
An Overview of Clock Synchronization

Barbara Simons, IBM Almaden Research Center
Jennifer Lundelius Welch, GTE Laboratories Incorporated

Nancy Lynch, MIT

1 I n t r o d u c t i o n

A distributed system consists of a set of processors that communicate by message
transmission and that do not have access to a central clock. Nonetheless, it is fre-
quently necessary for the processors to obtain some common notion of time, where
~time :~ can mean either an approximation to real time or simply an integer-valued
counter. The technique that is used to coordinate the notion of time is known as
clock synchronization.

Synchronized clocks are useful for many reasons. Often a distributed system is
designed to realize some synchronized behavior, especially in real-time processing in
factories, aircraft, space vehicles, and military applications. If clocks are synchro-
nized, algorithms can proceed in "rounds :' and algorithms that are designed for a
synchronous system can be employed. In database systems, version management and
concurrency control depend on being able to assign timestamps and version numbers
to files or other entities. Some algorithms that use timeouts, such as communication
protocols, are very time-dependent.

One strategy for keeping docks synchronized is to give each processor a receiver
and to use time signals sent by satellite. There are obvious questions of reliability
and cost with this scheme. An alternative approach is to use software and to design
synchronization algorithms. This paper discusses the software approach to clock
synchronization, using deterministic algorithms.

The results surveyed in this paper are classified according to whether the dis-
tributed system being modeled is asynchronous or partially synchronous, reliable or
unreliable. An asynchronous model is one in which relative processor speeds and
message delivery times are unbounded. Partially synchronous can be interpreted in
several ways - - processors may have real-time docks that are approximately the same
or that move at about the same rate or that drift slightly. The message detivery time
may always be within some bounds, or it may follow a probability distribution. A
reliable system is one in which all components are assumed to operate correctly. In
an unreliable system, communication faults such as sporadic message losses and link
failures may occur, or processors may exhibit a range of faulty behavior.

85

This paper presents some of the theoretical results involving clock synchroniza-
tion. A more thorough discussion of our basic assumptions and definitions, especially
concerning faults, is contained in section 2. In section 3 we discuss the completely
asynchronous, reliable model. Section 4 deals with asynchronous, unreliable mod-
els. In section 5, we discuss partially synchronous, reliable models. Section 6 is the
longest and contains descriptions of several algorithms to synchronize clocks in some
partially synchronous, unreliable models. In section 7 some problems closely related
to the clock synchronization problem of the previous section are mentioned. We close
with open problems in section 8.

2 Basic Assumptions

We assume that we are given a distributed system, called a networks of n processors
(or nodes) connected by communication links. The processors do not have access to
a source of random numbers, thus ruling out probabilistic algorithms. We allow the
network to have up to f faults, where a fault can be either a faulty processor or a
faulty link. We say that a system is reliable if f is always 0. Otherwise, the system
is unreliable or faulty.

Although there is some work on fault tolerance that distinguishes between node
faults and link faults (e.g. see [DHSS]), for simplicity we shall assume that only node
faults occur. If a link is faulty, we can arbitrarily choose one of the two nodes that
are the endpoints of the faulty link and label that node as faulty. This is clearly a
conservative assumption, since the node that is selected to be faulty might be the
endpoint of many nonfaulty links~ all of which are now considered faulty.

Having limited ourselves to node faults, there remains a variety of different models
in which to work. The simplest of these models, called fail safe, is based on the
assumption that the only type of failure is a processor crash. There is the further
assumption that just before a processor crashes~ it informs the system that it is about
to c rash . This is the only model in which the faulty processor is thoughtful enough
to so inform the others.

A more insidious form of failure is unannounced processor crashes, sometimes
called a faiIstop fault.

Next in the hierarchy of faults is the omission fault model. In this case a processor
might simply omit sending or relaying a message. A processor that has crashed will
of course omit sending all its messages.

Timing faults can be more complicated than omission faults, especially when deal-
ing with the problem of clock synchronization. The class of timing faults is itself di-
vided into the subcases of only late messages and of both early and late messages. For
many systems the types of faults most frequently encountered are processor crashes
(without necessarily notifying the other processors)~ omission faults, and late timing
faults.

