
Math. Systems Theory 13, 187-207 (1980) Mathematical
Systems Theory

Rela t ive C o m p l e x i t y of O p e r a t i o n s on N u m e r i c

and Bi t -S t r ing Algeb ra s

Nancy Lynch l** and Edward K. Blum 2.:

tSchool of Information and Computer Science, Georgia Institute of Technology, Atlanta, Georgia
30332

2Department of Mathematics, University of Southern California, Los Angeles, California 90007

Abstract. Sets of primitive operations for algebras with numerical and bit
string domains are classified according to their computational efficiency.
The relative complexity of certain basic operations on such algebras is
determined.

1. Introduction

Many different algebras with domain N (the non-negative integers) or (0, 1}*
can be shown to be equivalent in the sense that flowcharts over those algebras
have the ability to compute exactly the partial recursive functions. However, it is
intuitively clear that not all such algebras can be used to compute with equal
"efficiency." It is the purpose of this paper to provide a classification for the
relative complexity of different sets of operations over N and {0, I }*.

The present work is a specialized outgrowth of work in [1], where relative
complexity of arbitrary algebras is studied in a more general setting. The
techniques and results of the present paper and of [1] are intended to suggest a
more "'modular" approach to complexity analysis than is commonly taken. The
framework defined in [1] is used for studying coding-independent relative com-
plexity of algebras, whereas in all of the problems of this paper, a fixed standard
coding is used. Furthermore, (with one exception) the problems of this paper
involve algebras over two specific domains, N and {0, 1}*. Therefore, the full
generality of the framework in [1] is not required here. A preliminary report [2]

*This research was papally supported by NSF Grant DCR75-02373.
research was partially supported by NSF Grants MCS77-15628 and MCS78-01689.
research was partially supported by NSF Grant MCS78-07461.

oo25/5661 / 80/oo 13-0187504.20
© 1980 Springer-Verlag New York Inc.

188 N. Lynch and E. K. Blum

includes outlines of the results of the present paper as well as those of [1].
Henceforth, unless otherwise stated, all algebras are over N and {0, 1}*.

Section II contains notation and basic definitions. Many types of program
scheme classes could be used as bases for relative complexity classification of
algebras. For definiteness, we emphasize the classification yielded by finite
flowcharts. In order to prove results about finite flowcharts, however, we
consider two other scheme classes, the linear recursive schemes and the effective
schemes.

In Section III, a classification is established for algebras, based on their
efficient computing power. An algebra is defined to be "adequate" if, in a
standard coding of its domain, its flowcharts allow functions to be computed at
least as efficiently as do Turing machines (to within a polynomial). Several
common algebras are classified as adequate or inadequate. Extension of the
concept of "adequacy" to algebras with domains other than N and {0, 1)* is also
discussed briefly.

In Section IV, classification finer than that provided by general polynomials
is considered. Upper and lower bounds are obtained for the flowchart complex-
ity of various functions on particular numeric and bit string algebras. The
problems selected for consideration are representative of a large class of possible
questions. The present results are unified by the general methods used for their
proofs. Namely, in each case, our best upper bound arises from a (complexity-
increasing) compilation of an interpreted linear recursive scheme, using a
technique of Chandra [3], while our best lower bound applies to effective
schemes as well as to flow charts.

Section V contains suggestions for further work.

2. Notation and Definitions

An algebra • = (Dome; Fune; Rele~ is a set Dom e (the domain of t~) together
with a finite family Fune of partial functions (more often called "operations" in
the algebraic literature) and a finite family Rel e of partial relations on that set.
Distinguished constants are 0-ary functions.

(The inclusion of relations is a departure from the usual definitions given in,
say, [11, 12]. However, it agrees with the notion of algebraic system in [13].)

For an algebra d~, a flowchart F over d~ is constructed in the usual way as a
directed graph having a finite number of boxes (i.e. nodes) of the types:

Start: V ~

Input: I xi: ~h~put, [

Copy:

Relative Complexity of Operations on Algebras 189

Function Output:

Relation Output:

Output: ffi x i]

[Output: =TRUE]

l Output: = FALSE]

where f ~ Fun a and r ~ Rel a and the x's are variables. (Strictly speaking, f and r
are function and relation symbols for the members of Fun a and Rel~. We shall
rely on the reader to make this distinction.) Output boxes have no successors,
relation boxes have two successors, and all others have one successor. A
flowchart is either a function flowchart, in which case all output boxes are
function output boxes, or a relation flowchart, in which case all output boxes are
relation output boxes. There is exactly one start box.

For an algebra ~ , a linear recursive scheme R over d~ is defined as in [3]. R
consists of a finite collection of Algol-like procedure definitions, in which each
procedure can call at most one other procedure. The Algol-like language has a
fairly general instruction set, with conditions, typed variables (including Boolean
variables with a fixed interpretation), vectors of parameters for procedures, but
no looping constructs other than recursion. The basic function and relation
symbols used are those in Fun a and Rel a. Chandra's interpreted schemes
compute dements whereas ours are intended to define functions and relations.
Thus, in contrast to his definition, our notion of interpretation leaves inputs to a
program tminterpreted. As before, we consider function schemes and relation
schemes.

For an algebra ~ , an effective scheme E over ~ is defined as in [4]. An
effective scheme is composed of boxes of the same types as used for flowcharts.
Rather than requiring that the number of boxes be finite, however, we require
only that the formal scheme itself be generable in a recursively enumerable way.
That is, there is a Turing machine able to construct a straightforward coding of
the scheme, e.g. as a countable binary tree with a possibly infinite number of
variables [4]. Again, we consider function schemes and relation schemes.

Semantics of all schemes are taken to be evident or as given in the
references.

If a function f is undefined at inputs x I x k, wesay t ha t f (x l , . . . ,Xk)= o0.
We use the conventions that oo < 0o and that n < oo for all n in N.

For any flowchart or effective scheme S, L s denotes the natural path length
function (the time complexity measure we will use); that is, for any inputs
x i Xk, Ls(x 1 Xk) denotes the number of boxes along the computation path
in S for inputs x I x k. If R is a linear recursive scheme, L R denotes the
reeursion depth function [3]. Any flowchart F can be "unfolded" into an
equivalent effective scheme E, with LE= L r. Similarly, any linear recursive
scheme R can be translated naturally into an equivalent effective scheme E, with
L E < cL R for some constant c depending on R but independent of the interpreta-
tion and input. (This follows because linear recursive schemes are loop-free.)

We require a "standard coding" mapping the domain N onto {0, 1 }*. Define
a total function 2adic: N--->{0, 1}* by 2adic(n) - the binary representation of

190 N. Lynch and E. K. Blum

n + 1, with the leading 1 removed. 2adic is a one-to-one correspondence between
N and {0,1}*.

We use m,n as number variables, and x,y as string variables, x,y are also
used to denote elements of arbitrary domains. F is used for flowcharts, R for
linear re.cursive schemes and E for effective schemes.

