
A New Fault-Tolerant Algorithm 

for Clock Synchronization 

Jennifer Lundelius 

Nancy Lynch 

Laboratory for Computer Science 
Massachusetts Institute of Technology 

Cambridge, MA 02139 

June 1984 

Abstract: 

We describe a new fault-tolerant algorithm for solving a variant 
of Lamport's clock synchronization problem. The algorithm is 
designed for a system of distributed processes that communicate 
by sending messages. Each process has its own read-only 
physical clock whose drift rate front real time is very small. By 
..qdding a value to its physical clock time, the process obtains its 
local time. The algorithm solves the problem of maintaining 
closely synchronized local times, assuming that processes' local 
times are closely synchronized initially. The algorithm is able to 
tolerate the failure of just under a third of the participating 
processes. It maintains synchronization to within a small 
constant, whose magnitude depends upon the rate of clock drift, 
the message delivery time, and the inital closeness of 
synchronization. We also give a characterization of how far the 
clocks drift from real time. Reintegration of a repaired process 
car, be accomplished using a slight modification of the basic 
algorithm. A similar style algorithm can also be used to achieve 
synchronization initially. 

This wo l k  was suDoorred in 13arl by the NSF under Grant No. DCR-8302391, 

Ll S al l l iV [2o:,u,llch OIf lc{ '  Conl;; lCls /¢ [)AA(;:#!) ,'9 (] 015D .llllJ 

# I)AA[I ; ' :~ ~4,1 k OOh~L and Adv,~u)ct,d [:~{.~st';llch P l o j l t h ;  Ag~l lcy o1 lht" 

DelJmtment ul Dufunse (.;onttact #N i l e014  83 K 0125, 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

© 1984 ACM0-89791-143-1!84/008,0075 $00.75 

1. Introduction 

Keeping the local tinres of processes in a dislributed system 
synchronized in the presence of arbitrary faults is important in 
many applications and is an interesting problem in its own right. 
faking into account the clocks' drift from real time and varying 
message delivery times makes the problem more realistic and 
more challenging. In order to be truly useful, a solution to this 
problem must allow taLIIty processes that have recovered to be 
reinlegrated into the system. The algorithm described m this 
paper meets these requirements, assuming that the clocks are 
initially close together and lllat fewer than one third of the 
processes are faulty. 

In our model, processes are assumed to have access to local 
read-only physical clocks, which are subject to a very small rate of 
drift. A process' local time is obtained by adding the value of the 
physical clock to the value of a local "correction" variable. We 
assume that processes are totally connected for communication. 
They communicate by messages, over a reliable transmission 
medium. There are upper and lower bounds on the length of time 
that any message takes to arrive at its destination. We do not 
require the existence of unforgeable signatures. 

Our algorithm runs in rounds, resynchronizing every so often to 
correct for the clocks drifting out of synchrony, and using a fault- 
tolerant averaging function based on those in [DLPSW] to 
calculate an adjustment. The size of the adjustment made to a 
clock at each round is independent of the number of faulty 
processes. At each round, n 2 messages are required, where n is 
the total number of processes. The closeness of synchronization 
achieved depends only on the initial closeness of synchronization, 
the message delivery time and its uncertainty, and the drift rate. 
Since the closeness of synchronization depends on the initial 
closeness, this is, in the terminology of [LM], an interactive 

convergence algorithm. We give explicit bounds on how the 
difference between the clock values and real time grows. The 
algorithm can be easily adapted to become a reintegration 
procedure for repaired processes. 

Lamport and Melliar-Smith [LM], Halpern, Simons and Strong 
[HSS]. and Marzu',lo [M] also have clock synchronization 
algorithms that run in rounds. The three algorithms in [LM], as do 
ours, require a reliable, completely connected communication 
network arid handle arbitrary faults. However, the closeness of 
synchronization achieved by one depends on the number of 
processes and that achieved by the other two depends on the 
number of faulty processes. In two of them, the size of the 
adjustment also depends on the number of faulty processes and 

75 



the number of messages is exponential. Although one algorithm 
only needs a majority of the processes to be nonfaulty, it assumes 

unfoltl,,,able digilal signatures, The algorithm of [I-tSS] is resilient 
to any nun~ber of [aulls ( i s  Ion~j as the nelwoFk remains 
col]notre,J), htls n 2 messag~ (:on~plexity per rotmd, and -ichieves a 
closeness of synchronizal ion very similar to oum. [3ul the s~ze of 
Ihe adjuslmenl depends on the number of processes and 
unforgeable digital signatures are necessary. t he  framework and 
error model used in IM] make a direct comparison of results with 
ours difficult. Only [HSS] includes a reintegration procedure. 

The problem addressed in the earl ier papers is only that 0f 
mainlaining synchronization of local times once it has been 
established. There is. of course, the separate problem of 
estab!ishir~g such synchronizat ion in the first place. A variant of 
tile algr~rilhm in this paper can be used to estaLflisl~ the inilial 
,,,ynchronization. as well as to maintain the synchronization. This 
variant, together with a description of the interface between the 
1',vo aigodthms, will be briefly sketched. 

The remainder of this paper is organized as follows: in Section 2 
we describe ti le underlying model upon which our work is based 
in more detail, but still informally. In Seclion 3 the assumptions we 
make about clock behavior are given and the problem to be solved 
fs stated precisely, in terms of the model descr ibed in Section 2. 
The algorithm to solve the problem is presented in Section 4. This 
simple algorithm is described in words first, and then in a high 
level "program.ruing language", We explain how the high level 
language can be "compi led" into our model. Section 5 contains 
an inductive proof that some important propert ies hold at every 
round. We give an upper bound on the amount by which any 
nonfaulty process' clock is changed at any time. Section 6 
includes background needed for the results of Section 7, which 
contains the answers to the problem posed earlier. In section 8 
we explain how to reintegrate a repaired process. Finally, Section 
g consists of a brief description of an algorithm to establish 
synchronizat ion initially. 

2. A Model for Systems of Processes with 
Clocks 

This section is an informal descript ion of the model used to 
describe a system of processes which have physical clocks. A 
complet~ly formal development will appear in fLu]. 

2.1.  P rocesses ,  C locks ,  and Systems 
We model a distributed system consisting of a set of processes 

that communicate by ssnding messages to each other. Each 
process has a physical clock that is not under its control. 

A typical message consists of text and the sending process' 

name. There are also two sp,;cial messages. STARI,  which 
c(,,mes froln an external source and indicates that the ru(-ipient 
should begin the algorithm, al~d i tMER. which a process receives 
when its physical clock has re~;ched a designated lime. 

A p, roce, ss is an automaton with a set of states and a transition 
function. The transition function describes the new state the 
process enters, the messages it sends out. and the timers it sets 
for ilsell, all as a function of tile process' current state, received 
message and pllysical clock time. An application of the transition 
function constitutes a process step, the only kind of event in our 
model. 

l-he system is interrupt-driven in that a process only takes a step 
when a message arrives. Tile message may corne from another 
process, or it may be a TIMER message that was sent by the 
process itself. Thus. by using a TIMER message, a process can 
ensure that an interrupt will occur at a specif ied time in the future. 
We neglect local processing time by assuming tl~at the processing 
of an arriving message is instantaneous. 

We define a clock to be a monotonical ly increasing, everywhere 
dif ferentiable function from IR (real time) to IR (clock time). A 

system o/processes consists of a set of processes, a subset of the 
processes called the self-starting processes, and a set of clocks 
(the physical clocks), one for each process. The physical clock 
for process p will be denoted Php. 

2.2. The Message System 
Every process can communicate directly with every process, 

including itself. The message system is modelled by a global 
message buffer. When a process sends a message at real t ime t to 
another process, the message is placed in the message buffer 
together with a time t' greater than t. At real time t', the message is 
received by the proper recipient and is deleted from the buffer. 
The message delay is t' - t. Initially the message buffer contains 
no messages except for START messages, exactly one for each 
self-starting process. 

When a process p sets a timer, say for time T, a TIMER message 
with recipient p and delivery time Ph ~(T) is placed in the 

1 P ' 
message buffer, as long as P h  (T) is not less than the current 

la 
real t ime If it is, no message is piaced in the buffer. 

2.3. Executions 
l h e r e  is only one type of event in this model, receive(m,p), the 

receipt of message m by process p. In order to discuss how an 
event affects the system as a whole, we def ine a configuration to 
consist of a state for each process and a state for the message 
buffer. At~ event ,'-,tlrroul](]e,J by the confJguralions of lhe system 
in~mediatel7 before ti le ewmt and immedial~:ly afterwards, e.g. 
(l--.e.F'). is an achon. 

