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Abstract. A simple algebraic model is proposed for measuring the relative 
complexity of programming systems. The appropriateness of this model is 
illustrated by its use as a framework for the statement and proof of results 
dealing with coding-independent limitations on the relative complexity of 
basic algebras. 

I. Introduction 

Much of the recent research on semantic theories has concentrated on qualita- 
tive properties such as definability (of such programming concepts as recursive 
procedures), equivalence (of different language constructs) and verifiability (of 
the correctness, or consistency, of one expression relative to another.) Current 
qualitative theories are still in a tentative state and much remains to be done. 
However, there is also a quantitative side to semantics. Indeed, many of the 
questions which any semantic theory must answer are at once qualitative and 
quantitative. We would like to draw upon complexity-theoretic techniques to 
answer such quantitative questions as what effect certain operations have on the 
lengths of computations and what effect different codings have. These are 
questions of "semantic complexity." To treat or even formulate such questions, 
it seems useful to establish a mathematical framework within which the analysis 
of semantic complexity can be carried out. This framework should accommo- 
date the software concepts which underlie sophisticated languages such as 
ALGOL 68 and simpler languages such as BASIC. Recent research [1-10] 
suggests that this framework be primarily algebraic. It appears, however, that 

IThis research was partially supported by NSF Grant DCR75-02373 and MCS78-07461. 
2This research was partially supported by NSF Grant MCS77-15628. 

193 0025/5661/81/0014-0193504.40 
© 1981 Springer-Verlag New York Inc. 



194 N.A. Lynch and E. K. Blum 

classical algebraic notions such as the homomorphism concept, arising from 
studies of the properties of similar algebraic structures, are inadequate to the 
tasks of computer science. Rather, more general notions of representation or 
simulation seem to be required. 

In this paper, we define a framework for both qualitative and quantitative 
analysis of semantic problems, and give examples of its use. Although various 
programming languages can be considered, we focus here (for definiteness) on a 
flowchart language. We concentrate on questions involving the relative compu- 
tability and the relative complexity of programming systems. Although intended 
principally to illustrate the model, the results should have intrinsic interest and 
suggest directions for further research. 

A basic premise of our work is that analysis of the complexity of algorithms 
should be performed using a more "relative" or "modular" approach than is 
usual, in accordance with recent research in semantics, program verification and 
programming methodology. Complexity analyses have generally been done in an 
"absolute" way, by selecting a standard model of computation (a RAM with a 
specified operation set, or perhaps a Turing machine) and determining the total 
time or space required by the algorithms when executed on this model. One 
difficulty with this approach is that it tends to deemphasize certain similarities 
between problems. It has been noticed [l l] that the underlying algebra for 
discrete algorithms is not really absolute; for different problems (or at different 
times for the same problem) we might wish to measure complexity of an 
arithmetic function in terms of basic arithmetic operations on the non-negative 
integers N, in terms of basic bit string operations, or in terms of basic bit 
operations. This situation suggests that a computation model based on a single 
standard algebra is not to be sought; rather, in many cases, the interesting ideas 
seem to be inherently relative ones. Formal models for measuring relative 
complexity are needed; they should have the property that relative complexity 
measures calculated thereby can be combined in a systematic way to produce an 
"absolute" complexity measure of an algorithm. 

Relative complexity is, of course, not a new idea; one form in which it has 
been studied is represented by [12-14], for example. This work uses Turing 
machines with oracles as a model for computation. For questions about compu- 
tability, or about time complexity at the level of functions growing at least as 
fast as general polynomials, this model appears to be adequate. But for very 
slow-growing time bounds, the peculiarities of Turing machines become inter- 
mingled with the properties of the oracle set and of the problem under consider- 
ation, in determination of relative complexity. We take the viewpoint that the 
basic operations of the Turing machine are no different from oracle sets; both 
are here thought of as basic operations of an algebra. 

There are two different kinds of modularity we wish to consider. The first is 
the definition of a new operation from previously defined operations on a 
previously defined data type. For example, given bit strings with some suitable 
set of "unit-cost" operations, how should concatenation be "implemented"? The 
second is the "implementation" of an entirely new data type (including its 
operations) relative to a previously defined data type. For example, given bit 
strings and some standard set of operations, how should the rational numbers 
with an appropriate set of operations be "implemented"? "Implementation" of 
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an entire algebra at once rather than of one function at a time is suggested by 
the work on data structures in [2, 9, 10]; another important motivation arises 
from coding considerations. Consider a programming system based on bit 
strings, with some natural set of operations, within which we wish to determine 
the "complexity of primeness" for the natural numbers, N. There is no a priori 
reason we could not assume a coding of N into bit strings which included 
primeness in a trivially accessible way. Thus, the problem has not been clearly 
formulated. Difficulties of this kind are generally resolved by specification of a 
particular coding, but some meaningful results should be obtainable without 
such a specific solution. We regard "primeness" as existing not in a vacuum but 
along with and relative to other operations on N (such as + and ~<). By 
imposing complexity upper bounds on the other operations, we restrict the 
allowed codings sufficiently so that the relative complexity of primeness makes 
coding-independent sense. We then find that there are coding-independent 
tradeoffs in complexity for different operations of an algebra. 

The basic algebraic framework for this relativistic approach to complexity is 
given in Section II of this paper. We introduce the notion of "simulators" in one 
algebra ~' for the operations of another algebra ~. To be useful in measuring 
complexity, the simulators must be expressed in terms of the basic operations of 
d~'. Although any scheme class could be used to define the simulators, we focus 
mainly on flowchart schemes. Some basic results and examples are given. 

Section III contains a comparison of relative computability of algebras 
under different codings and with different scheme classes. We establish suffi- 
cient conditions on algebras and codings for the different computability defini- 
tions to be equivalent. 

In Section IV, we consider relative complexity of algebras under different 
codings but using flowchart schemes. We q~antify the restrictions imposed on 
codings by requiring that they permit certain operations to be simulated quickly. 
Thus, we consider a particular pair of domains, N and bit-strings, and show that 
there are well-defined ways in which a standard coding of the natural numbers 
into bit strings is close to optimal. In intuitive terms, we show that every 
operation on N which can be simulated quickly in any alternative encoding that 
can quickly simulate + and < can be simulated quickly in the standard coding 
as well. Although this intuitive statement seems easy to understand, it is not 
clear how the complexity bounds should best be expressed. The statement is 
formalized in several ways. Definitional issues are important here, for example, 
in the determination of appropriate parameters (in N) upon which to base 
complexity measures. 

