
Math. Systems Theory 14, 193-214 (1981) Mathematical
Systems Theory

Relative Complexity of Algebras

Nancy A. Lynch 1'2 and Edward K. Blum 1

School of Information and Computer Science, Georgia Institute of Technology, Atlanta, Georgia

Department of Mathematics, University of Southern California, Los Angeles, California

Abstract. A simple algebraic model is proposed for measuring the relative
complexity of programming systems. The appropriateness of this model is
illustrated by its use as a framework for the statement and proof of results
dealing with coding-independent limitations on the relative complexity of
basic algebras.

I. Introduction

Much of the recent research on semantic theories has concentrated on qualita-
tive properties such as definability (of such programming concepts as recursive
procedures), equivalence (of different language constructs) and verifiability (of
the correctness, or consistency, of one expression relative to another.) Current
qualitative theories are still in a tentative state and much remains to be done.
However, there is also a quantitative side to semantics. Indeed, many of the
questions which any semantic theory must answer are at once qualitative and
quantitative. We would like to draw upon complexity-theoretic techniques to
answer such quantitative questions as what effect certain operations have on the
lengths of computations and what effect different codings have. These are
questions of "semantic complexity." To treat or even formulate such questions,
it seems useful to establish a mathematical framework within which the analysis
of semantic complexity can be carried out. This framework should accommo-
date the software concepts which underlie sophisticated languages such as
ALGOL 68 and simpler languages such as BASIC. Recent research [1-10]
suggests that this framework be primarily algebraic. It appears, however, that

IThis research was partially supported by NSF Grant DCR75-02373 and MCS78-07461.
2This research was partially supported by NSF Grant MCS77-15628.

193 0025/5661/81/0014-0193504.40
© 1981 Springer-Verlag New York Inc.

194 N.A. Lynch and E. K. Blum

classical algebraic notions such as the homomorphism concept, arising from
studies of the properties of similar algebraic structures, are inadequate to the
tasks of computer science. Rather, more general notions of representation or
simulation seem to be required.

In this paper, we define a framework for both qualitative and quantitative
analysis of semantic problems, and give examples of its use. Although various
programming languages can be considered, we focus here (for definiteness) on a
flowchart language. We concentrate on questions involving the relative compu-
tability and the relative complexity of programming systems. Although intended
principally to illustrate the model, the results should have intrinsic interest and
suggest directions for further research.

A basic premise of our work is that analysis of the complexity of algorithms
should be performed using a more "relative" or "modular" approach than is
usual, in accordance with recent research in semantics, program verification and
programming methodology. Complexity analyses have generally been done in an
"absolute" way, by selecting a standard model of computation (a RAM with a
specified operation set, or perhaps a Turing machine) and determining the total
time or space required by the algorithms when executed on this model. One
difficulty with this approach is that it tends to deemphasize certain similarities
between problems. It has been noticed [l l] that the underlying algebra for
discrete algorithms is not really absolute; for different problems (or at different
times for the same problem) we might wish to measure complexity of an
arithmetic function in terms of basic arithmetic operations on the non-negative
integers N, in terms of basic bit string operations, or in terms of basic bit
operations. This situation suggests that a computation model based on a single
standard algebra is not to be sought; rather, in many cases, the interesting ideas
seem to be inherently relative ones. Formal models for measuring relative
complexity are needed; they should have the property that relative complexity
measures calculated thereby can be combined in a systematic way to produce an
"absolute" complexity measure of an algorithm.

Relative complexity is, of course, not a new idea; one form in which it has
been studied is represented by [12-14], for example. This work uses Turing
machines with oracles as a model for computation. For questions about compu-
tability, or about time complexity at the level of functions growing at least as
fast as general polynomials, this model appears to be adequate. But for very
slow-growing time bounds, the peculiarities of Turing machines become inter-
mingled with the properties of the oracle set and of the problem under consider-
ation, in determination of relative complexity. We take the viewpoint that the
basic operations of the Turing machine are no different from oracle sets; both
are here thought of as basic operations of an algebra.

There are two different kinds of modularity we wish to consider. The first is
the definition of a new operation from previously defined operations on a
previously defined data type. For example, given bit strings with some suitable
set of "unit-cost" operations, how should concatenation be "implemented"? The
second is the "implementation" of an entirely new data type (including its
operations) relative to a previously defined data type. For example, given bit
strings and some standard set of operations, how should the rational numbers
with an appropriate set of operations be "implemented"? "Implementation" of

Relative Complexity of Algebras 195

an entire algebra at once rather than of one function at a time is suggested by
the work on data structures in [2, 9, 10]; another important motivation arises
from coding considerations. Consider a programming system based on bit
strings, with some natural set of operations, within which we wish to determine
the "complexity of primeness" for the natural numbers, N. There is no a priori
reason we could not assume a coding of N into bit strings which included
primeness in a trivially accessible way. Thus, the problem has not been clearly
formulated. Difficulties of this kind are generally resolved by specification of a
particular coding, but some meaningful results should be obtainable without
such a specific solution. We regard "primeness" as existing not in a vacuum but
along with and relative to other operations on N (such as + and ~<). By
imposing complexity upper bounds on the other operations, we restrict the
allowed codings sufficiently so that the relative complexity of primeness makes
coding-independent sense. We then find that there are coding-independent
tradeoffs in complexity for different operations of an algebra.

The basic algebraic framework for this relativistic approach to complexity is
given in Section II of this paper. We introduce the notion of "simulators" in one
algebra ~' for the operations of another algebra ~. To be useful in measuring
complexity, the simulators must be expressed in terms of the basic operations of
d~'. Although any scheme class could be used to define the simulators, we focus
mainly on flowchart schemes. Some basic results and examples are given.

Section III contains a comparison of relative computability of algebras
under different codings and with different scheme classes. We establish suffi-
cient conditions on algebras and codings for the different computability defini-
tions to be equivalent.

In Section IV, we consider relative complexity of algebras under different
codings but using flowchart schemes. We q~antify the restrictions imposed on
codings by requiring that they permit certain operations to be simulated quickly.
Thus, we consider a particular pair of domains, N and bit-strings, and show that
there are well-defined ways in which a standard coding of the natural numbers
into bit strings is close to optimal. In intuitive terms, we show that every
operation on N which can be simulated quickly in any alternative encoding that
can quickly simulate + and < can be simulated quickly in the standard coding
as well. Although this intuitive statement seems easy to understand, it is not
clear how the complexity bounds should best be expressed. The statement is
formalized in several ways. Definitional issues are important here, for example,
in the determination of appropriate parameters (in N) upon which to base
complexity measures.

Section V contains suggested directions for further research.
There are several papers by the authors related to the present one. [15]

contains a study of a generalization of the homomorphism concept called the
"genomorphism." This generalization appears to be sufficiently powerful to
yield some interesting results about representation and simulation. The defini-
tional issues mentioned in Section IV form the basis for a study of size
parameters in general algebras in [16, 17]. The general definition for size
measure suggested in this paper is used there to measure many different types of
complexity, and applications to complexity-bounded group theory and to funda-
mental lower bounds on relative complexity of basic algebras are given. In [18]

196 N.A. Lynch and E. K. Blum

we presented a result, related to those studied in Section III, generalizing the
Paterson-Hewitt result on recursion schemes. In [19], we study the efficiency of
specific sets of basic operations over N and {0, 1}*. Since the results in [19]
hypothesize specific codings (and deal with the first of the two kinds of
modularity we treat), they do not require the generality of the formalism of the
present paper. A preliminary version of the results of the present paper, together
with those .of [18, 19], appears in [20]. Finally, work remains to be done in
extending the present model to handle complexity of data structure algebras as
studied in [2, 9, 10]. One such result in [37] gives a tradeoff lower bound on the
time required for insertion and searching in a data base allowing only compari-
sons on its data items.