3. Adequate Algebras

A simple classification of the (flowchart) computing power of several algebras
with domain N and {0,1}* appears in [1]. Namely, an algebra ~ with domain N
or {0,1}* is said to have recursive power provided each partial computable
function (on N or {0,1}* as appropriate) is computable by flowchart over d~. It
is not difficult to show the following.

Theorem 3.1.
(a) (N;0,
Co) <~N; O,
(c) (N;O,
(d) (N; O,

wise),

The following algebras have recursive power:
suc ;=) (where sue(n)--- n + 1),
sue; <),
1 ,+; =),
1, +, - ; =) (where m - n - -0 if m <n, m - n other-

(e) <N;0, 1, + , II; = > (where Inl = 12adic(n)[, the length of the
2adic representation of n, or equivalen@, Inl=Llog(n+ 1)J. Note that this nota-
tion persists throughout the paper.)

(f) ((0, l}*;h,0, 1,tail, concat; =) (where ?~ is the empty string, tail(x)---~ if
x = h, all but the first symbol of x, otherwise, and concat(x,y) = xy),

(g) <{0,1}*;h,0suc, lsuc;prefix> (where Osue(x)--xO, l s u e (x) = x l , and
prefix(x,y) is true iff x is a prefix of y),

(h) <(0,1 }*; h,0suc, lsuc; - >,
(i) ({0,1}*;h,0,1,concat; =>, and
(j) <{0, 1}*;h, 0, l, head, tail, 0suc, lsuc, reverse; =X, - 0 , -- 1> (where

head(x) = h if x ~h , the first symbol of x otherwise, and where the predicates are
tests for equality with short strings).

Proof. By flowchart programming. For cases which pose some difficulties ((h)
and (i)), proofs appear in [1]. []

It seems apparent that not all algebras with recursive power have the same
"efficiency." Intuitively, we would not expect (N; 0,suc; <) to be an "ade-
quate" algebra for a programming language because the successor operation
constrains generation of new values to occur too slowly. By experience with
LISP, however, we might expect that ({0, 1}*; h,0, l,head, tail, concat; -) would
be "adequate." A criterion for "adequacy" of an algebra with domain N or
{0,1}* might be that a function computable in polynomial time by a Turing
machine be computable in a polynomial number of steps by a flowchart over the
system. We make this criterion precise and then classify several algebras as to
their adequacy. (The results of this section are insensitive to polynomial varia-
tion, and within such variation, Turing machines are equivalent to any reason-
able model of computation [5]. Finer classification than polynomial is not used
in this section because of the fact that reducibility techniques are used, which
require closure of bounding functions under composition.)

Relative Complexity of Operations on Algebras 191

IMf'lnition. An algebra d~ with domain N or {0, 1}* is adequate if for every
polynomial-time computable function or relation f on N (or on {0,1}*, as
appropriate), there exist polynomial p and flowchart F over ~ satisfying the
following conditions.

(a) F computes f,
(b) Le(x, x~) < P(miax<k Ixil), and

(c) if y is any value produced during the computation of F on inputs
x 1 x k, then lYl <P(max Ixi[).

Xl<i_< k -
The definition includes restrictions on both time and space; both are needed

later, for example, for Lemma 3.5(b). Although the definition refers only to
polynomial-time functions, Corollary 3.4 states that adequacy of d~ implies that
computable functions of any complexity t(x) are computable by flowcharts over
(~ with complexity at most a polynomial in t(x).

We consider first the classification of an algebra having operations as much
like Turing machines as possible. Let ~ denote the algebra
({0,1}*;h,0, 1,head, tafl,0suc, lsuc, reverse; =X, =0, = 1) of Theorem 3.1(j). We
prove that • is adequate. In fact, B can be used to carry out a step-by-step
simulation, with at most a constant factor increase in complexity, of a multihead
multitape Turing machine. Consider a Turing machine having a finite number of
two-way read-write tapes, with a finite number of heads per tape. The first k
tapes are input tapes. Initially, each input tape contains some string in {0, 1}*
with all heads for those tapes on the leftmost square of the input string. Tapes
are otherwise blank, and all heads on each tape initially coincide. The last tape
is the output tape. If and when the machine halts, it does so with all output
heads on the leftmost square of the output string, and the output tape blank
except for the output string. Any finite number of tape symbols is allowed, and
the machine can detect coincidence of heads on the same tape.

Lemma 3.2. Assume f:({0, 1}*)~--~{0,1) * is a partial function computed by a
Turing machine as above, and t :((0, 1}*k) --->N is a partial function such that the
machine halts within t (xl , . . . ,Xk) steps on inputs x l x k. Then there exist
flowchart F over ~3 computing f with

L~(x, xD <_ c m a x (i x d [x~l,t(x,,...,xD),

where c i sa nonzero constant.

Proof. By constructions of [6, 7], it suffices to restrict attention to multitape
machines with one head per tape. We simulate the machine by the well-known
technique of replacing a tape by two pushdown stacks. The stack operations can
be simulated in ~ as follows:

Push aE{0, 1} onto stack x: x:--asuc(x),
Test top of stack x against a: head(reverse(x)) = a,
Pop stack x : x:--reverse(taft(reverse(x))).

Since two stacks can simulate a tape with no time loss, these equations indicate
that ~ can simulate a Turing machine in linear time []

Theorem 3.3. q3 is adequate.

192 N. Lynch and E. K. Blum

Proof. Immediate from Lemma 3.2 and the fact that the functions of ~ cannot
increase lengths of intermediate results very rapidly. []

Corollary 3.4. Assume ~ with domain {0,1}* (resp. N) is adequate, and let
denote the identity function (resp. 2adic). Assume f : ((0,1 }*)k--->{0, 1)* is a partial
function computed by a Turing machine as above, and t :({0, 1}*)k-->N is a partial
function such that the .machine, on input x 1 Xk, halts within t(x l Xk) steps.
Then there exists flowchart F over (~ and polynomial p satisfying the following.

(a) F computes (the composite function) ~- 1 ofo ~,

(b) LF(x 1 Xk)< P (. m a x Ix, I, t(r(x 0 ,~'(Xk))),
I _<i _<k

(C) if y k any value produced during the computation o f F on inputs x 1 xk,

then lYl <- P(lm<_iax<k [xil, t (' (x O 1"(Xk)))"

Proof. If Dome= {0,1}*, then F can be obtained as follows. A flowchart over
is obtained as in the proof of Lemma 3.2, and the (polynomial computable)

basic operations of ~ are replaced by their flowcharts over dg guaranteed by the
adequacy of A. The fact that the basic functions of • cannot increase lengths
of intermediate results very rapidly implies the required bound. If Dome---N,
the construction needs to be only slightly modified to handle the isomorphism.

[]
Next, we turn to adequacy classification for other algebras. Rather than

reason directly about Turing machine computation, we use the adequacy of
and a "reducibility" to infer the adequacy of other algebras.