Finally, a fault that does not fall into any of the above categories is called a

86

Byzantine .fault. (For a more thorough discussion of Byzantine faults, see the article
by Dolev and Strong in this book). This includes faults that might appear to the
outside observer to be malicious. For an example of such a fault that brought down
the ARPANET for several hours, see the article by Cohn in this book.

3 Asynchronous Reliable Model

We assume in this section that message delays are unbounded, and that neither
processors nor the message delivery system is faulty. For this environment we examine
the differences caused by whether relative processor speeds are lockstep or unbounded,
i.e., whether processors are synchronous or asynchronous.

Lamport ILl] presents a simple algorithm allowing asynchronous processors to
maintain a discrete clock that remains consistent with communication. When proces-
sor i sends a message to processor j , i tags the message with the current time on/ ' s
clock, say tl. Processor j receives the message at time tj. If tj < tl, processor j up-
dates its clock to read time t~. Otherwise, processor j does nothing to its clock. Note
that this algorithm depends heavily on the assumption that there are no faults in
the system, since clearly a faulty processor could force correct processors to set their
docks to arbitrary times. The Lamport algorithm can be used to assign timestamps
for version management. It can also provide a total order on events in a distributed
system, which is useful for solving many problems, such as mutual exclusion ILl].

The power of local processor clocks in an otherwise asynchronous system is further
explored by Arjomandi, Fischer and Lynch [AFL]. They prove that there is an inher-
ent difference in the time required to solve a simple problem, depending on whether
or not processors are synchronous (i.e., whether or not processors have synchronized
clocks). The problem is that of synchronizing output events in real time: there is a
sequence of events, each of which must occur at each processor and each taking unit
time, with the constraint that event i cannot occur at any processor until event i - 1
has occurred at all processors. With synchronous processors, the time for k events
is k, and no communication is needed. With asynchronous processors, a tight bound
on the time for k events is k times the diameter of the network. Note that since
Lamport clocks can be used to make a completely asynchronous system appear to
the processors to have synchronous processors, the problem presented in [AFL] is of
necessity one of external synchronization.

4 Asynchronous Unreliable Models

Devising algorithms for a model in which faults may occur can be much more difficult
than devising algorithms for the comparable reliable model. In fact, there might not
even exist an algorithm for the unreliable version, as is the case for the agreement
problem [FLP]. In particular, it is possible for all (correct) processors to reach agree-
ment on some value in an asynchronous reliable model, but not in an asynchronous

87

unreliable one. By contrast, there exist methods [A] to convert algorithms designed
for a synchronous reliable system into algorithms that are correct for an asynchronous
reliable system.

Welch [W] has shown that a system with asynchronous processors and asyn-
chronous reliable communication can simulate a system with synchronous processors
and asynchronous reliable communication, in the presence of various kinds of pro-
cessor faults. The method used in the simulation is a variant of Lamport clocks - -
each message is tagged with the sender's time, and the recipient of a message delays
processing the message until its local time is past the time tag on the message. One
application of this simulation is that the result of Dolev, Dwork, and Stockmeyer
[DDS], that the agreement problem is impossible in an unreliable model with syn-
chronous processors and asynchronous communication, follows directly from the result
of Fischer, Lynch, and Paterson [FLP], that agreement is impossible in an unreliable
model in which both processors and communication are asynchronous. (Neiger and
Toueg [NT] independently developed the same simulation, but they did not consider
faults, and they studied different problems).

A subtle point is determining exactly what is preserved by this transformation.
(Cf. [NT] for the fault-free case). Since a partially synchronous system and an asyn-
chronous system appear quite different when viewed externally, the behavior preserved
by this simulation is that which is observed locally by the processors. Thus~ the trans-
formation cannot be used in the asynchronous model to create simultaneous events
at remote processors, even though this is easy to do in the model with synchronous
processors and asynchronous communication.

It is also possible to design Lamport-like clocks for an asynchronous system that
tolerate some number, say f , of Byzantine faults. A common technique is to wait
until hearing from] ÷ 1 (or all but]) of the processors that time i has passed, before
setting one's clock to time i + 1. This type of clock imposes a round structure on an
asynchronous computation, and is used in some probabilistic agreement algorithms.
(See the article by Ben-Or in this book, and also [Be, St]).

