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Abstract

Easy proofs arc given, of the impassibility of solving several conscnsus
problems (Byzantine agreement, weak agrecment, Byzantince firing
squad, approximate agreement and clock synchronization) in certain
communication graphs. It is shown that, in the presence of m faults, no
solution to these problems exists for communication graphs with fewer
than 3m+1 nodcs or less than 2 -+ 1 connectivity. While some of these
results had previously been proved, the new proofs are much simpler,
provide considerably more insight, apply to more general models of
computation, and (particularly in the case of clock synchronization)
significantly strengthen the results.

1. Introduction

In this paper, we present casy proofs for the impossibitity of solving
several consensus problems in particular communication graphs. We
prove results for Byzantine agreement, weak agreement, the Byzantine

firing squad problem, approximate agreement and  clock

synchronization. The bounds are all the same: tolerating m faults

requires at least Jm + 1 nodes, and requires at least 2m + 1
connectivity in the communication graph. (The connectivity of a graph

is the minimum number of nodes whose removal disconnects the graph.)
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For a given value of m, we call graphs with fewer than 3m+ 1 nodes or

less than 2m + 1 connectivity inadequate graphs.

All the proofs use the same general technique. This technique allows
us to give a unificd presentation of all of the lower bounds. Each proof
is an argument by contradiction,. We assume a given problem can be
solved in an inadequate graph, and construct a set of pathological
exccutions. These executions are constructed so that they cannot all
satisfy the correctness conditions for the given problem. Versions of
many of the results were already known. Qur proofs differ from earlier
results in the technique we use to construct these pathological

exccutions.

For Byzantine agreement, both bounds were already known {PSL,D).
The 3m + 1 node lower bouwad in [PSL] was proved only for a particular
synchronous model of computation. Although carefully done, the proof
is somewhat complicated and not as intuitive as one might like. In
contrast, our proof is very simple and transparent, and applies to very

general models of computation. A proof of the 2m + 1 connectivity

fower bound was presented informally in [D]; we prove that bound more

formally and for more general models.

For weak Byzantine agreement, the requirement of 3m + 1 nodes was
known [L], but was proved using a very complicated construction. The
new proof is very casy and extends to more general models (although
not as general as those for Byzantine agreemcnt and approximate
agreement). The 2m + 1 conncctivity requircment. was previously
unknown. The result for the Byzantine ﬁrin-g squad problem follows
from a reduction to weak agreement in JCDDS]. We provide a direct
proof. For approximate agreement, the 3m + 1 bound was noted, but
not proved, in {DLPSW], while the 2m + 1 connectivity requirement

was previously unknown,

For clock synchronization, the 3m + 1 node bound was proved in
[DHS], with a very complicated proof. The authors of {DHS] also



claimed that they knew how to prove the corresponding 2m + 1
connectivity lower bound, but we presume that such a proof would also
be complicated.  We prove both the 3m -+ 1 node and the 2m + 1
connectivity bounds, for a much morc general notion of clock
synchronization than in [DHS]. Thesce synchronization bounds assume
that there is no direct way nodes can measure the passage of time, other

than by reading their inaccurate hardware clocks.

Since we obtain the same lower bounds for each problem, one might
think that the problems arc cquivalent in some sense. This is not the
case. We see that the bounds for the different problems require
different assumptions about the underlying model. For example, the
lower bounds for Byzantine and approximate agreement work with
virtually any reasonable computational model, while the lower bound
for weak agreement requires a special assumption, placing a bound on
the rate of propagation of information through the system. The bound
for clock synchronization requires a different assumption about how
devices can measure time. Many of the results are sensitive to small
differences in underlying assumptions (about such factors as
communication delay or the behaviors of faulty nodes). Our paper helps

to clarify these assumptions.

2. A Model of Distributed Systems
In order to make the impossibility results clear, concise and general,

we introduce a very simple model of distributed systems.

A communication graph is a directed graph G with node sct nodes(G)
and edge set edges(G). We call the edge (u,v) an outedge of u, and an
inedge of v. Given U a subset of nodes(G), the subgraph GU induced by
U is the graph containing all the nodes in U and all the edges between
nodes in U. The inedge border of Gy is the set of cdges from nodes
outside U into U; that is, cdges(G) N ((nodes(GN\U) X U).

A system § is a communication graph G with an assignment of a
device and an input to cach node of G. Devices are undcfined primitive
objects. The specific inputs we will consider are encodings of Booleans,
real numbers or real-valued functions of time (c.g. local clocks). The
particular type of input will depend on the agreement problem
addressed. If a node is assigned device A in system §, we say that the
node runs A. A subsystem QU of § is any subgraph GU of G with the

associated devices and inputs.

Every system § has a system behavior, €, which is a tuple containing a
behavior of every node and edge in G. (We will also describe € as a
behavior of the communication graph G. Note that a system has exactly

one behavior, while a graph may have scveral, depending on the devices
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and inputs assigned to the nodes.) The restriction of a system behavior 8
to the behaviors of the nodes and cdges of a subgraph Gy of G is the
scenario SU of GU in8.