Several recent research efforts of others which use ideas similar to those in
this paper suggest that such representation and simulation ideas are fundamen-
tal. [10] contains definitions for simulation which are close to the genomorphism
definitions. The data space model of [21] includes related and very general
simulation definitions of a type which may prove useful in handling data
structure algebras. Results in [22] and [34] on graph embedding and in [23] on
security involve representation-independent complexity in frameworks similar to
ours.

II. Notation, Definitions and Basic Results on Simulation

An algebra d~=(Dome;Fun~ ;Re l~) is a set Dom~ (the domain of d~) together
with a finite collection, Fun~, of partial functions (more often called "opera-
tions" in the algebraic literature) and a finite collection, Rely, of partial
relations on Dom~e. Constants are 0-ary functions. The members of Fun s and
Rel ~ are called basic functions and relations of ~.

Let z: A'---)A be a partial, surjective function, where A' and A are arbitrary
sets. Let f be a partial function on A and f ' a partial function on A'. Then f ' is a
z-simulator of f provided that for all x l x n in A', if f(z(xO,. . . , z(x,)) is
defined, then so is "r(f'(xl x,)) and their values are equal. Similarly, let r be
a partial relation on A and r ' a partial relation on A'. Then r ' is a z-simulator of r
provided that if r('r(x 0 ~'(xn)) is defined, then so is r'(xl,..., x,), and their
truth values are equal.

Note that several "representations" in A' are permitted for each element of
A, and that not every element of A' need "represent" an element of A. Also note
that the definition is slightly different for functions and for relations. This
difference is intended to reflect the different ways in which functions and
relations are used in programs. We think of A as the "represented" (or imple-
mented) algebra and A' as the "representing" (or implementing) algebra.

To express the relative computability and relative complexity of two arbi-
trary algebras ~ and ~' , we consider a translation mapping z: Dome,--->Dom~e,
which must be onto Dom ~. We wish to examine the computability and complex-
ity of z-simulators of the basic functions (including constants) and relations of
~. To relate ~ to ~' , we must relate these simulators to the basic functions and
relations of A'. This we do by specifying that the simulators be computable by
programs in some language over the basic functions and relations of ~' . In this

Relative Complexity of Algebras 197

paper, we focus on a simple flowchart programming language, but two other
languages are also used to help prove results about the flowchart language. We
shall not take time to give the full syntax and semantics of these languages. We
assume, as usual, that symbols have been chosen for the elements, functions and
relations of A. In our metalanguage, we use the same notation for these symbols
and the objects they denote, relying on the reader's good will to make the
distinction from the context.

For an algebra t~, a flowchart over ~ is composed in the usual way from a
finite number of "boxes" of the types:

~ . t .

Start:

I lnput: i xi: = inputj

Assignment: IXi'=Xjl

Function:

Relation:

Function Output:

Relation Output:

! Xi:=f(xj,,..., Xj,) I

..... x , , \

I utput: = x,. [

I Output: = T R U E I

I Output: =FALSE I

where fEFun~e, r~Re l a, the x's are variables and inputs are elements of
Dom a. Output boxes have no successors, relation boxes have two successors,
and all others have one successor. There is exactly one start box. A flowchart is
either a function flowchart, in which case all output boxes are function output
boxes, or a relation flowchart, in which case all output boxes are relation output
boxes.

For an algebra ~, a linear recursive scheme over d~ is defined as in [24], with
one modification. As in [24], a finite collection of procedure definitions is given,
in which each procedure can call at most one other procedure. The language has
a fairly general instruction set, with conditionals, typed variables (including
Boolean variables with a fixed interpretation), vectors of parameters for proce-
dures, but no looping other than by the use of recursion. The basic function and
relation symbols used are those in Fun a and Rely. In contrast to Chandra's
definition, however, our notion of interpretation leaves inputs to a program
uninterpreted. As before, we consider function schemes and relation schemes.

198 N.A. Lynch and E. K. Blum

For an algebra d~, an effective scheme over ~ is defined as in [25]. Thus, an
effective scheme is composed of boxes of the same types as used for flowcharts,
but the number of boxes need not be finite; i.e. they can form an infinite binary
tree. However, we require that the nodes of the tree, suitably coded, be
generable in a recursively enumerable way; i.e. as the range of a total recursive
function. Again, we consider function schemes and relation schemes.

A flowchart, linear recursive scheme or effective scheme P defines, in a
natural way, a partial function fn e or a partial relation tel e. Semantics are
assumed to be clear.

(Note that there are two different ways in which a syntactically correct
interpreted flowchart, linear recursive scheme or effective scheme, acting on a
particular vector of inputs, may fail to give an answer. The first is by entering a
computational loop, and the second is by using one of the partial basic
operations at a vector of arguments not in the domain of the operation. No
distinction is made between the treatments of these two cases.)

Using these three kinds of "programs," we can present definitions for the
relative computability of two algebras, d~ and ~'.

A mapping from one set of programs or functions to another is ari(y-
preserving providing the image of each program or function has the same
number of arguments as the program or function.

We write ~ < ~ ' (resp. d~ <tin~, ,~ < a f t ,) if I-: D o m ~ , ~ D o m ~ is a partial,
r~P r P r,G'

surjective map, @ is a total, arity-preserving mapping from Fun e t3 Rel~ to the
set of flowcharts (resp. linear recursive schemes, effective schemes), fn~(/) is a
r-simulator of f for each f in Fun~, and rely(,) is a r-simulator of r for each r in
Rely. (In particular, for each constant c in Fun~, @ selects a 0-input flowchart
generating an element of z - l (c) .) When @ is irrelevant, we write d~ < d~' (resp.

<nn~',d~ <credO') for (3@) [~ < ~'] (resp. (3P)[d~ ~<1i~ d~'],(3@)[d~ ~<~ff d~']).

We write d~<d~' (resp. d ~ < l i n ~ ' , ~ < e e f ~ ') for (]z)[d~ ~<C'] (resp.
, r

(3z)[d! <u~d~'], (3z)[d~ <eeed~']). Clearly, C ~< d~' implies C <eeed~', and
T T T T

d~ <lm C, implies C < elf d~'. A construction in [26] shows that d~ < a~ C, implies

' r

Theorem 2.1. I f ~ < ~' and ~'<<. ~", then ~ < ~". I f ~ <elf C, and
, / . t , r o ,/.~ 7. qr

~, < eft ~,,, then ~ < eft (~,,.
~ " ' r o ' r '

Proof. By composition closure of flowcharts and effective schemes. []
One consequence of allowing multiple representations for each element of

the represented algebra is that the quotient algebras are representable by their
original algebras. We recall [35, 36] the notion of congruence, generalizing it
somewhat. If ~ is an algebra, then an equivalence relation, R, on Dom~ is a
congruence on ~ if

(a) for every fEFun~e, if xiRY i, l < i < n , then either f (x I xn) and
f (Y l yn) are both undefined, or f (x 1 x ,) R f (y l Yn), and

Relative Complexity of Algebras 199

(b) for every r~Rel~e, if xiRYi, l < i < n , then either r(x l , . . . ,x~) and
r(y I y~) are both undefined or r(xl , . . . , x~)=r(yl , . . . , y~).