Section V contains suggested directions for further research. 
There are several papers by the authors related to the present one. [15] 

contains a study of a generalization of the homomorphism concept called the 
"genomorphism." This generalization appears to be sufficiently powerful to 
yield some interesting results about representation and simulation. The defini- 
tional issues mentioned in Section IV form the basis for a study of size 
parameters in general algebras in [16, 17]. The general definition for size 
measure suggested in this paper is used there to measure many different types of 
complexity, and applications to complexity-bounded group theory and to funda- 
mental lower bounds on relative complexity of basic algebras are given. In [18] 
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we presented a result, related to those studied in Section III, generalizing the 
Paterson-Hewitt result on recursion schemes. In [19], we study the efficiency of 
specific sets of basic operations over N and {0, 1}*. Since the results in [19] 
hypothesize specific codings (and deal with the first of the two kinds of 
modularity we treat), they do not require the generality of the formalism of the 
present paper. A preliminary version of the results of the present paper, together 
with those .of [18, 19], appears in [20]. Finally, work remains to be done in 
extending the present model to handle complexity of data structure algebras as 
studied in [2, 9, 10]. One such result in [37] gives a tradeoff lower bound on the 
time required for insertion and searching in a data base allowing only compari- 
sons on its data items. 

Several recent research efforts of others which use ideas similar to those in 
this paper suggest that such representation and simulation ideas are fundamen- 
tal. [10] contains definitions for simulation which are close to the genomorphism 
definitions. The data space model of [21] includes related and very general 
simulation definitions of a type which may prove useful in handling data 
structure algebras. Results in [22] and [34] on graph embedding and in [23] on 
security involve representation-independent complexity in frameworks similar to 
ours. 

II. Notation, Definitions and Basic Results on Simulation 

An algebra d~=(Dome;Fun~ ;Re l~ )  is a set Dom~ (the domain of d~) together 
with a finite collection, Fun~, of partial functions (more often called "opera- 
tions" in the algebraic literature) and a finite collection, Rely, of partial 
relations on Dom~e. Constants are 0-ary functions. The members of Fun s and 
Rel ~ are called basic functions and relations of ~. 

Let z: A'---)A be a partial, surjective function, where A' and A are arbitrary 
sets. Let f be a partial function on A and f '  a partial function on A'. Then f '  is a 
z-simulator of f provided that for all x l . . . . .  x n in A', if f(z(xO,. . . ,  z(x,)) is 
defined, then so is "r(f'(xl . . . . .  x,))  and their values are equal. Similarly, let r be 
a partial relation on A and r '  a partial relation on A'. Then r '  is a z-simulator of r 
provided that if r('r(x 0 . . . . .  ~'(xn)) is defined, then so is r'(xl,..., x,), and their 
truth values are equal. 

Note that several "representations" in A' are permitted for each element of 
A, and that not every element of A' need "represent" an element of A. Also note 
that the definition is slightly different for functions and for relations. This 
difference is intended to reflect the different ways in which functions and 
relations are used in programs. We think of A as the "represented" (or imple- 
mented) algebra and A' as the "representing" (or implementing) algebra. 

To express the relative computability and relative complexity of two arbi- 
trary algebras ~ and ~' ,  we consider a translation mapping z: Dome,--->Dom~e, 
which must be onto Dom ~. We wish to examine the computability and complex- 
ity of z-simulators of the basic functions (including constants) and relations of 
~. To relate ~ to ~' ,  we must relate these simulators to the basic functions and 
relations of A'. This we do by specifying that the simulators be computable by 
programs in some language over the basic functions and relations of ~' .  In this 
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paper, we focus on a simple flowchart programming language, but two other 
languages are also used to help prove results about the flowchart language. We 
shall not take time to give the full syntax and semantics of these languages. We 
assume, as usual, that symbols have been chosen for the elements, functions and 
relations of A. In our metalanguage, we use the same notation for these symbols 
and the objects they denote, relying on the reader's good will to make the 
distinction from the context. 

For an algebra t~, a flowchart over ~ is composed in the usual way from a 
finite number of "boxes" of the types: 

~ . t .  

Start: 

I lnput: i xi: = inputj 

Assignment: IXi'=Xjl 

Function: 

Relation: 

Function Output: 

Relation Output: 

! Xi:=f(xj,,..., Xj,) I 

..... x , , \  

I utput: = x,. [ 

I Output: = T R U E  I 

I Output: =FALSE I 

where fEFun~e, r~Re l  a, the x's  are variables and inputs are elements of 
Dom a. Output boxes have no successors, relation boxes have two successors, 
and all others have one successor. There is exactly one start box. A flowchart is 
either a function flowchart, in which case all output boxes are function output 
boxes, or a relation flowchart, in which case all output boxes are relation output 
boxes. 

For an algebra ~, a linear recursive scheme over d~ is defined as in [24], with 
one modification. As in [24], a finite collection of procedure definitions is given, 
in which each procedure can call at most one other procedure. The language has 
a fairly general instruction set, with conditionals, typed variables (including 
Boolean variables with a fixed interpretation), vectors of parameters for proce- 
dures, but no looping other than by the use of recursion. The basic function and 
relation symbols used are those in Fun a and Rely. In contrast to Chandra's 
definition, however, our notion of interpretation leaves inputs to a program 
uninterpreted. As before, we consider function schemes and relation schemes. 
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For an algebra d~, an effective scheme over ~ is defined as in [25]. Thus, an 
effective scheme is composed of boxes of the same types as used for flowcharts, 
but the number of boxes need not be finite; i.e. they can form an infinite binary 
tree. However, we require that the nodes of the tree, suitably coded, be 
generable in a recursively enumerable way; i.e. as the range of a total recursive 
function. Again, we consider function schemes and relation schemes. 

A flowchart, linear recursive scheme or effective scheme P defines, in a 
natural way, a partial function fn e or a partial relation tel e. Semantics are 
assumed to be clear. 

(Note that there are two different ways in which a syntactically correct 
interpreted flowchart, linear recursive scheme or effective scheme, acting on a 
particular vector of inputs, may fail to give an answer. The first is by entering a 
computational loop, and the second is by using one of the partial basic 
operations at a vector of arguments not in the domain of the operation. No 
distinction is made between the treatments of these two cases.) 

Using these three kinds of "programs," we can present definitions for the 
relative computability of two algebras, d~ and ~'.  

A mapping from one set of programs or functions to another is ari(y- 
preserving providing the image of each program or function has the same 
number of arguments as the program or function. 

We write ~ < ~ '  (resp. d~ <tin~, ,~ < a f t , )  if I-: D o m ~ , ~ D o m ~  is a partial, 
r~P r P r,G' 

surjective map, @ is a total, arity-preserving mapping from Fun e t3 Rel~ to the 
set of flowcharts (resp. linear recursive schemes, effective schemes), fn~(/)  is a 
r-simulator of f for each f in Fun~, and rely(,) is a r-simulator of r for each r in 
Rely. (In particular, for each constant c in Fun~, @ selects a 0-input flowchart 
generating an element of z - l (c ) . )  When @ is irrelevant, we write d~ < d~' (resp. 