For now, we will take node and edge behaviors as primitives. In more
concrete and familiar models, a node or edge behavior might be a finite
or infinite sequence of states, or a mapping from the positive reals to
some state set, denoting state as a function of time. (We will use the
latter interpretation for later resulis). Less familiar models might
interpret behaviors as mappings from reals to states, or from transfinite
ordinals to states. To obtain our first results, the precise interpretation of
node and cdge behaviors is unimportant. We need only restrict our
model so that the following two axioms hold.

let G and G be systems with behaviors & and €7,
respectively, and isomorphic subsystems AU and QL'
(with vertex sets U and U). If the corresponding
behaviors of the incdge borders of U and U’ in € and

& are identical, then scenarios SU and GU. are
identical.

Locality Axiom

At heart, the Locality axiom says that communication only takes place
over the edges of the communication graph. In particular, it expresses
the following property: The only paramcters affecting the behavior of
any local portion of a system arc the devices and inputs at cach local
node, together with any information incoming over edges from the
remainder of the system. If these parameters are the same in two
behaviors, the local behaviors (scenarios) are the same.lClearly, some
such locality property must hold, or agreement is trivially achievable by

having devices read other device’s inputs directly.

Let A be any device. Let E,,..,.E, be d edge
behaviors, such that each E, is the behavior of the i'th
outedge, in some system behavior €', of a node
running A. Let u be any node with d outedges
(u,vl),...,(u,v d). There is a device F such that in any
system in which u runs F, the behavior of each
outedge (u,vi) isE, a

Fault Axiom

In this case, we will write F A(E . ) d) for F. This axiom expresses a
powerful masquerading capability of failed devices. Any behavior
exhibited by a device over different edges in different system behaviors
can be exhibited by a failed device in a single system behavior. When
this axiom is significantly weakened (say, by 'adding an unforgeable
signature assumption), the following impossibility results do not hold

[PSL}.

In order to establish the relevance of our impossibility resuits to more

concrete models of distributed systems, it is sufficient to interpret our

1For weak agrecment and the firing squad problem. we will need to extend this locality
property to include time, as well.



definitions in the particular model and then to prove the Locality and
Fault axioms.

Qur proofs utilize the graph-theoretic notion of a covering. For any
graph G, let acighbors = {(u.V) | uis a node of G and V is the sct of all
nodes v such that there is an edge from v to u in G}. A graph S covers G
if there is a mapping from the nodes of S to the nodes of G that

prescrves "ncighbors.” Under such a mapping, S looks locally fike G.

Graph coverings play an important role in our understanding of the
interaction of nctwork topology and distributed computation. A
discussion appears in [A], and indeed, some of our proofs are
surprisingly similar to Angluin's. Similar techniques also appear in [IR],

{B] and elsewhere.

3. Byzantine Agreement
We will say that Byzantine agrecement is possible in a graph G (with n
nodes) if there exist n devices Al,‘..,/\n (which we will call agreement

devices), with the following properties.

Each agreement device Au takes a Boolean input, and chooscs 1 or 0 as
a result. (To model choosing a result, assume there is a function
CHOOSE from behaviors of nodes running agreement devices to the set
{0,1}.) A node u of G is correct in a behavior € of G if node u runs A,
in 8. Any system bchavior € of G in which at least n - m nodes are
correct is a correct system behavior. Correct system behaviors must

satisfy the following conditions.
Agreement: Every correct node chooses the same value.

Validity: If all the correct nodes have the same input, that input must

be the value chosenr.

Theorem 1: Byzantine agreement is not possible in
inadequatc graphs.

3.1. Number of Nodes

We begin with the lower bound of 3m + 1 for the number of nodes
required for Byzantine agreement. First consider the case where |G| =
n =3and m = 1. Assumc that the problem can be solved for the
communication graph G consisting of three nodes fully connccted by
Let the three nodes of G be A, B and C, and

assume that they run azrecment devices A, B and C respectively. (Here

communication cdges.

and later we will often use the same names for the nodes in G and the
devices they run.)
A

/ \

B——-oc
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The covering graph S will be as follows:

AN
v y

N/

W x
This graph looks focally like G (with every node attached to two others
by communication edges).
Now specify the system by assigning devices and inputs for the nodes

in S as follows:

A——C

VAN
N/

C——A
0 1
By this we mean that node u runs device A with input 0, node v-runs B

with input 0, and so on. Let ¥ denote the resulting behavior of the

system; ¥ includes a behavior for every node and edge in S.

Now consider scenarios S :fwx and ﬂ'xy in ¥, where each consists of
the behaviors of the two indicated nodes in S, along with the activity
over the two connecting edges. We will argue that each of these
scenarios is identical to a scenario in a correct behavior of G.

Scenario h‘vw, first scenario in the chain:

b g 3 1
/ \ F
g ; £\
\ / B—c
3VW
jVW

This scenario is the behavior in ¥ of nodes v and w, together with that
of the communication edges between v and w.  Now consider the
behavior 8, of G in which B runs B on input 0, C runs C on input 0, and
A runs a device that mimics u in talking to B, and mimics x in talking to
C. Formally, if H zmd l:

runs device F, (F fuwy (X W)) (we have written just F in the figure). This

w) e the indicated cdge behaviorsin ¥, A

device exists, by the Fault axiom, and in the resulting behavior, edges

from A to B and C have behaviors E( ) and l:(x Wy

Locality axiom, the scenario containing B and C’s behavior in 8, is

respectively. By the



identical to 5. Validity requirements insurc that B and € must choose
0in 81. Since their behavior is identical in f, w and x choose 0 in &,

Scenario h‘“, second scenario in the chain:

s 82

S‘G

‘This scenario includes the behavior of w and x in %, It is also the
behavior of A and C in a behavior 82 of G which results when they both
run their devices (on inputs 1 and 0, respectively), and B is faulty,
exhibiting the same behavior to C that v exhibits to w in ¥, and behavior

to A that y exhibits to x in ¥.