Note the insistence that the function or relation values be either both
defined or both undefined. In a congruence, equivalent elements are indis-
tinguishable within the given algebra C. If R is a congruence on C, we define
C/R to be the quotient algebra in the usual way [35, 36]. The natural mapping
z: C-->C/R maps an element x onto its equivalence class [x].

Theorem 2.2. C/R <<. C, where .c is the natural mapping.
T

Proof. Flowcharts consisting of a module computing a single basic operation
suffice. []

Example 2.1. Let C b - ((0, 1 }*; + , x ; ~) where the elements are regarded as
binary representations of elements of N, possibly with leading zeros. = is
defined to be true if the same natural number is represented by the two strings,
possibly with different numbers of leading zeros. + and x are defined arbi-
trarily (as regards leading zeros) as long as the members of N represented by the
answers are the correct sums and products. Clearly, ------ is a congruence, so that
Cb/------- < Cb for the natural mapping z. By transitivity, an "implementation" of

T

Cb relative to any other algebra may be thought of as leading directly to an
"implementation" of Cb/--=, which is an algebra isomorphic to (N; + , x ; =) .

If Fun is any set of function symbols including at least one 0-ary function,
then Exp(Fun) denotes the set of all well-formed expressions over the symbols in
Fun.

For an algebra C, e~Exp(Fun~) , let val(e) be the "value" of e when
evaluated in C by applying the functions to the denoted elements that occur in e
(val(e) may be undefined). We write well-formed expressions in infix operator
form. Let Free(C) be the free algebra of expressions having as its domain
Dom~ree(~) the set of expressions e for which val(e) is defined. Its functions are
defined in the usual way except that they are restrictions to Dom~roe(~). [For
f E F u n ~ and e l , . . . , e n in DomF~oo(~), such that f (e I en) is defined,
f (e 1 en) is the expression f (e l , . . . , e~).] Its relations are defined as follows.
For r ERe l~ and e L , . . . , e~ in DomF~ee(~) we define r (e l , . . . , e~)=
r(val(el) ,val(e~)). Note that r(e l , . . . , e~) is defined if and only if
r(val(el) val(en)) is defined, and similarly for basic functions. Again, we
have used the same metasymbols f , r, for functions and relations of C and
Free(C) as for the symbols in the expressions.

An algebra C is called spanned if every element of Dom~ can be generated
by a finite number of applications of functions in Fun~ (to constants in Fun~).
If C is spanned, then it is clear that C is a quotient algebra of Free(C), with val
as its natural mapping.

The "translation" map ~" is from C', the representing algebra, to C, the
represented algebra. It is helpful also to consider a "simulation" map o in the
other direction. Since z is permitted to be many-to-one, o is not defined from
Dom~ to Dome,, but rather from DomF~oe(~) to Dome,. Intuitively, for every
generation of an element of Dome, a naturally representing element of Dome, is
selected.

200 N.A. Lynch and E. K. Blum

If ~ is an algebra, Fun a set of function symbols, and ~ an arity-preserving
total mapping from Fun to the set of partial functions on Dome, then a partial
mapping oq:Exp(Fun)---)Dom a is defined inductively as follows. If c is a
constant symbol, then o q (c) = ~ (c) () . If e I e, E Exp(Fun) then
% (f (e t e ,)) = q (f) (% (e]) oq(e,)). If o~ is an arity-preserving total map-
ping from Fun to the set of partial functions on Dome, we write o~r for %, where
~-(f) =fn~(:) for all f ~ Fun.

Theorem 2.3. Let 6~ <

gram commutes:

6~' (resp. ~ < ~ ~ ' , ~ <eft ~,). Then the following dia-

val

Fig. Z.

trp

Dom A,

Proof. Left to the reader. (Note that 6) as defined assigns a particular element
of Dom¢, to each constant in Fun a.) []

Thus, our reducibility definitions, by allowing arbitrarily many representa-
tions in Dom a, for an element of Dom,, make it possible for a coding to
distinguish the various computation paths used to generate the element.

HI. Relative Computability

In this section we compare relative computability definitions involving different
scheme classes and different codings. Theorem 3.1 shows that for a certain class
of "sufficiently powerful" algebras, relative computability using effective schemes
is no more general than relative computability using flowcharts. Later results
show that relative computability under certain codings implies relative computa-
bility under certain other codings. In particular, Example 3.2 uses Theorem 3.2
to demonstrate the flowchart power of particular algebras with domain (0, 1}*.
Later, in Section IV, some of the ideas used to compare relative computability
under different codings (in Theorem 3.2) are sharpened to allow comparison of
relative complexity under different codings.

Let d~ and ~' be algebras. Without loss of generality, we can take Dom~ and
Dome, to be disjoint (by possibly renaming elements). Let ~U ~' denote the

Relative Complexity of Algebras 201

algebra (Dom~ U Dom~e,, Fun~e U Funs., Rel e U Relic,). Let succ denote the
function ~x[x+ 1] on N.

Lenuna 3.1. Assume ~ has only O-ary and unary functions (and arbitrary rela-
tions). I f f is a partial function computed by an effective scheme over ~, then
(Dome; f;) < Ct.J (N; 0, succ; =), where z(x) = x if x E Dom~ and z (x) is unde-

fined if x E N. ~
(The same result holds for relation r.)

Proof An effective scheme over d~ can be simulated by a flowchart scheme
over d~u(N;0,succ; =) by allowing (N;0,succ; =) to code the recursively
enumerable control steps as in [28, §3]. (The availability of flowcharts over
(N; 0,suet; = ~ essentially allows the simulation of any finite number of coun-
ters.) Results of application of functions can be represented as numerically-coded
formal expressions until a basic relation of d~ is to be applied (or until an output
is required). At such a time, the formal expressions involved must be evaluated
by the simulating flowchart. The arity hypothesis insures that intermediate
results of this evaluation can be stored in a finite number of flowchart locations
[28]. []

Next, we show how an "auxiliary" algebra can sometimes be absorbed into
another algebra by means of an arbitrary coding.

Lemma 3.2. Assume ~ < ~ ' U ~ ' , where domain (~-)C_Dom~e,. Assume ~" <~'.

Then ~ < ~'.

Proof. Since there is essentially no intersection between C' and d~", flowcharts
over d~' U C" which have inputs from Dom ~. only can be simulated by flowcharts
over d~', using any coding ~-' of ~" in ~'. []

Theorem 3.1. Assume ~ has only O-ary and unary functions (and arbitrary
predicates), and assume (N;0,succ; =) <d~. Then the effective schemes and the
finite flowcharts compute the same classes of partial functions and predicates over ~.

Proof Assume f is a partial function computed by an effective scheme over d~.
Then (D o m e ; f ;) < C U (N ; 0 , s u c c ; =) by Lemma 3.1, where z (x) = x if x E

T

Dom e, undefined if x E N . By Lemma 3.2, (Doma; f ;) < d~, where t is the
L

identity function. That is, f is computed by a flowchart over ~. The argument
for relations is the same. []

In [18] an algebra C is constructed with 0-ary and unary functions, over
which there is a provable difference in computing power between effective
schemes (in fact, recursive schemes) and flowchart schemes. Thus, the "suffi-
cient power" condition (N; 0, succ;= ~ < C is crucial.