<nn~',d~ <credO') for (3@) [~ < ~'] (resp. (3P)[d~ ~<1i~ d~'],(3@)[d~ ~<~ff d~']). 

We write d~<d~' (resp. d ~ < l i n ~ ' , ~ < e e f ~  ') for (]z)[d~ ~<C'] (resp. 
, r  

(3z)[d! <u~d~'], (3z)[d~ <eeed~']). Clearly, C ~< d~' implies C <eeed~', and 
T T T T 

d~ <lm C, implies C < elf d~'. A construction in [26] shows that d~ < a~ C, implies 

' r  

Theorem 2.1. I f  ~ < ~' and ~'<<. ~",  then ~ < ~".  I f  ~ <elf C, and 
, / . t  , r  o ,/.~ 7. qr 

~, < eft ~,,, then ~ < eft (~,,. 
~ "  ' r  o ' r '  

Proof. By composition closure of flowcharts and effective schemes. [ ]  
One consequence of allowing multiple representations for each element of 

the represented algebra is that the quotient algebras are representable by their 
original algebras. We recall [35, 36] the notion of congruence, generalizing it 
somewhat. If ~ is an algebra, then an equivalence relation, R, on Dom~ is a 
congruence on ~ if 

(a) for every fEFun~e, if xiRY i, l < i < n ,  then either f ( x  I . . . . .  xn) and 
f (Y l  . . . . .  yn) are both undefined, or f ( x  1 . . . . .  x , ) R f ( y  l . . . . .  Yn), and 
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(b) for every r~Rel~e, if xiRYi, l < i < n ,  then either r(x l , . . . ,x~)  and 
r(y I . . . . .  y~) are both undefined or r(xl , . . . ,  x~)=r(yl , . . . ,  y~). 

Note the insistence that the function or relation values be either both 
defined or both undefined. In a congruence, equivalent elements are indis- 
tinguishable within the given algebra C. If R is a congruence on C, we define 
C/R  to be the quotient algebra in the usual way [35, 36]. The natural mapping 
z: C-->C/R maps an element x onto its equivalence class [x]. 

Theorem 2.2. C/R <<. C, where .c is the natural mapping. 
T 

Proof. Flowcharts consisting of a module computing a single basic operation 
suffice. [ ]  

Example 2.1. Let C b -  ((0, 1 }*; + ,  x ;  ~ ) where the elements are regarded as 
binary representations of elements of N, possibly with leading zeros. = is 
defined to be true if the same natural number is represented by the two strings, 
possibly with different numbers of leading zeros. + and x are defined arbi- 
trarily (as regards leading zeros) as long as the members of N represented by the 
answers are the correct sums and products. Clearly, ------ is a congruence, so that 
Cb/------- < Cb for the natural mapping z. By transitivity, an "implementation" of 

T 

Cb relative to any other algebra may be thought of as leading directly to an 
"implementation" of Cb/--=, which is an algebra isomorphic to (N; + ,  x ;  = ) .  

If Fun is any set of function symbols including at least one 0-ary function, 
then Exp(Fun) denotes the set of all well-formed expressions over the symbols in 
Fun. 

For an algebra C, e~Exp(Fun~) ,  let val(e) be the "value" of e when 
evaluated in C by applying the functions to the denoted elements that occur in e 
(val(e) may be undefined). We write well-formed expressions in infix operator 
form. Let Free(C) be the free algebra of expressions having as its domain 
Dom~ree(~ ) the set of expressions e for which val(e) is defined. Its functions are 
defined in the usual way except that they are restrictions to Dom~roe(~ ). [For 
f E F u n ~  and e l , . . . , e  n in DomF~oo(~), such that f (e  I . . . . .  en) is defined, 
f (e  1 . . . . .  en) is the expression f ( e l , . . . ,  e~).] Its relations are defined as follows. 
For r ERe l~  and e L , . . . ,  e~ in DomF~ee(~ ) we define r ( e l , . . . ,  e~)= 
r(val(el) . . . .  ,val(e~)). Note that r(e l , . . . , e~)  is defined if and only if 
r(val(el) . . . . .  val(en)) is defined, and similarly for basic functions. Again, we 
have used the same metasymbols f ,  r, for functions and relations of C and 
Free(C) as for the symbols in the expressions. 

An algebra C is called spanned if every element of Dom~ can be generated 
by a finite number of applications of functions in Fun~ (to constants in Fun~). 
If C is spanned, then it is clear that C is a quotient algebra of Free(C), with val 
as its natural mapping. 

The "translation" map ~" is from C', the representing algebra, to C, the 
represented algebra. It is helpful also to consider a "simulation" map o in the 
other direction. Since z is permitted to be many-to-one, o is not defined from 
Dom~ to Dome,, but rather from DomF~oe(~ ) to Dome,. Intuitively, for every 
generation of an element of Dome,  a naturally representing element of Dome, is 
selected. 
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If ~ is an algebra, Fun a set of function symbols, and ~ an arity-preserving 
total mapping from Fun to the set of partial functions on Dome, then a partial 
mapping oq:Exp(Fun)---)Dom a is defined inductively as follows. If c is a 
constant symbol, then o q ( c ) = ~ ( c ) ( ) .  If e I . . . . .  e, E Exp(Fun) then 
% ( f ( e  t . . . . .  e , ) ) = q ( f ) ( % ( e ] )  . . . . .  oq(e,)). If o~ is an arity-preserving total map- 
ping from Fun to the set of partial functions on Dome, we write o~r for %, where 
~-(f) =fn~(:) for all f ~  Fun. 

Theorem 2.3. Let 6~ < 

gram commutes: 

6~' (resp. ~ < ~  ~ ' , ~  <eft ~,). Then the following dia- 

val 

Fig. Z. 

trp 

Dom A, 

Proof. Left to the reader. (Note that 6) as defined assigns a particular element 
of Dom¢, to each constant in Fun a.) [] 

Thus, our reducibility definitions, by allowing arbitrarily many representa- 
tions in Dom a, for an element of Dom,,  make it possible for a coding to 
distinguish the various computation paths used to generate the element. 

HI. Relative Computability 

In this section we compare relative computability definitions involving different 
scheme classes and different codings. Theorem 3.1 shows that for a certain class 
of "sufficiently powerful" algebras, relative computability using effective schemes 
is no more general than relative computability using flowcharts. Later results 
show that relative computability under certain codings implies relative computa- 
bility under certain other codings. In particular, Example 3.2 uses Theorem 3.2 
to demonstrate the flowchart power of particular algebras with domain (0, 1}*. 
Later, in Section IV, some of the ideas used to compare relative computability 
under different codings (in Theorem 3.2) are sharpened to allow comparison of 
relative complexity under different codings. 

Let d~ and ~' be algebras. Without loss of generality, we can take Dom~ and 
Dome, to be disjoint (by possibly renaming elements). Let ~U ~' denote the 
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algebra (Dom~ U Dom~e,, Fun~e U Funs., Rel e U Relic,). Let succ denote the 
function ~x[x+ 1] on N. 