We define an ex~,cumm of the system to be a mapping Irom real 
times to sequences of actions with the Iollowing properties: 

- the conf igurat ions match up correctly, that is, lhe 
second conii~iurabon of an action is the same as the 
first one of the following action: 

- all TIMER messages received by a particular process 
p that arrive at real time t are ordered after any non- 
TIMER messages for p that arrive at real time t (so 
messages that arrive at the sam.e time as a timer is 
due to go off get in "just under the wire"); 

- i f  an action (F, receive(m.p). F') occurs at real time t, 
then the only di f ferences between F and F' are that p's 
state may change and that the message buffer in F' no 
longer contains m but may contain some messages 
and timers from p; furthermore, if p is nonfaulty, then 
its new state and the addit ions to the message buffer 
are determined by p's transit ion function acting on p's 
state in F, the message m, and the physical time 
Php(t); 

"76 



• if any process p sets a timer for a future time t, then at 
time t, p receives a TIMER message; furthermore, if 
any nonfaulty process p receives a TIMER message at 
time t, then earlier p set a timer for t; and 

- a message m is received at real time t if and only if the 
message buffer contained m with t recorded as the 
time at wl~ich it was to be delivered. 

Since faulty processes need not obey the condit ions in the third 
and fourth propert ies listed above, they can choose when they 
take steps and can do anything they want at a step. 

3. The Clock Synchronization Problem 

3.1. C locks  
In this paper, clock names are capitalized. For each clock, the 

inverse function has the same name, but it is not capitalized. 

For a very small constant p > 0, we define a clock C to be 
p-bounded provided that for all t 

1 - p  < I/(1 + p ) ~ C ' ( t ) <  1 ~ t ' ~  1 / ( l - p ) .  

Henceforth we assume thal all clocks are p bounced, ie.,  the 
amount by which a clock's rate is faster or slower Ihan real time is 
at mosl p. 

We give several straightforward lemmas about the behavior of 
(p- bounded) clocks. 

Lemma 1 : Let C be any clock. 

(a) If t 1 < t 2, then 

( 1 - p ) ( t  2 - t  1)___(t2-t l) /(1 + p) < C ( t 2 ) - C ( t  I) 

(1 + p) ( t2 - tT)  _< ( t 2 - t l ) / ( 1  - p ) .  

(b) I fT 1 _ T 2, then 

( 1 - p ) ( T 2 - T  1) < ( T 2 - T I ) / ( 1  + p)___c(T2)-c(T l) 

< (! + p)(T 2 -  r 1) < (T2 -T1 ) / ( t  - p ) .  
Proof :  Straightforward. I 

Lemma 2: Let C and D be clocks. 

(a) If C' = 1 and T 1 _ T 2, then 

I(c(T2) - d(m2)) - (c(T~) - d(ml)) I <_ p(m 2 -  TI). 

(b) If T 1 _ T2, then 

I(c(T 2) - d(T2)) -- (c(T 1 ) - d(T~))l _< 2p(T 2 - TI). 

(c) If C' = 1 and t 1 < t2, then 

I(C(t2) - D(t2) ) - (C(tl) - D(tl)) I _< p(t 2 - tl). 

(d) If t 1 < t 2, then 

I(C(t2) - D(t2) ) - (C(ta) - D(h)) I _< 2p(t 2 - tl), 

Proo f :  Straightforward using Lemma 1. I 

Lemma 3: Let C and D be clocks, T 1 < T 2. Assume 
Ic(T) - d(T)l < ~Y for all T, T 1 < T < T 2. Let t 1 = 
min{c(T1),d(T1) } and t 2 = max{c(T2),d(T2)}. Then 

I t ( t )  - D(t)l _< (t + p ) .  for all t, t 1 < t _ t 2. 

Proof :  There are four cases, which can easily be 
shown to be exhaustive. 

Case 1: c(TI) _ t ___ c(T2), 

Let T 3 = C(t), so that T 1 ___ T 3 < T 2. By hypothesis, 

Ic(T a) ,l(r~)l _< . l hen  IT 3 -- D(t)l < (1 + p ) . ,  by 
Lemma I. 

Case 2. diTI)  ___ I ~ d(T2). This case is analogous to 
the first. 

Case 3: c(T2) < t < d(r ~). 

Then c(T i) < t < d(T1). So C(t) D(t). and thus 

It( t)  - D(t)l = C(t) -- D(t) = (C(I)-.-T1) r (T 1 - D(t)) 

(1 + t , ) ( t -c(T1))  + (1 + p ) ( d ( T 1 ) - t ) , b y L e m m a l ,  

= (1 + #) (d (T1) -c (T1) )_<( l  + p)~. 

Case 4: d(T2) < t < c(11). This case is analogous to 
the third. I 

Each process p has a local vmiable c o r n ,  which provides a 
correcl ion to its physical clock to yield l i le local time. During an 
execution, p's local variable CORn takes on different values. 
Thus, for a particular execution, it makes sense to define a 
function CORRp(I), giving the value of p's variable CORn at time t. 

For a particular execution, we define the local lime for p to be 
the function Lp, which is given by Php + CORRp. 

A logical clock of p is Ph plus the value of CORRp at some time. 
Let cO_ denote the initial IPgical clock of p, given by Php plus the 
value ~f C O R n  in p's initial state. In keeping with our notational 

. ," 0 ' l  r f m  tJ n of C O Each convention, we let c denote the ii ve se [ c 0 p. 
time p adjusts its coRPR variable, it can be thought of as changing 
to a new logical clock. The local time can be thought of as a 
piecewise cont inuous function, each of whose pieces are part of a 
logical clock. 

3.2.  P rob lem S ta temen t  
We make the following assumptions: 

(1) All clocks are p-bounded, including those of faulty 
processes. (Since faulty processes are permitted to take arbitrary 
steps, faulty clocks would not increase their power to affect the 
behavior of nonfaulty processes.) 

(2) There are at most f faulty processes, for a fixed constant f, 
and the total number of processes in the system, n, is at least 
3f + 1. (Dolev, Halpern and Strong [DHS] show that it is 
in]possible without authentication to synchronize clocks unless 
more than 2 /3  of the processes are nonfaulty.) 

(3) The message delay for every message is in the range [~ - ~, 

+ r!. for some nonnegal ive COl]Stat]Is ,~, and ~ v:ilh & :> F. 

?? 



(4) A STAI~T message arrives at each pro(:ess p at time T O on its 
initial Ioqical clock C O . and t () }[ is the real time when this occurs. 
- - , . .P  

Furthermore, the radial logical clocks are closely synchronized, 
i.e., IC°p(] ° )  - C°q(T°) I < /I', for some fixed /{ and all nonfaulty p 
and q. 

We let tmax ° = maXp ~onfaulty{t0p} and analogously for train °. 

The object is to design an algorithm for which every execution in 
which the assumptions above hold satisfies the following two 
properties. 

1. T-Agreement: for all t > train ° and all nonfaulty p and 
q, 

ILp(t) - Lq(t)l _< y. 

2. (~l,~2,(~3)-Validity: for all t _> tOp and all nonfaulty P, 

(~ l ( t - tmax°) + To-(~3 -< Lp(t) < (~2(t-tmin°) + T o + (~3" 

The Agreement property means that all the nonfaulty processes 
~re synchronized to within y. The Validity property means that the 
local time of a nonfaulty process increases in some relation to real 
time. We would, of course, like to minimize r~ 1, (~2' (~3' and y. 

4. The Algorithm 

4.1. General Description 
The algorithm executes in a series of rounds, the i-th round for a 

process tr iggered by its logical clock reaching some value T i. (It 
will be shown that the logical clocks reach this value within real 
time ,8 of each other.) When any process p's logical clock reaches 
T i, p broadcasts a T i message. Meanwhile, p collects T i messages 
from as many processes as it can. within a particular bounded 
amount of time, measured on its logical clock. The bounded 
amount of time is of length (1 + p)(ft + (~ + ~). and is chosen to 
be just large enough to ensure that T i messages are received from 
all nonfaulty processes. After waiting this amount of time, p 
averages the arrival times of all the T i messages received, using a 
particular lault-tolerant averaging function. The resulting average 
is used to calculate an adjustment to p's correct ion variable, 
thereby switching p to a new logical clock. 

The process p then waits until its new clock reaches time T i + 1 = 
T i + P, and repeats the procedure. P, then, is the length of a 
round in local time. 

I t . ,  Itmlt toh~mt  avelaging function is derived hom those used 
in ll)LPSWJ lol reaching apl;roxim,de ;igreemellt. I he function is 
designed to be immune to some fixed maximum number, f, of 
faults. It first throws out the f highest and f lowest values, and then 
applies some o~din~ry averaging function to the remaining values. 
In this paper, we choose the midpoint of the range of the 
remaining values, to be specific. 

4.2. Code for an Arbi lrary Process 
Global constants: p. I;;, ~, ~., and P, as defined above. 

Local variables: 

CORR, initially arbitrary; conect ion variable which 
corrects physical time to logical time. 

ARFI[q l. initially arbitrary; array containing tile arrival 
times of tile most recent messages, one entry for each 
process q. 