Corollary 3.1. Assume ~ <eft ~,, ~, has O-ary and unary functions (and arbitrary
J) ~,. relations) and (N; 0, succ; < C'. Then ~ <

T

Proof Immediate by Theorem 3.1. []

202 N.A. Lynch and E. K. Blum

The construction of [18] is not strong enough to resolve the following:

Question 3.1. Do there exist algebras d~ and d~' (d~' with only 0-ary and unary
functions and arbitrary relations) for which d~< ¢frd~' but for which it is false that

Similar questions can be asked for other scheme classes.
An algebra d~ is skeletal if d~ is spanned, if Fun~ consists of unary total

functions and constants, and Rel~ is { = }. Algebra d~ is a skeleton of algebra d~'
provided d~ is skeletal and D o m e = Dome,. (Note that Fun~ is not required to be
a subset of Fun~,.)

The next few results compare relative (flowchart) computability under
different codings. The main result, Theorem 3.2, says that if a (sufficiently
"powerful") algebra d~' can simulate another algebra d~ in any coding ~-, and also
can simulate a skeleton for d~ both in ,r and in another coding ~-', then d~' can
simulate all of d~ in coding ~". We first prove a lemma yielding a translation
between two codings ~- and ~".

Lemma 3.3. Assume algebras A:, if,' and mappings ~, z' satisfy the following:
(a) d~ is skeletal.
(b) d~ < d~'.

(c) ~ < ~'.
, i - t

(d) (N; 0, succ; -) < d~'.
Then there is a unary partial function f on Dome., computable by a flowchart

over ~', such that v ' (y)=,r(f(y)) for ally Edomain(~").

Proof Let ~, °~' be such that C < C ' andd~ < C'. ~,q~ ~,,@.
We describe a flowchart F which, on inputy ~domain(~-'), outputs o~(x) for

some x such that "r ' (y)=val(x) ; this suffices by Theorem 2.3. F enumerates
recursively the elements of DomFree(~), by using (N ; 0 , s u c c ; =) to code the
enumerated expressions and to manage the necessary bookkeeping (by simulat-
ing several counters).

(1) For each s u c h x in turn, F carries out the following two steps.

(la) F computes o~,(x). (In order to do this, F follows the inductive
definition of a~,. Since the functions in Fune are all 0-ary or unary, F
can keep the intermediate results of this computation in a finite number
of registers. Again, necessary bookkeeping steps are handled using
(N; 0, succ; =) .)

(lb) F discovers whether , r ' (y)=val(x) . (In order to do this, F applies
• ' (=) to the given input y and o~,(x), thereby discovering whether z ' (y)=
• '(o~,(x)) (=val(x)) .) If not, F goes back to step (la) to consider the next x
in the enumeration. If so, then F goes on to step (2), retaining the current
value of x.
(2) F computes and outputs o~(x). (The method is similar to that described

in step (la) for the computation of o~,.)
Note that this construction requires that the operations of Fun~ be total.

Also note that step (1) is guaranteed to terminate for y ~domain(1-'), because d~
is spanned.

Relative Complexity of Algebras 203

The situation described in this proof can be represented by the following
diagram:

Fig. 3. []

Theorem 3.2. Let algebras ~, ~', ~" and mappings ,r, ,r' satisfy the following:
(a) ~ < ~' ,

"r

(b) A." is a skeleton of ~,
(c) ~" < ~',

(d) ~" ~< ~', and
, r t

(e) (N; 0, succ; -- ~ ~< ~'.
Then ~ < ~'.

Proof. Lemma 3.3 is applied twice, yielding two partial mappings f and g on
Dome., each computable by a flowchart over ~', such that z ' (y)=,r(f (y)) if
yEdomain(' r ') , and ,r(y)=,r'(q(y)) if y ~ d o m a i n (~-). For each function and
predicate of ~, a ,r'-simulator is constructed by composingf and g with the given
(in (c)) ,r-simulators. For instance, if h is a unary function in Fune and h' its
• r-simulator, then for y such that h(,r'(y)) is defined, we have h(~-'(y))=
h(,r(f(y))) =,r(h'(f(y))) =,r'(g(h'(f(y)))). Hence, g o h' o f is a "r'-simulator of h.
Similarly, r(,r ' (y)))= r(,r(f(y)))=r'(f(y)) , so that r ' o f is a "r'-simulator of r. []

Example 3.1. Let ~ = (N ; 0 , s u c c ; = , E K) , where K i s the halting set of some
Grdel numbering [29], and let ~ ' = (N;0,succ; =) . Then it cannot be the case
that ~ < eff~,. For if ~ < ergo,, then ~ < ~ ' by Theorem 3.1, and thus ~ < d~' by
Theorem 3.2, where t is the identity mapping. But this conclusion contradicts the
undecidability of K. This example indicates that our simulation definitions are
strong enough to preserve undecidability independently of the coding used.

Example 3.2. (Recursive power). We give a classification of the (flowchart)
power of simple algebras with domain N or (0, 1)*. For examples involving the
domains N and (0, 1)*, a "standard" coding is required. For this purpose, we

204 N.A. Lynch and E. K. Blum

define a total function 2adic: N--->(0, 1)* by 2adic(x)= the binary representation
of x+ 1, with the leading 1 removed. 2adic is a one-to-one correspondence
between N and (0, 1)*. An algebra 6~ with Dom~ = N or (0, 1)* is said to have
recursive power provided (N; f ;) < C whenever f is partial recursive, and

(N; ;p) < C whenever p is partial recursive, where ~" is the identity or 2adic- 1

as appropriate.
The algebra (N;0,succ; =) can be shown to have recursive power by

the construction of flowcharts for all partial recursive functions f, inductively
on the definition of f by systems of recursion equations. Then simple flow-
chart programming and transitivity imply that many other algebras also have
recursive power; for example, (N ; 0 , s u c c , <) , (N ; 0 , 1 , + ;=) ,
((0, 1)*; ~,0, 1,tail, concat; =) (where ~ is the empty string; taft(x)=~, if x = h ,
all but the first symbol of x, otherwise; and concat(x, y)=xy) , and ((0,1)*; h,
0succ, lsucc; prefix) (where 0succ(x)=x0, lsucc(x) =xl , and prefix(x, y) is true
iffx is a prefix of y) can be thus shown to have recursive power.

It appears somewhat less obvious that the algebras C =
((0,1)*; A,0succ, l succ ;=) and C '=((0 ,1)*; h ,0 ,1 ,concat ;=) also have re-
cursive power. To see that they do, note that C satisfies the hypotheses of
Theorem 3.1 and that the effective schemes compute all partial recursive
functions and predicates over 6~. (The operations of C can be used to identify the
input and generate the output, while the major work of the computation is done
by the effective control.) The power of 6~' follows from that of C and transitivity.

Although the algebras given in this example all have the same flowchart
computing power, it seems apparent that they are not all equally "efficient."
Intuitively, it seems clear that some partial recursive functions are much
"more quickly" computed over ((0,1)*;~,,0succ, lsucc, prefix) than over
(N; 0, succ; =). A formal classification of the efficiency of the given algebras is
studied in [19].