The behavior of C in 82 is identical to that of w in ¥, so C chooses 0 in
&,, from the argument above. By agrcement, A decides 0 in 82. Thus x
decides @ in 4.

‘Third scenario, :fxy.

b2 83

—C
1

5
2 » /'
N\ _

C

0

m

—taA

"This scenario is the behavior of x and y in 4. It is also the behavior of
A and B in a behavior 83 of G which results when they both run their
devices on input 1, and C is faulty, exhibiting the same behavior to A
that w exhibits to x in ¥, and the same behavior to B that z exhibits to y
in ¥, Validity requirements insure that A and B must choose 1. Thus x
and y choose 1. But we have alrcady cstablished that x must choose 0, a

contradiction.

Now consider the general case of |G| = n < 3m. Partition the nodes
of G into three groups, A, B and C, cach with at lcast 1 and at most m
nodes. This means that any two groups together contain at least n-m
nodes. The nodes in each group arc running agrcement devices, and we

will identify the collection of devices run within each group with the

name of the group, as before. Let the covering graph S and assigned
devices look cxactly as above, where cach node in S represents a set of
nodes in G, with their connecting edges, and cdges between two nodes
of S, say A and B, are now a shorthand representation for all the edges in
G between nodes in A and nodes in B. The inputs assigned to the
symbols A, B and C are now assigned to all the nodes in the respective
groups in S. The arguments proceed exactly as in the preceding pictures.

We consider only one in detail.

B /113 / \

\ B——C
C1+—A 0 0
0 1 ¢

L v

This scenario is now the behavior of the sefs of nodes in v and w in the
behavior ¥. It is the same as the behavior of the sets B and C in a
behavier 8; of G in which all nodes in both sets run their devices with
input 0 and the nodes in A exhibit the same behavior to nodes in B that
the corresponding nodes in u exhibit to the members of v in ¥, and the
same behavior to nodes in C that the corresponding nodes in y exhibit to
the members of x in $. Since B and C together contain at least n-m
correct nodes, 8, is a correct behavior of G. Thus, all the nodes in B and

C must decide 0, by the validity condition.

3.2. Connectivity
Now we carry out the 2m + 1 connectivity lower bound proof. Let
o(G) = conncctivity of G. We will assume we can achieve Byzantine

agreement in a graph G with ¢(G) < 2m, and derive a contradiction.

For now, we consider the case m=1 and the communication graph G

and devices indicated below.

A
A
N
The connectivity of G is two; the two nodes B and D disconnect G

into two piccces, the nodes A and C.

We consider the following system, with the cight-node graph S and

devices and inputs as indicated.
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C
/ 1 \

A ™~
A A
AN ya

B—D

0 0

\ ] /
0
The resulting behavior of the system is ¥, We consider three scenarios

inf: 5’1. f!2 and .‘1’3.

The first scenario, 3‘1, is shown below.

s
C
1

B

0
\c
0

This is also a scenario in a correct behavior 8,0ofG.In§, A, Band C
are correct. The device at D is faulty, exhibiting the same behavior to A
as one D in the covering graph, and the same behavior to B and C as the
other D exhibits in the covering. Then A, B and C must choose 0 in g,
and so must the A, Band C in .‘fl.

Second scenario, /%

s 82
C
! A
D B /1\
1 /]

A/l A F +——D
o\ /‘ N Y
B D N
0 /0 0
C
0

This scenario in ¥ is also a scenario in a correct behavior 82 of G. This
time, B is faulty. The faulty device exhibits the same behavior to C and
D as one B in the covering, and thé same behavior to A as the other

B. So A, C and 1D must agree in 82, and so do the corresponding nodes
in 3’7. Since this C chooses 0 from the argument above, the D and A in
5’2 choose 0, too.

1.ast scenario :1’3.

¥ g,
A
D TN
A/‘ \ B/ .\F
0 1 dé
N, h \C/
0

% 1
0

This scenario is again the same as a scenario in a behavior 83 of G in
which A, B and C are non-faulty, but have input 1. The device at D is
faulty, and exhibits the same behavior to A that one D in the covering
graph exhibits to A, and the same behavior to B and C as the other D in
the covering exhibits. Then A, B and C choose 1 in 83, and so must the
A, B and Cin J,, contradicting the argument above that this A chooses
0.

The general case for arbitrary ¢(G) < 2m is an easy generalization of
the casc for m = 1. The same pictures are used. Just choose B and D to
consist of at most m nodes each, such that removing the nodes in B and
D from G disconnects G into two nonempty sets A and C. The edges of
G now represent all possible edges between A, B, C and D.