Dwork, Lynch and Stockmeyer [DLS] solve the agreement problem in unreliable
models that lie somewhere between strictly asynchronous and synchronous. Their
algorithms use interesting discrete docks reminiscent of Lamport clocks, but more
complicated.

5 Partially Synchronous Reliable Models

Several researchers have considered a partially synchronous, reliable model in which
processors have real-time clocks that run at the same rate as real time, but are
arbitrarily offset from each other initially. In addition, there are known upper and
lower bounds on message delays. The goal is to prove limits on how closely clocks
can be synchronized (or, how close in time remote events can be synchronized). In a
completely connected network of n processors, Lundelius and Lynch [LL] show that
the (tight) lower bound is ~/(1 - l /n) , where n is the difference between the bounds

88

on the message delay. This work was subsequently extended by ttalpern, Megiddo
and Munshi [HMM] to arbitrary networks.

A version of the Lamport clocks algorithm for real-time clocks has been analyzed
ILl] in a different reliable, partially synchronous model, one in which clock drift rate
and message uncertainty are bounded, to obtain upper bounds on the closeness of
the clocks. Together with the results mentioned in the previous paragraph, we have
upper and lower bounds on closeness imposed by uncertainty in system timing.

Marzullo [M] also did some work in the same reliable, partially synchronous model
as ILl]. The key idea is for each processor to maintain an upper bound on the error
of its clock. This bound allows an interval to be constructed that includes the correct
real time. Periodically each processor requests the time from each of its neighbors.
As each response is received, the processor sets its new interval to be the intersection
of its current one with the interval received in response, after adjusting for further
error that could be introduced by message delays,

6 Partially Synchronous Unreliable Models

There has been much work done on the problem of devising fault-tolerant algorithms
to synchronize real-time clocks that drift slightly in the presence of variable mes-
sage delays [LM, M, WL, HSSD, MS, ST]. Although most of the algorithms are
simple to state, the analyses tend to be very complicated, and comparisons between
algorithms are difficult to make. The difficulty arises from the different assumptions,
some of which are hidden in the models, and from differing notations. There has been
some work by Schneider IS] attempting to unify all these algorithms into a common
framework and common proof. Our goal in this section is simply to describe some
of these algorithms and attempt some comparisons. First, though, we discuss the
assumptions, notations and goals.

6.1 Assumpt ions

Recall that n is the total number of processors in the system, and .f is the maximum
number of faulty processors to be tolerated. The required relationship between n
and f in order for the clock synchronization problem to be solvable depends on the
type of faults to be tolerated, the desired capabilities of the algorithm, and what
cryptographic resources are available, as we now discuss.

To overcome the problem in the case of Byzantine faults of deciding what message
a processor actually sent to some other processor, algorithms may use authentication.
The assumption customarily made for an authenticated algorithm is that there exists
a secure encryption system such that if processor A tells processor B that processor
C said X, then B can verify that X is precisely what C said.

Dolev, Halpern arid Strong [DHS] show that without authentication, n must be
greater than 3 f in order to synchronize clocks in the presence of Byzantine faults.

89

With authentication, any number of Byzantine faults can be tolerated.

The paper [DHS] also shows that without authentication~ the connectivity of the
network must be greater than 2 f in order to synchronize clocks in the presence of
Byzantine faults. (See [FLM] for simpler proofs of the lower bounds in [DHS]). Even
if authentication is used~ clearly each pair of processors must be connected by at least
f ÷ 1 distinct paths (i.e., the network is (f ÷ 1)-connected), since otherwise f faults
could disconnect a portion of the network. Some of the algorithms in the literature
assume that the network is totally connected~ i.e. every processor has a direct link
to every other processor in the network. In such a model a processor can poll every
other processor directly and does not have to rely on some processor's say-so as to
what another processor said. The assumption of total connectivity often results in
elegant algorithms, but it is~ unfortunately, an unrealistic assumption if the network
is very large. Consequently~ there are other algorithms that assume only that the
network has connectivity f ÷ 1 (and use authentication).