IV. Relative Complexity

Probably the most interesting questions to be considered in our framework
involve determination of the coding-independent relative complexity of particu-
lar algebras. As an example, we consider in this section the flowchart complexity
of 9L= (N;0, 1,+ ; <) relative to ~ = ((0 , 1}*; X,0, 1,head, tail,0succ, lsucc, re-
verse; =X, =0, = 1) , (where the predicates of ~ are tests for equality with short
strings and where head(x)=X if x = h , the first symbol of x, otherwise). The
algebra ~ can in some sense be considered to be a "unit-cost" algebra. However,
the presence of the assignment operator in flowcharts makes the "unit-cost"
intuition somewhat imperfect. Further discussion and use of ~ appears in [19]. It
should be clear that the ideas used in this section are generalizable to bounds
other than those given and to algebras other than 9L and ~.

For any flowchart F, let L F denote the natural path length function. This is
the time complexity measure we shall use in what follows.

In the standard 2adic coding of 9L into ~, it is clear that + and < can be
simulated by flowcharts with path lengths linear in the length of the coded
inputs in N. (We define the length Ix[of x E N , by Ixl=12adic(x)[, the length of

Relative Complexity of Algebras 205

the 2adic bit string. Note that Ixl = [log2(x+ 1)1, hence is really independent of
2adic.) It is conceivable that some other coding of N into (0, 1}* (say, one that
resembles floating-point coding) might allow the computation of some functions
and relations to be done much more efficiently than the standard coding. The
following results show that the only way that situation could occur is if either +
or < became more complex in that other coding (a rather undesirable property).
For simplicity in proving these results, we hypothesize maintenance of the linear
complexity of + and <. The results have straightforward modifications for
larger complexity bounds on + and <.

The following lemma uses ideas which are extensions of those in Lemma
3.3. It shows that a linear bound on + alone in any coding is sufficient to yield
a quadratic translation from the 2adic coding to the new coding of any number.
It is important to note that the linear and quadratic bounds are functions of
parameters derived entirely within the coded system 9L, without reference to the
coding system 9. This is necessary, of course, for meaningful comparison of the
effects of codings on efficiency. In most of the results, we use the length I xl as
the parameter, but others derived within 9L might also provide significant
parameters on which to base complexity comparisons. One such parameter is
considered later in this section, in Lemma 4.3 and Theorem 4.5.

Where no confusion is likely, we take the notational liberty of using the
same symbol for a flowchart and for the function or predicate it computes. In
the remainder of this section, we let k denote an arbitrary constant and p an
arbitrary polynomial.

l_emma 4.1. Assume (N; + ;) < ~ andt~+)(x,y)<k(Iz(x)l+lz(y)l+l)for
,r,6~

a//x, y ~ domain(r). Then there exist a flowchart F over ~ and a constant c such
that ~(F(x)) = 2adic - l(x) and L e (x) < c([2adic - I(x)l 2 + 1) for all x ~ (0, 1)*.

Proof. F uses the bits of x to determine a sequence of + operations that would
generate 2adic-l(x), starting with 0 and 1. The sequence consists of about Ixl
operations, each involving either doubling, or doubling and adding 1. F then
uses a fixed element, b0, of z - l(0) and a fixed element, bl, of z - I(1) and applies
o~(+) in the way described by the above sentence, using b 0 and b 1 in place of 0
and 1. Since P (+) computes a r-simulator of +, an element of z - 1 (2adic- l(x))
is thereby obtained.

Each of the approximately I xl operations involves at most two applications
of P (+) to elements which are r-representations of integers n with [nl <
max(Ix I, 1). (Note that it is the integers n themselves, not their r-representations,
whose lengths are thus bounded.) Since [2adic-1(x)[= ix I, the needed bound
follows from the bound on L~(+).

The situation can be depicted as follows:

N

2.0,o
rag, 4. []

206 N.A. Lynch and E. K. Bium

The one-way translation above is sufficient to imply that any relation of at
least quadratic complexity can be computed just about as efficiently in the
standard coding as in any other coding (if linear complexity of + is to be
preserved). For simplicity, we state the result for unary relations only.

Theorem 4.1. Let t be a partial function. Assume (N; + ; r) < ~ , where
~., 6)

Z~(+)(x, y) < k([¢(x)l + I ¢(Y)I + 1) and L~(r)(X) < t(l"(x)) for all x, y E domain(z).
Then there exist a flowchart G over ~ and a constant c such that G computes a
2adic- 1-simulator of r and L c (x) < c([2adic- I(x)l 2 + 1) + t(2adic- I(x)).

Proof. By Lemma 4.1 and composition of flowcharts F and P(r) . []
If we wish to obtain a result similar to Theorem 4.1, for functions rather

than relations, a bound for translating from the ~ coding back to the standard
coding is also required. The most efficient flowchart we know for this translation
is obtained from a direct compilation of a linear recursive scheme into the
flowchart language, using techniques of [24]. If P is a linear recursive scheme, let
L e denote the recursion depth function. (Since linear recursive schemes are
loop-free, L e is a good estimate of the running time.) We use the following
version of a result of [24].

Theorem 4.2 (Chandra). Let P be a linear recursive scheme, e any positive real.
Then there exist flowchart F and constant c such that for any interpretation algebra

(a) F computes the same function (or relation) over ~ as does P,
Co) L e (x I x ,) < c((Le(x I , xn)) l+~ + 1) for all inputs x 1 x n, and
(c) if a basic operation of ~ is applied during the execution of F on given inputs,

then the same basic operation is applied to the same arguments during the execution
of P on the same inputs.

Proof. See [24]. []
It may seem that conditions (a) and Co) capture the important complexity

relationship maintained by the translation. Indeed, the results in [24] explicitly
give only these two conditions. However, this suffices only if the basic opera-
tions of ~ are thought of as atomic. If the intention is to substitute flowcharts for
the basic operations of ~, then some condition such as (c) is needed for a
complexity comparison to remain invariant through the substitution. This point
is illustrated below in the proof of Lemma 4.2. (See [30] for a study of scheme
complexity in which a condition similar to (c) is central.)

The following lemma yields the translation needed for functions. Linear
bounds are now imposed both on + and <.

Lemma 4.2. Assume (N ; + ; <) < ~ , where L~¢+)(x,y)<.k(l~(x)l+[r(y)[+
"r,@

1) and L~(.)(x,y)<k(l~(x)l+l~(y)l+l) for all x, yEdomain(T) . Let e be a
positive real. Then there exist a flowchart F' over ~ and a constant c such that
2adic- l(F'(x)) ='r(x) and Lr , (x) ~< c(] ~(x)] 2+~ + 1) for all x Edomain(~').

Proof. We augment ~ to a new algebra ~ ' , design a flowchart G over ~ ' for
the needed translation, and then obtain F' by replacing the operation symbols of

Relative Complexity of Algebras 207

the new algebra by flowcharts over ~ . The process is done in two stages because
part of the construction involves a translation of a linear recursive scheme; the
replacement flowcharts involve loops and linear recursive schemes are required
to be loop-free.

Fix b i E r - l (1) , f=fn~,(+) and r=rel~(~). Let ~ ' = ((0 , 1) * ; } ~ , 0 s u c c ,
1 succ, head, tail, reverse, bl, f; = X, = 0, = 1, r) . Consider the following linear re-
cursive scheme interpreted over ~ ' . Notation is as in [24].

