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Abstract. Sets of primitive operations for algebras with numerical and bit 
string domains are classified according to their computational efficiency. 
The relative complexity of certain basic operations on such algebras is 
determined. 

1. Introduction 

Many different algebras with domain N (the non-negative integers) or (0, 1}* 
can be shown to be equivalent in the sense that flowcharts over those algebras 
have the ability to compute exactly the partial recursive functions. However, it is 
intuitively clear that not all such algebras can be used to compute with equal 
"efficiency." It is the purpose of this paper to provide a classification for the 
relative complexity of different sets of operations over N and {0, I }*. 

The present work is a specialized outgrowth of work in [1], where relative 
complexity of arbitrary algebras is studied in a more general setting. The 
techniques and results of the present paper and of [1] are intended to suggest a 
more "'modular" approach to complexity analysis than is commonly taken. The 
framework defined in [1] is used for studying coding-independent relative com- 
plexity of algebras, whereas in all of the problems of this paper, a fixed standard 
coding is used. Furthermore, (with one exception) the problems of this paper 
involve algebras over two specific domains, N and {0, 1}*. Therefore, the full 
generality of the framework in [1] is not required here. A preliminary report [2] 
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includes outlines of the results of the present paper as well as those of [1]. 
Henceforth, unless otherwise stated, all algebras are over N and {0, 1}*. 

Section II contains notation and basic definitions. Many types of program 
scheme classes could be used as bases for relative complexity classification of 
algebras. For definiteness, we emphasize the classification yielded by finite 
flowcharts. In order to prove results about finite flowcharts, however, we 
consider two other scheme classes, the linear recursive schemes and the effective 
schemes. 

In Section III, a classification is established for algebras, based on their 
efficient computing power. An algebra is defined to be "adequate" if, in a 
standard coding of its domain, its flowcharts allow functions to be computed at 
least as efficiently as do Turing machines (to within a polynomial). Several 
common algebras are classified as adequate or inadequate. Extension of the 
concept of "adequacy" to algebras with domains other than N and {0, 1)* is also 
discussed briefly. 

In Section IV, classification finer than that provided by general polynomials 
is considered. Upper and lower bounds are obtained for the flowchart complex- 
ity of various functions on particular numeric and bit string algebras. The 
problems selected for consideration are representative of a large class of possible 
questions. The present results are unified by the general methods used for their 
proofs. Namely, in each case, our best upper bound arises from a (complexity- 
increasing) compilation of an interpreted linear recursive scheme, using a 
technique of Chandra [3], while our best lower bound applies to effective 
schemes as well as to flow charts. 

Section V contains suggestions for further work. 

2. Notation and Definitions 

An algebra • = (Dome; Fune; Rele~ is a set Dom e (the domain of t~) together 
with a finite family Fune of partial functions (more often called "operations" in 
the algebraic literature) and a finite family Rel e of partial relations on that set. 
Distinguished constants are 0-ary functions. 

(The inclusion of relations is a departure from the usual definitions given in, 
say, [11, 12]. However, it agrees with the notion of algebraic system in [13].) 

For an algebra d~, a flowchart F over d~ is constructed in the usual way as a 
directed graph having a finite number of boxes (i.e. nodes) of the types: 

Start: V ~  

Input: I xi: ~h~put, [ 

Copy: 
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Function Output: 

Relation Output: 

Output: ffi x i ] 

[ Output: =TRUE ] 

l Output: = FALSE ] 

where f ~ Fun a and r ~ Rel a and the x's are variables. (Strictly speaking, f and r 
are function and relation symbols for the members of Fun a and Rel~. We shall 
rely on the reader to make this distinction.) Output boxes have no successors, 
relation boxes have two successors, and all others have one successor. A 
flowchart is either a function flowchart, in which case all output boxes are 
function output boxes, or a relation flowchart, in which case all output boxes are 
relation output boxes. There is exactly one start box. 

For an algebra ~ ,  a linear recursive scheme R over d~ is defined as in [3]. R 
consists of a finite collection of Algol-like procedure definitions, in which each 
procedure can call at most one other procedure. The Algol-like language has a 
fairly general instruction set, with conditions, typed variables (including Boolean 
variables with a fixed interpretation), vectors of parameters for procedures, but 
no looping constructs other than recursion. The basic function and relation 
symbols used are those in Fun a and Rel a. Chandra's interpreted schemes 
compute dements whereas ours are intended to define functions and relations. 
Thus, in contrast to his definition, our notion of interpretation leaves inputs to a 
program tminterpreted. As before, we consider function schemes and relation 
schemes. 

For an algebra ~ ,  an effective scheme E over ~ is defined as in [4]. An 
effective scheme is composed of boxes of the same types as used for flowcharts. 
Rather than requiring that the number of boxes be finite, however, we require 
only that the formal scheme itself be generable in a recursively enumerable way. 
That is, there is a Turing machine able to construct a straightforward coding of 
the scheme, e.g. as a countable binary tree with a possibly infinite number of 
variables [4]. Again, we consider function schemes and relation schemes. 

Semantics of all schemes are taken to be evident or as given in the 
references. 

If a function f is undefined at inputs x I . . . . .  x k, wesay  t ha t f ( x l , . . . ,Xk )=  o0. 
We use the conventions that oo < 0o and that n < oo for all n in N. 

For any flowchart or effective scheme S, L s denotes the natural path length 
function (the time complexity measure we will use); that is, for any inputs 
x i . . . . .  Xk, Ls(x  1 . . . . .  Xk) denotes the number of boxes along the computation path 
in S for inputs x I . . . . .  x k. If R is a linear recursive scheme, L R denotes the 
reeursion depth function [3]. Any flowchart F can be "unfolded" into an 
equivalent effective scheme E, with LE= L r. Similarly, any linear recursive 
scheme R can be translated naturally into an equivalent effective scheme E, with 
L E < cL R for some constant c depending on R but independent of the interpreta- 
tion and input. (This follows because linear recursive schemes are loop-free.) 

We require a "standard coding" mapping the domain N onto {0, 1 }*. Define 
a total function 2adic: N--->{0, 1}* by 2adic(n) - the  binary representation of 
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n + 1, with the leading 1 removed. 2adic is a one-to-one correspondence between 
N and {0,1}*. 

We use m,n as number variables, and x,y  as string variables, x,y are also 
used to denote elements of arbitrary domains. F is used for flowcharts, R for 
linear re.cursive schemes and E for effective schemes. 

3. Adequate Algebras 

A simple classification of the (flowchart) computing power of several algebras 
with domain N and {0,1}* appears in [1]. Namely, an algebra ~ with domain N 
or {0,1}* is said to have recursive power provided each partial computable 
function (on N or {0,1}* as appropriate) is computable by flowchart over d~. It 
is not difficult to show the following. 