T, initially undefined; local time at which the process 
next intends to send a message. 

Conventions: 

- NOW stands for the current logical clock time (i.e., the 
physical clock reading + CORR). NOW is assumed to 
be set at the beginning of a step, and cannot be 
assigned to. 

-REDUCE, applied to an array, returns the multiset 
consisting of the elements of the array, with the f 
highest and f lowest elements removed. 

-MID, applied to a multiset of reals numbers, returns 
the midpoint of the set of values in the multiset. 

b e g i n s t e p ( u )  
do f o r e v e r  

/ *  in  case F i messages a re  r e c e i v e d  b e f o r e  t h i s  
process reaches T 1 * /  

w h i l e  u = (m,q )  f o r  some message m and 
process q do 

ARR[q] := NOW 
endstep 
beginstep(u)  
endwhile 

/ *  f a l l  out of  the loop when u = START or TIMER; 

I ;eg i l l  ro l ln( l  * /  

l :~ NOW 
b r e a d t h s  t( [ ) 
s e l - L i l n e r ( l  + ( ]  + t1)(/~ + ~ + ~ ) )  

w i l i l e  u = ( re ,q)  f o r  some message in and 
p r o c e s s  (| do 

ARR[q]  := NOW 
e n d s t e p  
beg i n s L e p ( u )  
endwh i I e 

/~ f a l l  ou t  o f  the  ]oop when u = T[MER; 
end round  * /  

AV := m i d ( r e d u c e ( A R R ) )  
ADJ := I + (~ - AV 
CORR := CORR + ADJ 
se t - t i lner (T  + P) 
endstep 
beginstep(u) 
enddo 

We have employed a clean, simple notation for describing 
interrupt-driven algorithms. To translate this notation into the 
basic mode l  we first assume that the state of a process consists of 
values for all the local variables, together with a location counter 
which indicales the next beginstep statement to be execuled. The 
initial state of a process consists of the indicated initial values for 
all the Ioca! variables, and the locat ion counter posit ioned at the 
first beginstep statement of the program. 

78 



The transition functior., takes as inputs a state of the process, a 
message, and a physical time, and must return a new state and a 
collection of messages to send and timers to set. This is done as 
follows. The beginstep statement is extracted from the given 
state. The local variables are initialized at the values given in the 
state. The parameter u is set equal to the message. The variable 
NOW is initialized at the given physical time + CORR. The 
program is then run from the given beginstep statement, just until 
it reaches an endstep statement. (If it never reaches an endstep 
statement, the transition function takes on a default value.) The 
next beginstep after that endstep, together with the new values for 
all the local variables resulting from running the program, 
comprise the new state. The messages sent are all those which 
are sent during ti le running of the program, and similarly for the 
timers• The set-timer statement takes an argument U which 
represents a logical time. The corresponding physical time, U - 
CORR, is the physical time which is described by the transition 
function. 

5. Inductive Analysis 

Although the algorithm is fairly simple its analysis is surprisingly 
complicated and requires a long series of lemmas. 

5.1. Bounds on the Parameters  
We assume that the parameters p, ~, and ¢ are fixed, but that we 

have some freedom in our choice of P and ,8, subject to the 
reasonableness of our assumption that the clocks are initially 
synchronized to within /~. We would like fl to be as small as 
possible, to keep the clocks as closely synchronized as we can. 
However, the smaller fl is. the smaller P must be (i.e., the more 
frequently we must synchronize). 

There is also a lower bound on P. In order for the algorithm to 
work correctly, we need to have P sufficiently large to ensure the 
following. 

(1) After a nonfaulty process p resets its clock, the local time at 
which p schedules its next broadcast is greater than the local time 
on the new clock, at the moment of reset. 

(2) A message sent by a nonfaulty process q for a round arrives 
at a nonfaulty process p after p has already set its clock for that 
round. 

Sufficient bounds on P turn out to be: 

P > 2(1 + p)(,8 + ¢) + (1 + p)max{&,8  + e} + p,S, and 

P < ,814p-e lp-p( ,8  + 8 + e ) - 2 , 8 - 8 - 2 ~ .  

A required lower bound on ,8 is 

,8 > 4e + 4p(3,8 + $ + 3¢) + 8p2(,8 + 8 + e). 

Any combination of P and ,8 which satisfies these inequalities 
will work in our algorithm. If P is regarded as fixed, then ,8, the 
closeness of synchronization along the real time axis, is roughly 
4¢ + 4pP. This value is obtained by solving the upper bound on P 
for,8 and neglecting terms of order p. 

For each i. every process p broadcasts T i at its logical clock time 
T i (real time tL) and sets a timer to go off when its logical clock 

i P . i , i reaches U. When the logical clock reaches U (at real time u p), 
the process resets its CORR variable, thereby switching to a new 
ogical clock, denoted C i+1 Also at real time u i the process p" p, 

sots a timer for lhe time on its physical clock when the new logical 
(;lock C' * i reaches T i * 1. It is at least theoretically possible lhat 

P 
lhis new timer might be set for a time on the physical clock which 
has already passed. If the timer is never set in the past, the 
process moves through an infinite sequence of clocks C O . C ~ , 
etc, where C °_ is in force in the interval of real time (-OO,u°P), anPd 
eachC i i >  Y is in force in the interval of real t ime[u i1 Pi ) If 

P '  - -  ' i P '  P ' 
however the timer s set n the past at some u then lo fLrther ' . () 
timers arrive after that rea tzme, and no further resynchronlzahons 
occur. That is, C i * tp stays in force forever, and u jp and tjp are 
undefined for j > i + 1. 

Let. train i denote, minp nontaulty{tip}, and analogously for tmax ~, 
u l * n i n  I a n d  u l T l a x  I. 

For p and q nonfaulty, let ARRL(q) denote the time of arrival of a 
# i • T i message from q to p, sent at q's clock time T. where the arrwal 

time is measured on p's local clock C' . (We will prove that C ~ has 
P 

act',ally been set by the time this message arrives.) LetAVip 
P 

denote the value of AV calculated by p using the ARRL values, 
and let ADJ' denote the corresponding value of ADJ c~lculated 

= C i + ADJ i bY P. It followPs that Ci + lp p p" 

This section is devoted to proving the following three statements 
for all i >__ O: 

(1) The real time t i  is defined for all nonfaulty p. (That is, timers 
are set in the future.~' 

(2) I t i  - t i l  < ,8, for all nonfaulty p and q. (That is, the separation 
of clocks is~ounded by ,8.) 

(3) ti + 8 - ~ > u i l  , for all nonfaulty p and q, a n d i >  1. (That 
is, mes~sages arrive artier the appropriate clocks have been set.) 

The proof is by induction. For i = 0, (1) and (2) are true by 
assumption and (3) is vacuously true. 

Throughout the rest of this section, we assume (1), (2), and (3) 
hold for i. We show (1), (2), and (3) for i + t after bounding the 
size of the adjustment at each round. 

5.3. Bounding the Adjustment 
In this subsection, we prove several lemmas leading up to a 

bound on the amount of adjustment made by a nonfaulty process 
to its clock, at each time of resynchronization. 

Lemma 4: Let p and q be nonfaulty. 

(a) ARR'p(q)_<T i + (1 + p)(,8 + ~ + E). 

(b) If 8 - ¢ > ,8, then ARRip(q) >__ T i + (1 - p)(~ - e -,8). 

5.2. Notat ion 
Let T i = T o + iP and U i = T i + (1 + p)(,8 + ~ + ¢), for all i_> O. 

79 



(c) If ~; - ~ </.t ,  then AFIRip(q) > T i -  (1 + p)(fl - c~ + ~). 

Proof: Straightforward using Lemma 1. II 

Lemma 5: Let p be nonfaulty. Then there exist 
nontaulty q and r with 

ARRip(q) < AVip < ARRip(r). 

Proof:  By throwing out the f highest and f lowest 
values, the process ens~Jres that the remaining values 
are in the range of the nonfaulty processes' values, m 

We are now uble to bound the adjustment. 

Lemma 6: Let p be nonfaulty. Then 

IADJi I < (1 + p)(,8 + ~) + p& 

Proof :ADJ i = T i + $ - A V  i . p p 

Thus, for some nonfaulty q and r, Lemma 5 mlplies 
that 

T i + 8 - ARRip(q) _ ADjip <_ T i + ~ - ARRip(r), 

Then Lemma 4 implies that: 

(a) ADj ip_>T i + c~-(T i + (1 + p)(~ + (~ + ¢)) 

= - ( 1  + p)( /~ + ¢ ) - p ~ .  