This completes the proof of Theorem 1. O

As we indicated in the introduction, Theorem 1 was previously known,
and the structure of our proof is very similar to that of earlier proofs
{LSP}, [D]. Our proof differs in the construction of the pathological
behaviors Sl, 82 and 83. Earlier proofs included a choice of a detailed
model for devices, and the inductive construction of these behaviors
within the model. We aveid this construction by cxamining the
behavior of agreement devices in the covering graph. The validity and
agrecment conditions impose no direct restriction on this bchavior, as
they refer only to behaviors in the original graph. However, the Locality
and Fault axioms impose restrictions indirectly on the behavior in the
covering graph, as they imply that scenarios in the covering graph are
also found in correct behaviors of the original inadequate graph.



White the model used to obtain these results is an extremely general
one, but it does assume that systems behave deterministically. (For
every set of inputs, a system has a single behavior). This simplifying
assumption was made to keep the cxposition as clear as possible. By
considering a system and inputs as determining a weighted sct of
behaviors, nondeterminism and probability may be introduced in a
straightforward manncr. With the appropriate alterations to the Locality
and Fault axioms, the same proofs suftice to show that nondetcrministic

algorithms cannot guarantee Byzaatine agreement.

4. Weak Agrecment

Now we give our impossibility results for the weak agreement
problem. As in the Byzantine agreement casc, nodes have Boolean
inputs, and must choose a Boolean output. The agreement condition is
the same as for Byzantine agreement--all correct nodes must choose the

same output. The validity condition is weaker, however.
Agreement: Every correct node chooses the same value,

Validity: If alt nodes are correct and have the same input, that input

must be the value chosen.

The weaker validity condition has an interesting impact on the
agrecement problem. If any correct node observes disagreement or faulty
behavior, they are all free to choose a default value, so long as they still

agree,

Lamport notes that there arc devices for reaching a form of
approximate weak consensus, which work when |G| < 3m. Running
these for an infinite time produces exact consensus (at the limit) {L]. In
such infinite behaviors, if any correct node observes disagreement or
faulty behavior, it has plenty of time to notify the others before they
choose a value. Thus, strengthening the choice condition, to prohibit

such infinite solutions, is accessary to obtain the lower bound.

We must alse bound communication delays away from zcro, or a
similar type of infinitc behavior is possible. In fact, if we assume there is
no lower bound on transmission delay, and that devices can control the
delay and have synchronized clocks, we have found an algorithm for
reaching weak consensus.  This algorithm requires at most two
broadcasts per node, all with non-zero transmission delay, and works
with any number of faults. Again, this is because any correct node
which observes disagreement or faulty behavior has plenty of time to
notify the others before they choose a value.? As we will see, in more
realistic models it is impossible to reach weak consensus in inadequate

graphs. To show this, the minimal semantics introduced in the previous
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sections must be extended to exclude these infinitary solutions. We do
this as follows. Previously, behaviors of nodes and edges were clements
of some arbitrary set. Henceforth, we will consider them to be mappings
from time (from [0,00)) to arbitrary state sets. Thus, if E is a behavior of
node u, then u is in state E(t) at time ¢.

We add the following condition to the weak agreement problemn.

Choice: A correct node must choose 0 or 1 after a finite amount of

time.

This means there is a function CHOOSE from behaviors of nodes
running weak agreement devices to {0,1}, with the following property:
Every such behavior E has a finite prefix E, (E restricted to the interval
[0,1]) such that all behaviors E' extending E, have CHOOSE(E) =
CHOOSE(E).

This choice condition prohibits Lamport's infinite solution. To

prohibit the second solution, we bound the rate at which information

can traverse the network. To do so, we replace the Locality axiom with

the following,

Bounded-Delay Lecality Axiom

There cxists a positive constant § such that the
following is true. Let § and G be systems with
behaviors € and €', respectively, and isomorphic
subsystems AU and AL, (with vertex sets U and U). If
the corresponding behaviors of the incdge borders of
U and U’ in € and & are identical through time t,
(heg scenarios 8, and 8, are identical through time
t+0.

‘Thus, news of events k edges away from some subgraph G’ takes time
at least kd to arrive at G'. In a model with explicit messages, this axiom
could be proven from an assumption that the transmission delay is at
least §, and the edge behaviors in our model would correspond to state

descriptions of the transmitting end of each communications link.

Theorem 2: Weak agreement is not possible in inadequate
graphs.

Again, we will first sketch the 3m + 1 node bound. In this case, the
previously published proof {L] was very difficult. As before, we restrict
our attention to the case |G| = n = 3, m = 1. (The case for general m
follows immediately, just as above.)

2Nodes start at time 0, and will decide at time 1. They broadcast their value at time 0,
specifying it to asrive at time 1/2. If 2 node first detects disagreement or failure (at time
1-t), it broadcasts a "failurc d d, choose default value” message, specifying it (o arrive
at time 1-t/2. The obvious decision is made by everyone at time 1.