Theorem 3.1. 
(a) (N;0,  
Co) <~N; O, 
(c) (N;O, 
(d) (N; O, 

wise), 

The following algebras have recursive power: 
suc ;=  ) (where sue(n)--- n + 1), 
sue; < ), 
1 ,+;  =), 
1, +, - ; = ) (where m -  n - -0  if m <n, m -  n other- 

(e) <N;0, 1, + ,  II; = > (where Inl = 12adic(n)[, the length of the 
2adic representation of n, or equivalen@, Inl=Llog(n+ 1)J. Note that this nota- 
tion persists throughout the paper.) 

(f) ((0, l}*;h,0, 1,tail, concat; = ) (where ?~ is the empty string, tail(x)---~ if 
x = h, all but the first symbol of x, otherwise, and concat(x,y) = xy), 

(g) <{0,1}*;h,0suc, lsuc;prefix> (where Osue(x)--xO, l s u e ( x ) = x l ,  and 
prefix(x,y) is true iff x is a prefix of y), 

(h) <(0,1 }*; h,0suc, lsuc; - >, 
(i) ({0,1}*;h,0,1,concat; =>, and 
(j) <{0, 1}*;h, 0, l, head, tail, 0suc, lsuc, reverse; =X, - 0 ,  -- 1> (where 

head(x) = h if x ~h ,  the first symbol of x otherwise, and where the predicates are 
tests for equality with short strings). 

Proof. By flowchart programming. For cases which pose some difficulties ((h) 
and (i)), proofs appear in [1]. [] 

It seems apparent that not all algebras with recursive power have the same 
"efficiency." Intuitively, we would not expect (N; 0,suc; < ) to be an "ade- 
quate" algebra for a programming language because the successor operation 
constrains generation of new values to occur too slowly. By experience with 
LISP, however, we might expect that ({0, 1}*; h,0, l,head, tail, concat; - ) would 
be "adequate." A criterion for "adequacy" of an algebra with domain N or 
{0,1}* might be that a function computable in polynomial time by a Turing 
machine be computable in a polynomial number of steps by a flowchart over the 
system. We make this criterion precise and then classify several algebras as to 
their adequacy. (The results of this section are insensitive to polynomial varia- 
tion, and within such variation, Turing machines are equivalent to any reason- 
able model of computation [5]. Finer classification than polynomial is not used 
in this section because of the fact that reducibility techniques are used, which 
require closure of bounding functions under composition.) 
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IMf'lnition. An algebra d~ with domain N or {0, 1}* is adequate if for every 
polynomial-time computable function or relation f on N (or on {0,1}*, as 
appropriate), there exist polynomial p and flowchart F over ~ satisfying the 
following conditions. 

(a) F computes f, 
(b) Le(x,  . . . . .  x~) < P( miax<k Ixil), and 

(c) if y is any value produced during the computation of  F on inputs 
x 1 . . . . .  x k, then lYl <P( max Ixi[). 

Xl<i_< k - 
The definition includes restrictions on both time and space; both are needed 

later, for example, for Lemma 3.5(b). Although the definition refers only to 
polynomial-time functions, Corollary 3.4 states that adequacy of d~ implies that 
computable functions of any complexity t(x) are computable by flowcharts over 
(~ with complexity at most a polynomial in t(x). 

We consider first the classification of an algebra having operations as much 
like Turing machines as possible. Let ~ denote  the algebra 
({0,1}*;h,0, 1,head, tafl,0suc, lsuc, reverse; =X, =0, = 1) of Theorem 3.1(j). We 
prove that • is adequate. In fact, B can be used to carry out a step-by-step 
simulation, with at most a constant factor increase in complexity, of a multihead 
multitape Turing machine. Consider a Turing machine having a finite number of 
two-way read-write tapes, with a finite number of heads per tape. The first k 
tapes are input tapes. Initially, each input tape contains some string in {0, 1}* 
with all heads for those tapes on the leftmost square of the input string. Tapes 
are otherwise blank, and all heads on each tape initially coincide. The last tape 
is the output tape. If and when the machine halts, it does so with all output 
heads on the leftmost square of the output string, and the output tape blank 
except for the output string. Any finite number of tape symbols is allowed, and 
the machine can detect coincidence of heads on the same tape. 

Lemma 3.2. Assume f:({0, 1}*)~--~{0,1) * is a partial function computed by a 
Turing machine as above, and t :((0, 1}*k) --->N is a partial function such that the 
machine halts within t (xl , . . . ,Xk)  steps on inputs x l . . . . .  x k. Then there exist 
flowchart F over ~3 computing f with 

L~(x, ..... xD <_ c m a x ( i x d  . . . . .  [x~l,t(x,,...,xD), 

where c i sa  nonzero constant. 

Proof. By constructions of [6, 7], it suffices to restrict attention to multitape 
machines with one head per tape. We simulate the machine by the well-known 
technique of replacing a tape by two pushdown stacks. The stack operations can 
be simulated in ~ as follows: 

Push aE{0,  1} onto stack x: x:--asuc(x),  
Test top of stack x against a: head(reverse(x)) = a, 
Pop stack x : x:--reverse(taft(reverse(x))). 

Since two stacks can simulate a tape with no time loss, these equations indicate 
that ~ can simulate a Turing machine in linear time [] 

Theorem 3.3. q3 is adequate. 



192 N. Lynch and E. K. Blum 

Proof. Immediate from Lemma 3.2 and the fact that the functions of ~ cannot 
increase lengths of intermediate results very rapidly. []  

Corollary 3.4. Assume ~ with domain {0,1}* (resp. N )  is adequate, and let 
denote the identity function (resp. 2adic). Assume f :  ((0,1 }*)k--->{0, 1)* is a partial 
function computed by a Turing machine as above, and t :({0, 1}*)k-->N is a partial 
function such that the .machine, on input x 1 . . . . .  Xk, halts within t(x l . . . . .  Xk) steps. 
Then there exists flowchart F over (~ and polynomial p satisfying the following. 

(a) F computes (the composite function) ~-  1 ofo ~, 

(b) LF(x 1 . . . . .  Xk)< P ( . m a x  Ix, I, t(r(x 0 .... ,~'(Xk))), 
I _<i _<k 

(C) if y k any value produced during the computation o f F  on inputs x 1 . . . . .  xk, 

then lYl <- P( lm<_iax<k [xil, t ( ' ( x O  . . . . .  1"(Xk)))" 

Proof. If Dome= {0,1}*, then F can be obtained as follows. A flowchart over 
is obtained as in the proof of Lemma 3.2, and the (polynomial computable) 

basic operations of ~ are replaced by their flowcharts over dg guaranteed by the 
adequacy of A. The fact that the basic functions of • cannot increase lengths 
of intermediate results very rapidly implies the required bound. If Dome---N, 
the construction needs to be only slightly modified to handle the isomorphism. 

[ ]  
Next, we turn to adequacy classification for other algebras. Rather than 

reason directly about Turing machine computation, we use the adequacy of 
and a "reducibility" to infer the adequacy of other algebras. 