(b) If $ - ~ _> ,8, then 

A D J i p ~ T  i + ~ - ( T  i + ( I - p ) ( 8 - ¢ - ~ ) )  

= ( t - p ) ( f l  + ~) + p &  

(c) If E, - ¢ _< ,8, then 

ADJ i < T  i + $ - ( T  i - (1  + p)( ,8-~ + ~)) p ~  

= (1 + p)([~ + ~ ) - p &  

The conclusion is immediate. II 

5.4. T imers  Are Set in the Future 
Earlier, we gave a lower bound on P and described two 

conditions which that bound was supposed to guarantee (that 
timers are set in the future and that messages arrive after the 
appropriate clocks have been set). In this subsection, we show 
that the given bound on P is sufficient to guarantee that the first of 
these two conditions holds. 

Lemma 7: Let p be nonfaulty. Then 

U a + ADji <1-1,1 
P 

Proof:  U i + ADjip < U i ~- (t + p)(/@ f- r) + p(~,by 
Lemma 6 

= U i + (2(1 + p)(fl + ,,) + (1 + p)8 + p~) 

<U i ~- P - (1  + p) ( f l  ~ 23 + r). by the assumed lower 
bound oil P 

This lemma implies that timers are set in the future and that t i + 1 
is defined, the first of the three inductive properties which we rnus~ 
verify. 

5.5. Bound ing the Separa t ion  of C locks 
Next, we prove several lemmas which lead to bounds on the 

distance between the new clocks of nonfaulty processes. The first 
lemma gives an upper bound on the error in a process' estimate of 
the difference in real time between its own clock and another 
nonfaulty process' clock reaching T i. 

Lemma 8: Let p, q and rbe nonfaulty. Then 

](ARRip(q) - (T i + (~)) - (Ciq(T i) - Cip(Ti)) I 

_ ~ + # ( / ~ +  8 + ~ ) .  

Proof:  Let a be the real time of arrival of q's message 
at process p. Then a is at most Ciq(T i) + ~ + ¢. Define 
a new auxiliary clock, D, with rate exactly equal to 1, 
and such that D(a) = Ci (a). Thus, ARR~ (q) = D(a). 
So the expression we wa~nt to bound is at~most equal 
to: 

I(D(a) - (T i + 8)) - (Ciq(T i) - d(Ti))l + ICip(T i) - d(Ti)l. 

First we demonstrate that tile first of these two terms 
is at most ¢. 

ID(a)- (T i + ~ ) -  Ciq(T i) + d(Ti)l 

c i (T i) = l a -  d(T i + 8 ) -  q" . + d(Ti)l, since D has rate 1 

= la-Ciq(T i) + T i -  (T i +  8)1 

Iciq(T i) + ~ + ~ -  Oiq(T i) -31 

= £ .  

i i d ( T i ) l ,  is  Next we show that the second term, Ic (~(T) - 
at most p(/J + $ + t:). 

Case I: c i (T i) < a. So p reaches T i before q's 
message arrives. 

Let ~, = a-Cip(Ti). then 3, _</~ + $ + ~. 

Subcase  la:  d(T i) > i i c p(T). So Cp has rate slower 
than real time. 

Then d(T i) - Cip(T i) is largest when C goes at the 
slowest possible rate, 1/(1 + p). Then P 

d(Ti)-Cip(T i) = 7 - ( a - d ( T i ) )  = 7-3, / (1  + p) 

= 3,#/(1 + # < ~,p < p(,8 + a + ~). 

i i .  Subcase  Ib:  d(T i) < Cp(T). So Cp has rate faster 
than real time. 

Then c i (T  i) - d(T i) is largest when C goes at the 
fastest possible rate, 1 + p. Then P 

c i (T i ) - d ( T  i) = ),(1 + p ) - ) ,  = 7P <p( ,8  + 8 + ~). p .  . w 

Case 2: c i (T i) > a, So p r eaches  T i after q ' s  m e s s a g e  p 
a~rives. 

80  



Let 'y = Cip(T i) - a. Then y < ,8 - (~ + 

Subcase 2a: d(T i) > Cip(Ti). So Cp has rate faster 
than real time. 

An argument similar to that for case l b  shows that 
d(Ti) - Cip(Ti) _ 7P _< P(,8 - $ + ~), which suffices. 

Subcase 2b: d(T i) <_ Cip(Ti). So Cp has rate s lower 
than real time. 

An argument similar to that for case l a  shows that 
Cip(Ti ) -d(T i) < "/p ~ p(,/~- 8 + ~:), which suffices. II 

In order to prove the next lemma, we use some results about  
multisets, which are presented in the Appendix.  This is a key 
lemma because the distance between the clocks is reduced from 
,8 to ,8/2, in a rough sense• The halving is due to the propert ies of 
the fault-tolerant averaging function used in the algori thm. 
Consequent ly,  the averaging function can be considered the heart 
of the algorithm. 

L e m m a  9: Let p and q be nonfaulty. Then 

I(c'S') c'(|i)) ._ (AOJ'p - ADJiq)l 

/~/'2 + 2r * 2p(f l  + ~ + c). 

Proof :  We def ine multisets U, V, and W, and show 
they satisfy the hypotheses of Lemma 23. Let 

i i U = c p ( T ) - ( T  i + 8) + ARRip, 

V = Ciq(T ') - ( T  i + 8) + ARRiq, and 

W = {c'f(T'): r is nonfaulty}. 

U and V have size n and W has size n - f. 

Le tx  = ~" + p(,8 + ~ + ~). 

Define an injection from W to U as follows• Map each 
element c i (T') in W to c i (T i) - (T i + ,~) + ARR i (r) in p • . p 
U. Since Lemma 8 implies that J(ARR~p(r) - (T' + ~)) - 
(c i (T i) -ci. ,(Ti))J < ~" + p(/J + ~ + ~ ) f o r  all the 
elements of~N, dx(V~,U ) = 0. S m ar y, dx(W,V ) = 0. 

Since any two nonfaulty processes reach T i within ,8 
real time of each other, diam(W) = ,8. 

By Lemma 23, Imid(reduce(U)) - mid(reduce(V))J <_ 
,8/2 + 2¢ + 2p(,8 + 8 + ~:). 

Since mid(reduce(U)) 

= mid(reduce(Cip(T i ) -  (T i + 8) + ARRip)) 

= Cip(T i) - ADJip, 

and similarly mid(reduce(V)) = Ciq(T i) - ADjiq, the 
result follows. I 

7he next lemma is analogous to the previous one, except  that it 
involves U i instead of T i. 

L e m m a  tO: Let p and q be nonfaulty. Then 

i i i i I(c p(U ) - c q(U )) - (ADJip - ADjiq) l  

< , 8 / 2  + 2¢ + 2p(2 + p)(,8 + 8 + ~). 

Proof :  The given expression is 

i i i i _ (ADj ip_  ADJiq)j < J(c p(T ) - c q(T )) 

+ (C i {ui l  c i ( U i ) )  (C  i ( T  i ) - c i q ( T i ) )  l • p -  . -  q .  - - - -  p .  - 

__<,8/2 + 2¢ + 2p(/~ + 8 + ¢) 

+ 2p(1 + p)(,8 + ~ + ~) . t )y l .en lmas9and2.  

This reduces to t i le claimed expression. I 

Next we bound the distance ill real t ime between two nonfaulty 
processes switching to their flew clocks. It is crucic,J that t i le 
distance between the new clocks reaching U' be less than ,R in 
order to accommodate  their relative drift dur ing the interval 
between U ~ and T' ÷ t 

Lernma 1 1 : Let p, q be nonfaulty. Then 

i + 1  p ( U i  c iV- IC ) - lq(Ui)J 

_<,8/2 + 2~: + 2p(3~ + 28 + 3~') + 4p2(,B + 8 + ~). 

Proo f :  We def ine idealized clocks D and D as 
' p i q '  fol lows. Both have rate exact ly 1. Also, D (up) = 

C + p(U p) = U + AOjip, and similarly for q. Th~n 

Ic i+ l p ( U i )  - C i + lq(Ui)J 

i+1 i i " • _< I c p(U ) - dp(U )l ~- Idp(U') - dq(U')l 

• i + 1  i + Jdq(U') - c q(U)l. 

We bound each of these three terms separately. 

First, consider ]c i+ l  (U i) - " Now, U i 
= Dp(uip) = ci+lp(uip~. So dp(U')l. + ADj ip 

c i + 1 U i d U i I p( ) -  p( )1 
c i+1 U i d U i c i +~ fU i + ADj ip) _1( p( ) - p (  ) ) - (  p. 

-dp (U i  + ADjip))J 

_ pJADJipl, by Lemma 2 

_ p((1 + p)(,8 + ¢) + pS), by Lemma6.  

The same bound holds for the third term. 

Finally, consider the middle term, Jd(U i) - d^(Ui)l. We 
know that d (U ~) = d (U i + ADJ i )~'- ADJ i~ = u i - 

P P P P P 
ADJ p, and si ni larly for q. 

Jdp(U i) - dq(Ui)J = J(Uip - Uiq) - (AOjip - ADJiq)J 

<_,8/2 + 2~ + 2p(2 + p)(,8 + 8 + ~), by Lemma 10. 