Translate(Xo): data: x 1, x 2
/*Given x o ~ (0, 1)*, Translate(x0) outputs 2adic(r(x0)) if x 0 ~domain(r) .
Its behavior is otherwise unspecified.*/

START
(x l , x2}~-Approx(f (Xo, bl), bl);
RETURN(x1)

Approx(xo, Xl): data: x2, x 3
/*Given x 0 with ~-(Xo) defined and /> 1, x I with r (xl) a power of 2 and
r(x i) < r(Xo) , Approx(xo, Xl) returns two values:

(1) the string obtained by deleting the leading 1 from the binary
representation of [Z(Xo) + ~-(xl)], and

(2) some value in r -~ ([r(Xo) + r(Xl)] ×r (Xl)).
Its behavior is otherwise unconstrained.*/

START
if r (f (x l , xl) , Xo)
then begin

(x2, x3)*--Approx(xo, f (x l , xl));
i f r (f (x3 , xl), x0)
then R E T U R N (lsucc(x2), f (x 3, x l))
else R E T U R N (0succ(x2), x3);
end

else R E T U R N (X, xi)

By definition, 2adic(z(Xo)) is the binary representation of r(Xo)+ 1, with the
leading 1 removed. The main program T-simulates the addition of 1 to ~-(x0).
The procedure determines recursively the binary representation of the quotient
of r(Xo) and the current power of 2 (given by r(Xl)), with the leading 1
removed. It also determines a T-representation of the approximation to r(x0)
obtained by truncating its binary representation after the r(x~) position.

Note that on any input x E domain(T), the recursion depth is approximately
[r(x)l, a n d f and r are applied only to elements y of domain(T) with I~(y)] at
most approximately I r(x)l. By Theorem 4.2, we obtain flowchart ~ computing
Translate over ~ ' , with L~(x) < c(I r(x)l l +~ + 1) whenever x Edomain(z) , where
c is a constant. Moreover, each argument y to which f and r are applied when G
is run on input x has I r(y)l at most approximately I z(x)l (because of conclusion
(c) of Theorem 4.2).

Now obtain F ' over ~ from G by replacing b l, f and r by their flowcharts
over ~ . The complexity bound follows from the hypotheses on L~+) and L~t<).

[]
Now we obtain a result similar to Theorem 4.1 for functions rather than

relations.

208 N.A. Lynch and E, K. Blum

Theorem 4.3. Let t be a partial function. Assume (N; +, f; <) < ~ , where

Z~(+)(x, y) < k(l (x)l + I~(y)l + 1), L~(<)(x, y) < k(l~(x)l + I~(Y)I + 1), and
L~(f)(x) < t(r(x)) whenever x, y Edomain(~'). Let e be a positive real. Then there
exist a flowchart G over • and a constant c such that G computes a 2adic-l-
simulator o f f and

L~(x) < c(12adic-'(x)l 2 + If(2adic-'(x))l z+*+ 1)+ t(2adic-'(x)).

Proof. By Lemmas 4.1 and 4.2 and composition of flowcharts F (of Lemma
4.1), F' (of Lemma 4.2) and o~(f). The situation can be depicted as follows:

Fl~. 5.

2 adic -1

[]

Theorems 4.1 and 4.3 delimit in a particular way the improvement in
efficiency that can be obtained by choosing an alternative to the standard
coding of 9L in ~. Above the quadratic level (i.e. t(x)=clx[2), no order of
magnitude improvement is possible for predicates and "small" functions ["small"
meaning that I f(x)l < t(x)]. The only possible improvement is a "local" one
arising from possible concise representations of large numbers. Such an im-
provement is possible, for example, in a "floating-point" coding, ~', such as the
following.

Example 4.1. For a string w=alla21...la~OObllb2...lbe, where all ai, bj~
(0,1), we define z (w)=2adic - l (a l . . , ak)>(22adie-lbl "'" be), that is, z is a partial
function from (0, 1}* onto N such that ~ ' (w)=n×2 m, where 2adic(n)--a I ... ak

and 2adic(m)=bl ... be. The existence of simulators of + and < with linear
complexity bounds is easy to verify, if we recall that the relevant parameter is
length measured in the system 9L. Thus, by Theorem 4.3, for small functions of
at least quadratic complexity, the floating-point coding provides no improve-
ment over the standard coding. But a large function like the exponential
= ~x[2 x] has a linear complexity flowchart in the z-coding, whereas all flowcharts
for the exponential function in the standard coding require exponential path
length simply to generate the needed representation.

We summarize the preceding results by stating a result which says that any
function or predicate which is "polynomial-computable" in any coding of 9L in

is also polynomial-computable in the standard coding.

Relative Complexity of Algebras 209

Theorem 4.4. (a) Assume (N ; + ; r) < ~ , where Le(+)(x,y)<p(Iz(x)l+

I~'(y)l) and Z~,) (x)<p(l¢(x) l) for all x, yEdomain(r). Then there exists a
flowchart F and a polynomial q such that F computes a 2adic- Lsimulator of r and
Lr(x) < q(12adic- l(x)l).

(b) Assume (N ; + , f ; <) ~< ~ , where Le(+)(x,y)<p(Iz(x)l+l¢(y)l),
Z~(<)(x, y) <p(l*(x)l + I¢(y)l) and t~<:)(x) <P(l~'(x)l) for all x, y E domain(¢).
Assume further that If(x)l <p(Ixl). Then there exist a flowchart F over ~ and a
polynomial q such that F computes a 2adic-Lsimulator of f and L r (x) <
q(12adic-l(x)l).

An objection can be raised to the form in which the linear bounds are
expressed in the preceding results. For all the codings, a uniform bound is
hypothesized on the running time for flowcharts on all representations of an
dement. For instance, in Lemma 4.1 we use the condition Lg(+)(x, y) < k(I r(x)l
+l¢(y) l + 1). This may be too restrictive a condition for a model which allows
infinitely many representations for each element. Perhaps it should be expected
that a flowchart should take more time on some representations of an element
than on others. It might, for instance, be desirable to have a flowchart run fast
on those representations generated in a small number of steps of a "user
program," whereas it is possibly less important that it run fast on representations
which take many steps for a user program to generate (since the program is
using considerable time in any case). One way to do this is to express complexity
in terms of a parameter other than size of the represented element. The
parameter should depend on the way a representation is generated, yet still be
defined within the represented algebra. We define here one such parameter
applicable to all algebras. The "user program step" intuition will be formalized
by application of this general parameter to the associated free algebra. We
introduce a numerical measure of this parameter as follows.

Let ~ b e any algebra and A, BC_ Dom~e. We define size~e (A:B) the size, in ~,,
of A relative to B) as follows:

(a) size~(A : B) - 0 iff A C_B.
(b) size~(A : B) = k + 1 iff both (bl) and (b2) hold.

(bl) There exist C_CDom~, f E F u n ~ , x i x~ EC, such that A C C u
(f (x l , . . . , x~)) and size~(C: B)=k.

Co2) sizee(A : B) < k.
(c) size~(A : B) is otherwise undefined (and is said to be equal to 0o).