Definition. Let ~ and A' be algebras with domain N or (0, 1)*, and with all 
basic operations total. Let ¢ : Dom,,-->Dom e denote the identity function, 2adic 
or 2adic -1 as appropriate. We write ~ <polyp, provided the following are 
satisfied. 

(a) For each f in Fun e there exist a flowchart F over ~ '  computing 
~-1 ofov and a polynomialp such that 

(al) L~x~ . . . .  ,x~)<_p(max(Ix, l: 1 <i <k},  ] f ( , (x  0 . . . .  ,l"(Xk))[), and 
(a2) if y is any value produced during the computation of F on inputs 

xt,...,xk, then lyl <p(max(Ix ,  I : 1 <i <k) , l f (~ (x  l . . . . .  ~'(Xk))l ). 
Co) For each r in Rel e there exist a flowchart F over ~ '  computing r o ~- 

and a polynomial p such that 
CO1) LF(x I . . . . .  xD <-p(max(Ixil: 1 <_i <k}), and 
(b2) if y is any value produced during the computation of F on inputs 

x t . . . . .  x k, then lyl _<p(max(Ixil : 1 <i <k}). 
(An alternative to this definition would treat functions in the same way as 

predicates, omitting the term [f(z(x 0 . . . . .  r(Xk))l from (al) and (a2)). Such a 
definition would suffice for the results to be proved here. However, the key 
Lemma 3.5 is true for the generalized definition, and slightly more direct proofs 
are sometimes possible using the generalization.) 

I.emma 3.5. (a) _<poly is transitive. 
(b) I f  ~ <polyp, and (~ is adequate, then ~ '  is adequate. 

Proof By flowchart substitution. [] 
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Theorem 3.6. The following are adequate. 
(a) (N;O, I ,+ ;  _<> 
(b) <N;0,1, + , - ;  => 
(c) <S;0,1, +,11; --- > 
(d) ({O, 1}*;A,O,l,tail, concat; =>, and 
(e) ((0,1)*-;h, Osuc, lsuc;prefix>. 

Note. The reader might find it interesting at this point to compare this result 
with Theorem 3.7. Between them, the two theorems decide the adequacy of all 
algebras mentioned in Theorem 3.1. 

Proof. Let the five algebras of the theorem be denoted by C a -(~e" We use 
Theorem 3.3 and Lemma 3.5(b), to show (a)-(e) by a chain of reductions. Easily, 
~5 _<p°Iy({0, 1)*;X,0,1,head, tail, concat; --- >, and head can trivially be repro- 
grammed in terms of the other primitives, thus showing Cd to be adequate. Then 
it is not difficult to show that Cd _<poly(~e, showing C¢ to be adequate. 

Next, we show C¢ <P°IYC a. Since 2adic-l(0suc(x))=2(2adic-l(x))+ 1, the 
only difficulty is in showing <(0, 1)*; ;prefix) _<P°IY(~ a. We break up this task by 
showing ({0, 1)*; ;prefix) _<P°~Y((0, 1)*;A, head, tail ;= > <v°lYA a. (Note that the 
interpolated algebra does not have recursive power.) The first reducibility is 
easily implemented as follows: to test if x is a prefix of y, compare successively 
longer prefixes of x with those of y. It remains to show the second reducibility. 

First, we show that ((0, 1}*;head;> <P°iYA a. Note that 

i if n --0, 
2adic- I(head(2adic(n))) = if 2k+ l<n+2  <2k+1+2 k for some k >_0, 

if 2 k + i + 2/, < n + 2 < 2 k + 2 for some k _> 0. 

Then it is straightforward to see that ({0, 1 }*; head; )_<P°ly<N; O, 1, +,  exp; _<, 
--) ,  where exp(n)=2 n. (Note that the exponential function is used, but only on 
"small" arguments, thus satisfying the requirement on the size of intermediate 
values.) Then it is easy to show (N;O, l, +,exp; < , - - )  <P°lY(~a, implementing 
exp with a flowchart that does repeated doublings. 

(This part of the proof is an example of how _<voly can be used with 
intermediate systems having non-polynomial-time primitives, such as exp, to get 
results about systems with polynomial-time primitives. The key is the fact that 
the non-polynomial primitives are only used on small arguments.) 

Next, we show that ({0, 1)*; taft;> _<v°lYC a. Note that 

[ 0 if n---O, 
k k + !  k + l  k 2adic-i(tail(2adic(n))) -- ~ n - 2  if2 < n + 2 < 2  +2 for some k > 0, 
k + i  k + l  k k + 2  I n - 2  if2 +2 < n + 2 < 2  for some k_> 0. 

Thus, <{0,1)*;tail;> .<_P°IY<N;0, 1, +,  - ,exp;  _<, ----->. It remains only to show 
<N; - ; > _<polyp,,. The reduction is carried out as follows. The difference m - n is 
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accumulated by summing its powers of 2 in decreasing order; each power of 2 is 
obtained by successive doublings and comparisons. 

Thus, ~a is adequate. ~b's adequacy follows easily from that of ~a, and Ac's 
adequacy is left to the reader. (A finer version of (c) is shown in Theorem 
4.3(e)). []  

We turn next to proofs of inadequacy. Of particular interest are (a) and (b) 
below. Together they combine to give an adequate system, but each separately is 
not adequate. 

Theorem 3.7. The following are not adequate. 
(a) (N;0,1, + ;  = ) ,  
Co) (N;  0, sue; < ), 
(c) ({0,1}*;X,0suc, lsuc; = ) ,  and 
(d) ((0, I}*;X,0, 1,head, concat; = ) .  

Proof. (a) We show that < cannot be computed over (N;0,1,  + ;  - )  with 
polynomial path length, even by an effective scheme. Assume that it can, and E 
is an effective scheme computing < ,  with LE(m,m')<p(max(Jml, lm'])), p a 
monotone polynomial. Fix n ~  N with p(]2n])<n (recalling that 
Iml-[log(,m + 1)j), and consider A = {(m,m'):n + 1 <m < 2n and 0 Am' <n}, 
B ffi { (m,m ) : ( m ' , m ) ~ A } .  We show that some member of A and some member 
of B must follow the same path in E so that E cannot compute <.  

Every input pair (m,m') causes a path in E to be followed, of length 
_<p(max(lml, Im'])), and ending with either output TRUE or FALSE according 
to whether m < m' or m >m'. Each branch point in E results from an equality 
test which can be expressed in the form am + bm' + c = a'm + b'm' + c', for some 
a, b, c,a', b', c 'E N. (The expression for each branch point can be constructed by 
ignoring the information obtained from tests along the path, and simply looking 
at uses of assignment and +.) Prune E by omitting all such tests (and 
subsequent "no" subtrees) in which a = a', b ffi b', and c = c'. Remaining is a tree 
T for which, at every branch point, all inputs (m, m') causing the "yes" branch to 
be taken lie on one straight line in 2-space. 