Combin ing these three bounds, we get the required 
bound, l 

81 



Finally, we can show the second of our inductive properties, 
bout~din,3 the distance between times when clocks reach T i ~ 1 

I .emma 12: Let p, q be nonfaulty. l hen  

It ~+ ~ - t ~+ ~ql < B. 
Proof:  It i+ lp_ t i + lql 

= Ic i+ Ip( Ti÷ 1) -C i+  lq( Ti+ ~)1 

< i(ci, lp(Ti + 1) _ C i + tq(Ti * 1)) _ (Ci+ lp(Ui ) _ C i + lq(Ui)) I 

+ IC i+ lplUi) - C i + 'qlUi)l 

__<2p(P-(! 4 p)(/Y + /~ + {:)) + j r /2  + 2¢ + 
2p(3,8 + 25 + 3¢) ~" 4p2(,8 + ~J + ¢), 
by Lemmas 2 and 11. 

The assumed upper bound on P implies that this 
expression is at most ,8. I 

5.6.  Bound  on Message  Ar r i va l  T ime  
In this subsection, we show that the third and final inductive 

assumphon holds. That is, we show that messages arrive after the 
appropriate clocks have been set. 

L e m m a  13: Let p and q be nonfaulty. Then 

t i + l q  + ~ - ¢ > U i p .  

Proof:  Since t  i .1  + $ -  e > t i+1 - ~  + 8 -  e, it 
suffices to show tha~ - -  P 

t i + l p - U i p > ~ - ( ~  + ¢, 

NOW, t i + I .  - U i p  > ( P -  (I + p)(,8 + a + ~ ) -  
ADjip)/ (1 -~ p) since the numerator represents the 
smalleot ,~ possib ledi f ference in the values of the clock 
C i+ ~ ' at the two given real times. p 

But the lower bound on P implies that P > 3(1 + p)(,8 
+ e) + p(~. Also, the bound on the adjustment shows 
that AD,J'p_ (I + p)(,8 + ¢) + pa. Therefore, 

ti+ lp -U~p) (3(1  + p)(p + ¢) + pa 
- ( t  + p)(p + a + ¢) 
- (1 + p)(,8 + ~)-. pa) / (1 + p) 

= , 8 - ~  + ¢, as needed. I 

Thus, we have shown that the three inductive hypotheses hold. 
Therefore. the claims made in this section for a particular i, in fact 
~old for all i. 

6 .  S o m e  G e n e r a l  P r o p e r t i e s  

In this section, we slate several consequences of the resu!ts 
proved in the preceding section. 

First. we state a bound on the closeness with which the various 
clocks re~.lch corn~.sponding values. 

Lemma 14: Let p, q be nonfaulty, i _> 0, Assume that 
T is chosen so that U iq < T <  U i , i f i >  1, or so that T o 
_<T < U ° , i f i  = 0. 

Then ICip(T)- ciq(r)l < ,8 + 2p(1 + p)(,8 + a + O, 
Proof :  Basis: i = 0. Then T O < T < U 0. 

Ic° (T) - C°q(T)l 

_< I(c°p(T) - c°q(T)) - (c°p(T e) - c°q(T°)) I 

+ Ic°(T °) - c°q(T°)l 

< 2p(T - T e) + ,8, by Lemma 2 and assumption 4 

/Y + 2p(1 + p)(p + 8 + ¢). 

Induction: i _> 0. Choose T with U i'1 < T _ ui: 

IC'p(T) - C'q(T)l 

< I(Cip(T) - Ciq(T)) - (Cip(U i'1) _ Ciq(Ui'l)) I 

i i-1 i i-1 + Icp(U )-Cq(U )1 

< 2pP + ,8/2 + 2¢ + 2p(3,8 + 28 + 3e) + 
- -  4p2(,8 + 8 + ¢), by Lemmas 2 and 11. 

The upper bound on P implies the result. I 

Next, we prove a bound for a nonfaulty process' (i + 1)-st clock, 
in terms of nonfaulty processes' i-th clocks. 

L e m m a  15: Let p be nonfaulty, i > 0. Then there 
exist nonfaulty processes, q and r, such that for Uip ~ t 
_ umax ~, 

Ciq(t) - a <__ C i+ lp(t) _ Cir(t) + a 

where ct = e + p(4,8 + 8 + 5¢) + 4p2(,8 + 8 + t )  + 
2p3(,8 + 8 + e). 

P r o o f : C  i*~ (t) = C' ( t ) ,  T i + (~ -AV i Therefore, 
P P p" 

by Lemma 5 there are nonfaulty processes, q and r for 
which 

C ip(t) + T i +  ~-ARRip(q)_< ci+ lp(t) 

< C i T i _ p(t) + + $-ARRip(r) .  

We show the right-hand inequality first, Let a = 
c i (ARR i (r)) the real time at which the message 

P P ' 
arrives at p from r. Thus, C'p(a) = ARRip(r). Note that 
C i (a )>_T '  ~ ( 1 -  p)($ - ¢). 

C i* lp(t) _< C ip + T i + $ -  ARRip(r), from above 

< Cir(t) + C ip (a) -C i (a )  + T i+  $-ARRip(r )  

+ (C'p(t) - C' (t)) - (C'p(a) - C' (a)) 

< Cir(t) + C i (a ) -  C i (a) + T i + (~- ARR i (r) - -  I . p 
+ 2p(t - a[, by Lemma 2 since t > a 

< C i ( t )  + ARR i ( r ) . - T i - ( t - p ) ( $ - ¢ )  + T i+  8 
-- - ,ARFIi (r) + ~p(t - a) 

= Cir(t) + ~ + p(~-p~ + 2p( t -a ) .  

82 



It remains to bound t - a. The worst case occurs 
when t = urnax i. The longest possible elapsed real 
time between a particular nonfaulty process reaching 
T i and U i on the same clock is (1 + p)2(,8 + ~ + ,¢). 
Thus, urnax i - t m i n i < , 8  + (1 + p)2(,8 + 8 + e). Bu ta  
>_ tmin ~ + 8 - e. Therefore, 

t - a ~ , 8  + (1 + p)2(,8 + 8 + ¢ ) - 8  + e. 

Thus, C i + lp(t) 

<~ Cir(t) + ¢ + p(~-p~ + 
2p(/~ + (f + p)2(~ + 8 + ~ ) - 8  + ¢) 

= Cir(t) + ¢ + p(4,8 + ~ + 3¢) + 4p2(,8 + ~ + ~) 
+ 2p3(,8 + ~ + ~) 

< Cir(t) + o~. 

For the left-hand inequality, we see that C i (t) - e - pB 
- p~ - 2p(t - a) < Ci+lp(t), where a = ciq(ARR i (q)) 

P p • The factor t - a is bounded exactly as before, so that 
we obtain: 

C i q ( t )  - t'~ ~ C i + I p ( t ) .  II 

7 .  A g r e e m e n t  a n d  V a l i d i t y  C o n d i t i o n s  

We are now ready to show that the agreement and validity 
properties hokJ. The main effort is in restating bounds proved 
earlier concerning the closeness in real times when clocks reach 
the same value, in terms of the closeness of clock values at the 
same real time. 

7.1. A g r e e m e n t  
The first lemma implies that the local times of two nonfaulty 

processes are close in those intervals where both use a clock with 
the same index. 

L e m m a  16: Let p, q be nonfaulty. Then 

IC'p(t)-C'q(t)l < (1 + p)(,8 + 2p(1 + p)(,8 + $ + e)) 

for max{Uiqp,Ui lq}  < t < max{uip,Uiq}, if i > 1, 

and for rnin{t°p,t°q} < t ~ max{u°p,U°q}, if i = O. 

Proof :  Basis: i = O. Lemma 14 implies that 

Icip(T)- ciq(T)l < ,8 + 2p(1 + p)(,8 + (~ + E) 

for alIT, U i1 < T  < U  i i f i >  l a n d  for al IT, T ° _ < T  < 
U ° if i = O. Then Lemma"3 immediately implies th'e 
needed result for i = O. 

Induction: i > 1. Lemma 3 implies the result for all t 
with min{Clp(UT:"l), Ciq(Ui'l)} <~ t. ~ max[Uip, uiq}. 

It remains to show the bound for t with 

max{u i l o ,u i lQ}  <~ t < min{c ip(u i l ) ,  Ciq(Uil)}. 

c ~ (Ui-l) Without loss of generality, assume that p" . 
ciq(Uiq), so the minimum is equal to Cip(Uiq). 

ICip(t) - Ciq(t)l 
< I(Cip(t) - Ciq(t)) - (Cip(cip(Ui'l)) - Ciq(Cip(Ui4)))l 

+ Ic~p(c~p(ub 1)) - c~q(c~p(@'l)) I 

The first term, by Lemma 2, is at most 2p(cip(u i'1) - t). 
Since t > max{Uiqp, ui"~q} > ui4p > Ci4p(Ui'~), we 
have 

2p(cip(Lji I).. t) < 2#(Cip(U i1) - c i lp(Ui ' l ) ) .  