Definition. Let ~ and A' be algebras with domain N or (0, 1)*, and with all
basic operations total. Let ¢ : Dom,,-->Dom e denote the identity function, 2adic
or 2adic -1 as appropriate. We write ~ <polyp, provided the following are
satisfied.

(a) For each f in Fun e there exist a flowchart F over ~ ' computing
~-1 ofov and a polynomialp such that

(al) L~x~ ,x~)<_p(max(Ix, l: 1 <i <k},] f (, (x 0 ,l"(Xk))[), and
(a2) if y is any value produced during the computation of F on inputs

xt,...,xk, then lyl <p(max(Ix , I : 1 <i <k) , l f (~ (x l ~'(Xk))l).
Co) For each r in Rel e there exist a flowchart F over ~ ' computing r o ~-

and a polynomial p such that
CO1) LF(x I xD <-p(max(Ixil: 1 <_i <k}), and
(b2) if y is any value produced during the computation of F on inputs

x t x k, then lyl _<p(max(Ixil : 1 <i <k}).
(An alternative to this definition would treat functions in the same way as

predicates, omitting the term [f(z(x 0 r(Xk))l from (al) and (a2)). Such a
definition would suffice for the results to be proved here. However, the key
Lemma 3.5 is true for the generalized definition, and slightly more direct proofs
are sometimes possible using the generalization.)

I.emma 3.5. (a) _<poly is transitive.
(b) I f ~ <polyp, and (~ is adequate, then ~ ' is adequate.

Proof By flowchart substitution. []

Relative Complexity of Operations on Algebras 193

Theorem 3.6. The following are adequate.
(a) (N;O, I ,+ ; _<>
(b) <N;0,1, + , - ; =>
(c) <S;0,1, +,11; --- >
(d) ({O, 1}*;A,O,l,tail, concat; =>, and
(e) ((0,1)*-;h, Osuc, lsuc;prefix>.

Note. The reader might find it interesting at this point to compare this result
with Theorem 3.7. Between them, the two theorems decide the adequacy of all
algebras mentioned in Theorem 3.1.

Proof. Let the five algebras of the theorem be denoted by C a -(~e" We use
Theorem 3.3 and Lemma 3.5(b), to show (a)-(e) by a chain of reductions. Easily,
~5 _<p°Iy({0, 1)*;X,0,1,head, tail, concat; --- >, and head can trivially be repro-
grammed in terms of the other primitives, thus showing Cd to be adequate. Then
it is not difficult to show that Cd _<poly(~e, showing C¢ to be adequate.

Next, we show C¢ <P°IYC a. Since 2adic-l(0suc(x))=2(2adic-l(x))+ 1, the
only difficulty is in showing <(0, 1)*; ;prefix) _<P°IY(~ a. We break up this task by
showing ({0, 1)*; ;prefix) _<P°~Y((0, 1)*;A, head, tail ;= > <v°lYA a. (Note that the
interpolated algebra does not have recursive power.) The first reducibility is
easily implemented as follows: to test if x is a prefix of y, compare successively
longer prefixes of x with those of y. It remains to show the second reducibility.

First, we show that ((0, 1}*;head;> <P°iYA a. Note that

i if n --0,
2adic- I(head(2adic(n))) = if 2k+ l<n+2 <2k+1+2 k for some k >_0,

if 2 k + i + 2/, < n + 2 < 2 k + 2 for some k _> 0.

Then it is straightforward to see that ({0, 1 }*; head;)_<P°ly<N; O, 1, +, exp; _<,
--) , where exp(n)=2 n. (Note that the exponential function is used, but only on
"small" arguments, thus satisfying the requirement on the size of intermediate
values.) Then it is easy to show (N;O, l, +,exp; < , - -) <P°lY(~a, implementing
exp with a flowchart that does repeated doublings.

(This part of the proof is an example of how _<voly can be used with
intermediate systems having non-polynomial-time primitives, such as exp, to get
results about systems with polynomial-time primitives. The key is the fact that
the non-polynomial primitives are only used on small arguments.)

Next, we show that ({0, 1)*; taft;> _<v°lYC a. Note that

[0 if n---O,
k k + ! k + l k 2adic-i(tail(2adic(n))) -- ~ n - 2 if2 < n + 2 < 2 +2 for some k > 0,
k + i k + l k k + 2 I n - 2 if2 +2 < n + 2 < 2 for some k_> 0.

Thus, <{0,1)*;tail;> .<_P°IY<N;0, 1, +, - ,exp; _<, ----->. It remains only to show
<N; - ; > _<polyp,,. The reduction is carried out as follows. The difference m - n is

194 N. Lynch and E. K. Blum

accumulated by summing its powers of 2 in decreasing order; each power of 2 is
obtained by successive doublings and comparisons.

Thus, ~a is adequate. ~b's adequacy follows easily from that of ~a, and Ac's
adequacy is left to the reader. (A finer version of (c) is shown in Theorem
4.3(e)). []

We turn next to proofs of inadequacy. Of particular interest are (a) and (b)
below. Together they combine to give an adequate system, but each separately is
not adequate.

Theorem 3.7. The following are not adequate.
(a) (N;0,1, + ; =) ,
Co) (N; 0, sue; <),
(c) ({0,1}*;X,0suc, lsuc; =) , and
(d) ((0, I}*;X,0, 1,head, concat; =) .

Proof. (a) We show that < cannot be computed over (N;0,1, + ; -) with
polynomial path length, even by an effective scheme. Assume that it can, and E
is an effective scheme computing < , with LE(m,m')<p(max(Jml, lm'])), p a
monotone polynomial. Fix n ~ N with p(]2n])<n (recalling that
Iml-[log(,m + 1)j), and consider A = {(m,m'):n + 1 <m < 2n and 0 Am' <n},
B ffi { (m,m) : (m ' , m) ~ A } . We show that some member of A and some member
of B must follow the same path in E so that E cannot compute <.

Every input pair (m,m') causes a path in E to be followed, of length
_<p(max(lml, Im'])), and ending with either output TRUE or FALSE according
to whether m < m' or m >m'. Each branch point in E results from an equality
test which can be expressed in the form am + bm' + c = a'm + b'm' + c', for some
a, b, c,a', b', c 'E N. (The expression for each branch point can be constructed by
ignoring the information obtained from tests along the path, and simply looking
at uses of assignment and +.) Prune E by omitting all such tests (and
subsequent "no" subtrees) in which a = a', b ffi b', and c = c'. Remaining is a tree
T for which, at every branch point, all inputs (m, m') causing the "yes" branch to
be taken lie on one straight line in 2-space.

Now consider the path in T which takes the "no" branch at each choice
point. There are n2+n pairs in A, at most n + l of which lie on any given
straight line. Thus, at most n + 1 of the pairs in A can follow any particular
"yes" branch. But each pair in A must follow a path with length <_ P(12n]) <n,
hence with fewer than n branchpoints. Thus some pair in A must follow the
"no" branch at every choice point, and this path must terminate. A symmetric
argument shows that some pair in B must follow the same path, a contradiction.