Assume there are weak agreement devices for the triangle graph G
containing nodes A, B and C. Consider the two behaviors of G in which
all nodes are correct, and all have input 0 or all have input 1. Lett be an
upper bound on the time it takes all nodes to choose 0 or 1 in both
behaviors. Choose k > t/8 to be a multiple of 3,

The covering graph S consists of 4k nodes, arranged in a circle and
assigned devices and inputs as follows:

¢C—B—A-...~B—A—C—B=:+.~C—B—
i 11 A U 8 ‘?J
A—B-—C—+..—B—C—A—B—+: . ~A—B—
o ¢ o 86878 87875

Consider the resulting behavior ¥, and cach successive two-node
scenario, such as the two below,

o
o
O
(o]

As usual, this scenario is identical to a scenario of an behavior in G of
the appropriate two weak consensus devices. Since cach pair of
successive scenarios overlaps in one node behavior (here B's), all the
nodes in both scenarios must choose the same value in G and in S. By
induction, every node in S must choose the same value. Without loss of
generality, assume they choose 1.

Consider the k scenarios indicated below.

C—B—A=~++-=B=—A-—C—Bm. .= C—B—aA

i 1 1 O 1 1)

lA—-—B—C~----B Cc—A-p4 ---—A—B--cJ
o0 9 0|6y 0 [0 0- 0| 0
¢ Itk

o2 s

Let & be the behavior of G in which A, B and C are correct and cach
has input 0, and denote the resulting behaviors of A, B and C by E A EB
and EC, respectively,

Lemma 3; The behavior in scenario 3, of a node running
device A (or BQr C) is identical to E s (or By or EC) through
time 8.

Proof: The proof is an easy induction using the Bounded-Delay
Locality axiom. O

By Lemma 3, the nodes running devices C and A in scenario 4, have
behaviors identical to E. and E, through time k3. Since devices C and
A in G have chosen output 0 by this time, so have the corresponding
devices in J,, a contradiction.
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The general case of |G| < 3m and the conncctivity bound follow as for
Byzantine agreement. 3

There are strong similaritics between this argument and a proof by
Angluin, concerning leader elections in rings and arbitrarily long lines of
processors [A}. Both results depead crucially on the existence of a lower
bound on the rate of information flow. Under this assumption, devices
in different communication networks can be shown to see the same local

behavior for some fixed time.

5. Byzantine Firing Squad

The Byzantine firing squad problem addresses a form  of
synchronization in the presence of Byzantine failures. The problem is to
synchronize a response to an input stimulus. The response is to enter a
designated FIRE state. The problem was studied originally in [BL). In
[CDDS], a reduction of weak agrcement to the Byzantine firing squad
problem demonstrates that the latter is impossible to solve in inadequate
graphs. We provide a direct proof that a simple variant of the original
problem is impossible to solve in inadequate graphs. (In the original
version, the stimulus can arrive at any time. We require it to arrive at
time 0, or not at all. Our validity condition is stightly differcnt.) The

proof is very similar to that for weak agreement.

One or morc devices may receive a stimulus at time 0. We model the
stimutus as an input of 1, and absence of the stimulus as an input of 0.

Correct executions must satisy the following conditions.

Agreement: If a coirect node cnters the FIRE state at time t, every

correct node enters the FIRE state at time ¢.

Validity: If all nodes are correct and the stirnulus occurs at any node,
they cnter the FIRE state after some finite delay, If the stimulus does
not occur and all nodes are correct, no node ever enters the FIRE state.

As in the casc of weak agreement, solutions to the Byzantine firing
squad problem exist in models in which there is no minimum
communication delay. Thus the following result requires the Bounded-

Delay Locality axiom, in addition to the Fault axiom.

‘Theorem 4: The Byzantine firing squad problem cannot be
solved in inadequate graphs.

We will sketch the 3m + 1 node bound. As before, we examine the

caselGl=n=3m=1L

Assumc there are Byzantine firing squad devices for the triangle graph

G containing nodes A, B and C. Consider the twa behaviors of G in



which all nodes arc correct, and all have input 0 or afl have input 1. Let
t be the time at which the correct devices enter the FIRE state in the case
that the stimulus occured (the input 1 case). Since the correct nodes
never enter the FIRE state in the absence of the stimulus, they certainly
do not enter the FIRE state at time t. Choose k > t/§ to be a multiple
of 3. (Recall that § is the minimum transmission delay defined in the

Bounded-Declay Locality axiom).

The covering graph S consists of 4k nodes, arranged in a circle and

assigned devices and inputs as follows:

—~B—A-+++=B—A—C—B=—---=C—B—A
ﬁ P2 1T 1 1 1 i1 1
B =t s+ e mPBom (= =B =+ s = =B —
8876 87674878 s 875

Similarly to the proof for weak agreemcent, the middle two devices
receiving the stimulus will enter the FIRE state at time t, as their
behavior through time t is the same as that of the correct nodes in G
which have received the stimulus and fire at time t.  Because of the
communication delay, there is not enough time for "news" from the
distant nodes to reach these devices. By repeated use of the agreement
property, all the devices in S must fire at time t. But through time t, the
middle two devices not receiving the stimulus behave exactly as correct
nodes in G which do not receive the stimulus (the input 0 case). Thus

they will not fire at time t, a contradiction. 0.

6. Approximate Agreement

Next, we turn to two versions of the approximate agreement problem
[LSP,DLPSW ,MS]. We will call them simple approximate agreement
and (e,8,y)-agreement. In these problems, nodes have real values as

inputs and choosc real numbers as a result. The goal is to have the

results close to cach other and to the inputs. In order to obtain the
strongest possible impossibility result, we formulate very weak versions

of the problems,

In the following we will be using the Locality and Fault axioms We
will not need the Bounded-Delay Locality axiom used for the weak

agreement and firing squad results.