Since c i l  (U i l )  = c i (T) for some T with IT - u i t l  < 
j P . . P .-- 

I ADJ pl, this quanhty is 

< 2plcip(U i~) - cip(T)l 

< 2p(1 + p)lU i I_TI ,  by Lemma 1 

_< 2p(t + p)lAOJ;pl 

__.2p(t + p)((1 + p)(,8 + z) + p~ ) , byLemma6 .  

To bound the second term we note that Lemma 
11 implies that 

Icip(U ~'') _ ciq(U i1)1 

< , 8 / 2  + 2~ + 2p(3# + 2~ + 3¢) + 4p2(~ + 8 ~ ~) 

and so Lemma 3, with T 1 = T 2 = U i'1, implies that 

ICip(Cip(Ui'l))- ciq(Cip(Ui'l)) I < (1 + p)et. 

The assumed lower bound on ,8 gives the result that 

2p(1 + p)((1 + p)(,8 + ~) + p~) + (1 + p)e 

_< (1 + p ) ( # ,  2p(t + p)(,8 + ,~ + ~)). I 

Here is the main result, bounding the error in 
synchronization at any time. 

T h e o r e m  17: The algorithm guarantees 
y-agreement, where 

y = ,8  + e + p(7,8 + 35 + 7¢) + 8p2(,B + ~ + ¢) + 
4p3(./~ + $ + I~). 

Proof :  The result for intervals in which the processes 
use clocks with the same indices has been covered in 
the preceding lemma. The expression in the statement 
of that lemma simplifies to 

,8 + p(3,8 + 2(~ + 2~) + 4p2(,8 + $ + e) + 
2p3(fl + ~ + e), 

which is less than y. 

Next, we must consider the case where, one of the 
processes has changed to a new clock, while the other 

the 

83 



still letains the old clock. Consider I CJ * 1 (t) - C ~ (1)l for 
some t with u' < t <~ U I , Lemma l o Irn|)hcs lat t ~ere p - -  - q 
exist nonfaul ly processes r and s such that 

C ' ( t )  - {Y _<. C '+ lp(t) _<< Cis(t ) + (~, 

where(~ = ~ + p(4,8 + ~i + 5r) + 4p2(,8 + ~ + {:) + 
2p3(,8 + ~ + ~'). 

ICi+ lp(t) - C'~,(t)l 

< ,~ + max{ICi ( t ) -  Ciq(t)l. ICis(t)- Ci (t)l} 

_< (~ + (1 + p ) ( , 8  + 2p(1 + p)(l} + 8 + ~.)). by the 
preceding lemma 

= f l  + ~ + p(7,8 + 36 + 7~) + 8p2(,8 + 6 + e) 
+ 4p3(,8 + (~ + ~), as needed. I 

Now we can sketch why it is reasonable for ,8 to be 
approximately ,1c + 4pP, as mentioned at the end of Section 5.1. 
Assume P is fixed. The i-th clocks reach T i within/~ of each other. 
After the processes reset their clocks, the new clocks reach U i 
within ,8/2 + 2{ (ignoring p terms). By the end of the round, the 
clocks reach T i*~ within about ,8/2 + 2~ + 2pP of each other, 
because of drift. This quantity must be at most ,B. The inequality 
,8/2 + 2¢ + 2pP _ ,8 yields,8 _> 4~ + 4pP. 

Suppose we alter the algorithm so that during each round, the 
processes exchange clock values k times instead of just once. 
Then we get ,8/2 k + (4 - 22k)~ + 2pP ~ ,8, which simplifies to 

4~ + 2pP(2k/(2k-1)). It appears that /~ > 4¢ + 2pP is 
approachable. 

If n increases while f remains fixed, a greater closeness of 
synchronizat ion can be achieved by using the mean instead of the 
midpoint in the algorithm. Similarly to [DLPSW], we can show that 
the convergence rate if the mean is used is roughly f / (n-2f) ,  and 
that an error of approximately 2~ is approachable. 

7 . 2 .  Val id i t y  
Next, we show the validity condition. •The first lemma bounds the 

values of the zero-index clocks. 

Lemma 18: For t  > top, 

T O + (1 -- p ) ( t - t °p )  < CUp(t) _ T O + (1 + p) ( t - t °p) .  

Proof :  B), Lemma 1. I 

The next lemma is the main one. 

Lemma 19: Let i) h~ 2 nunlaulty, i > O. Then 

(1 -- p)(t - tmax °) + F ° - i,- _< C ~p(t) 

< ( 1  + p ) ( t - tm in  O) ~ T o + i~- 

f o ra l l t  > u i1 if i >  1 ,andfor  a l l t >  t n i f i  = 0. 
- -  p - - '  p 

Proof :  We proceed by induction on i. When proving 
tl~e result tor i + 1, we will assume the result for i, for all 
e×ecutions of the algorithm (rather than just the 
e×ecution in question). 

Bas~s: i = 0. this case fol lows immediately by 
Lenmm 18. 

Induct ion:  Assume the result has been shown for i 
and show it for i + 1. 

We argue the right-hand inequality first. The left- 
hand inequality is entirely analogous. 

Assume in contradict ion that we have a particular 
execut ion in wh i chC '+l.p(t)>(1 + p ) ( t - t m i n  °) + T o + 
(i+ 1)~ for some t > u'_. Then by the limitations on - -  p 

rates of clocks, it is clear that 

C i+ lp( t jp )>( l i  u i T O + p)( p - t ra in  0) + + ( i+1)~. 

Recall that p resets its clock at real time u i , by 
adding l i + (~ - Avi.. In this case, the indLPctive 
hypothesis implies tha~t the adjustment must be an 
increment. 

By t.emma 5, this increment is < T i + 8 - ARRip(q) 
for some nonfaulty q. Therefore, 

C i^ (u i )  + T i + 6 -ARRip (q )  
F' I "s 

> ( 1  + p ) ( u t p - t m i n  0) + T O +  ( i + 1 ) ¢ .  

Next, we claim that if p had done the adjustment just 
when the message arrived from q rather than waiting till 
real time u i , the bound would still have been 
exceeded. ThPat is, 

ARRip(q) + T i + (~- ARRip(q) 

>(1 + p ) ( r - t m i n  0) + T O + ( i + l ) e ,  

where t' = cip(ARRip(q)). (This again fol lows by the 
limits on the rates of clocks.) Thus, 

T' + (~>(1 + i~)( t ' - tmin (}) *- ~n ~ (i+ t)~'. 

Now congider an alternative execution of the 
algorithm in which everything is exactly like the one we 
have been describing, except that immediately alter q 
sends out clock reading P, q's clock C i. begins to 
move at rate 1. This change cannot af fect ' [ fs  (i + t)-st 
clock because q doesn' t  send any more messages until 
t i ~  , and these messages aren't received until after 
the ~me when p sets its (i + t)-st clock. 

By the lower bound on message delays, q's message 
to p took at least (~ - r time. Then at real time t' 
(defined above), we have C' (r)  > T i + 6 - r. But then 

t { q 0 - -  Cq( t ' )> ( t  + p ) ( t ' - t n i l  ) + T + 

But then the inductive hypothesis is violatecf, since t', 
the time when p receives q's T ~ message, is greater 
than or equal t o  ui lq,  the time when q sets i]s round i 
clock. I 

g4 



Now, we can state the validity condition. Let 

~, = ( P - ( 1  + p ) ( ~  + ~ : ) - p ~ ) / ( 1  + p}. 

This is the size of the shortest round in real time since the amount 
of clock time elapsed during a round is at least P minus the 
n'.aximum adjustment. 

T h e o r e m  20:  The algorithm preserves 

(c~ 1,~2a~3)-validity, where 

e 1 = 1 - p - ~ / r p , ~ x  2 = 1 + p + c / % a n d e 3  = ¢' 

P roo f :  We must show for all t _ top and all nonfaulty 

p that 

czl(t - t m a x  O) + T O- ~x 3 < Lp(t) 

< c~2(t-train O) + T O + ~x 3. 

We know from the preceding lemma that for i > O, t 
> u i lp  (or tOp), and nonfaulty p 

(1 - p)(t - tmax °) + T O - i t  < Cip(t) 

_<(! + #) ( t - t ra in  O) + T o + i¢. 