One assumption that all of the algorithms make is that the processors' real-time
(or hardware) clocks do not keep perfect time. We shall refer to the upper bound
on the rate at which processor clocks ~drifC frbm real time as p. In particular, the
assumption is usually made that there is a '~linear envelope" bounding the amount
by which a correct processor's (hardware) clock can diverge from real time. In the
formulations of this condition given below, C represents the hardware clock~ modeled
as a function from real time to clock time; u, v and t are real times. The papers
[HSSD, DHS, ST] use the following condition:

(v - + p) < c (v) - < - + p)

The paper [WL] uses the following (very similar) condition:
1/(1 + p) < dC()ld <<_ 1 + p

A necessary assumption is that there is a bound on the transmission delay along
working links, and that this bound is known beforehand. Two common notations for
transmission delay are TDEL, for the case in which one assumes that the transmission
time can be anywhere from 0 to TDEL, and 64-e, for the case in which the transmission
delay can be anywhere from 6 - e to 6 + e. Clearly, if 6 = e, then the two notations
are equivalent.

Some algorithms assume that the times of synchronization are predetermined and
known beforehand, while others allow a synchronization to be started at any time. If
the model allows for Byzantine faults, then a problem with the laissez-faire approach
to clock synchronization is that a faulty processor might force the system to constantly
resynchronize. Consequently, the deviation between docks will be small indeed, but
no other work will be completed by the system, because the clock synchronization
monopolizes the system resources.

A commonly made assumption is that messages sent between processors arrive in
the same order as that in which they were sent. This is not a limiting assumption~
since it can be implemented easily by numbering messages and by ignoring a message
with a particular number until after all messages with a smaller number have arrived.

Another common, but not essential, assumption is that in the initial state of the

90

system all the correct clocks start close together. Some of the papers present algo-
rithms to achieve this synchronization initially, although there are some subtle points
in switching from one of these start-up algorithms to an algorithm that maintains
synchronization.

6.2 Goals

The main goal of a dock synchronization algorithm is to ensure that the clocks of
nonfaulty processors never differ by more than some fixed amount, usually referred
to as DMAX or 7. This is sometimes called the agreement condition. Another
requirement sometimes imposed is the validity or accuracy condition, which is the
requirement that the clocks stay close to real time, i.e. that the drift of the clocks
away from real time be limited. Yet another common goal is that of minimizing the
number of messages exchanged during the synchronization algorithm.

In order to avoid unpleasant discontinuities, such as skipping jobs that are trig-
gered at fixed clock times, the size of the adjustments made to the clocks should
be small. Similarly, many applications require that the clocks never be set back.
The latter is not a serious constraint, thanks to known techniques for spreading the
adjustment over an interval (see paper by Beck, Srikanth and Toueg in this book).

It should be easy for a repaired processor or a new processor to synchronize its
clock with those of the old group of processors, a procedure called joining or reinte-
gration. If one wishes to implement a bounded join, that is, a join which is guaranteed
to be completed within an amount of time that has been previously determined, then
a necessary condition in the Byzantine model is that there be more synchronized
processors than processors that are trying to join, even if authentication is available
[HSSD].

A requirement that so far has been addressed only in [MS] is achieving graceful
degradation, ensuring that even if the bound on the number of faults is exceeded,
there are still some limits on how badly performance is affected.

Yet another possible goal is that the synchronization should not disrupt other
activities of the network, for instance by occurring too frequently, or requiring too
many resources. (See comments by Beck, Srikanth, and Toueg in this book about the
trade-off between accuracy and the priority of the synchronization routine).

6.3 Algorithms

We now briefly compare the algorithms of[LM, WL, HSSD, M, MS, ST]. The different
assumptions made by the authors are pointed out, and various performance measures
are discussed.

All the algorithms handle Byzantine processor faults, as long as n > 3f (except
where noted). They also all require that the processors be initially synchronized and
that there be known bounds on the message delays and clock drift. Finally, they

91

all run in rounds, or successive periods of resynchronization activity (necessitated by
clock drift). For the rest of this subsection, we divide the algorithms into two groups,
those that need a fully connected network, and those that do not.

The algorithms in [LM, WL, MS] assume a fully connected network. Since each
processor broadcasts at each round, n 2 messages are sent in every round.