Now consider the path in T which takes the "no" branch at each choice 
point. There are n2+n pairs in A, at most n + l  of which lie on any given 
straight line. Thus, at most n + 1 of the pairs in A can follow any particular 
"yes" branch. But each pair in A must follow a path with length <_ P(12n]) <n, 
hence with fewer than n branchpoints. Thus some pair in A must follow the 
"no" branch at every choice point, and this path must terminate. A symmetric 
argument shows that some pair in B must follow the same path, a contradiction. 

(b) Consider any polynomial computable f : N - , N .  If (N;0,suc; _<) is 
adequate, then there exists an effective scheme E over this system computing f 
and a polynomialp with LE(m ) <p([m[). Fix n withp(Jn])<n. E on input n must 
halt in p([n[) steps, and so suc cannot span from 0 to n during this computation. 
Then ff any m >n is used in place of n, E will follow the same path as before, 
since < will be unable to distinguish m from n. But consider how the output of 
E on input n was constructed. The output arose from a variable initialized either 



Relative Complexity of Operations on Algebras 195 

at 0 or n and increased by 1 a fixed number of times. Thus, for some c ~ N we 
have f ( m )  = c for all m _> n, or else f ( m )  = m + e for all m > n. 

(c) Since ((0, 1 }*; ~, 0sue, 1 suc; -- ) _<p°Iy(N; 0, 1, + ; -- ),  Lemma 3.5(b) 
suffices. 

(d) We show that tail cannot be computed over ({0, 1}*;~,0, 1,head, con- 
cat; -- ) with polynomial path length, even by an effective scheme. Assume that 
it can, and E is such an effective scheme, with Lg(x )<p( [x [ ) ,  p a polynomial. 
Fix n ~ N -  {0} with p ( n )  + I < 2"- 1, and consider A = {x E {0,1 }* : Ix[ = n and 
head(x)-- 0}. We will show that two distinct members of A must follow the same 
path in E. 

Each branch point in E results from an equality test on two formal 
expressions, each built up from ~'s, O's, l's and x's using head and concat. 
Restrict consideration to inputs x E A. Then we can simplify the expressions 
using simple reduction rules so that each expression is a concatenation of O's, l 's 
and x's. 

We wish to show that each equation is satisfied either by no x ~ A ,  all x E A  
or exactly one x E A .  By replacing the formal variable x by x l . . . x  . in an 
equation, we obtain a new equation a 1 . . .a  k --b I . . .b k, where each ai, b i E {0, 1} U 
{xj: 1 < j < n } .  We allow each xj to range over {0, 1}, and show by induction on 
k (with n fixed) that the equation has either no solutions, 2" solutions or exact(y 
one solution. If k =0,  the equation has 2" solutions. Let k be at least I, and 
assume the equation has at least one solution. There are four cases: 
(a) al = bl ~-O or al = bl = l 

T h e n  ( x l , . . . , x , )  is a solution to the given equation if and only if it is a 
solution to the equation a2... a ~ -  b2... b k. The conclusion follows by the induc- 
tive hypothesis. 
(b) a i = b , = x  ,, l < i < n  

Then (x l , . . . , x , , )  is a solution to the given equation if and only if it is a 
solution to the equation a , + j . . . a  k = b ,+t . . ,  b k. The  conclusion follows by the 
inductive hypothesis. 
(c) ai -- x ~ and b ~ { 0 ,  1}, 1 < i < n (or else b~ = x~ and a ~ { 0 ,  1}, 1 < i < n) 

Then there is exactly one solution to the given equation. 
(d) ai---x~, l < i < n ,  b~E{0,1}, l < i<_m<n,  and bm+~---x~, l < i < n  

Then x I . . .x,  is the length n prefix of the periodic string b I . . .bmb I ...bin . . . .  
Thus, the induction holds and the equations have the desired solutions. Now 

prune E by omitting all tests (and subsequent "no"  subtrees) for which all x CA 
satisfy the reduced question. Remaining is a tree T for which, at each branch 
point, at most One x E A causes the "yes" branch to be taken. Consider the path 
in T which takes the "'no" branch at each choice point. There are 2"-  1 strings in 
A, at most one of which can cause any particular "yes" branch to be followed. 
But each string in A must have a computation path with length <p(n) .  Since 
p(n)  + 1 < 2"- 1, at least two strings, x andy ,  in A must follow the "no"  branch at 
each choice point, and this branch must terminate in an output statement. 

Now consider how the output of T on input x or y is constructed. 
Reductions as above show that the output on input x is the result of (possible 
empty) concatenations of O's, l 's and x's, while the output on input y is the 
result of the same concatenations with y replacing x. But since [tail(x)[ < Ix[, x 
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cannot occur in these concatenations, nor can y. Thus, the output of E is 
identical for both inputs, which means tail(x)---tail(y), a contradiction. [] 

Remarks. (a) The properties used to prove Theorem 3.7 are not very restrictive. 
In particular, since the result is proved for effective schemes, we have not used 
finiteness of the flowchart; also, in (a), (c) and (d), we have not used the rate 
(relative to the path length) at which different expressions can be built up from 
the given input values and functions. It would be anticipated that both of these 
restrictions would be important in some circumstances. For example, it seems 
that either or both might be useful for verifying the following: 

Conjecture. (N; 0, 1, +,  x ; = ) is not adequate. 
This conjecture seems to express a fundamental property of the expressive- 

ness of polynomials. 
Co) The proof of Theorem 3.7(b) shows that (N;0,suc; _< ) fails to be 

adequate in a very strong way--there are no nontrivial functions of one variable 
which can be computed efficiently by this system. More generally, it can be 
shown that if f : N " ~ N  is computable in polynomial path length over 
(N;0,suc; _< ), then f can in fact be computed in constant path length; this 
el'tmi'nates most interesting functions. 

(c) There is a sense in which, for example, _< and + do not help each 
other's computation over (N;0,suc; = ). Namely, _< can be computed over 
(N; 0, suc; ---) by a flowchart F with L~m, n)_<c X 2 ~x(Iml'l"l) for some constant 
c. However, Theorem 3.7(a) can be sharpened to state that any effective scheme 
E for _< over (N;0, 1, + ; = ) has Le(m,n)>dx2 ~'(Imt'l"l) for some constant d 
and infinitely many pairs (re, n). Similarly, + can be computed over 
(N; 0, sue; = ) by a flowchart F with LF(m, n)_< c × 2 mia(Iml'lnl) for some constant 
c, whereas any effective scheme E for + over (N; 0,suc; _< ) has Lr(m,n)>d x 
2 mi~(tml'l"l) for some constant d and all (m,n). 

As mentioned in the introduction, the results of this paper are an outgrowth 
of a general development of relative complexity of programming systems. Much 
work remains to be done in extending the ideas of this section to arbitrary 
algebras. One goal of the general theory is the development of criteria for 
comparing sets of basic operations over the same domain, to see which of two 
such sets is "more efficient" for programming. Another goal is the development 
of criteria for determining whether flowcharts over an algebra provide a realistic 
measure of "actual computing time." 