Lenuna 3.1. Assume ~ has only O-ary and unary functions (and arbitrary rela- 
tions). I f  f is a partial function computed by an effective scheme over ~, then 
(Dome; f; ) < Ct.J (N; 0, succ; = ),  where z(x)  = x if x E Dom~ and z (x)  is unde- 

fined if x E N. ~ 
(The same result holds for relation r.) 

Proof An effective scheme over d~ can be simulated by a flowchart scheme 
over d~u(N;0,succ; = ) by allowing (N;0,succ; = ) to code the recursively 
enumerable control steps as in [28, §3]. (The availability of flowcharts over 
(N; 0,suet; = ~ essentially allows the simulation of any finite number of coun- 
ters.) Results of application of functions can be represented as numerically-coded 
formal expressions until a basic relation of d~ is to be applied (or until an output 
is required). At such a time, the formal expressions involved must be evaluated 
by the simulating flowchart. The arity hypothesis insures that intermediate 
results of this evaluation can be stored in a finite number of flowchart locations 
[28]. [] 

Next, we show how an "auxiliary" algebra can sometimes be absorbed into 
another algebra by means of an arbitrary coding. 

Lemma 3.2. Assume ~ < ~ ' U ~ ' ,  where domain (~-)C_Dom~e,. Assume ~" <~'. 

Then ~ < ~'. 

Proof. Since there is essentially no intersection between C' and d~", flowcharts 
over d~' U C" which have inputs from Dom ~. only can be simulated by flowcharts 
over d~', using any coding ~-' of ~" in ~'. []  

Theorem 3.1. Assume ~ has only O-ary and unary functions (and arbitrary 
predicates), and assume (N;0,succ; = ) <d~. Then the effective schemes and the 
finite flowcharts compute the same classes of partial functions and predicates over ~. 

Proof Assume f is a partial function computed by an effective scheme over d~. 
Then ( D o m e ; f ; )  < C U ( N ; 0 , s u c c ; = )  by Lemma 3.1, where z ( x ) = x  if x E  

T 

Dom e, undefined if x E N .  By Lemma 3.2, (Doma; f ; )  < d~, where t is the 
L 

identity function. That is, f is computed by a flowchart over ~. The argument 
for relations is the same. []  

In [18] an algebra C is constructed with 0-ary and unary functions, over 
which there is a provable difference in computing power between effective 
schemes (in fact, recursive schemes) and flowchart schemes. Thus, the "suffi- 
cient power" condition (N; 0, succ;= ~ < C is crucial. 

Corollary 3.1. Assume ~ <eft ~,, ~, has O-ary and unary functions (and arbitrary 
J) ~,. relations) and (N; 0, succ; < C'. Then ~ < 

T 

Proof Immediate by Theorem 3.1. []  
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The construction of [18] is not strong enough to resolve the following: 

Question 3.1. Do there exist algebras d~ and d~' (d~' with only 0-ary and unary 
functions and arbitrary relations) for which d~< ¢frd~' but for which it is false that 

Similar questions can be asked for other scheme classes. 
An algebra d~ is skeletal if d~ is spanned, if Fun~ consists of unary total 

functions and constants, and Rel~ is { = }. Algebra d~ is a skeleton of algebra d~' 
provided d~ is skeletal and D o m e =  Dome,. (Note that Fun~ is not required to be 
a subset of Fun~,.) 

The next few results compare relative (flowchart) computability under 
different codings. The main result, Theorem 3.2, says that if a (sufficiently 
"powerful") algebra d~' can simulate another algebra d~ in any coding ~-, and also 
can simulate a skeleton for d~ both in ,r and in another coding ~-', then d~' can 
simulate all of d~ in coding ~". We first prove a lemma yielding a translation 
between two codings ~- and ~". 

Lemma 3.3. Assume algebras A:, if,' and mappings ~, z' satisfy the following: 
(a) d~ is skeletal. 
(b) d~ < d~'. 

(c) ~ < ~'. 
, i -  t 

(d) (N;  0, succ; - ) < d~'. 
Then there is a unary partial function f on Dome., computable by a flowchart 

over ~', such that v ' (y)=,r(f(y))  for ally Edomain(~"). 

Proof Let ~, °~' be such that C < C ' andd~  < C'. ~,q~ ~,,@. 
We describe a flowchart F which, on inputy  ~domain(~-'), outputs o~(x) for 

some x such that "r ' (y)=val(x) ;  this suffices by Theorem 2.3. F enumerates 
recursively the elements of DomFree(~ ), by using ( N ; 0 , s u c c ; = )  to code the 
enumerated expressions and to manage the necessary bookkeeping (by simulat- 
ing several counters). 

(1) For each s u c h x  in turn, F carries out the following two steps. 

(la) F computes o~,(x). (In order to do this, F follows the inductive 
definition of a~,. Since the functions in Fune  are all 0-ary or unary, F 
can keep the intermediate results of this computation in a finite number 
of registers. Again, necessary bookkeeping steps are handled using 
(N;  0, succ; = ) .) 

(lb) F discovers whether , r ' (y)=val(x) .  (In order to do this, F applies 
• ' (= )  to the given input y and o~,(x), thereby discovering whether z ' (y)= 
• '(o~,(x)) (=val(x)) . )  If not, F goes back to step (la) to consider the next x 
in the enumeration. If so, then F goes on to step (2), retaining the current 
value of x. 
(2) F computes and outputs o~(x). (The method is similar to that described 

in step (la) for the computation of o~,.) 
Note that this construction requires that the operations of Fun~ be total. 

Also note that step (1) is guaranteed to terminate for y ~domain(1-'), because d~ 
is spanned. 
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The situation described in this proof can be represented by the following 
diagram: 

Fig. 3. [] 

Theorem 3.2. Let algebras ~, ~', ~" and mappings ,r, ,r' satisfy the following: 
(a) ~ < ~' ,  

"r  

(b) A." is a skeleton of ~, 
(c) ~" < ~', 

(d) ~"  ~< ~', and 
, r  t 

(e) (N;  0, succ; -- ~ ~< ~'. 
Then ~ < ~'. 