At every round of the interactive convergence algorithm of [LM], each processor
obtains a value for each of the other processors' docks, and sets its dock to the
average of those values that are not too different from its own. The closeness of
synchronization achieved is about 2he (recall that e is the uncertainty in the message
delay). Accuracy is close to that of the underlying hardware clocks (although it is not
explicitly' discussed). The size of the adjustment is about (2n + 1)e. Reintegration
and initialization are not discussed in [LM].

The algorithm in [WL] also collects clock values at each round, but they are aver-
aged using a fault-tolerant averaging function based on those in [DLPSW] to calculate
an adjustment. It first throws out the f highest and f lowest values, and then takes
the midpoint of the range of the remaining values: Clocks stay synchronized to within
about 4e. The synchronized clock's rate of drift does not exceed by very much the
drift of the underlying hardware clocks. The size of the adjustment at each round
is about 5e. Superficially this performance looks better than [LM]; however in con-
verting between the different models, it may be the case that e in the [WL] model
equals ne in the [LM] model. The reason is that in the [LM] algorithm a processor
can obtain another processor~s clock value by sending the other processor a request
and busy-waiting until that processor replies, whereas in the [WL] algorithm a pro-
cessor can receive a clock value from any processor during an interval, necessitating
the processor to cycle through polling n queues for incoming messages (this argument
is expanded on in [LM]). This is an example of the many pitfalls encountered in com-
paring clock synchronization algorithms. Rejoining is easy, but can only happen at
resynchronization intervals, which are relatively far apart. A variant of the algorithm
works when clocks are not initially synchronized.

The algorithms of Mahaney and Schneider [MS] are also based on the interactive
convergence algorithm of [LM]. At each round, clock values are exchanged. All values
that are not close enough to n - f other values (thus are clearly faulty) are discarded,
and the remaining values are averaged. However, the performance is analyzed in
different terms, with more emphasis on how the clock values are related before and
after a simgle round, so agreement, accuracy, and adjustment size values are not
readily available for comparison. Reintegration and initialization are not discussed.
A pleasing and novel aspect of this algorithm is that it degrades gracefully if more
than a third of the processors fail.

The next set of algorithms (those in [M, HSSD, ST]) do not require a fully con-
nected network. Again, every processor communicates with all its neighbors at each
round, but since the network is not necessarily fully connected, the message complex-
ity per round could be less than O(n2). The estimates of agreement, accuracy, and
adjustment size presented in the rest of this subsection for these algorithms are made

92

assuming n = 3f + 1, and a fully connected network with no link failures, in order to
facilitate comparison (although, as mentioned above, the algorithms do not require
that these conditions hold).

Marzullo [M] extended his algorithm (discussed in Section 5) to handle Byzantine
faults without authentication by calculating the new interval in a more complicated,
and thus fault-tolerant, manner, and altering the clock rates, in addition to the clock
times. Since the algorithm's performance is analyzed probabilistically, assuming var-
ious probability distributions for the clock rates over time, it is difficult to compare
results with the analyses of the other algorithms, which make worst-case assumptions.

The algorithm of Halpern, Simons, Strong and Dolev [HSSD] can tolerate any
number of processor and link failures as long as the nonfaulty processors can still
communicate. However, the price paid for this extra fault tolerance is that authen-
tication is needed. When a processor's clock reaches the next in a series of values
(decided on in advance), the processor begins the next round by broadcasting that
value. If the processor receives a message containing the value not too long before
its clock reaches the value, it updates its clock to the value and relays the message.
The closeness of synchronization achievable is about 6 % e. By sending messages too
early, the faulty processors can cause the nonfaulty ones to speed up their docks,
and the slope of the synchronized clocks can exceed 1 by an amount that increases
as f increases. The size of the adjustment is about (~ + 1)(6 + e), again depending
on]. An algor i thm to reintegrate a repaired processor is mentioned; although it
is complicated, it has the nice property of not forcing the processor to wait possi-
bly many hours until the next resynchronization, but instead starting as soon as the
processor requests it. No system initialization is discussed. (In the revised version
of their paper [to appear], they present a simpler reintegration algorithm that joins
processors at predetermined fixed times that occur with much greater frequency than
the predetermined fixed standard synchronization times).