By convention, n < oo for all n EN, and o0 < oo. From (b), we see that size~(A : B)
is the number of d~ operations required by a straight-line program to generate the
elements in A given the elements in B. We write size~(x : B) for size ~({x) : B),
sizee(A) for size~(A :~) , and sizee(x) for size~e({x) :~f). In this general notation,

if x E { 0 , 1) * , then size<(0,1).;x ' 0s~,ls~ec;>(x)=lxl, and if x E N , then
size<s; 0, l, +;>(x) is the length of a minimal addition chain generating x (See [31],
p. 402).

Example 4.2. Consider size~(9). It is easy to see that sized(I)= 1, size~(2)=2,
size~(4)- 3, size~(8) --- 4, and thus size~(9)= 5. Although one can compute 9 in
9L by adding 1 nine times, clause (b2) shows that size~(9)4= 9.

210 N . A . Lynch and E. K. Blum

We now obtain comparisons of codings using sizeFree(~t)(x) as a parameter.
Intuitively, this allows complexity to be calculated not only in terms of the
magnitude of a number, but also in terms of the way that number is generated
(by +). Evidence that this definition provides a useful general parameter for
arbitrary algebras appears in [16, 17].

Remark. It is easy to see that 9L ~< • for some @ such that
2adic _ t,

L~,(+)(o~,(x), a¢(y)) < c(sizeFre~(~)(X)+sizeF,~e(~)(y)) and L~(<)(o~(x), o~(y))
< c(siZeFree(~)(X)+ sizeF~.e(~)(y)), where c is a constant. Thus, there is a com-
plexity bound for the computation of + and < in the standard 2adic coding
which is linear in the new size parameter. So it is reasonable to impose
corresponding restrictions on other codings in order to compare them. Analo-
gous to Lemma 4.1, we obtain Lemma 4.3. It states again that quadratic
translation can be accomplished from the standard coding to any other coding
in which + and ~< are linearly simulatable. For the remainder of the paper, P is
fixed as described earlier in this paragraph.

Lemma 4.3. Assume (N ; 0, 1, + ;) < 6~, and L~(+)(o~(x), o~(y)) <
~',~

k(siz%re.(~)(X)+siZeFroe(~)(y)) for all x,y~DomFree(%). Then there exist a
flowchart F and a constant c such that

(Vx)(::ty)[F(o~(x))=N(y) , o,~(x)=o,~(y), siZeFr.e(~)(y) < c size~,.e(~)(x)

and Le(o~(x)) < c(size Froo(%)(x)) 21.

Proof. The situation can be depicted as follows:

i (o0

Fig. 6.

(Thus, val(x) = val(y), val = 2adic- 1 o o 9 = ~- o 02, and 2adic- 1 = ~. o F.)

Relative Complexity of Algebras 211

Since o~ is many-one, one of the oq-preimages of o~,(x), y, must be selected.
The construction is similar to that for Lemma 4.1. F uses the bits of o~(x) to
determine a sequence of + operations that would generate val(x), starting with
0 or 1. The sequence consists of about I o (x)l operations, each involving either
doubling, or doubling and adding 1. By its inductive definition, oe(x) has at
most about siZeFr~(qz)(X) bits, so that the operation sequence obtained has at
most about sizeFr~(0t)(x) operations. Let y be the infix expression describing
this operation sequence. The size bound on y is clearly true.

F then begins with .@(0) and ~(1), and repeatedly applies ~ (+) according to
the given sequence. Each application is to bit-strings which are o~-images of
expressions, t, having sizeF~.(~)(t) at most about siZeFre~(~)(X). The hypothesis
on ~ (+) yields the quadratic bound. []

Similarly, analogues of Theorem 4.1, Lemma 4.2 and Theorem 4.3 can be
obtained, based on sizeF~,(VC) as a parameter. Since some complicated details
are thereby introduced, we simply give summary versions allowing polynomial
variance.

Theorem 4.5. (a) Assume (N; 0, 1, + ; r) < ~, where
'r,~

L~(+)(o~(x), o~(y)) < p(sizeF~eo(&)(x) + sizeFr.~(&)(y))

and L~(o(o~(x)) <p(sizeF~o(~)(x)) for all x, y E Domv~ee(~). Then there exist a
flowchart G computing a 2adic-l-simulator of r and a polynomial q, such that
Lo(o~(x)) < q(siZeFr~e(~)(X)).

(b) Assume (N; O, 1 + ; <~) <<. ~ , where L~(+)(o~(x), a~(y))
"r,~

p(sizeFr#~(~)(X) + sizeFree(~)(y)) and L~(<)(o~(x), o~(y)) ~<p(sizev~ee(~rc)(x) +
sizeF~ee(Vc)(y)) for all x, yEDOmFree(~Z). Then there exist a flowchart F' and a
polynomial q such that

(Vx)(3y) [F'(a~(x)) = o~(y), val(x)= val(y),

and L v,(oe(x)) < q(sizeFree(q~)(X))].
(C) Assume (N;0,1, + , f ; <) < °3, where L~(+) and L~z(~) are as in Co),

where L~(y)(a~(x)) < p(sizeFree(%)(X)) and with the size restriction

(Vx)(3 y)[~(f)(cr~2(x)) = oe(y) and sizeFroe(&)(y) < p(siZeFre.(&)(X))].

Then there exist flowchart G computing a 2adic-l-simulator of f such that
Lc(o~(x)) < q(sizeFree(~)(X)), where q is a polynomial.

Proof (a) As for Theorem 4.1, using Lemma 4.3. Note that the size bound ony
obtained in Lemma 4.3 is required here.

212 N.A. Lynch and E. K. Blum

(b) The situation can be depicted as follows:

0,1) *

Fig. 7.

The proof is similar to that of Lemma 4.2, but several complications are
introduced by the new parameter. Since polynomial variance is allowed, we
simplify matters by performing a more direct translation than that for Lemma
4.2, simply determining the bits of the binary representation of val(x)+ 1 in
order, high to low order. The functions computed by ~(0), ~(1), ~ (+) and
~ (<) are used to translate from o~(x) to oe(y), and then replaced by their
hypothesized flowcharts. (A similar idea was used for Lemma 4.2.) The number
of applications of ~ (+) and ~ (<) in this translation can be bounded by
ql(log(val(x))) for some polynomial ql. Furthermore, ~ (+) and ~(<) are only
applied to o~(x) and to elements of the form o~(w), where siZeFree(~)(W)<
q2(log(val(x))) for some polynomial q. Then by the hypotheses on ~ (+)
and ~ (<) , the total time for the translation is bounded by
q3(log(val(x)),siZe¢roo(~)(x)) for some polynomial q3. Since log(val(x))<
q4(siZeFroo~)(X)) for some polynomial q4, the bound follows.

(c) By Lemma 4.3 and (b), using composition of flowcharts. The size bound
on y obtained in Lemma 4.3 and the new size restriction are both required here
to control the growth of the parameter. []

We remark that (c) leaves open the possibility that some improvement may
occur in an alternative coding if the size restriction assumed in (c) is violated.

V. Further W o r k

In Section III, some comparison was given of relative computability definitions
for different scheme classes. Such comparisons should also be carried out for
relative complexity definitions. Somewhat more specifically, Theorem 3.1 can be
paraphrased by saying that if enough "power" is present in an algebra, then that
algebra can "simulate" with a flowchart the result of any effective scheme. It is

Relative Complexity of Algebras 213

intuitively plausible that if enough "efficient power" is present in an algebra,
then that algebra can "efficiently simulate" with a flowchart the result of any
effective scheme (or recursive scheme, for example). The power hypothesis was
expressed in terms of a reducibility. The efficient power hypothesis should be
similarly expressible in terms of a suitable efficient reducibility. (Remarks in
Section IV and in [16, 17] suggest ways of defining efficient reducibilities.)