Proof. Lemma 3.3 is applied twice, yielding two partial mappings f and g on 
Dome., each computable by a flowchart over ~',  such that z ' (y)=,r( f (y))  if 
yEdomain( ' r ' ) ,  and ,r(y)=,r'(q(y)) if y ~ d o m a i n  (~-). For each function and 
predicate of ~, a ,r'-simulator is constructed by composingf  and g with the given 
(in (c)) ,r-simulators. For instance, if h is a unary function in Fune  and h' its 
• r-simulator, then for y such that h(,r'(y)) is defined, we have h(~-'(y))= 
h(,r(f(y))) =,r(h'(f(y))) =,r'(g(h'(f(y)))). Hence, g o h' o f is a "r'-simulator of h. 
Similarly, r( ,r ' (y)))= r(,r(f(y)))=r'(f(y)) ,  so that r '  o f  is a "r'-simulator of r. []  

Example 3.1. Let ~ = ( N ; 0 , s u c c ; = , E K ) ,  where K i s  the halting set of some 
Grdel  numbering [29], and let ~ ' =  (N;0,succ; = ) .  Then it cannot be the case 
that ~ <  eff~,. For if ~ <  ergo,, then ~ < ~ '  by Theorem 3.1, and thus ~ < d~' by 
Theorem 3.2, where t is the identity mapping. But this conclusion contradicts the 
undecidability of K. This example indicates that our simulation definitions are 
strong enough to preserve undecidability independently of the coding used. 

Example 3.2. (Recursive power). We give a classification of the (flowchart) 
power of simple algebras with domain N or (0, 1 )*. For examples involving the 
domains N and (0, 1)*, a "standard" coding is required. For this purpose, we 
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define a total function 2adic: N--->(0, 1 )* by 2adic(x)= the binary representation 
of x+  1, with the leading 1 removed. 2adic is a one-to-one correspondence 
between N and (0, 1)*. An algebra 6~ with Dom~ = N  or (0, 1)* is said to have 
recursive power provided (N; f ; )  < C whenever f is partial recursive, and 

(N; ;p ) < C whenever p is partial recursive, where ~" is the identity or 2adic- 1 

as appropriate. 
The algebra (N;0,succ; = )  can be shown to have recursive power by 

the construction of flowcharts for all partial recursive functions f, inductively 
on the definition of f by systems of recursion equations. Then simple flow- 
chart programming and transitivity imply that many other algebras also have 
recursive power; for example, ( N ; 0 ,  s u c c , < ) ,  ( N ;  0 , 1 , +  ;=  ) ,  
((0, 1)*; ~,0, 1,tail, concat; = ) (where ~ is the empty string; taft(x)=~, if x = h ,  
all but the first symbol of x, otherwise; and concat(x, y )=xy) ,  and ((0,1)*; h, 
0succ, lsucc; prefix) (where 0succ(x)=x0, lsucc(x) =xl ,  and prefix(x, y)  is true 
iffx is a prefix of y)  can be thus shown to have recursive power. 

It appears somewhat  less obvious that the algebras C =  
((0,1)*; A,0succ, l succ ;= )  and C '=((0 ,1)*;  h ,0 ,1 ,concat ;=)  also have re- 
cursive power. To see that they do, note that C satisfies the hypotheses of 
Theorem 3.1 and that the effective schemes compute all partial recursive 
functions and predicates over 6~. (The operations of C can be used to identify the 
input and generate the output, while the major work of the computation is done 
by the effective control.) The power of 6~' follows from that of C and transitivity. 

Although the algebras given in this example all have the same flowchart 
computing power, it seems apparent that they are not all equally "efficient." 
Intuitively, it seems clear that some partial recursive functions are much 
"more quickly" computed over ((0,1)*;~,,0succ, lsucc, prefix) than over 
(N; 0, succ; = ).  A formal classification of the efficiency of the given algebras is 
studied in [19]. 

IV. Relative Complexity 

Probably the most interesting questions to be considered in our framework 
involve determination of the coding-independent relative complexity of particu- 
lar algebras. As an example, we consider in this section the flowchart complexity 
of 9L= (N;0, 1,+ ; < ) relative to ~ = ( ( 0 ,  1}*; X,0, 1,head, tail,0succ, lsucc, re- 
verse; =X, =0, = 1 ) ,  (where the predicates of ~ are tests for equality with short 
strings and where head(x)=X if x = h ,  the first symbol of x, otherwise). The 
algebra ~ can in some sense be considered to be a "unit-cost" algebra. However, 
the presence of the assignment operator in flowcharts makes the "unit-cost" 
intuition somewhat imperfect. Further discussion and use of ~ appears in [ 19]. It 
should be clear that the ideas used in this section are generalizable to bounds 
other than those given and to algebras other than 9L and ~.  

For any flowchart F, let L F denote the natural path length function. This is 
the time complexity measure we shall use in what follows. 

In the standard 2adic coding of 9L into ~,  it is clear that + and < can be 
simulated by flowcharts with path lengths linear in the length of the coded 
inputs in N. (We define the length Ix[ of x E N ,  by Ixl=12adic(x)[, the length of 
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the 2adic bit string. Note that Ixl = [log2(x+ 1)1, hence is really independent of 
2adic.) It is conceivable that some other coding of N into (0, 1}* (say, one that 
resembles floating-point coding) might allow the computation of some functions 
and relations to be done much more efficiently than the standard coding. The 
following results show that the only way that situation could occur is if either + 
or < became more complex in that other coding (a rather undesirable property). 
For simplicity in proving these results, we hypothesize maintenance of the linear 
complexity of + and <. The results have straightforward modifications for 
larger complexity bounds on + and <. 

The following lemma uses ideas which are extensions of those in Lemma 
3.3. It shows that a linear bound on + alone in any coding is sufficient to yield 
a quadratic translation from the 2adic coding to the new coding of any number. 
It is important to note that the linear and quadratic bounds are functions of 
parameters derived entirely within the coded system 9L, without reference to the 
coding system 9.  This is necessary, of course, for meaningful comparison of the 
effects of codings on efficiency. In most of the results, we use the length I xl as 
the parameter, but others derived within 9L might also provide significant 
parameters on which to base complexity comparisons. One such parameter is 
considered later in this section, in Lemma 4.3 and Theorem 4.5. 

Where no confusion is likely, we take the notational liberty of using the 
same symbol for a flowchart and for the function or predicate it computes. In 
the remainder of this section, we let k denote an arbitrary constant and p an 
arbitrary polynomial. 

l_emma 4.1. Assume (N; + ; )  < ~ andt~+)(x,y)<k(Iz(x)l+lz(y)l+l)for 
,r,6~ 

a//x,  y ~ domain(r). Then there exist a flowchart F over ~ and a constant c such 
that ~(F(x))  = 2adic - l(x) and L e ( x  ) < c([2adic - I(x)l 2 + 1) for all x ~ (0, 1 )*. 

Proof. F uses the bits of x to determine a sequence of + operations that would 
generate 2adic-l(x), starting with 0 and 1. The sequence consists of about Ixl 
operations, each involving either doubling, or doubling and adding 1. F then 
uses a fixed element, b0, of z -  l(0) and a fixed element, bl, of z -  I(1) and applies 
o~(+) in the way described by the above sentence, using b 0 and b 1 in place of 0 
and 1. Since P ( + )  computes a r-simulator of +,  an element of z -  1 (2adic- l(x)) 
is thereby obtained. 