The algorithm of Srikanth and Toueg [ST] is very similar to that of [HSSD], but
only handles fewer than n /2 processor failures and does not handle link failures.
However, they can relax the necessity of authentication (if n > 3f). Agreement, as in
[HSSD] is about $ + e. Accuracy is optimal, i.e., is that provided by the underlying
hardware clocks. The size of the adjustment is about 3(~+e). There are twice as many
messages per round as in [HSSD] when digital signatures are not used. Reintegration
is based on the method in [WL]. A simple modification to the algorithm gives an
elegant algorithm for initially synchronizing the clocks.

7 R e l a t e d P r o b l e m s

Several interesting problems are related to that of synchronizing docks in unreliable
models. In the approzirnate agreement problem [DLPSW, MS, F] each processor
begins with a real number. The goal is for each nonfaulty processor to decide on a
real number that is close to the final real number of every other nonfaulty processor
and within the range of the initial real numbers. Solutions to this problem are used

93

in the clock synchronization algorithms of [WL] and [MS].

In Sections 3 and 5 we discussed the problem of achieving synchronized remote
actions in reliable models. If instead one considers unreliable models, the problem,
dubbed the Byzantine firing squad problem, becomes more difficult. Burns and Lynch
[BL] consider the situation in which the message delay is known, every processor's
clock runs at the same rate but the clocks are skewed arbitrarily, and Byzantine pro-
cessor faults are allowed. The algorithm they obtain can be thought of as simulating
multiple parallel instances of an agreement algorithm, one per real time unit, until
one succeeds. Since most of the time nothing happens, most messages sent are the
null message, similarly to Lamport's '~time vs. timeout" ideas [L2]. Coan, Dolev,
Dwork and Stockmeyer [CDDS] obtain upper and lower bounds for versions of this
problem that have other fault and timing assumptions.

Fischer, Lynch and Merritt [FLM] consider a class of problems including clock
synchronization, firing squad, and agreement in the synchronous unreliable model
with Byzantine processor faults and without authentication. They observe that all
feasible solutions to these problems have similar constraints. In particular, they
demonstrate why 3] + 1 processors and 2f + 1 connectivity is necessary and sufficient
to solve these problems in the presence of up to [Byzantine faults. (See the article
by the same authors in this book).

8 Future R e s e a r c h

We define the precision of a system as being the maximum difference in real time
between when any two clocks read the same clock time T. Clearly we want the pre-
cision to be as small as ppssible and bounded above by a constant. One interesting
open question is to determine what the trade-off is between precision and accuracy
(see Section 6.2). Is it possible to achieve optimal precision and optimal accuracy
simultaneously? What is the trade-off between precision and accuracy in terms of
messages exchanged?

Another open question is whether one can achieve an unbounded join (see Section
6.2) if at least half the processors are faulty. (Dolev has conjectured that this is
possible [D]).

No lower bounds on closeness of synchronization have yet been determined for the
case when clocks can drift and processors can fail. How does this situation compare
to a totally asynchronous system? What are minimal conditions that would allow
some sort of clock simulation in an asynchronous system? What would it mean to be
fault tolerant in such a model?

Finally, much work remains to be done to quantify the relationships between
different time, fault, and system models.

94

R e f e r e n c e s

[A]

[AFL]

[Be]

[BL]

[Br]

[CDDS]

[D]

[DDS]

B. Awerbuch, "Complexity of Network Synchronization," J. A CM vol. 32,
no. 4, pp. 804-823, 1985.

E. Arjomandi, M. Fischer, and N. Lynch, "Efficiency of Synchronous vs.
Asynchronous Distributed Systems," J. ACM, vol. 30, no. 3, pp. 449-456,
July 1983.

M. Ben-Or, "Another Advantage of Free Choice: Completely Asyn-
chronous Agreement Protocols," Proe. 2 "a Ann. A CM Syrup. on Principles
of Distributed Computing, pp. 27-30, 1983.

J. Burns and N. Lynch, "The Byzantine Firing Squad Problem," Advances
in Computing Research: Parallel and Distributed Computing, vol. 4, JAI
Press, 1987.

G. Bracha, "An O(log n) Expected Rounds Randomized Byzantine Gen-
erals Algorithm," Proc. 17 ~n Ann. A'CM Syrup. on Theory of Computing,
pp. 316-326, 1985.