Section IV represents a small beginning for classification of coding-
independent relative complexity of specific algebras. Many interesting technical
questions remain to be formulated. Subsequent classification efforts might focus
on basic numeric and bit string algebras, finitely generated groups and perhaps
algebras arising in finite set theory. For such algebras, reasonable progress
should be possible with only minor extensions of the definitions in this paper.

The model of this paper is not sufficiently general for the study of the
implementation of data structure algebras [2, 9, 10]. Appropriate extension to a
suitably general representation model with general size parameter is needed. The
model should allow realistic treatment of coding-independent complexity of
implementations of data structures. Some possible directions are suggested by
[21, 32, 33].

Acknowledgments

The authors would like to thank Arnold Rosenberg and Ann Yastthara for their careful readings of
several versions of the manuscript and their many helpful suggestions for its revision. This paper is
very much improved by their contributions.

References

1. C.C. Elgot, Monadic Computation and Iterative Algebraic Theories, IBM Report RC 4564,
October 1973.

2. B. H. Liskov and S. N. Zilles, Specification Techniques for Data Abstractions, Software
Engineering, Vol. SE-I, No. 1, 7-19, March 1975.

3. F. L. Morris, Correctness of Translations of Programming Languages--An Algebraic Ap-
proach, Stanford U. Report CS-72-303, August 1972.

4. R. M. Burstall, An Algebraic Description of Programs with Assertions, Verification and
Simulation, in Proc. ACM Conference on Proving Assertions about Programs, SIGPLAN
Notices 7, 1, ACM 72.

5. (3. Birkhoff, The Role of Algebra in Computing, in Computers in Algebra and Number Theory,
Vol. IV SIAM-AMS Proc. A.M.S., 1971.

6. J .A. Goguen, J. W. Thatcher, E. G. Wagner and J. B. Wright, A Junction between Computer
Science and Category Theory: I Basic Concepts and Examples, Part 1, IBM Report RC-4526
(September 1973); Part 2, IBM Report RC-5908 (March 1976).

7. R . M . BurstaU and J. W. Thatcher, The Algebraic Theory of Recursive Program Schemes,
Symposium on Category Theory Applied to Computation and Control, Lecture Notes in
Computer Science 25, 126-131, (1975).

8. J.B. Wright, J. A. Goguen, J. W. Thatcher and E. (3. Wagner, Rational Algebraic Theories and
Fixed-Point Solutions, Proc. 17th Annual Symposium on Foundations of Computer Science,
147-158, (October 1976).

9. J .V. Guttag, E. Horowitz and D. R. Musser, Abstract Data Types and Software Validation.
Research Report 76-48. Information Sciences Institute, August 1976.

214 N.A. Lynch and E. K. Blum

10. J. A. Goguen, J. W. Thatcher and E. G. Wagner, An Initial Algebra Approach to the
Specification, Correctness and Implementation of Abstract Data Types, IBM Thomas J.
Watson Research Center, manuscript.

11. A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, 1974.

12. S.A. Cook, The Complexity of Theorem-Proving Procedures, Third Annual ACM Symposium
on Theory of Computing, 151-158, 1971.

13. R. Karp, Reducibility among Combinatorial Problems, in Complexity of Computer Computa-
tions, R. E. Miller and J. W. Thatcher, eds., Plenum Press, 85-104, (1972).

14. R. Ladner, N. A. Lynch and A. L. Selman, Comparison of Polynomial-Time Reducibilities,
Sixth Annual ACM Symposium on Theory of Computing, 110-121, 1974.

15. E. K. Blum and D. R. Estes, A Generalization of the Homomorphism Concept, Algebra
Universalis, July, 1977.

16. N.A. Lynch, Straight-Line Program Length as a Parameter for Complexity Measures. Tenth
Annual ACM Symposium on Theory of Computing, 1978.

17. N.A. Lynch, Straight-Line Program as a Parameter for Complexity Analysis, to appear in
Theoretical Computer Science.

18. N.A. Lynch and E. K. Blum, A Difference in Expressive Power Between Flowcharts and
Reeursion Schemes, Math. Syst. Theory, 205-211, 1979.

19. N.A. Lynch and E. K. Blum, Relative Complexity of Operation Sets for Numeric and Bit
String Algebras, Math. Syst. Theory 13, 187-207 (1980).

20. N.A. Lynch and E. K. Blum, Efficient Reducibility Between Programming Systems, Proceed-
ings of Ninth Annual Symposium on Theory of Computation, 1977.

21. A. Cremers and T. Hibbard, Formal Modelling of Virtual Machines. To appear in IEEE
Transactions on Software Engineering.

22. R. Lipton, S. Eisentat, and R. DeMillo, Space and Time Hierarchies for Classes of Control
Structures and Data Structures, JACM, Vol. 23, No. 4, October 1976.

23. 1L Rivest, L. Adleman, and M. Dertouzos, On Data Banks and Privacy Homomorphisms, in
Foundations of Secure Computation, Academic Press, Inc., 171-179, 1978.

24. A. Chandra, Efficient Compilation of Linear Recursive Programs, Stanford Artificial Intelli-
gence Project MEMO AIM-167, April 1972.

25. D. Kfoury, Comparing Algebraic Structures up to Algorithmic Equivalence. In Automata,
Languages and Programming, Ed. M. Nivat, North-Holland/Elsevier, 253-263, 1973.

26. M. S. Paterson and C. E. Hewitt, Comparative Schematology, Record of Project MAC
Conference on Concurrent Systems and Parallel Computation 119-128, (1970).

27. J. Guttag, The Specification and Application to Programming of Abstract Data Types,
University of Toronto, Computer Systems Research Group, Technical Report CSRG-59,
September 1975.

28. H. R. Strong and S. A. Walker, Characterization of Flowchartable Reeursions in Fourth
Annual ACM Symposium on Theory of Computing, May 1972.

29. H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, 1967.
30. K. Weihrauch, On the Computational Complexity of Program Schemata, Cornell University

Department of Computer Science, TR 74-196, February 1974.
31. D. Knuth, The Art of Computer Programming, 2, Fundamental Algorithms, Addison-Wesley,

1968.
32. A. Sch~nhage, Real-Time Simulation of Multi-Dimensional Turing Machines by Storage,

Modification Machines, Project MAC Technical Memorandum 7, MIT (1973).
33. R.E. Tarjan, Reference Machines Require Non-Linear Time to Maintain Disjoint Sets, in 9th

Annual ACM Symposium on Theory of Computing, May 1977.
34. A.L. Rosenberg, Data Encodings and Their Costs, Aeta Inform. 9, 273-292, (1978).
35. G. Griitzer, Universal Algebra, Van Nostrand, 1968.
36. P. Cohn, Universal Algebra, Harper and Row, 1965.
37. A. Borodin, L. J. Guibas, N. A. Lynch and A. C. Yao, Efficient Searching via Partial Ordering,

submitted for publication.

Received February 9, 1978; received in final form May 30, 1980