(b) Consider any polynomial computable f : N - , N . If (N;0,suc; _<) is
adequate, then there exists an effective scheme E over this system computing f
and a polynomialp with LE(m) <p([m[). Fix n withp(Jn])<n. E on input n must
halt in p([n[) steps, and so suc cannot span from 0 to n during this computation.
Then ff any m >n is used in place of n, E will follow the same path as before,
since < will be unable to distinguish m from n. But consider how the output of
E on input n was constructed. The output arose from a variable initialized either

Relative Complexity of Operations on Algebras 195

at 0 or n and increased by 1 a fixed number of times. Thus, for some c ~ N we
have f (m) = c for all m _> n, or else f (m) = m + e for all m > n.

(c) Since ((0, 1 }*; ~, 0sue, 1 suc; --) _<p°Iy(N; 0, 1, + ; --), Lemma 3.5(b)
suffices.

(d) We show that tail cannot be computed over ({0, 1}*;~,0, 1,head, con-
cat; --) with polynomial path length, even by an effective scheme. Assume that
it can, and E is such an effective scheme, with Lg(x)<p([x [) , p a polynomial.
Fix n ~ N - {0} with p (n) + I < 2"- 1, and consider A = {x E {0,1 }* : Ix[= n and
head(x)-- 0}. We will show that two distinct members of A must follow the same
path in E.

Each branch point in E results from an equality test on two formal
expressions, each built up from ~'s, O's, l's and x's using head and concat.
Restrict consideration to inputs x E A. Then we can simplify the expressions
using simple reduction rules so that each expression is a concatenation of O's, l 's
and x's.

We wish to show that each equation is satisfied either by no x ~ A , all x E A
or exactly one x E A . By replacing the formal variable x by x l . . . x . in an
equation, we obtain a new equation a 1 . . .a k --b I . . .b k, where each ai, b i E {0, 1} U
{xj: 1 < j < n } . We allow each xj to range over {0, 1}, and show by induction on
k (with n fixed) that the equation has either no solutions, 2" solutions or exact(y
one solution. If k =0, the equation has 2" solutions. Let k be at least I, and
assume the equation has at least one solution. There are four cases:
(a) al = bl ~-O or al = bl = l

T h e n (x l , . . . , x ,) is a solution to the given equation if and only if it is a
solution to the equation a2... a ~ - b2... b k. The conclusion follows by the induc-
tive hypothesis.
(b) a i = b , = x ,, l < i < n

Then (x l , . . . , x , ,) is a solution to the given equation if and only if it is a
solution to the equation a , + j . . . a k = b ,+t . . , b k. The conclusion follows by the
inductive hypothesis.
(c) ai -- x ~ and b ~ { 0 , 1}, 1 < i < n (or else b~ = x~ and a ~ { 0 , 1}, 1 < i < n)

Then there is exactly one solution to the given equation.
(d) ai---x~, l < i < n , b~E{0,1}, l < i<_m<n, and bm+~---x~, l < i < n

Then x I . . .x, is the length n prefix of the periodic string b I . . .bmb I ...bin
Thus, the induction holds and the equations have the desired solutions. Now

prune E by omitting all tests (and subsequent "no" subtrees) for which all x CA
satisfy the reduced question. Remaining is a tree T for which, at each branch
point, at most One x E A causes the "yes" branch to be taken. Consider the path
in T which takes the "'no" branch at each choice point. There are 2"- 1 strings in
A, at most one of which can cause any particular "yes" branch to be followed.
But each string in A must have a computation path with length <p(n) . Since
p(n) + 1 < 2"- 1, at least two strings, x andy , in A must follow the "no" branch at
each choice point, and this branch must terminate in an output statement.

Now consider how the output of T on input x or y is constructed.
Reductions as above show that the output on input x is the result of (possible
empty) concatenations of O's, l 's and x's, while the output on input y is the
result of the same concatenations with y replacing x. But since [tail(x)[< Ix[, x

196 N. Lynch and E. K. Blum

cannot occur in these concatenations, nor can y. Thus, the output of E is
identical for both inputs, which means tail(x)---tail(y), a contradiction. []

Remarks. (a) The properties used to prove Theorem 3.7 are not very restrictive.
In particular, since the result is proved for effective schemes, we have not used
finiteness of the flowchart; also, in (a), (c) and (d), we have not used the rate
(relative to the path length) at which different expressions can be built up from
the given input values and functions. It would be anticipated that both of these
restrictions would be important in some circumstances. For example, it seems
that either or both might be useful for verifying the following:

Conjecture. (N; 0, 1, +, x ; =) is not adequate.
This conjecture seems to express a fundamental property of the expressive-

ness of polynomials.
Co) The proof of Theorem 3.7(b) shows that (N;0,suc; _<) fails to be

adequate in a very strong way--there are no nontrivial functions of one variable
which can be computed efficiently by this system. More generally, it can be
shown that if f : N " ~ N is computable in polynomial path length over
(N;0,suc; _<), then f can in fact be computed in constant path length; this
el'tmi'nates most interesting functions.

(c) There is a sense in which, for example, _< and + do not help each
other's computation over (N;0,suc; =). Namely, _< can be computed over
(N; 0, suc; ---) by a flowchart F with L~m, n)_<c X 2 ~x(Iml'l"l) for some constant
c. However, Theorem 3.7(a) can be sharpened to state that any effective scheme
E for _< over (N;0, 1, + ; =) has Le(m,n)>dx2 ~'(Imt'l"l) for some constant d
and infinitely many pairs (re, n). Similarly, + can be computed over
(N; 0, sue; =) by a flowchart F with LF(m, n)_< c × 2 mia(Iml'lnl) for some constant
c, whereas any effective scheme E for + over (N; 0,suc; _<) has Lr(m,n)>d x
2 mi~(tml'l"l) for some constant d and all (m,n).

As mentioned in the introduction, the results of this paper are an outgrowth
of a general development of relative complexity of programming systems. Much
work remains to be done in extending the ideas of this section to arbitrary
algebras. One goal of the general theory is the development of criteria for
comparing sets of basic operations over the same domain, to see which of two
such sets is "more efficient" for programming. Another goal is the development
of criteria for determining whether flowcharts over an algebra provide a realistic
measure of "actual computing time."

There are several difficulties which arise when one attempts to generalize in
the most obvious way the ideas in this section. First, there appears to be no
natural general notion of "polynomial computability" over an arbitrary domain.
Such a definition would most naturally rest on a particular coding of the domain
into a basic domain such as N or (0, 1)*, but for general algebras there is not
necessarily a single natural coding. Different codings might make different
functions polynomial computable. Second, when polynomials and other closed-
form functions are used to summarize complexity information, they must be
based on some "size parameter" n. It is not obvious what should be used as a
size measure for analysis involving arbitrary algebras. The general questions are
not pursued here, rather being deferred to [8] and further papers. Instead, in the

Relative Complexity of Operations on Algebras 197

remainder of this section, we discuss extension of the present ideas to one other
domain closely related to N and {0, 1}*, namely the set Z of integers.