There are several difficulties which arise when one attempts to generalize in 
the most obvious way the ideas in this section. First, there appears to be no 
natural general notion of "polynomial computability" over an arbitrary domain. 
Such a definition would most naturally rest on a particular coding of the domain 
into a basic domain such as N or (0, 1)*, but for general algebras there is not 
necessarily a single natural coding. Different codings might make different 
functions polynomial computable. Second, when polynomials and other closed- 
form functions are used to summarize complexity information, they must be 
based on some "size parameter" n. It is not obvious what should be used as a 
size measure for analysis involving arbitrary algebras. The general questions are 
not pursued here, rather being deferred to [8] and further papers. Instead, in the 
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remainder of this section, we discuss extension of the present ideas to one other 
domain closely related to N and {0, 1}*, namely the set Z of integers. 

The domain Z has at least two candidates for standard codings in {0, 1}*. 
First, define ~: {0,1 }*--->Z by 

• (0x) -- - 2 a d i c - l ( x )  

~'(1 x) --- + 2adic-  l(x). 

• (0) = I"(1)---0, but t" is otherwise one-to-one. Second, define a "pairing function" 
coding ~" by 

"r'(x I 1... lxkOOy I 1... lye) = 2adic-l(xl...Xk) - -  2adic-1(yl. . .Ye), 

where x~,y i ~ {0, 1}* for all i. A total function or relation f on Z can be defined 
to be "l--polynomial-computable" or "V-polynomial-computable" if an ap- 
propriate corresponding total function or relation g on (0, 1}* is polynomial 
computable. By "corresponding" we mean, for instance, that the following 
diagram commutes. 

zL(0,1)* 
s~ g~ 
zL(0,1}* 

It is straightforward to show that the ~--polynomial computable and V-poly- 
nomial computable operations are identical. Thus, it may be claimed that there 
is a natural notion of polynomial computability for Z. 

In keeping with the previous definition of adequacy, we wish to define 
adequacy for algebras ~ with D o m a =  Z so that the polynomial computable 
functions on Z are all computable with polynomial path length flowcharts over 
A. The problem with this idea is that it is not obvious what the parameter should 
be on which to base the polynomial path length. Since we rely on the particular 
codings I" and ~" for the definition of polynomial computability, we will similarly 
use the codings to obtain a parameter. Somewhat arbitrarily, define [~'(x)[ = ]x[, 
so that In[ is approximately the log of the absolute value of n for n E Z. 

Def in i t ion .  An algebra ~ with domain Z is adequate if for every polynomial 
computable function or relation f on Z there exist polynomial p and flowchart F 
over ~ satisfying the following. 

(a) F computes f, 
Co) LAnl . . . . .  nD-<p(max(ln;[: 1 <i _<k}), and 
(c) if m is any value produced during the computation of F on inputs 

n 1 . . . . .  n k, then [m[ <p(max{[n;[ : 1 <i<k} ) .  
Similar to Theorems 3.6 and 3.7 we can show: 

Theorem 3.8. The following are adequate: 
(a) (Z;O, 1, + , - ;  _<) 
(b) ( Z ;  O, 1, + ,  - ; pos)  (where pos(n) is true iff n is positive). 
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Proof. (a) Let f be a polynomial computable operation on Z, g a e-corre- 
sponding polynomial computable total operation on {0,1}*, and h the 2adic- 
equivalent (to g) total operation on N. (That is, the following diagram com- 
mutes. 

° N 

N )  

Since h is a polynomial computable operatiow on N, there is a flowchart F over 
ffi (N;  0,1, + ; < ) computing h, with polynomial bounds on L r and the size 

of intermediate values. (This is by the adequacy of 9L.) By identifying N with 
Z +, F can be regarded as a flowchart over ~ = ( Z  ;0, 1, + ; < ). 

Now all that is required is a polynomial computable way of translating from 
n E Z to an element of 2adic- l (¢  - l(n)) and a polynomial computable way of 
translating from n E Z + - { 0 }  to ¢(2adic(n)), both via flowcharts over E.  For 
then F can be composed with the translation flowcharts to produce a suitable 
efficient flowchart for f over ~ .  

In order to translate from n ~ Z  to an element of 2adic-10"-l(n)),  a 
flowchart first determines n's sign and its absolute value, abs(n). If n is 
non-negative (resp. negative), there is a polynomial computable function k (resp. 
g) from abs(n) to an element of 2adic-l(T-l(n)) .  Since k and g can be regarded 
as functions over N, they have efficient flowcharts over 9L and hence over ~ .  

Similarly, in order to translate from n E Z + - (0} to ¢(2adic(n)), a flowchart 
simulates the polynomial computable mappings from n to the sign of  ~'(2adic(n)) 
and to abs(~-(2adic(n))). Since these can be regarded as operations over N, they 
have efficient flowcharts over ~ as above. Then the sign and absolute value are 
combined using operations of ~ .  

(b) This follows from (a), a trivial flowchart program of < ,  and an easy 
version of I.emma 3.5 for algebras with domain ~ .  [ ]  

Theorem 3.9. The following are not adequate: 
(a) (Z;O, 1, + ,  - ;  --~> 
(b) (Z;0 ,suc ,  pred; < ~ (where pred(x) f f ix-  1), 
(c) (Z ;0 ,  1, + ,  - ;  -----,[k) for any fixed k (where [k means divisibility by k). 

Proof. Similar to Theorem 3.7. [ ]  
Referring back to the conjecture following Theorem 3.7, we similarly conjec- 

ture that ( Z ; 0 , 1 , + , - , × ; - - - )  is not adequate. We can show that the two 
problems are related in one direction: 

Theorem 3.10. I f  (N;0 ,1 ,  + ,  X; - ) is adequate, then (Z ;0 ,  1, + , - ,  × ;  ffi ) is 
adequate. 

Proof, Assume the hypothesis. By Theorem 3.8(b), it suffices to construct a 
flowchart F for pos over (Z ;  0, 1, + ,  - ,  × ; ffi ) such that L r and the sizes of 
intermediate values are polynomial bounded. The construction is similar to that 
for Theorem 3.8(a). 
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Define f : Z ~ Z  by f ( n ) = 2 n 2 + n .  (f(n) is a coding of n as a non-negative 
integer.)  Clearly,  f has a p o l y n o m i a l  b o u n d e d  f lowchar t  over  
(Z ;  0, 1, + ,  - ,  x ; = ).  Identifying Z + with N, we define 

g : N ~ N by g(n) = [ 0 if n = f (m)  for some m > 0, 
t 1 otherwise. 

g is a polynomial computable function on N, so (by the hypothesis) it has a 
polynomial-bounded flowchart F '  over (N;  0, 1, + ,  × ; = ). But F '  can also be 
regarded as a flowchart over ( Z ;  0, 1, + ,  × ; = ). Applying F '  toJ(n)  and testing 
the answer for equality with 0 completes the construction. [ ]  

Questions. Is ( z ;  o, 1, + ,  - ,  × ; = ) adequate? 
Does the converse of Theorem 3.10 hold? 
Is (Z ,  0, 1, + ,  - ; = ,  I) adequate, where I is the divisibility relation? 