Each of the approximately I xl operations involves at most two applications 
of P ( + )  to elements which are r-representations of integers n with [nl < 
max(Ix I, 1). (Note that it is the integers n themselves, not their r-representations, 
whose lengths are thus bounded.) Since [2adic-1(x)[ = ix  I, the needed bound 
follows from the bound on L~(+). 

The situation can be depicted as follows: 

N 

2.0,o  
rag, 4. [] 
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The one-way translation above is sufficient to imply that any relation of at 
least quadratic complexity can be computed just about as efficiently in the 
standard coding as in any other coding (if linear complexity of + is to be 
preserved). For simplicity, we state the result for unary relations only. 

Theorem 4.1. Let t be a partial function. Assume (N;  + ; r )  < ~ ,  where 
~., 6) 

Z~( + )( x, y)  < k([ ¢(x)l + I ¢(Y)I + 1) and L~(r)( X ) < t( l"( x )) for all x, y E domain( z ). 
Then there exist a flowchart G over ~ and a constant c such that G computes a 
2adic- 1-simulator of r and L c ( x  ) < c([2adic- I(x)l 2 + 1) + t(2adic- I(x)). 

Proof. By Lemma 4.1 and composition of flowcharts F and P(r) .  []  
If we wish to obtain a result similar to Theorem 4.1, for functions rather 

than relations, a bound for translating from the ~ coding back to the standard 
coding is also required. The most efficient flowchart we know for this translation 
is obtained from a direct compilation of a linear recursive scheme into the 
flowchart language, using techniques of [24]. If P is a linear recursive scheme, let 
L e denote the recursion depth function. (Since linear recursive schemes are 
loop-free, L e is a good estimate of the running time.) We use the following 
version of a result of [24]. 

Theorem 4.2 (Chandra). Let P be a linear recursive scheme, e any positive real. 
Then there exist flowchart F and constant c such that for any interpretation algebra 

(a) F computes the same function (or relation) over ~ as does P, 
Co) L e ( x  I . . . . .  x , )  < c( (Le(x  I . . . .  , xn)) l+~ + 1) for all inputs x 1 . . . . .  x n, and 
(c) if a basic operation of ~ is applied during the execution of F on given inputs, 

then the same basic operation is applied to the same arguments during the execution 
of P on the same inputs. 

Proof. See [24]. []  
It may seem that conditions (a) and Co) capture the important complexity 

relationship maintained by the translation. Indeed, the results in [24] explicitly 
give only these two conditions. However, this suffices only if the basic opera- 
tions of ~ are thought of as atomic. If the intention is to substitute flowcharts for 
the basic operations of ~, then some condition such as (c) is needed for a 
complexity comparison to remain invariant through the substitution. This point 
is illustrated below in the proof of Lemma 4.2. (See [30] for a study of scheme 
complexity in which a condition similar to (c) is central.) 

The following lemma yields the translation needed for functions. Linear 
bounds are now imposed both on + and <.  

Lemma 4.2. Assume ( N ; + ;  < ) < ~ ,  where L~¢+)(x,y)<.k(l~(x)l+[r(y)[+ 
"r,@ 

1) and L~(.)(x,y)<k(l~(x)l+l~(y)l+l) for all x, yEdomain(T) .  Let e be a 
positive real. Then there exist a flowchart F' over ~ and a constant c such that 
2adic- l( F'(x))  ='r(x) and Lr , (x  ) ~< c(] ~(x)] 2+~ + 1) for all x Edomain(~'). 

Proof. We augment ~ to a new algebra ~ ' ,  design a flowchart G over ~ '  for 
the needed translation, and then obtain F'  by replacing the operation symbols of 
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the new algebra by flowcharts over ~ .  The process is done in two stages because 
part of the construction involves a translation of a linear recursive scheme; the 
replacement flowcharts involve loops and linear recursive schemes are required 
to be loop-free. 

Fix b i E r - l ( 1 ) ,  f=fn~,(+) and r=rel~(~).  Let ~ ' = ( ( 0 , 1 ) * ; } ~ , 0 s u c c ,  
1 succ, head, tail, reverse, bl, f; = X, = 0, = 1, r ) .  Consider the following linear re- 
cursive scheme interpreted over ~ ' .  Notation is as in [24]. 

Translate( Xo): data: x 1, x 2 
/*Given  x o ~ (0, 1 )*, Translate(x0) outputs 2adic(r(x0) ) if x 0 ~domain( r ) .  
Its behavior is otherwise unspecified.*/ 

START 
(x l ,  x2}~-Approx(f (Xo,  bl), bl); 
RETURN(x1)  

Approx(xo, Xl): data: x2, x 3 
/*Given  x 0 with ~-(Xo) defined and /> 1, x I with r (xl )  a power of 2 and 
r(x i )  < r(Xo) , Approx(xo, Xl) returns two values: 

(1) the string obtained by deleting the leading 1 from the binary 
representation of [ Z(Xo) + ~-(xl) ], and 

(2) some value in r -~ ( [  r(Xo) + r(Xl) ] ×r (Xl)  ). 
Its behavior is otherwise unconstrained.*/ 

START 
if r ( f ( x l ,  xl) , Xo) 
then begin 

(x2, x3)*--Approx(xo, f ( x l ,  xl)); 
i f r ( f ( x3 ,  xl), x0) 
then R E T U R N  (lsucc(x2), f ( x  3, x l )  ) 
else R E T U R N  (0succ(x2), x3); 
end 

else R E T U R N  (X, xi)  

By definition, 2adic(z(Xo) ) is the binary representation of r(Xo)+ 1, with the 
leading 1 removed. The main program T-simulates the addition of 1 to ~-(x0). 
The procedure determines recursively the binary representation of the quotient 
of r(Xo) and the current power of 2 (given by r(Xl)), with the leading 1 
removed. It also determines a T-representation of the approximation to r(x0) 
obtained by truncating its binary representation after the r(x~) position. 

Note that on any input x E domain(T), the recursion depth is approximately 
[r(x)l, a n d f  and r are applied only to elements y of domain(T) with I~(y)] at 
most approximately I r(x)l. By Theorem 4.2, we obtain flowchart ~ computing 
Translate over ~ ' ,  with L~( x ) < c(I r( x )l l +~ + 1) whenever x Edomain(z) ,  where 
c is a constant. Moreover, each argument y to which f and r are applied when G 
is run on input x has I r(y)l at most approximately I z(x)l (because of conclusion 
(c) of Theorem 4.2). 

Now obtain F '  over ~ from G by replacing b l, f and r by their flowcharts 
over ~ .  The complexity bound follows from the hypotheses on L~+)  and L~t<). 

[ ]  
Now we obtain a result similar to Theorem 4.1 for functions rather than 

relations. 