6.1. Simple Approximate Agreement

First, we turn to the simple approximate agrecment problem
[LSP,DLPSW]. The version we examine is based on that in [DLPSW],
Each correct node has a real value from [0,1] as input, runs its device and
chooscs a real value. Correct behaviors (those in which at least n - m

nodes are correct) must satisfy the following conditions.

Agreement: The maximum difference between values chosen by
correct nodes must be strictly smaller than the maximum difference

between the inputs, or be equal to the latter difference if it is zero.

Validity: Each correct node chooses a value within the range of the

inputs of the nodes.

Theorem 5: Simple approximate agreement is not possible
in inadequate graphs.

The proof is almost exactly that for Byzantine agrcement. Here, we
consider devices which take as inputs numbers from the interval [0,1],
and choose a value from {0,1] to output. (Outputs arec modeled by a
function CHOOSE from bchaviors of nodes running the devices to the
interval [0,1].) As before, assume simple approximaic agreement can be
reached in the triangle graph G. Consider the following three scenarios

from the indicated behavior in the covering graph S.

A——C
/0 AN
3 ?
N/

C A

0 1

Again, cach scenario is also a scenario in a correct behavior of G, In
the first scenario, the only value C can choose is 0. In the third, the only
value A can choose is 1. This means the values chosen by A and C in the
the sccond scenario are at most 0 and at least 1, so that the outputs are

no closcr than the inputs, violating the agreement condition.

The general case of |G} < 3m and the connectivity bounds follow as
for Byzantine agreement.

6.2(e.8.v)Agreement

This version of approximate agreement is based on that in [MS]. Let
¢, & and y be positive real numbers. The correct nodes receive real
numbers as inputs, with Tosin and r ‘max the smatlest and largest such
inputs, respectively. These inputs are all at most & apart (i.e. the interval
of inpuss [r, . . r mM] has length at most 8§). They must choose a real
number as output, such that correct behaviors (those in which at least n -

m nodes are correct) satisfy the following conditions.

Agreement: The values chosen by correct nodes are all at most e

apart.



Validity: Each correct node chooses a value in the interval

[rmm-y,r max T 7l

Note that if ¢ > 8, (e,8,y)-agreement can be acheived trivially by

choosing the input value as output.

Theorem 6: If € < &, (¢,8,y)-agreement is not possible in
inadequate graphs.

Proof: Let ¢, § and y be positive real numbers with e < §. We will
prove only the 3m+1 bound on the number of nodes. Assume that
devices A, B and C exist which solve the (¢,8,y)-approximate agreement
problem in the complete graph G on three nodes, for particular valucs

of e, § and y, where ¢ 8.

Choose k sufficiently large that § > 2y/(k-1) + ¢, and k+2 is divisible

by three. ‘The covering graph S will contain k42 nodes arranged inz

circle, with devices and inputs assigned to create the following systemn.

e )
A—B--..--B—C
node 0 1 k k+1

input 1] 8 ké (k+1)8

Let £, for 0 < i < k, denote the two-node scenario in ¥ containing the
behaviors of nodes i and i+1. By the Fault Axiom, each scenario :fi isa
scenario of a correct behavior of G, in which the largest input valuc to a

correct node is (i+1)8. O

Lemma 7: For 0 < i < k, the value choscn by the device at
nodei+lisatmost§ + y + ie.

Proof. The proof is a simple induction. The device at node 1 chooses
at most 8 + v, by validity applicd to scenario .‘fo. Assume inductively
that the device at node i chooscs at most § + y + (i-1)e, for 0<i<k+1.
By agreement applied to scenario .‘fi, the device at node i+1 chooses at
mostd +y +ie. 0

In particular, Lemma 7 implics the device at node k chooses at most 8
+ v + (k-1)e. But validity applied to scenario ¥, implies the device at
node k chooses at least k8 - y. Sokd -y < 6 + y + (k-1)e. This
implies § < 2y/(k-1) + &, a contradiction.

The general case of |G| < 3m and the connectivity bounds follow as in

previous proofs. O]

7. Clock Synchronization

Each node has a hardware clock and maintains a logical clock. The
hardware clocks are real-valued, invertible and increasing functions of
time. In general, different hardware clocks run at different rates, and
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the nodes wish to synchronize their logical clocks more closcly than their
hardware clocks. We also want the logical clocks to be reasonably close
to real time--sciting them to be constantly zero should probably be
forbidden. Thus, we will require the logical clocks to stay within some
cavelope of the hardware clocks.

This problem was studicd in {IDHS] for the case of lincar clock and
envelope functions, where it was shown that it is impossible to
synchronize to within a constant in inadequate graphs. Some questions
concerning more general synchronization problems were raised. It was
pointed out, for example, that diverging linear clocks can easily be
synchronized to within a constant if nodes can run their logical clocks as
the logarithm of their hardware clocks. For a large class of clock and
envelope functions (increasing and invertible clocks, non-decreasing
envclopes), we are able to characterize the best synchronization possible
in inadequate graphs. This synchronization requires no communication

whatsoever.