4. Finer Classification for Particular Operations 

The results of the preceding section allow polynomial variation, but for more 
useful analysis, a finer classification is appropriate. There are a virtually un- 
limited number of questions to be answered about  relative flowchart complexity 
of specific operation sets. In this section, we give a sampling of upper and lower 
bounds on the complexity of operations over adequate algebras. 

The given results all use similar proof techniques. In particular, the upper 
bounds arise from uniform translation into flowcharts of linear recursive 
schemes, using the following version of a result of [3]. 

Theorem 4.1. (Chandra). Let R be a linear recursive scheme, e any positive real. 
Then there exist flowchart F and constant c such that for any algebra ~,  

(a) F computes the same function or relation over ~ as does R and 
(b) L ~ x i ,  . . . .  Xk) <C(L~(x 1 . . . . .  xk))l+" + c. 

l.~lnllm 
(a) 
(b) 
(c) 
(d) 
(e) 
(f) 

4.2. There exist linear recursive scheme R and constant c such that: 
R computes f(n)  -- n rood 2 over (N;  O, I, + ; < ) ,  and LR(n ) < c logn, 
R computes - over (N;0 ,  1, + ;  < ) and L R ( m , n ) < c l o g ( m - n ) ,  
R computes x over (N;0 ,  I, + ; < ) and LR(m,n ) <cmin(logm, logn), 
R computes f ( m , n ) =  m n over (N;  O, 1, +,  × ; < ) and LR(m,n ) <clogn,  
R computes < over (N;0 ,  1, + ,  [[;-" ) ,  and LR(m,n ) <clogm,  
R computes reverse over ({ 0, 1 )*; A, 0suc, 1 suc; prefix) and L R (x) < c lx [. 

Proof. Informal explanation is provided, followed by the detailed programs 
with assertions sufficient for their verification. 

(a) The procedure determines recursively whether the current power of 2 
(given by ni) enters into the binary expansion of n 0. It also approximates n o by 
truncating its binary representation after the n I position. 

Parity(no) data: n l, n2 
/ , G i v e n  no~N,  Parity(no) returns no mod 2 . . /  
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S T A R T  
<np n2>: = Approx(no  1); 
R E T U R N  (n o 

Approx(n o, n l) data: n2, n3, n4 
/ , G i v e n  n o ~ N, n I E N - ( 0 } ,  Approx(no, n 0 returns two values: 

(a) The  largest m < n  o such that  m is a multiple of np and  
(b) for  m - - a  x n I as in (a), 0 or 1 if the pari ty of a is even or odd, 

respec t ive ly . , /  

S T A R T  
i f  n I <_no 
then begin 

(n2,n3>: - Approx(no, n I + n0 ;  
/'/4: = n2"b n l ;  
i f  n 4 <_n o then R E T U R N  (n 4,1) else R E T U R N  (n2,0); 
end 

else R E T U R N  (0, 0) 

(b) This is similar to (a). The  procedure  recursively approximates  n o - n  1 
by truncat ing its b inary representat ion after  the posit ion holding the current  
power  of 2, n 2. 

Minus(n o n l) data: n 2 
/ , G i v e n  n o, n i ~ N,  Minus(n o, n l) computes  n o - n 1. * / 

S T A R T  
if no<_nl 
then R E T U R N  (0) 
else begin 

n2: -- Approx(no, nl, 1); 

R E T U R N  (n2) 
end 

Approx(no, nl,/'/9 dam:/'/3, n 4 
/ , G i v e n  n o ) n i ~ N and n 2 > l, Approx(n o, n 1, n2) re turns  the largest m <_ n o 
- n  I such that  m is a multiple of n2., / 

S T A R T  
if  nl + n2 <_n o 
then begin 

n 3: - Approx(n  o, n l, n2 + n2); 
n4. m n3-1- n2; 
i f  n 1 + n 4 <_no then R E T U R N  (n4) else R E T U R N  (na) 
end 

else R E T U R N  (0) 
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(c) By possibly interchanging inputs, we insure that n o < n  1. The procedure 
recursively approximates n o by  truncating its binary representation after the 
position holding the current power of 2, n 2. It  also returns the corresponding 
approximation to the product  n o × n r 

Mult(no, n l) data: n 2 
/ . G i v e n  n o, nl ~ N, Mult(no, nl) returns their p r o d u c t . . /  

START 
if  n o <_ n I then n2: -- Multl(n o, nl) else n2: ---- Multl(nl, no); 
RETURN (n9 

Multi(no, nt) data: n2, n 3 
/ . G i v e n  no, n t ~ N  with n o -<nt, Muld(no, nl) returns their p r o d u c t . . /  

START 
if no_<0 
then R E T U R N  (0) 
else begin 

( n 2, n 3 ) :  = Approx(n o, n i, 1, n 1 ); 
R E T U R N  (n3)  
end 

Approx(no, nl,n2,n3) data: n4,ns, n 6 
/ . G i v e n  no <nl, with no:P0, n2_>l and na=n2×n I, Approx(no, nl,n2,n3) 
returns two values. 

(a) the largest m _< n o such that m is a multiple of n 2, and 
(b) for m as in (a), m x hi. .  / 

START 
if  n2 <_no 
then begin 

(n  4, n 5 ) :  = Approx(no, n ! , n 2 + n2, n 3 + n3); 
n6; t= n4-1- n2; 
i f  n 6 <_ n o then R E T U R N  (n6, n 5 + n3) else R E T U R N  (n4, ns) 
end 

else R E T U R N  (0, 0) 

(d) The program is similar to that in (c) and is left to the reader. 
(e) If  no~=nl and [no[:~[n d, the inequality test no<_n I is reduced to the 

same inequality test on the much smaller values [no[ and Inll. If  no~n I and 
[nol = [nd=~ 1, the procedure asks recursively whether n o and n I can be separated 
in length by addition of the same multiple of n 2 (a given power of 2) to each. If 
so, then the direction of the inequality between n o and nl is also determined. If 
not, then two numbers  are determined with the same relative values as n o and n~, 
but such that adding n2 to either number  would increase its length. 
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Lteq(no, nO 
/ . G i v e n  no, n 1EN, Lteq 
no <n I or n o t . . /  

Boolean: b o 
returns true or false depending upon whether 

START 
if  no=ffi n 1 
then RETURN true 
else begin 

if  [nol ffi [nt[ then bo: == Compare(n o, nl) else bo: -- Lteq(lno[, [nl[); 
RETURN (bo) 
end 