The domain Z has at least two candidates for standard codings in {0, 1}*.
First, define ~: {0,1 }*--->Z by

• (0x) -- - 2 a d i c - l (x)

~'(1 x) --- + 2adic- l(x).

• (0) = I"(1)---0, but t" is otherwise one-to-one. Second, define a "pairing function"
coding ~" by

"r'(x I 1... lxkOOy I 1... lye) = 2adic-l(xl...Xk) - - 2adic-1(yl. . .Ye),

where x~,y i ~ {0, 1}* for all i. A total function or relation f on Z can be defined
to be "l--polynomial-computable" or "V-polynomial-computable" if an ap-
propriate corresponding total function or relation g on (0, 1}* is polynomial
computable. By "corresponding" we mean, for instance, that the following
diagram commutes.

zL(0,1)*
s~ g~
zL(0,1}*

It is straightforward to show that the ~--polynomial computable and V-poly-
nomial computable operations are identical. Thus, it may be claimed that there
is a natural notion of polynomial computability for Z.

In keeping with the previous definition of adequacy, we wish to define
adequacy for algebras ~ with D o m a = Z so that the polynomial computable
functions on Z are all computable with polynomial path length flowcharts over
A. The problem with this idea is that it is not obvious what the parameter should
be on which to base the polynomial path length. Since we rely on the particular
codings I" and ~" for the definition of polynomial computability, we will similarly
use the codings to obtain a parameter. Somewhat arbitrarily, define [~'(x)[=]x[,
so that In[is approximately the log of the absolute value of n for n E Z.

Def in i t ion . An algebra ~ with domain Z is adequate if for every polynomial
computable function or relation f on Z there exist polynomial p and flowchart F
over ~ satisfying the following.

(a) F computes f,
Co) LAnl nD-<p(max(ln;[: 1 <i _<k}), and
(c) if m is any value produced during the computation of F on inputs

n 1 n k, then [m[<p(max{[n;[: 1 <i<k}) .
Similar to Theorems 3.6 and 3.7 we can show:

Theorem 3.8. The following are adequate:
(a) (Z;O, 1, + , - ; _<)
(b) (Z ; O, 1, + , - ; pos) (where pos(n) is true iff n is positive).

198 N. Lynch and E. K. Blum

Proof. (a) Let f be a polynomial computable operation on Z, g a e-corre-
sponding polynomial computable total operation on {0,1}*, and h the 2adic-
equivalent (to g) total operation on N. (That is, the following diagram com-
mutes.

° N

N)

Since h is a polynomial computable operatiow on N, there is a flowchart F over
ffi (N; 0,1, + ; <) computing h, with polynomial bounds on L r and the size

of intermediate values. (This is by the adequacy of 9L.) By identifying N with
Z +, F can be regarded as a flowchart over ~ = (Z ;0, 1, + ; <).

Now all that is required is a polynomial computable way of translating from
n E Z to an element of 2adic- l (¢ - l(n)) and a polynomial computable way of
translating from n E Z + - { 0 } to ¢(2adic(n)), both via flowcharts over E. For
then F can be composed with the translation flowcharts to produce a suitable
efficient flowchart for f over ~ .

In order to translate from n ~ Z to an element of 2adic-10"-l(n)), a
flowchart first determines n's sign and its absolute value, abs(n). If n is
non-negative (resp. negative), there is a polynomial computable function k (resp.
g) from abs(n) to an element of 2adic-l(T-l(n)) . Since k and g can be regarded
as functions over N, they have efficient flowcharts over 9L and hence over ~ .

Similarly, in order to translate from n E Z + - (0} to ¢(2adic(n)), a flowchart
simulates the polynomial computable mappings from n to the sign of ~'(2adic(n))
and to abs(~-(2adic(n))). Since these can be regarded as operations over N, they
have efficient flowcharts over ~ as above. Then the sign and absolute value are
combined using operations of ~ .

(b) This follows from (a), a trivial flowchart program of < , and an easy
version of I.emma 3.5 for algebras with domain ~ . []

Theorem 3.9. The following are not adequate:
(a) (Z;O, 1, + , - ; --~>
(b) (Z;0 ,suc , pred; < ~ (where pred(x) f f ix- 1),
(c) (Z ;0 , 1, + , - ; -----,[k) for any fixed k (where [k means divisibility by k).

Proof. Similar to Theorem 3.7. []
Referring back to the conjecture following Theorem 3.7, we similarly conjec-

ture that (Z ; 0 , 1 , + , - , × ; - - -) is not adequate. We can show that the two
problems are related in one direction:

Theorem 3.10. I f (N;0 ,1 , + , X; -) is adequate, then (Z ;0 , 1, + , - , × ; ffi) is
adequate.

Proof, Assume the hypothesis. By Theorem 3.8(b), it suffices to construct a
flowchart F for pos over (Z ; 0, 1, + , - , × ; ffi) such that L r and the sizes of
intermediate values are polynomial bounded. The construction is similar to that
for Theorem 3.8(a).

Relative Complexity of Operations on Algebras 199

Define f : Z ~ Z by f (n) = 2 n 2 + n . (f(n) is a coding of n as a non-negative
integer.) Clearly, f has a p o l y n o m i a l b o u n d e d f lowchar t over
(Z ; 0, 1, + , - , x ; =). Identifying Z + with N, we define

g : N ~ N by g(n) = [0 if n = f (m) for some m > 0,
t 1 otherwise.

g is a polynomial computable function on N, so (by the hypothesis) it has a
polynomial-bounded flowchart F ' over (N; 0, 1, + , × ; =). But F ' can also be
regarded as a flowchart over (Z ; 0, 1, + , × ; =). Applying F ' toJ(n) and testing
the answer for equality with 0 completes the construction. []

Questions. Is (z ; o, 1, + , - , × ; =) adequate?
Does the converse of Theorem 3.10 hold?
Is (Z , 0, 1, + , - ; = , I) adequate, where I is the divisibility relation?

4. Finer Classification for Particular Operations

The results of the preceding section allow polynomial variation, but for more
useful analysis, a finer classification is appropriate. There are a virtually un-
limited number of questions to be answered about relative flowchart complexity
of specific operation sets. In this section, we give a sampling of upper and lower
bounds on the complexity of operations over adequate algebras.

The given results all use similar proof techniques. In particular, the upper
bounds arise from uniform translation into flowcharts of linear recursive
schemes, using the following version of a result of [3].