208 N.A. Lynch and E, K. Blum 

Theorem 4.3. Let t be a partial function. Assume (N; +, f;  < ) < ~ ,  where 

Z~(+)(x, y) < k(l (x)l + I~(y)l + 1), L~(<)(x, y)  < k(l~(x)l + I~(Y)I + 1), and 
L~(f)( x)  < t( r(x )) whenever x, y Edomain(~'). Let e be a positive real. Then there 
exist a flowchart G over • and a constant c such that G computes a 2adic-l-  
simulator o f f  and 

L~(x) < c(12adic-'(x)l 2 + If(2adic-'(x))l z+*+ 1)+ t(2adic-'(x)). 

Proof. By Lemmas 4.1 and 4.2 and composition of flowcharts F (of Lemma 
4.1), F'  (of Lemma 4.2) and o~(f). The situation can be depicted as follows: 

Fl~. 5. 

2 adic -1 

[] 

Theorems 4.1 and 4.3 delimit in a particular way the improvement in 
efficiency that can be obtained by choosing an alternative to the standard 
coding of 9L in ~.  Above the quadratic level (i.e. t(x)=clx[2), no order of 
magnitude improvement is possible for predicates and "small" functions ["small" 
meaning that I f(x)l < t(x)]. The only possible improvement is a "local" one 
arising from possible concise representations of large numbers. Such an im- 
provement is possible, for example, in a "floating-point" coding, ~', such as the 
following. 

Example 4.1. For a string w=alla21...la~OObllb2...lbe, where all ai, bj~ 
(0,1), we define z (w)=2adic - l (a l . . ,  ak)>(22adie-lbl "'" be), that is, z is a partial 
function from (0, 1}* onto N such that ~ ' (w)=n×2 m, where 2adic(n)--a I ... ak 

and 2adic(m)=bl ... be. The existence of simulators of + and < with linear 
complexity bounds is easy to verify, if we recall that the relevant parameter is 
length measured in the system 9L. Thus, by Theorem 4.3, for small functions of 
at least quadratic complexity, the floating-point coding provides no improve- 
ment over the standard coding. But a large function like the exponential 
= ~x[2 x] has a linear complexity flowchart in the z-coding, whereas all flowcharts 
for the exponential function in the standard coding require exponential path 
length simply to generate the needed representation. 

We summarize the preceding results by stating a result which says that any 
function or predicate which is "polynomial-computable" in any coding of 9L in 

is also polynomial-computable in the standard coding. 
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Theorem 4.4. (a) Assume ( N ; + ; r ) <  ~ ,  where Le(+)(x,y)<p(Iz(x)l+ 

I~'(y)l) and Z~, ) (x )<p( l¢(x ) l )  for all x, yEdomain(r). Then there exists a 
flowchart F and a polynomial q such that F computes a 2adic-  Lsimulator of r and 
Lr(x )  < q(12adic- l(x)l). 

(b) Assume ( N ; + , f ; < )  ~< ~ ,  where Le(+)(x,y)<p(Iz(x)l+l¢(y)l), 
Z~( < )( x, y )  <p(l*(x)l + I¢(y)l) and t~<:)( x ) <P(l~'(x)l) for all x, y E domain( ¢ ). 
Assume further that If(x)l <p(Ixl). Then there exist a flowchart F over ~ and a 
polynomial q such that F computes a 2adic-Lsimulator of f and L r ( x ) <  
q(12adic-l(x)l). 

An objection can be raised to the form in which the linear bounds are 
expressed in the preceding results. For all the codings, a uniform bound is 
hypothesized on the running time for flowcharts on all representations of an 
dement.  For instance, in Lemma 4.1 we use the condition Lg(+)(x, y )  < k(I r(x)l 
+l¢(y) l  + 1). This may be too restrictive a condition for a model which allows 
infinitely many representations for each element. Perhaps it should be expected 
that a flowchart should take more time on some representations of an element 
than on others. It might, for instance, be desirable to have a flowchart run fast 
on those representations generated in a small number of steps of a "user 
program," whereas it is possibly less important that it run fast on representations 
which take many steps for a user program to generate (since the program is 
using considerable time in any case). One way to do this is to express complexity 
in terms of a parameter other than size of the represented element. The 
parameter should depend on the way a representation is generated, yet still be 
defined within the represented algebra. We define here one such parameter 
applicable to all algebras. The "user program step" intuition will be formalized 
by application of this general parameter to the associated free algebra. We 
introduce a numerical measure of this parameter as follows. 

Let ~ b e  any algebra and A, BC_ Dom~e. We define size~e (A:B) the size, in ~,, 
of A relative to B) as follows: 

(a) size~(A : B ) - 0  iff A C_B. 
(b) size~(A : B ) = k +  1 iff both (bl) and (b2) hold. 

(bl) There exist C_CDom~, f E F u n ~ ,  x i . . . . .  x~ EC,  such that A C C u  
( f (x l , . . . ,  x~)) and size~(C: B)=k.  

Co2) sizee(A : B ) <  k. 
(c) size~(A : B) is otherwise undefined (and is said to be equal to 0o). 

By convention, n < oo for all n EN, and o0 < oo. From (b), we see that size~(A : B) 
is the number of d~ operations required by a straight-line program to generate the 
elements in A given the elements in B. We write size~(x : B) for size ~({x) : B), 
sizee(A) for size~(A :~) ,  and sizee(x) for size~e({x ) :~f). In this general notation, 

if x E { 0 , 1 ) * ,  then size<(0,1).;x ' 0s~,ls~ec;>(x)=lxl, and if x E N ,  then 
size<s; 0, l, +;>(x) is the length of a minimal addition chain generating x (See [31 ], 
p. 402). 

Example 4.2. Consider size~(9). It is easy to see that sized(I)= 1, size~(2)=2, 
size~(4)- 3, size~(8) --- 4, and thus size~(9)= 5. Although one can compute 9 in 
9L by adding 1 nine times, clause (b2) shows that size~(9)4= 9. 
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We now obtain comparisons of codings using sizeFree(~t)(x ) as a parameter. 
Intuitively, this allows complexity to be calculated not only in terms of the 
magnitude of a number, but also in terms of the way that number is generated 
(by +). Evidence that this definition provides a useful general parameter for 
arbitrary algebras appears in [16, 17]. 

Remark. It is easy to see that 9L ~< • for some @ such that 
2adic _ t, 

L~,(+)(o~,(x), a¢(y)) < c(sizeFre~(~)(X)+sizeF,~e(~)(y)) and L~(<)(o~(x), o~(y)) 
< c(siZeFree(~)(X)+ sizeF~.e(~)(y)), where c is a constant. Thus, there is a com- 
plexity bound for the computation of + and < in the standard 2adic coding 
which is linear in the new size parameter. So it is reasonable to impose 
corresponding restrictions on other codings in order to compare them. Analo- 
gous to Lemma 4.1, we obtain Lemma 4.3. It states again that quadratic 
translation can be accomplished from the standard coding to any other coding 
in which + and ~< are linearly simulatable. For the remainder of the paper, P is 
fixed as described earlier in this paragraph. 