Compare (no, hi) Data: n2, n 3 Boolean: bo, b l 
/ , G i v e n  no, n ! with no=Anl, but [nol---lnl[, Compare(no, n 0 returns true or 
false depending upon whether n o <n 1, or n o t . . /  

START 
if [nolffi l 
then if no-- 1 then RETURN (true) else RETURN (false) 
else begin 

(n2, n3, bo, b l ) :  = Approx(no, n 1, 1); 
RETURN (bj) 
end 

Approx( no, n l, n2) Data: n3, n 4 Boolean: bob ! 
/ . G i v e n  no, n l ,n2~N,  no=/:n l, [nol=lnll~l, n2 a power of two, In2l < Inol, 
Approx(no, nl, n2) returns four values: 
If [n o + cn2[ ffi Into + cn2[ for all c E N, then (too, ml,false,false ~ are returned, 
where m o and m I are the unique values with 
Imol ffi Inol--[nml, t o o -  no ffi m l -  n l -  cn2 for some c, and [mo+ n2[ ffi ]ml + 
~ l + lmol = l + lml l .  
If Ino+cn2[~Jnl+cn2[ for some c ~ N ,  then (O,O, true, ao> are returned, 
where aoffi true if n o <nl, false otherwise. , /  

START 
if [no[ :ffi In2[ 
then RETURN (no, nl,false,false ) 
else begin 

(n3, n4, bo, b 1) : ffi Approx(no, nl, n2 + n2); 
if b 0 ffi true 
then RETURN (O,O, true, bl) 
else case 

if In3 + n21 = [na[ and In4 + nR[ = [na[ 
then RETURN (n 3 + n 2, n 4 + n2,false,false ) 
if ln3+ n2[~in3[ and In4-.[.- n2l:f::ln4[ 
then RETURN ( n3, n 4,false,false ) 
if In3+ n2[--[n3l and [n4 + n2l~ln4l 
then RETURN (O,O, true, true) 
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if In3+ n21  ln31 and In4+ n21 = In41 
then RETURN (0, 0, true,false) 
endcase 

end 

(f) The construction is straightforward and is left to the reader. (The 
procedure has inputs x 0 and x~ a prefix of x o. It determines recursively the 
reverse of the corresponding suffix of Xo. ) [ ]  

Theorem 4.3. For every positive real e, there exist flowchart F and constant c 
such that: 

(a) F computes f(n) = n mod2 over (N;  O, 1, + ; < ) and L ~ n )  < cOog n) l + e, 
Co) F computes - over (N;0 ,  1, + ;  < ) and L ~ m , n ) < c ( l o g ( m - n ) )  l+e, 
(c) F computes × over ( N ;  O, 1, +;  < ) and L F ( m , n )  < 

c (min(Iog m, log n)) l +,, 
(d) F computes f(m,n) = m ~ over (N; O, I, +, X ; < ) and LF(m,n) <_ 

cOogn) I+e, 
(e) F computes < over (N;0,1 ,  +,[I; - - ) ,  and L, v(m,n) <c(logm) l+e, 
(f) F computes reverse over ({0,1}*;A,0suc, l s u c ; p r e f i x ) a n d  LF(x)< 

clxl ÷.  

Proof. By Theorem 4.1 and Lemma 4.2. [ ]  
It is possible use the translation from 0oop-free) linear recursive schemes 

into flowcharts to obtain results about programs involving loops. Translation is 
performed on a top-down or bottom-up module of a scheme rather than on the 
full scheme. As an illustration, we give a lemma and a theorem applying the 
lemma to two problems, to a bottom-up module in each case. For an example of 
such a translation on a top-down module, the reader is referred to Lemma 4.4 of 
[l]. 

For n o, n t ~ N, define power(n o, nl) = if n o > n 1, then 2 Ll°s2(n°- nt) J else 0. (That 
is, power(n0,n 0 is the largest power of 2 not greater than n o -  nt. ) 

Lemma 4A. There exist linear recursive scheme R and constant c such that R 
computes power over (N;  O, 1, +, × ; < ) and LR(no, nl) <cloglog(n o -  hi). 

Proof. The procedure is given inputs no, n I and n 2 (a number of the form 22"). It 
recursively approximates the largest power of 2 not greater than no-n~, by 
truncating the binary representation of the exponent after the 2 a position: Note 
that multiplication is used to effect addition of exponents. 

Power(n o, nl) Data: n 2 

START 
if no <n l 
then RETURN (0) 
else begin 

n 2: = Approx(n o, n t, 2); 
RETURN (n z) 
end 
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Approx( no, n z , n z) Data: n 3 
/ . G i v e n  n o >n  I + 1, n 2 = 2 2* for some a > O, Approx(no, nl,n2) returns the 
largest m < n o - n  I such that m-~2 bx:~ for some b E N . . /  

START 
if  n2+ n I <n o 
then begin 

n3: = Approx(no, nl, n2 × n2); 
if n3 X n2+ n t <n o then RETURN (n3× n2) else RETURN (n3) 
end 

e/se RETURN (1) [] 

Theorem 4.5. For every positive real e, there exist flowchart F and constant c 
such that 

(a) F computes f ( n ) = n m o d  2 over ( N ; 0 , 1 , + , × ; < >  and LF(n)< 
c lognOoglogn) l +', 

(b) F computes - over ( N ; 0 , 1 , + , × ;  <~ and L ~ ( m , n ) < c l o g ( m - n )  
(log log(m - n)) l +e. 

Proof. (a) By Lemma 4.4 and Theorem 4.1, we obtain flowchart F '  for power 
over (N;  0,1, + ,  × ; <  ~ with LF,(m,n ) <c(loglog(m--n))  l+~ for some constant 
c. A flowchart F "  for f ( n ) = n m o d 2  over (N;0,1 ,  +,power;  < ~ is easily con- 
structed with LF..(n ) < c logn for some constant c. Moreover, for all intermediate 
values m produced during the computation of F "  on n we have m < n. Substitu- 
tion of F '  for power in F "  yields the required bound. 

(b) - may be computed over (N;0,1,  +,power;  < ~ by flowchart F"  with 
L e , ( m , n ) < c l o g ( m - n )  for some c, and with all pairs of arguments to power 
having their difference at most m - n. Substitution of F '  in F "  yields the needed 
result. []  

Remark.  (a) represents a small improvement over the claimed upper bound on 
parity in [9]. 

Finally, we ask whether the bounds in Theorems 4.3 and 4.5 are optimal. In 
all cases, we are able to prove lower bounds which are reasonably close to the 
given upper bounds, but which do not include the e in the exponent. The lower 
bounds are proved for effective schemes, and therefore apply to flowcharts as 
well. 