We model node i's hardware clock, D;, as an input to the device at
node i that has value Di(t) at time t. The value of the hardware clock at
time t is assumed to be part of the state of the node at time t. The time
on node i's logical clock at real time t is given by a function of the entire
state of node i. Thus, if E; is a behavior of node i (such that node i is in
state Ei(t) at time t), then we express i's logical clock value at ime t as
CEW).

We assume that any aspect of the system which is dependent upon
time (such as transmission delay, miniinum step time, maximum rate of
messagce transmission) is a function of the states of the hardware clocks.
Having made this assumption, it is clear that speeding up or slowing
down the hardware clocks uniformly in different behaviors cannot be
observable to the nodes, so the only impact on the behaviors should be
that they speed up or slow down in the same way as the hardware clocks.

To formalize this assumption, we need to talk about scaling clocks and
behaviors. Let h be any invertible function of time. If E is a behavior
(of a edge or node), then Eh, the behavior E scaled by h, is such that
Eh(t)=E(h(1)), for all times & Similarly, Db is the hardware clock D
scaled by h: Dh(t)=D(h(t)). If 8 is a system behavior or scenario, 8h is
the system behavior or scenario obtained by scaling every node and edge
behavior in € by h. Similarly, if $is a system, then $h is the system
obtained by scaling every clock in ¥ by h. Intuitively, a scaled clock or

behavior is in the state at time ¢ that the corresponding unscaled clock or

behavior is in at time h(c).

If 8 is the behavior of system ¥, then 8h is the
behavior of system $h. 0O

Scaling Axiom



If this axiom is significantly weakecned, as by bounding the
transmission delay or the maximum rate of message transmission, clock

synchronization may be possible in inadequate graphs [DHS].

In the following we will be using the Locality, Fault and Scaling
axioms. We will not need the Bounded-Delay Locality axiom used for

the weak agreement and firing squad results.

The synchronization problem can be stated as follows. Let correct
hardware clocks run either at f{t) or g(t), where f and g are increasing,
invertible functions, with ft) < g(t), for all t. Let the envelope
functions I and u be non-decreasing functions such that Kt} < u(t), for

allt,

Consider what happens if everyone runs their logical clocks at the
lower envelope, C(E())=I(D{t)). Then the logical clocks will be
synchronized to within [(g(t))-1(f{t)). The goal then, is to improve this
trivial synchronization. We show that logical clocks cannot be

synchronized to within Kg(t))-1(Rt))-a, for any positive a.

That is, nontrivial synchronization is achicved by synchronization
devices in G if there exist positive constant a and time t’ such that every

correct system behavior 8 satisfies the following conditions.

Agreement:  For any two correct nodes i and j in 8, ICj(Ei(t)) -

CEM < W) - 1Y) - o,
for all times t > ¢

Validity: For any correct node i in 8, with hardware clock Di and

resuiting behavior E,,

1) < CED) < ule®).

‘Theorem 8. Nontrivial synchronization is not possible in
inadequate graphs.

We show that for every integer k>2, there is a behavior 8 of G in
which node i is correct, has hardware clock Di = f(that is, Di(t) = f{v)),
and in which C(E(t")) 2 (A1) + ke. For k big cnough, this violates
the upper envelope condition, CE) < ule)).

Define h = flg (That is, h(t) = £ (g(t)).) Then h! = gf. Note
that h(t) > ¢ for all t, since §t) < g(t).

We will begin with the three node, one fault case. The argument is

very similar to the proof of Theorem 6.
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Assume the existence of devices A, B and C, time ¢ and positive
constant & such that logical clocks of correct nodes obey the agreement
and validity conditions:

IGELD) - CEM) < Ne®) - IRD) - a, for all times t > ¢.
V) < CE(®) < ulg(v)), for all times t.

Choose an integer k > 2, such thatk+2is a multiple of three, and such
that X)) + ke > u(g(t)). The covering graph S will contain k+2
nodes arranged in a circle, with devices and clock inputs assigned to
create the following system.

¢ —

A—B=-...= B—C
node 0 1 . k k+1
¢lock g gh' ... gnk gn(keD)

behavior Eo /El cen Ek Ekﬂ

Let ¥ be the behavior of this system.  An initially troubling concern is
that the hardware clocks in ¥ are much slower in most of the devices in
the ¥ than they would be in a correct behavior in G. But consider )‘ the

two-node scenario containing the behaviors of nodes i iand i+, where 0
<i<Lk.

ter=A—B-...

node

i i+l
hardware clocks gh~i gh~(1+1)
resulting behavior E, E

i+

Now consider 3ih’, the scenario ¥, scaled by K.

cei—A—B—...

node i i+l
hardware clocks g f
resulting behavior E,h Eyyqh’

In this scenario, the hardware clocks have values within the constraints

for correct behaviors of G. Thus we have the following.

Lemma 9: Scenario Y hi, for 0 < i £ &, is a scenario
containing the behavnors of two correct nodes in a correct
behavior of G,

Lemma 10: Foralli, 0 <i <k andallt> h'(t’)
ICiy 1B, ) - CEOI < iem ) - (RR(O))) - a.



