gh'i(t")) + (i-1)a, 

for 1_< i_< k. 

Since t" > hi(t'), fiom l.emma 10. we k n o w  ] C i + l ( E i + l ( t " ) )  - 

Ci(Ei(t"))l < I(gh-i(t")) - l(th-i(t")) - a. 

This implies Ci+ t(Ei+ l(t")) > Ci(Ei(t")) - t(ghi(t")) + l(thi(t")) + a. 

Substituting for Ci(Ei(t") ) using the inductive assumption gives us 

Ci+ t(Ei + t(t")) _> l(ghi(t")) - I(ghi(t")) + l(fh-i(t")) + ia = l(thi(t")) 

+ in. Noting that f = gh 1, we have the result, Ci÷t(Ei+l(t")) _> 

l(gh(i+l)(t")) + in. [] 

Proof of Theorem 8: 

Lemma 11 implies Ck+ l(Eit+ t(t")) > l(gh (k+ 1)(t")) + ka. Since t" = 

hk(t'), we have Ck+t(Ek+l(t")) = Ck+l(F:x+t(hlC(t'))) = 

Ck+l(Ek+lhk(t')) > l(gh(k+ l)h{C(t'))+ ka = l(f(t')) + ka. 

But the upper envelope constraint for the scaled scenado 2flthk (in 
which k + l  is correct and has hardware clock fit)) implies that 

Ck+l(Ek+/hk(t')) < u(g(t')). Thus, l(f(t')) + ka < u(g(t')). This 

violates the assumed bound on k, l(f(t')) + kct > u(g(t')). 

Once again, the general case of IGI _< 3m is a simple extension of this 

argument. The connectivity bound also follows easily, as with the earlier 

results. [] 

7.1. Linear Envelope Synchronization and other Corollaries 

Linear envelope synchronization, as defined in [DHSL examines the 

synchronization problem when the clocks and envelope functions are 

linear functions (g(t)=rt, f(0=t, l (0=a t+b  and u(0=ct+d).  It 

requires correct logical clocks to remain within a constant of each other, 

so that the agreement condition is ICi(Ei(t)) - Cj(l~(t))l < a, for all times 

t, instead of our weaker condition ICi(Ei(0) - Cj(Ej(t))I < art- at- a, for 

all times t > f. Our validity condition is slightly weaker, as well. thus, 

the proof of [DHS] shows that logical clocks cannot be synchronized to 

within a constant; we show that that the synchronization of logical clocks 

cannot be improved by aconstant over the synchronization (art - a0 that 

can be achieved trivially. Thus the we have the following immediately 

from Theorem 8. 

Corollary 12: Linear envelope synchronization is not 
possible in inadequate graphs [DHS}. 

We also get the following results immediately from Theorem 8, by 

choosing specific values for the clock and lower envelope functions. 

Note that the particular choice of the upper envelope fimction does not 

affect the minimal synchronization possible in inadequate graphs, 

although the existence of s o m e  upper envelope function is necessary to 

obtain our impossibility proofs. 

Corollary 13:1 f f(t) = t, g(t) = rt, and l(t) = at + b, no devices 
can synchronize a constant closer than art-at in inadequate 
graphs• 

Corollary 14: If fr0=t, g ( 0 = t + c  and I(t)=at+b, no 
devices can synchronize a constant closer than ae in 
inadequate graphs. 

Corollary 15: If f(t) = t, g(0 = rt and l(t) = logt(t), no devices 
can synchronize a constant closer than log2(0 in inadequate 
graphs. 

In general, the best possible synchronization in inadequate graphs can 

be achieved without any communication at all. The best nodes can do is 

run their logical clocks as slowly as they are permitted, C(E(t)) = I(D(0). 

8. Conclusion 
Most of the results we have presented were previously known. Our 

proofs are simpler than earlier proofs, and hold in more general models, 

but this is not their main contribution. While simplicity and generality 

are important goals, in this instance they are the welcome byproduct of 

our attempt to identify the fundamental issues and assumptions behind a 

collection of similar results. 

One important contribution is to elucidate the relationship between 

the unrestricted, or Byzantine failure assumption, and inadequate 

graphs. As is clear from our proofs, this fault assumption permits faulty 

devices to mimic executions of disparate network topologies. If the 

network is inadequate, a covering graph can be constructed so that 

correct devices cannot distinguish the execution in the original graph 

from one in the covering graph. 
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A second contribution is related to the generality of our results. 

Nowhere do we restrict state sets or transitions to be finite, or even to 

reflect the outcome of effective computations. The inability to solve 

consensus problems in inadequate graphs has nothing to do with 

computation per se, but rather with distribution. It is the distinction 

between local and global state, and the uncertainty introduced by the 

presence of Byzantine faults, which result in this limitation. 

Finally, we have identified a small, natural set of assumptions upon 

which the impossibility results depend. For example, in the case of 

weak agreement and the firing squad problem, the correctness 

conditions are sensitive to the actions of faulty devices. Instantaneous 

notification of the detection of fault events would allow one to solve 

these problems. An assumption that there are miniamm delays in 

discovering and relaying information about faults is sufficient to make 

these problems unsolvable. 
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