Lemma 4.6. There exists a positive constant c such that 
(a) if effective scheme E computes f(n)  = n rood2 over (N;  O, 1, + ; < ~ then 

LE(n ) > c logn for all n, 
(b) if effective scheme E computes - over (N;  O, 1, + ; _< ) then L~r(m, n) >_ 

c log(m - n) for all n and (for each n) for all but finitetv many m, 
(c) if effective scheme E computes × over ( N ;  O, 1, + ; <_ ~, then Le(m, n) > 

c(min(log m, log n)) for all m and n, 
(d) if  effective scheme E computes f ( m , n ) = m  n over (N;0 ,  I, + ;  < ~, then 

L~(m,n) >_ c logn for all m > 2 and all n, 
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(e) if effective scheme E computes < over (N;0,1,  +,1[; - ) ,  then LE(m,n ) 
>c logm for infinitely many m and n, 

(f) if effective scheme E computes reverse over ((0,1}*;h,0suc, lsuc;pre- 
fix>, then Lg(x)>__clx[ for all x, 

(g) if effective scheme E computes f (  n) = n mod  2 over (N;0,1,  + , × ;  < ) ,  
then Lg(n)__clog.n for infinitely many n, 

(h) if effective scheme E computes - over (N ;  O, 1, +, × ; < ),  then LE(m,n ) 
> c log(m - n) for infinitely many pairs (m, n). 

Proof. (a) Consider any (sufficiently large) n with Le(n ) < ½1ogn. Each branch 
point on the path for n results from an inequality test which may be expressed in 
the form an + b < cn + d for some a, b, c, d E N. Further, the numerical values of 
a, b, c and d are all at most approximately V ~ ,  because of the bound on Le(n ). 
If a--- c, the answer to the test is independent of n. If a ~ c ,  the answer depends 
only on the relative sizes of a and c, by the restriction on size of the coefficients 
and the fact that n is large. Thus, any m > n will follow the same path in the 
scheme and will yield the same answer, a contradiction. 

(b) Fix any n and assume that m is very large relative to n, and Lz(m,n  ) 
< 2 log(m-n) .  Each branch point on the path for m and n arises from an 
inequality test of the form a m + b n + c < d m + e n + f ,  where a,b ,c ,d ,e , f  have 
numerical values _< ~ -  n .  If a = d, the answer to the test is independent of 
m. If a q=d, the answer is determined by which of a and d is larger (since m is 
large relative to n). Thus, any (p, n) for p > m will follow the same path in the 
scheme, and thus generate the same expression as output. But then the output 
for (m,n)  is of the form am + bn + c, while the output for (p,n)  is ap + bn + c. 
But m - n ffi am + bn + c and p - n = ap + bn + c together imply m --p. 

(c) That number of steps is required just to generate the answer. 
(d) As for (c). 
(e) Consider any sufficiently large k, and n---2 k -  1 (so 2adic(n)-~ ~ )  

Let A - - { ( m , m ' ) : n < m  < n + [ n [ , n + [ n l < m ' < n + 2 [ n [ }  and let kB---- 
( ( m , m ' ) : ( m ' , m ) ~ A } .  We show that if path length is too small, E cannot 
distinguish some pairs in A from some pairs in B. The argument is similar in 
outline to that used for Theorem 3.7(a). 

Tests are equations between expressions involving m, m', 0, 1, + and 11. We 
assume that Le(m, m ' )<e( logm)  for a sufficiently small positive constant e, and 
show that for any p<_LE(m,m' ), an expression appearing p steps from the 
beginning on any path can be simplified to be of the form a m + b m ' + c l n l + d ,  
where a,b,c ,d < 2 ~'. 

Proof of this simplification is by induction. The basis is easy. If an 
expression appears p steps from the beginning and is formed by + applied to 
two expressions each appearing within p - 1  steps of the beginning then the 
result is clear. If the expression is formed by applying ][ to a previous expression, 
some more work is needed. 

Consider the new expression [am + bm" + cln[ + d[, where a,b ,c ,d  <_ 2 e - l  and 
n<m,m'<_n+2[n  I. It is easy to see that [ (a+b)(n+ 1)[ _< [am+bm'+c[n[+d[  <_ 
[(a + b)n + 5 x 2 p-  l[n[ + 2 p-  l[. But it can be shown that ](a + b)(n + 1)[ = [(a + b)n 
+5×2J ' - l Jn[+2p- l [=[ log(a+b)J+ln[ .  Thus, the new expression can be re- 
written as [ log(a+ b)] + [n[. Since the first term is a constant, this expression is 
in the required form. 
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Thus, each test can be rewritten in the form a m + b m ' + c ] n l + d = O  , or 
equivalently am+ bin'+ [clogmJ + d = 0 .  If b ~ 0 ,  each m determines at most 
one m' which can satisfy this equ-ation. If b -  0, then at most one m in the given 
range can be a solution. Thus, at most Inl solutions ( m , m ' ) E A  exist for each 
test. By the bounds on path length and on m, there is a pair ( m , m ' ) E A  which 
must answer "no" at each branch point; a similar argument holds for B, a 
contradiction. 

(f) We leave this one for the reader. 
(g) The proof of Theorem 1 in [9] suffices. In outline, an upper bound on 

the number of steps executed yields corresponding bounds on both the number 
of distinct polynomials which appear in relation boxes and on their degrees. 
These bounds in turn yield an upper bound on the number of solutions. But a 
parity program requires "separation" of consecutive pairs of integers, thus 
requiring many solutions. Careful comparison of these two bounds yields the 
inequality. 

0a) An argument similar to that used for Theorem 1 of [9] suffices, where 
we consider input pairs of the form (n, 1). []  

5. Suggestions for Further Research 

There are, of course, many other operations over N and (0, 1 }* whose complex- 
ity might be determined with respect to various adequate algebras. In addition, 
similar questions can be asked for operations over other domains arising in 
computing and mathematics. General methods for defining polynomial comput- 
ability and selecting parameters, as discussed near the end of Section III, should 
be developed in order that such problems might be treated consistently. 

In none of the present work has any distinction been made between relative 
complexity of operations obtained via flowcharts, linear recursive schemes or 
effective schemes; the latter two scheme classes have been used only to obtain 
results about flowcharts. It might be interesting to compare the efficiency of the 
different scheme classes over various natural algebras. For instance, in Section 
IV, the upper and lower bounds differ by (at least) the e in the exponent. This e 
seems to represent a real difference between flowcharts and linear recursive 
schemes. It would be interesting to prove a lower bound, say based on one of the 
natural problems in Section IV, which is sensitive to the e. For instance, one 
might be able to prove the following. 

Conjecture. There do not exist flowchart F and constant c such that F computes 
reverse over ( (0, 1 }*; ~k, Osuc, 1 suc;prefix ) and Le(x ) <_ clxl. 

We emphasize that we seek natural examples of a complexity difference 
between scheme classes. It is not difficult to construct (probably uninteresting) 
free algebras for which a complexity difference between flowcharts and linear 
recursive schemes is provable, but it is unclear which insights such constructions 
yield. The specific operation sets chosen seem to play a crucial role in determin- 
ing the comparative efficiency of scheme classes, but a thorough examination of 
this role remains to be done. 
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