Theorem 4.1. (Chandra). Let R be a linear recursive scheme, e any positive real.
Then there exist flowchart F and constant c such that for any algebra ~,

(a) F computes the same function or relation over ~ as does R and
(b) L ~ x i , Xk) <C(L~(x 1 xk))l+" + c.

l.~lnllm
(a)
(b)
(c)
(d)
(e)
(f)

4.2. There exist linear recursive scheme R and constant c such that:
R computes f(n) -- n rood 2 over (N; O, I, + ; <) , and LR(n) < c logn,
R computes - over (N;0 , 1, + ; <) and L R (m , n) < c l o g (m - n) ,
R computes x over (N;0 , I, + ; <) and LR(m,n) <cmin(logm, logn),
R computes f (m , n) = m n over (N; O, 1, +, × ; <) and LR(m,n) <clogn,
R computes < over (N;0 , 1, + , [[;-") , and LR(m,n) <clogm,
R computes reverse over ({ 0, 1)*; A, 0suc, 1 suc; prefix) and L R (x) < c lx [.

Proof. Informal explanation is provided, followed by the detailed programs
with assertions sufficient for their verification.

(a) The procedure determines recursively whether the current power of 2
(given by ni) enters into the binary expansion of n 0. It also approximates n o by
truncating its binary representation after the n I position.

Parity(no) data: n l, n2
/ , G i v e n no~N, Parity(no) returns no mod 2 . . /

200 N. Lynch and E. K. Blum

S T A R T
<np n2>: = Approx(no 1);
R E T U R N (n o

Approx(n o, n l) data: n2, n3, n4
/ , G i v e n n o ~ N, n I E N - (0 } , Approx(no, n 0 returns two values:

(a) The largest m < n o such that m is a multiple of np and
(b) for m - - a x n I as in (a), 0 or 1 if the pari ty of a is even or odd,

respec t ive ly . , /

S T A R T
i f n I <_no
then begin

(n2,n3>: - Approx(no, n I + n0 ;
/'/4: = n2"b n l ;
i f n 4 <_n o then R E T U R N (n 4,1) else R E T U R N (n2,0);
end

else R E T U R N (0, 0)

(b) This is similar to (a). The procedure recursively approximates n o - n 1
by truncat ing its b inary representat ion after the posit ion holding the current
power of 2, n 2.

Minus(n o n l) data: n 2
/ , G i v e n n o, n i ~ N, Minus(n o, n l) computes n o - n 1. * /

S T A R T
if no<_nl
then R E T U R N (0)
else begin

n2: -- Approx(no, nl, 1);

R E T U R N (n2)
end

Approx(no, nl,/'/9 dam:/'/3, n 4
/ , G i v e n n o) n i ~ N and n 2 > l, Approx(n o, n 1, n2) re turns the largest m <_ n o
- n I such that m is a multiple of n2., /

S T A R T
if nl + n2 <_n o
then begin

n 3: - Approx(n o, n l, n2 + n2);
n4. m n3-1- n2;
i f n 1 + n 4 <_no then R E T U R N (n4) else R E T U R N (na)
end

else R E T U R N (0)

Relative Complexity of Operations on Algebras 201

(c) By possibly interchanging inputs, we insure that n o < n 1. The procedure
recursively approximates n o by truncating its binary representation after the
position holding the current power of 2, n 2. It also returns the corresponding
approximation to the product n o × n r

Mult(no, n l) data: n 2
/ . G i v e n n o, nl ~ N, Mult(no, nl) returns their p r o d u c t . . /

START
if n o <_ n I then n2: -- Multl(n o, nl) else n2: ---- Multl(nl, no);
RETURN (n9

Multi(no, nt) data: n2, n 3
/ . G i v e n no, n t ~ N with n o -<nt, Muld(no, nl) returns their p r o d u c t . . /

START
if no_<0
then R E T U R N (0)
else begin

(n 2, n 3) : = Approx(n o, n i, 1, n 1);
R E T U R N (n3)
end

Approx(no, nl,n2,n3) data: n4,ns, n 6
/ . G i v e n no <nl, with no:P0, n2_>l and na=n2×n I, Approx(no, nl,n2,n3)
returns two values.

(a) the largest m _< n o such that m is a multiple of n 2, and
(b) for m as in (a), m x hi. . /

START
if n2 <_no
then begin

(n 4, n 5) : = Approx(no, n ! , n 2 + n2, n 3 + n3);
n6; t= n4-1- n2;
i f n 6 <_ n o then R E T U R N (n6, n 5 + n3) else R E T U R N (n4, ns)
end

else R E T U R N (0, 0)

(d) The program is similar to that in (c) and is left to the reader.
(e) If no~=nl and [no[:~[n d, the inequality test no<_n I is reduced to the

same inequality test on the much smaller values [no[and Inll. If no~n I and
[nol = [nd=~ 1, the procedure asks recursively whether n o and n I can be separated
in length by addition of the same multiple of n 2 (a given power of 2) to each. If
so, then the direction of the inequality between n o and nl is also determined. If
not, then two numbers are determined with the same relative values as n o and n~,
but such that adding n2 to either number would increase its length.

202 N. Lynch and E. K. Blum

Lteq(no, nO
/ . G i v e n no, n 1EN, Lteq
no <n I or n o t . . /

Boolean: b o
returns true or false depending upon whether

START
if no=ffi n 1
then RETURN true
else begin

if [nol ffi [nt[then bo: == Compare(n o, nl) else bo: -- Lteq(lno[, [nl[);
RETURN (bo)
end

Compare (no, hi) Data: n2, n 3 Boolean: bo, b l
/ , G i v e n no, n ! with no=Anl, but [nol---lnl[, Compare(no, n 0 returns true or
false depending upon whether n o <n 1, or n o t . . /

START
if [nolffi l
then if no-- 1 then RETURN (true) else RETURN (false)
else begin

(n2, n3, bo, b l) : = Approx(no, n 1, 1);
RETURN (bj)
end

Approx(no, n l, n2) Data: n3, n 4 Boolean: bob !
/ . G i v e n no, n l ,n2~N, no=/:n l, [nol=lnll~l, n2 a power of two, In2l < Inol,
Approx(no, nl, n2) returns four values:
If [n o + cn2[ffi Into + cn2[for all c E N, then (too, ml,false,false ~ are returned,
where m o and m I are the unique values with
Imol ffi Inol--[nml, t o o - no ffi m l - n l - cn2 for some c, and [mo+ n2[ffi]ml +
~ l + lmol = l + lml l .
If Ino+cn2[~Jnl+cn2[for some c ~ N , then (O,O, true, ao> are returned,
where aoffi true if n o <nl, false otherwise. , /

START
if [no[:ffi In2[
then RETURN (no, nl,false,false)
else begin

(n3, n4, bo, b 1) : ffi Approx(no, nl, n2 + n2);
if b 0 ffi true
then RETURN (O,O, true, bl)
else case

if In3 + n21 = [na[and In4 + nR[= [na[
then RETURN (n 3 + n 2, n 4 + n2,false,false)
if ln3+ n2[~in3[and In4-.[.- n2l:f::ln4[
then RETURN (n3, n 4,false,false)
if In3+ n2[--[n3l and [n4 + n2l~ln4l
then RETURN (O,O, true, true)