Proof: Fix t > hi(t). Then hi(t) > t'. By Lemma 9, i and i+1 are
correct in ffihi, so by the agreement assumption ICi +1(Ei lehi(h'i(l))) -
CER® O < Mt (V) - KRB'(©) - a. The result s immediate. O

Lettime t" = hk(t‘). Note that t" > hi(t’), fori <k.

Lemma 1£: For alli, 1 i < k+1 C(E") > Igh¥")
+ (i-Da

Proof: The proof is by induction on i. By Lemma 9, scenario f!o isa
scenario in G of correct nodes A and B, with hardware clocks g and f,
respectively. From the validity condition, for all ¢, Cl(El(t)) 2 ().
Setting t = t", and substituting ghl for £, we have the basis step:
C(E,(") 2 1™ @)

Now make the inductive assumption C(E(t")) 2 ghi@)) + G-Da,
forl <i<k

Since t* > hi(L'), from Lemma 10, we know ICHJ(F,HI(t")) -
CLEQN < e ey - (M) - e

This implies €, (B, , (1)) > C(E(") - Kgh (") + K@) + a.
Substituting for Ci(Ei(t")) using the inductive assumption gives us

Ci, (B ) 2 1)) - gh™@)) + 1) + ia = K0
+ ia. Noting that f = gh’l, we have the result, CiitE () 2
gh V") + ia. O

Proof of Theorem 8:
Lemma 11 implies C, , ,(E, , (")) > Igh™* V(t")) + ka. Since t” =
he), Cor 1B = Cpp B 0fOm =
Cp 1By 5O > (e DRKE)) + ka = (AD)) + ke

we have

But the upper envelope constraint for the scaled scenario thk (in
which k+1 is correct and has hardware clock f{t)) implies that
Cyp1Bpy 150D < u(e®). Thus, KAY) + ka < u(g(t)). This
violates the assumed bound on k, I{f{t")) + ka > u(g(t’)).

Once again, the general case of |G| < 3m is a simple extension of this
argument. The connectivity bound also follows easily, as with the earlier
results. O]

7.1. Linear Envelope Synchronization and other Corollaries

Linear envelope synchronization, as defined in [DHS], examines the
synchronization problem when the clocks and envelope functions are
linear functions (g(t)=rt, f)=t, Wt)=at+b and u@®)=ct+d). It

requires correct logical clocks to remain within a constant of each other,
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so that the agreement condition is ICi(Ei(t)) - Cj(Ej(t))l < a, for all times
t, instead of our weaker condition ICi(Ei(t)) - Cj(Ej(t))I <art-at- a, for
all times t > ¢, Our validity condition is slightly weaker, as well. Thus,
the proof of [DHS] shows that logical clocks cannot be synchronized to
within a constant; we show that that the synchronization of logical clocks

cannot be improved by a constant over the synchronization (art - at) that
can be achicved trivially. Thus the we have the following immediately

from Theorem 8.

Corollary 12: Lincar cnvelope synchronization is not
possible in inadequate graphs [DHS}

We also get the following results immediately from Theorem 8, by
choosing specific values for the clock and lower envelope functions.
Note that the particular choice of the upper envelope function does not
affect the minimal synchronization possible in inadequate graphs,
although the existence of some upper envetope function is necessary to

obtain our impossibility proofs.

Corollary 13: If f{t)=t, g(t)=rt, and I(t)=at+b, no devices
can synchronize a constant closer than art-at in inadequate
graphs.

Corollary 14: If f)=¢, g)=t+c and I()=at+b, no
devices can synchronize a constant closer than ac in
inadequate graphs.

Corollary 15: If f{t)=¢, g(t) =rt and I(t):logz(t), no devices
can synchronize a constant closer than logz(r) in inadequate
graphs.

In general, the best possible synchronization in inadequate graphs can
be achieved without any communication at all. The best nodes can do is

run their logicat clocks as stowly as they are permitted, C(E(t)) = XD(9).

8. Conclusion

Most of the results we have presented were previously known. Our
proofs are simpler than earlier proofs, and hold in more general models,
but this is not their main contribution. While simplicity and generality
are important goals, in this instance they are the welcome byproduct of
our attempt to identify the fundamental issues and assumptions behind a

collection of similar resuits.

One important contribution is 1o clucidate the relationship between
the uarestricted, or Byzantine failure assumption, and inadequate
graphs. As is clear from our proofs, this fault assumption permits faulty
devices to mimic cxccutions of disparate nciwork topologics. 1f the
network is inadequate, a covering graph can be constructed so that
correct devices cannot distinguish the execution in the original graph

from one in the covering graph.



A sccond contribution is rclated to the gencrality of our results.
Nowhcre do we restrict state scts or transitions to be finite, or cven to
reflect the outcome of effective computations. The inability to solve
consensus problems in inadequate graphs has nothing to do with
computation per se, but rather with distribution. 1t is the distinction
between local and global state, and the uncertainty introduced by the

presence of Byzantine faults, which result in this limitation.

Finally, we have identificd a small, natural set of assumptions upon
which the impossibility results depend. For example, in the case of
weak agreement and the firing squad problem, the correctness
conditions are sensitive to the actions of faulty devices. Instantancous
notification of the detection of fault events would allow one to solve
these problems. An assumption that there are minimum delays in
discovering and relaying information about faults is sufficient to make

these problems unsolvable.
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