Since L ( t )  is equal to C i ,(t) for some i, we just need 
to convert ~ into an expression if] terms of t, etc, An 
upper bound on i is I + (t - tmax°)/tp. Then 

(1 + p ) ( t - tm in  °) + T O + i~ 

< (t + # ) ( t - t l n in  °) + ]0  + (1 + ( t - tmax°) /9, )~ - 

< ( 1  + p ~ ~ /9 ) ( t - t r n i n  O) + T O + ~', 
since train ° < tmax O, 

and that 

( 1 - p ) ( t - t m a x  O) + f O- i~ 

> (1 . - p ) ( t - tmax  O) + T ° - ( 1  + ( t - tmax°)/9~)¢ 

>__ (1 - # -  ~/9,) ( t -  tmax °} + T O- ~. 

The result follows. II 

8. Reintegrating a Failed Process 

Our algorithm can be modified to allow a faulty process which 
has been repaired to synchronize its clock with the other nonfaulty 
processes le t  p be the process to be reintegrated into the 
system. Duri~g some round i, p will gather messages from the 
other processes and perform the same averaging procedure 
described previously to obtain a value for its correct ion variable 
such that its clock becomes synchronized. Since p's clock is now 
synchronized, it will reach T ~ T within /t of every other ncnfaulty 
process. At that point, p is no longer faulty and rejoins the main 
algorithm, sending out T *+ 1 messages. 

We assume that p can awaken at an arbitrary time during an 
execution, purhapsdur ing  the middle of a round. As soon as it 
awakens, it begins collecting T' messages for all plausible values 
of T'. It is necessary that p identify an appropriate round i at which 
p is able to obt:un all the T ~ messages from nonfaulty processes. 

Since p might awaken during the middle of a round, p will first 
orient itself by observing the arriving messages, allowing part o| a 
round to pass before it begins to collect messages. More 
specifically, p first seeks an i such that f T iq messages arrive 
within an interval of length at most (1 + p)(/~ + 2~:) as measured 
on its clock. There will always be such an i because all messages 
from nonfaulty processes for each round arrive within ,8 + 2e real 
time of each other, and thus within (1 + p)(,8 + 2t~) clock time. 

Assuming that p itself is still counted as one of the faulty 
processes, at least one of the f arriving messages must be from a 
nonfaulty process, Thus, p knows that round i - 1 is in progress or 
l)as just ended, and that it should use T i messages to update its 
clock. 

Now p cont inues to collect T i messages. It must wait (1 + p)(/~ 

~- 2r + (1 + t,)(P * (1 ~ p)(/? + ~') ~ /,S), as measLired on its 
elect, after recewmg the f th ]-~ T mrs:~age in order to 9uarantee 
that ~t has received l '  Inessages f iom all nonfatdty processes. The 
maxinlum amount of eeal time p must wait, (Jr + 2[ ~- (1 + p)(P + 
(t ~ #)(]~ + 2r) ~- /,'}), elapses if the f-th T i l  message is from a 
nonfautt;' process q and it took ~ - ~: time to arrive, if q's round i - 1 
lasts a long as possible, (1 + p)(P + (1 ~ p)(/~ + r) + #~) 
(because its clock is slow and it adds the maximum amount to its 
clock), and if there is a nonfaulty process r that is/~' behind q in 
reaching T i and its T' message to p takes & + r. The process 
waits this nlaximLml amoLinl of time multiplied by (t + p) to 
account for a fast clock. 

(Some slight extra bookkeeping is necessary because T i 
messages from nonfaulty processes can arrive at p before p has 
received the f-th T '~ message. We omit a description of a 
scennno in which this occurs.) 

Immediately after p determines it has waited long enough, it 
carries out the averaging procedure and determines a value for its 
correct ion variable. 

We claim that p reaches T i+ 1 on its new clock within ,8 of every 
other nonfaulty process. First. observe that it does not matter that 
p's clock begins initially unsynchronized with all tile other clocks; 
the arbitrary clock will be compensated for in the subtraction of 
the average arrival time. Second, observe that it does not matter 
that p is not sending out a T i message; p is being counted as one 
of the faulty processes, which could always fail to send a 
message. (Processes do not treat themselves specially in our 
algorithm, so it does not matter that p tails to receive a message 
from itself.) Finally, observe that it does not rnatter that p adjusts 
its correct ion variable whenever it is ready (rather than at the time 
specified for correct processes in the ordinary algorithm). The 
adjush'nent is only the addition of a constant, so the (additive) 
effect of the change is the same in either case. 

(It is also necessary to argue that when p resets its clock, the 
new clock has not already reached .[i + ~ We assume that P is big 
enough to ensure this. We haven't shown that the lower bound on 
P given earlier is sufficient.) 

9. Establishing Synchronization 
hi this section we present an algorithm to synchronize clocks in 

a distributed system of processes, assuming the clocks initially 
have arbitrary values. The algorithm handles Byzantine failures of 
the processes, uncertmnty in the message delivery time, and clock 
drift. We envision the processes running this algorithm until the 
desired degree of synchronizat ion is obtained, and then switching 

g5 



to the maintenance algorithm. 

9.1. Algorithm 
The structure of the algoritfnn is similar to that of the algorithm 

which maintains synchronization. It runs in rounds. During eacll 
round, the processes exchange clock values and use the same 
fault-tolerant averaging function as before to calculate the 
corrections to their clocks. However, each round contains an 
additional phase, in which the processes exchange messages to 
decide that they are ready to begin the next round. A more 
detailed description follows. 

Nonfaulty processes will begin each round within real time 8 + 
3r of each other. At the beginning of each round, each nonfaulty 
process p broadcasts its local time. Then p waits a certain length 
of time guaranteed to be long enough for it to receive a similar 
message from each nonfaulty process. At the end of this waiting 
interval, p calculates the adjustment it will make to its clock at the 
current round, but does not make the adjustment yet. 

Then p waits a second interval of time before sending out 
additional messages, to make sure that these new messages are 
not received before the other nonfaulty processes have reached 
the end of their first waiting intervals. At the end of its second 
waiting interval, p broadcasts a READY message indicating that it 
is ready to begin the next round. However, if p receives f + 1 
READY messages during its second waiting interval, it terminates 
its second interval early, and goes ahead and broadcasts READY. 
As soon as p receives n - f READY messages, it updates the clock 
according to the adjustment calculated earlier, and begins its next 
round by broadcasting its new clock value. (This algorithm uses 
some ideas from [DLS].) 

It is apparent that a process need only keep clock differences for 
one round at a time. The waiiing intervals are designed so that 
during round i a nonfaulty process p will not receive a READY 
message from another nonfaulty process until p has finished 
collecting round i clock values. Round i + 1 clock values are not 
broadcast until after READY is broadcast, so p will certainly not 
receive round i + 1 clock values until after it has finished 
collecting round i clock values. 

Let B i be the maximum difference between nonfaulty clock 
values at the latest real time when a nonfaulty process begins 
round i. Ignoring terms of order p2, we can bound B i + 1 in terms of 
B i as follows: 

B i+'l _< lfzB i + 2~' + 2 p ( 1 3 8  + 43~:). 

The idea of the proof is similar to the proof of Theorem 17. Again, 

the ]aull-tolerant averagnE:l funclion used in the al~joritlml causes 
the difference to be approxim;dety halved at each round. 

By considering the limit of B i as the round number increases 
will,out bound, we can show that the algorithm achieves a 
closeness of synchronization of about 4r + 4p(135 + 43¢). 

As for the maintenance algorithm, if we use the mean instead of 
the midpoint in this algorithm, we can approach an error of about 
2~ as n increases and f remains fixed. 

9.2. Determining the Number of Rounds 
The nonfaulty processes must determine how many rounds of 

this algorithm must be run to establish the desired degree of 
synchronization before switching to the maintenance algorithm. 
The basic idea is for each nonfaulty process p to estirnate B °, and 
then calculate a sufficient number of rounds NROUNDS using 

o • .' = P'. 
the known rate of convergence. B ~s eshmat~d by hawng p 
calculate an overestimate and an underestimate for C°,(tmax °) for 

o '~ each q. and letting the estimated B be the difference between the 
maximum overestimate and the minimum underestimate. 

Now each process does Byzantine Agreement on the vector of 
NROUNDS values, one for each process. The processes are 
guaranteed to have the same vector at the end of the Byzantine 
Agreement protocol. Each process chooses the (f + 1)-st smallest 
element of the resulting vector as the required number of rounds. 
The justification is as follows: the smallest number of rounds 
computed by a nonfaulty process will suffice to achieve the 
desired closeness of synchronization. Variations in the number of 
rounds computed by different nonfaulty processes are due to 
spurious values introduced by faulty processes and to different 
message delays. However, the range computed by any nonfaulty 
process is guaranteed to include the actual values of all nonfaulty 
processes at tmax °, so the range determined by the process that 
computes the smallest number of rounds also includes all the 
actual values. In order to guarantee that each process chooses a 
number of rounds that is at least as large as the smallest one 
computed by a nonfaulty process, it chooses the (f + 1).st smallest 
element of the vector of values. 