Relative Complexity of Operations on Algebras 203

if In3+ n21 ln31 and In4+ n21 = In41
then RETURN (0, 0, true,false)
endcase

end

(f) The construction is straightforward and is left to the reader. (The
procedure has inputs x 0 and x~ a prefix of x o. It determines recursively the
reverse of the corresponding suffix of Xo.) []

Theorem 4.3. For every positive real e, there exist flowchart F and constant c
such that:

(a) F computes f(n) = n mod2 over (N; O, 1, + ; <) and L ~ n) < cOog n) l + e,
Co) F computes - over (N;0 , 1, + ; <) and L ~ m , n) < c (l o g (m - n)) l+e,
(c) F computes × over (N ; O, 1, +; <) and L F (m , n) <

c (min(Iog m, log n)) l +,,
(d) F computes f(m,n) = m ~ over (N; O, I, +, X ; <) and LF(m,n) <_

cOogn) I+e,
(e) F computes < over (N;0,1 , +,[I; - -) , and L, v(m,n) <c(logm) l+e,
(f) F computes reverse over ({0,1}*;A,0suc, l s u c ; p r e f i x) a n d LF(x)<

clxl ÷.

Proof. By Theorem 4.1 and Lemma 4.2. []
It is possible use the translation from 0oop-free) linear recursive schemes

into flowcharts to obtain results about programs involving loops. Translation is
performed on a top-down or bottom-up module of a scheme rather than on the
full scheme. As an illustration, we give a lemma and a theorem applying the
lemma to two problems, to a bottom-up module in each case. For an example of
such a translation on a top-down module, the reader is referred to Lemma 4.4 of
[l].

For n o, n t ~ N, define power(n o, nl) = if n o > n 1, then 2 Ll°s2(n°- nt) J else 0. (That
is, power(n0,n 0 is the largest power of 2 not greater than n o - nt.)

Lemma 4A. There exist linear recursive scheme R and constant c such that R
computes power over (N; O, 1, +, × ; <) and LR(no, nl) <cloglog(n o - hi).

Proof. The procedure is given inputs no, n I and n 2 (a number of the form 22"). It
recursively approximates the largest power of 2 not greater than no-n~, by
truncating the binary representation of the exponent after the 2 a position: Note
that multiplication is used to effect addition of exponents.

Power(n o, nl) Data: n 2

START
if no <n l
then RETURN (0)
else begin

n 2: = Approx(n o, n t, 2);
RETURN (n z)
end

204 N. Lynch and E. K. Blum

Approx(no, n z , n z) Data: n 3
/ . G i v e n n o >n I + 1, n 2 = 2 2* for some a > O, Approx(no, nl,n2) returns the
largest m < n o - n I such that m-~2 bx:~ for some b E N . . /

START
if n2+ n I <n o
then begin

n3: = Approx(no, nl, n2 × n2);
if n3 X n2+ n t <n o then RETURN (n3× n2) else RETURN (n3)
end

e/se RETURN (1) []

Theorem 4.5. For every positive real e, there exist flowchart F and constant c
such that

(a) F computes f (n) = n m o d 2 over (N ; 0 , 1 , + , × ; < > and LF(n)<
c lognOoglogn) l +',

(b) F computes - over (N ; 0 , 1 , + , × ; <~ and L ~ (m , n) < c l o g (m - n)
(log log(m - n)) l +e.

Proof. (a) By Lemma 4.4 and Theorem 4.1, we obtain flowchart F ' for power
over (N; 0,1, + , × ; < ~ with LF,(m,n) <c(loglog(m--n)) l+~ for some constant
c. A flowchart F " for f (n) = n m o d 2 over (N;0,1 , +,power; < ~ is easily con-
structed with LF..(n) < c logn for some constant c. Moreover, for all intermediate
values m produced during the computation of F " on n we have m < n. Substitu-
tion of F ' for power in F " yields the required bound.

(b) - may be computed over (N;0,1, +,power; < ~ by flowchart F" with
L e , (m , n) < c l o g (m - n) for some c, and with all pairs of arguments to power
having their difference at most m - n. Substitution of F ' in F " yields the needed
result. []

Remark. (a) represents a small improvement over the claimed upper bound on
parity in [9].

Finally, we ask whether the bounds in Theorems 4.3 and 4.5 are optimal. In
all cases, we are able to prove lower bounds which are reasonably close to the
given upper bounds, but which do not include the e in the exponent. The lower
bounds are proved for effective schemes, and therefore apply to flowcharts as
well.

Lemma 4.6. There exists a positive constant c such that
(a) if effective scheme E computes f(n) = n rood2 over (N; O, 1, + ; < ~ then

LE(n) > c logn for all n,
(b) if effective scheme E computes - over (N; O, 1, + ; _<) then L~r(m, n) >_

c log(m - n) for all n and (for each n) for all but finitetv many m,
(c) if effective scheme E computes × over (N ; O, 1, + ; <_ ~, then Le(m, n) >

c(min(log m, log n)) for all m and n,
(d) if effective scheme E computes f (m , n) = m n over (N;0 , I, + ; < ~, then

L~(m,n) >_ c logn for all m > 2 and all n,

Relative Complexity of Operations on Algebras 205

(e) if effective scheme E computes < over (N;0,1, +,1[; -) , then LE(m,n)
>c logm for infinitely many m and n,

(f) if effective scheme E computes reverse over ((0,1}*;h,0suc, lsuc;pre-
fix>, then Lg(x)>__clx[for all x,

(g) if effective scheme E computes f (n) = n mod 2 over (N;0,1, + , × ; <) ,
then Lg(n)__clog.n for infinitely many n,

(h) if effective scheme E computes - over (N ; O, 1, +, × ; <), then LE(m,n)
> c log(m - n) for infinitely many pairs (m, n).

Proof. (a) Consider any (sufficiently large) n with Le(n) < ½1ogn. Each branch
point on the path for n results from an inequality test which may be expressed in
the form an + b < cn + d for some a, b, c, d E N. Further, the numerical values of
a, b, c and d are all at most approximately V ~ , because of the bound on Le(n).
If a--- c, the answer to the test is independent of n. If a ~ c , the answer depends
only on the relative sizes of a and c, by the restriction on size of the coefficients
and the fact that n is large. Thus, any m > n will follow the same path in the
scheme and will yield the same answer, a contradiction.

(b) Fix any n and assume that m is very large relative to n, and Lz(m,n)
< 2 log(m-n) . Each branch point on the path for m and n arises from an
inequality test of the form a m + b n + c < d m + e n + f , where a,b ,c ,d ,e , f have
numerical values _< ~ - n . If a = d, the answer to the test is independent of
m. If a q=d, the answer is determined by which of a and d is larger (since m is
large relative to n). Thus, any (p, n) for p > m will follow the same path in the
scheme, and thus generate the same expression as output. But then the output
for (m,n) is of the form am + bn + c, while the output for (p,n) is ap + bn + c.
But m - n ffi am + bn + c and p - n = ap + bn + c together imply m --p.