Lemma 4.3. Assume ( N ;  0, 1, + ; )  < 6~, and L~(+)(o~(x), o~(y)) < 
~',~ 

k(siz%re.(~)(X)+siZeFroe(~)(y)) for all x,y~DomFree(% ). Then there exist a 
flowchart F and a constant c such that 

(Vx)(::ty)[ F(o~(x ) )=N(y ) ,  o,~(x)=o,~(y), siZeFr.e(~)(y) < c size~,.e(~)(x ) 

and Le(o~(x)) < c(size Froo(%)(x)) 21. 

Proof. The situation can be depicted as follows: 

i (o0  

Fig. 6. 

(Thus, val(x) = val(y), val = 2adic- 1 o o 9 = ~- o 02, and 2adic- 1 = ~. o F.) 
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Since o~ is many-one, one of the oq-preimages of o~,(x), y, must be selected. 
The construction is similar to that for Lemma 4.1. F uses the bits of o~(x) to 
determine a sequence of + operations that would generate val(x), starting with 
0 or 1. The sequence consists of about I o (x)l operations, each involving either 
doubling, or doubling and adding 1. By its inductive definition, oe(x)  has at 
most about siZeFr~(qz)(X ) bits, so that the operation sequence obtained has at 
most about sizeFr~(0t)(x) operations. Let y be the infix expression describing 
this operation sequence. The size bound on y is clearly true. 

F then begins with .@(0) and ~(1), and repeatedly applies ~ ( +  ) according to 
the given sequence. Each application is to bit-strings which are o~-images of 
expressions, t, having sizeF~.(~)(t) at most about siZeFre~(~)(X ). The hypothesis 
on ~ ( +  ) yields the quadratic bound. []  

Similarly, analogues of Theorem 4.1, Lemma 4.2 and Theorem 4.3 can be 
obtained, based on sizeF~,(VC) as a parameter. Since some complicated details 
are thereby introduced, we simply give summary versions allowing polynomial 
variance. 

Theorem 4.5. (a) Assume (N;  0, 1, + ; r )  < ~, where 
'r,~ 

L~(+)(o~(x), o~(y)) < p(sizeF~eo(&)(x) + sizeFr.~(&)(y)) 

and L~(o(o~(x) ) <p(sizeF~o(~)(x)) for all x, y E Domv~ee(~ ). Then there exist a 
flowchart G computing a 2adic-l-simulator of r and a polynomial q, such that 
Lo(o~(x))  < q(siZeFr~e(~)(X)). 

(b) Assume ( N; O, 1 + ; <~ ) <<. ~ ,  where L~(+)(o~(x), a~(y)) 
"r,~ 

p(sizeFr#~(~)(X ) + sizeFree(~)(y)) and L~(<)(o~(x), o~(y)) ~<p(sizev~ee(~rc)(x ) + 
sizeF~ee(Vc)(y)) for all x, yEDOmFree(~Z). Then there exist a flowchart F' and a 
polynomial q such that 

(Vx)(3y) [ F'(a~(x) )  = o~(y), val(x)= val(y), 

and L v,( oe( x ) ) < q(sizeFree(q~)(X))]. 
(C) Assume (N;0,1, + , f ;  < ) < °3, where L~(+) and L~z(~ ) are as in Co), 

where L~(y)( a~( x )) < p(sizeFree( % )( X) ) and with the size restriction 

(Vx)(3 y )[ ~(  f )(cr~2(x)) = oe(y ) and sizeFroe(&)(y ) < p(siZeFre.(&)( X )) ]. 

Then there exist flowchart G computing a 2adic-l-simulator of f such that 
Lc(  o~( x))  < q(sizeFree(~)(X)), where q is a polynomial. 

Proof (a) As for Theorem 4.1, using Lemma 4.3. Note that the size bound ony 
obtained in Lemma 4.3 is required here. 
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(b) The situation can be depicted as follows: 

0,1) * 

Fig. 7. 

The proof is similar to that of Lemma 4.2, but several complications are 
introduced by the new parameter. Since polynomial variance is allowed, we 
simplify matters by performing a more direct translation than that for Lemma 
4.2, simply determining the bits of the binary representation of val(x)+ 1 in 
order, high to low order. The functions computed by ~(0), ~(1), ~ ( + )  and 
~ ( < )  are used to translate from o~(x) to oe(y), and then replaced by their 
hypothesized flowcharts. (A similar idea was used for Lemma 4.2.) The number 
of applications of ~ ( + )  and ~ ( < )  in this translation can be bounded by 
ql(log(val(x))) for some polynomial ql. Furthermore, ~ ( + )  and ~( < ) are only 
applied to o~(x) and to elements of the form o~(w), where siZeFree(~)(W)< 
q2(log(val(x))) for some polynomial q. Then by the hypotheses on ~ ( + )  
and ~ ( < ) ,  the total time for the translation is bounded  by 
q3(log(val(x)),siZe¢roo(~)(x)) for some polynomial q3. Since log(val(x))< 
q4(siZeFroo~)(X)) for some polynomial q4, the bound follows. 

(c) By Lemma 4.3 and (b), using composition of flowcharts. The size bound 
on y obtained in Lemma 4.3 and the new size restriction are both required here 
to control the growth of the parameter. []  

We remark that (c) leaves open the possibility that some improvement may 
occur in an alternative coding if the size restriction assumed in (c) is violated. 

V. Further W o r k  

In Section III, some comparison was given of relative computability definitions 
for different scheme classes. Such comparisons should also be carried out for 
relative complexity definitions. Somewhat more specifically, Theorem 3.1 can be 
paraphrased by saying that if enough "power" is present in an algebra, then that 
algebra can "simulate" with a flowchart the result of any effective scheme. It is 
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intuitively plausible that if enough "efficient power" is present in an algebra, 
then that algebra can "efficiently simulate" with a flowchart the result of any 
effective scheme (or recursive scheme, for example). The power hypothesis was 
expressed in terms of a reducibility. The efficient power hypothesis should be 
similarly expressible in terms of a suitable efficient reducibility. (Remarks in 
Section IV and in [16, 17] suggest ways of defining efficient reducibilities.) 

Section IV represents a small beginning for classification of coding- 
independent relative complexity of specific algebras. Many interesting technical 
questions remain to be formulated. Subsequent classification efforts might focus 
on basic numeric and bit string algebras, finitely generated groups and perhaps 
algebras arising in finite set theory. For such algebras, reasonable progress 
should be possible with only minor extensions of the definitions in this paper. 

The model of this paper is not sufficiently general for the study of the 
implementation of data structure algebras [2, 9, 10]. Appropriate extension to a 
suitably general representation model with general size parameter is needed. The 
model should allow realistic treatment of coding-independent complexity of 
implementations of data structures. Some possible directions are suggested by 
[21, 32, 33]. 
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