Any Byzantine Agreement protocol requires at least f + 1 
rounds. The processes can execute this algorithm in parallel with 
the clock synchronization algorithm, beginning at round O. The 
clock synchronization algorithtn imposes a round structure on the 
processes' communications. The Byzantine Agreement algorithm 
can be executed using this round structure. Each BA message 
can also include information needed for the clock synchronization 
algorithm (namely, the current clock value). However, the 
processes will always need to do at least f + 2 rounds, one to 

obtain the estimated number of rounds and f + 1 lor the Byzantine 
Agreement algorithm. 

9.3. Switching to the Maintenance Algori thm 
After the processes have done the required number of rounds, 

say r, of this algorithm to establish synchronization, they.must 
begin the maintenance algorithm. Remember that that algorithm 
works by having each process broadcast its clock value when its 
clock reaches T i, for i = O, 1 ..... where T i* ~ = T i + P. Let T O be a 
multiple of P. The processes should begin the maintenance 
algorithm as soon as possible in order to minimize the inaccuracy 
introducted by the clock drift. 

It can be shown that the first multiple of P reached by nonfaulty 
p's cIo{.k after finishrng the required r rounds differs by at most 
one from the first multiple reached by nonlaulty q's clock after the 
r rounds. When the first multiple of P is reached, each process 
broadcasts its clock wdue as in the maintenance algorithm, but 
doesn't update its clock. At the .second multiple of P, each 
process begins the full maintenance-., algorithm by broadcasting its 
clock value and updating its clock. (It will receive clock values 
from all nonfaulty processes.) There will be a lag of at most one 
round between any two nonfaulty processes' beginning the 
maintenance algorithm. Then ft, the difference in real time 
between two nonfaulty processes reaching T i, can be calculated 

86 



from B r, tile fact that all processes begin the algorithm at most 2P 
in clock time after tmax r, and the result of Lemma 15 that clocks 
that are reset one round early don't change by too much. This ,8 
will be slightly larger than the smallest one maintainable. To 
shrink it back down, P can be made slightly smaller than required 
by the maintenance algorithm. 

Mike Fischer has suggested using only the algorithm to establish 
synchronization and not using the maintenance algorithm at all. 
Further work is needed to investigate this idea; however, it may be 
reasonable since both algorithms synchronize to approximately 
4¢. 

Acknowledgements 

Thanks to Gene Stark and Bill Weihl for their comments on an 
earlier version of part of this paper. 

References 

[DHS] D. Dolev, J. Halpern and R. Strong, On the possibility and 
impossibility of achieving clock synchronization, Proceedings of 
the Sixteenth Annual ACM Symposium on Theory of Computing 
(1984). 

[DLPSW] D. Dolev, N. Lynch, S. Pinter, E. Stark and W. Weihl, 

lqc,;,.ching approximate agreemenl in the presence of faults, 
Proc~.'edin(]s of the Third Anntl.tl.I IEEE Symposium on Distributed 
Soltw~re and Database Systems (1983). 

[DLS] C. Dwork, N. Lynch and L. Stockmeyer. Consensus in the 
presence of partial synchrony, to appear in Proceedings of the 
Third Annual ACM Symposium on Principles of Distributed 
Computing (1984). 

[HSSJ J Halpern, B. Simons and R. Strong, Fault-tolerant clock 
synchronization, to appear in Proceedings of the Third Annual 
ACM Symposium on Principles of Distributed Computing (1984). 

[L] L. Lamport, Time, clocks, and the ordering of events in a 
distribuled system. Communications of the ACM, Vol. 21, No. 7 
(July 1978). 

[LM] L. Lamport and P. M. Melliar-Smith, Synchronizing clocks 
in the presence of faults, SRI International Report (March 1982). 

[LtJ] J. Lundelius, Synchronizing clocks in a distributed system, 
S,M. thesis. Mr]- (in progress). 

[M] K. Marzullo, Loosely-coupled distributed services: a 
distributed time service, Ph.D. dissertation, Stanford University 
(1983). 

Appendix 

This Appendix consists of definitions and lemmas concerning 
multisets needed for the proof of Lemma 9. These lemmas are 
analogous to some in [DLPSW]. 

A mu/tiset U is a finite collection of real numbers in which the 
same number may appear more than once. The largest value in U 
is denoted max(U), and the smallest value in U is denoted rain(U). 
Tile diameter of U, diam(U), is max(U) - rain(U). Let s(U) be the 
multiset obtained by deleting one occurrence of min(U), and flU) 
be the multiset obtained by deleting one occurrence of max(U). If 
JU I > 2f + 1, we define reduce(U) to be Ifst(U), the result of 
removing the f largest and f smallest elements of U. 

Given two multisets U and V with IUl < Ivl, consider an injection 
c mapping U to V. For any nonnegative real number x, define Sx(c) 
to be {u6.U: lu - c(u)l > x}. We define the x-distance between U 
and V to be dx(U,V ) = minc{ISx(C)l }. We say c witnesses dx(U,V ) if 
ISx(c)l = dx(U,V), The x-distance between U and V is the number 
of elernents of U that cannot be matched up with an element of V 
which is the same to within x. If lu - c(u)l < x, then we say u and 
c(u) are x-paired by c. 

The midpoint of U, mid(U), is ~,~[max(U) + rain(U)]. 

For any multiset U and real number r, define U + r to be the 
multiset obtained by adding r to every element of U; that is, U + r 
= {u + r: u E U}. It is obvious that mid and reduce are invariant 
under this operation. 

The next lemma bounds the diameter of a reduced multiset. 

Lemma 21: Let U and W be multisets such that IUI 
= IWl = nandd×(U,W) < f ,  wheren > 2f + 1. Then 
max(reduce(U)) ___ max(W) + x and rain(reduce(U)) > 
rain(W) - x. 

Proof: We show the result for max; a similar 
argument holds for min. Let c witness dx(U,W ), 
Suppose none of the f elements deleted from the high 
end of U are x-paired with elements of W by c. Since 
dx(W,U ) _< f, the remaining n - f elements of U are 
x-paired with elements of W by c, and thus every 
element of reduce(U) is x-paired with an element of 
W. Suppose max(reduce(U)) is x-paired with w in W by 
c. Then max(reduce(U)) w + x < max(W) + x. 

Now suppose one of the elements deleted from the 
high end of U is x-paired with an element of W by c. Let 
u be the largest such, and suppose it was paired with w 
in W. Then max(reduce(U)) < u < w + x < max(W) + 
x . I  

The next lemma shows that the results of reducing two multisets, 
each of whose x-distance from a third multiset is 0, can't contain 
values that are too far apart. 

Lemma 22: Let U, V, and W be multisets such that 
lU l  = IV l  = n and I w l  = n - f ,  where n > 3f. If dx(W,U) 
= 0 and dx(W,V ) = O, then 

min(reduce(U)) - max(reduce(V)) _< 2x. 

Proof: First we show that there is a w in W such that 
w is x-paired both with some u in reduce(U) and with 
some v in reduce(V) by the mappings witnessing 
dx(W,U ) and dx(W,V ) respectively. We know 
lreduce(U)l = [reduce(V)l = n -  2f and IWl = n -  f. In 
order to choose two disjoint subsets of size n - 2f from 
a set of size n - f, it must be the case that n - f _> 2(n - 
2f). But this implies that n < 3f, contradicting the 
hypothesis. 

By choice of u, v, and w, we know that lu - wl _< x and 
Iv -  wl _< x. Thus, min(reduce(U))- max(reduce(V)) < u 
- v < w  + x - ( w - x )  = 2x. I 

Lemma 23 is the main multiset result. It bounds the difference 
between the midpoints of two reduced multisets in terms of a 

87 



particular third mulliset. 

Lemma 23: Let U, V, and W be multisets such that 

lUl = IVl = n and IW I = n - f, where n > 3f. If dx(W,U ) 
= 0 and dx(W,V ) = O, then 

Imid(reduce(U))- mid(reduce(V))] < ~/zdiam(W) + 2x. 

Proof :  ]mid(reduce(U)) - mid(reduce(V))l 

= !.'.,]max(reduce(U)) + rain(reduce(U)) 
- max(reduce(V)) - min(reduce(V))l 

= ~,~lmax(reduce(U)) - rain(reduce(V)) 
+ rain(reduce(U)) - max(reduce(V))l 

If the quantity inside the absolute value signs is 
nonnegative, 

= I,~(ma×(reduce(U)) - rain(reduce(V)) 
+ min(reduce(U)) - max(reduce(V))) 

< J,~(max(W) + x - ( r a i n ( W ) -  x) + min(reduce(U)) 
- max(reduce(V))), by applying Lemma 21 twice 

= 1/~(diam(W) + 2x + min(reduce(U)) 
- max(reduce(V))) 

< 11~(diam(W) + 2x + 2x), by Lemma 22 

= ~diam(W) + 2x. 

If the quantity inside the absolute value is 
nonpositive, then symmetric reasoning gives the result. 
I 

88 