(c) That number of steps is required just to generate the answer.
(d) As for (c).
(e) Consider any sufficiently large k, and n---2 k - 1 (so 2adic(n)-~ ~)

Let A - - { (m , m ') : n < m < n + [n [, n + [n l < m ' < n + 2 [n [} and let kB----
((m , m ') : (m ' , m) ~ A } . We show that if path length is too small, E cannot
distinguish some pairs in A from some pairs in B. The argument is similar in
outline to that used for Theorem 3.7(a).

Tests are equations between expressions involving m, m', 0, 1, + and 11. We
assume that Le(m, m ')<e(logm) for a sufficiently small positive constant e, and
show that for any p<_LE(m,m'), an expression appearing p steps from the
beginning on any path can be simplified to be of the form a m + b m ' + c l n l + d ,
where a,b,c ,d < 2 ~'.

Proof of this simplification is by induction. The basis is easy. If an
expression appears p steps from the beginning and is formed by + applied to
two expressions each appearing within p - 1 steps of the beginning then the
result is clear. If the expression is formed by applying][to a previous expression,
some more work is needed.

Consider the new expression [am + bm" + cln[+ d[, where a,b ,c ,d <_ 2 e - l and
n<m,m'<_n+2[n I. It is easy to see that [(a+b)(n+ 1)[_< [am+bm'+c[n[+d[<_
[(a + b)n + 5 x 2 p- l[n[+ 2 p- l[. But it can be shown that](a + b)(n + 1)[= [(a + b)n
+5×2J ' - l Jn[+2p- l [=[log(a+b)J+ln[. Thus, the new expression can be re-
written as [log(a+ b)] + [n[. Since the first term is a constant, this expression is
in the required form.

206 N. Lynch and E. K. Blum

Thus, each test can be rewritten in the form a m + b m ' + c] n l + d = O , or
equivalently am+ bin'+ [clogmJ + d = 0 . If b ~ 0 , each m determines at most
one m' which can satisfy this equ-ation. If b - 0, then at most one m in the given
range can be a solution. Thus, at most Inl solutions (m , m ') E A exist for each
test. By the bounds on path length and on m, there is a pair (m , m ') E A which
must answer "no" at each branch point; a similar argument holds for B, a
contradiction.

(f) We leave this one for the reader.
(g) The proof of Theorem 1 in [9] suffices. In outline, an upper bound on

the number of steps executed yields corresponding bounds on both the number
of distinct polynomials which appear in relation boxes and on their degrees.
These bounds in turn yield an upper bound on the number of solutions. But a
parity program requires "separation" of consecutive pairs of integers, thus
requiring many solutions. Careful comparison of these two bounds yields the
inequality.

0a) An argument similar to that used for Theorem 1 of [9] suffices, where
we consider input pairs of the form (n, 1). []

5. Suggestions for Further Research

There are, of course, many other operations over N and (0, 1 }* whose complex-
ity might be determined with respect to various adequate algebras. In addition,
similar questions can be asked for operations over other domains arising in
computing and mathematics. General methods for defining polynomial comput-
ability and selecting parameters, as discussed near the end of Section III, should
be developed in order that such problems might be treated consistently.

In none of the present work has any distinction been made between relative
complexity of operations obtained via flowcharts, linear recursive schemes or
effective schemes; the latter two scheme classes have been used only to obtain
results about flowcharts. It might be interesting to compare the efficiency of the
different scheme classes over various natural algebras. For instance, in Section
IV, the upper and lower bounds differ by (at least) the e in the exponent. This e
seems to represent a real difference between flowcharts and linear recursive
schemes. It would be interesting to prove a lower bound, say based on one of the
natural problems in Section IV, which is sensitive to the e. For instance, one
might be able to prove the following.

Conjecture. There do not exist flowchart F and constant c such that F computes
reverse over ((0, 1 }*; ~k, Osuc, 1 suc;prefix) and Le(x) <_ clxl.

We emphasize that we seek natural examples of a complexity difference
between scheme classes. It is not difficult to construct (probably uninteresting)
free algebras for which a complexity difference between flowcharts and linear
recursive schemes is provable, but it is unclear which insights such constructions
yield. The specific operation sets chosen seem to play a crucial role in determin-
ing the comparative efficiency of scheme classes, but a thorough examination of
this role remains to be done.

Relative Complexity of Operations on Algebras 207

Acknowledgments

The authors would like to thank Arnold Rosenberg for his careful reading of the original manuscript
and many helpful suggestions for its revision. This paper and the two others [1, 10] which evolved
from the lengthy manuscript are much improved by his contributions.

References

1. N.A. Lynch and E. K. Blum, Relative Complexity of Algebras, (to be published).
2. N.A. Lynch and E. K. Blum, Efficient Reducibility Between Progr~mmlng Systems, Proceed-

ings of Ninth Annual Symposium on Theory of Computation, ACM, Boulder, 228-238 (1977).
3. A. Chandra, Efficient Compilation of Linear Recursive Programs, 14th Annual Symposium on

Switching and Automata Theory, October 15-17, 16-25 (1973),
4. D. Kfoury, Comparing Algebraic Structures up to Algorithmic Equivalence in Automata,

Lansuager and Programming, Ed. M. Nivat, North-Holland/Elsevier, 253-263 (1973). See also
Translatability of Schemes over Restricted Interpretations, J. Comp. and Syst. Sciences 8,
387-408 (1974).

5. A.V. Aho, J. E, Hopcroft, and J. D. Ullman, The Design and Ana~sis of Computer Algorithms,
Addison-Wesley Publishing Company, 1976.

6. P. Fischer, A. Meyer, and A. Rosenberg, Real-time Simulation of Multihead Tape Units,
JACM 19, 590-607, (1972).

7. B. Leong and J, Seiferas, New Real-time Simulations of Multilevel Tape Units. Ninth Annual
Symposium on Theory of Computation, ACM, Boulder, 239-247 (1977).

8. N.A. Lynch, Straight-LineProgram Length as a Parameter for Complexity Measures, Theoreti-
cal Computer Science, (to appear). Also see Proceen~ngs of Tenth Annual ACM Symposium on
Theory of Computing, San Diego, 150-161, (1978).

9. L.J. Stockmeyer, Arithmetic Versus Boolean Operations in Idealized Register Machines, IBM
RC 5954, (A 25 837).

10. N.A. Lynch and E. K. Blum, A Difference in Expressive Power Between Flowcharts and
Recursion Schemes, Mathematics Systems Theory 12, 205-211 (1979).

11. G. Gritzer, Unicersal Algebra, Van Nostrand, Princeton, NJ., 1968.
12. P.M. Cohn, Unicersal Algebra, Harper and Row, N.Y., 1965.
13. A.I. Maleev, Algebraic Systems, Springer-Verlag, N.Y., 1973.

Received February 9, 1978, in revised form October 23, 1978 and June 27, 1979 and in final form August
15, 1979.