B. Coan, D. Dolev, C. Dwork, and L. Stockmeyer, "The Distributed Firing
Squad Problem," Proceedings of the 17 ~h Ann. A CM Symp. on Theory of
Computing, pp. 335-345, May 1985.

D. Dolev, private communication.

D. Dolev, C. Dwork, and L. Stockmeyer, "On the Minimal Synchronism
Needed for Distributed Consensus," Y. ACM, vol. 34, no. 1, pp.77-97, Jan.
1987.

[DHS]

[DHSS]

[DLPSW]

[DLS]

[F]

D. Dotev, J. Halpern, and H. R. Strong, "On the Possibility and Impos-
sibility of Achieving Clock Synchronization," Journal of Computer and
System Sciences, vol. 32, no. 2, pp. 230-250, 1986.

D. Dolev, J. Halpern, B. Simons, and H. R. Strong, "A New Look at Fault-
Tolerant Network Routing," Information and Computation, vol. 72, no. 3,
pp. 180-198, March 1987.

D. Dolev, N. Lynch, S. Pinter, E. Stark, and W. Weihl, "Reoxhing Ap-
proximate Agreement in the Presence of Faults," J. ACM, vol. 33, no. 3,
pp. 499-516, July 1986.

C. Dwork, N. Lynch, and L. Stockmeyer, "Consensus in the Presence of
PartiM Synchrony," J. ACM, vol. 35, no. 2, pp. 288-323, 1988.

A. Fekete, "Asynchronous Approximate Agreement," Proc. 6 ~h Ann. A CM
Syrup. on Principles of Distributed Computing, pp. 64-76, Aug. 1987.

95

[FLM]

[FLP]

[HMM]

[ttSSD]

[L1]

[L2]

ILL]

[LM]

[M]

[MS]

[NT]

Is]

[ST]

[w]

M. Fischer, N. Lynch, and M. Merritt, "Easy Impossibility Proofs for
Distributed Consensus Problems," Distributed Computing, vol.1, no.l, pp.
26-39, 1986.

M. Fischer, N. Lynch, and M. Paterson, "Impossibility of Distributed Con-
sensus with One Faulty Process," J. ACM, vol. 32, no. 2, pp. 374-382,
1985.

J. Halpern, N. Megiddo and A. Munshi, "Optimal Precision in the Presence
of Uncertainty," Journal of CompIezity, vol. 1, pp. t70-196, 1985.

J. Halpern, B. Simons, R. Strong, and D. Dolev, "Fault-Tolerant Clock
Synchronization," Proe. 3 "a Ann. A CM Syrup. on Principles of Distributed
Computing, pp. 89-102, Aug. 1984:

L. Lamport, "Time, Clocks, and the Ordering of Events in a Distributed
System," C. ACM, vol. 27, no. 7, pp. 558-565, July, 1978.

L. Lamport, "Using Time Instead of Timeout for Fault-Tolerant Dis-
tributed Systems," Computer Networks, vol. 2, pp. 95-114, 1978.

J. Lundelius and N. Lynch, "An Upper and Lower Bound for Clock Syn-
chronization," Information and Control, vol. 62, nos. 2/3, pp. 190-204,
Aug./Sept. 1984.

L. Lamport and P. Melliar-Smith, "Synchronizing Clocks in the Presence
of Faults," J. ACM, vol. 32, no. 1, pp. 52-78, Jan. 1985.

K. Marzullo, Loosely-Coupled Distributed Services: A Distributed Time
Service, Ph.D. Thesis, Stanford Univ., 1983.

S. Mahaney and F. Schneider, "Inexact Agreement: Accuracy, Precision
and Graceful Degradation," Proc. 4 th Ann. ACM Syrup. on Principles of
Distributed Computing, pp. 237-249, Aug. 1985.

G. Neiger and S. Toueg, "Substituting for Real Time and Common Knowl-
edge in Asynchronous Distributed Systems," Proc. 6 fh Ann. A CM Syrup.
on Principles of Distributed Computing, pp. 281-293, 1987.

F. Schneider, "A Paradigm for Reliable Clock Synchronization," Proe. Ad-
vanced Seminar on Real-Time Local Area Networks, Bandol, France, April
1986.

T.K. Srikanth and S. Toueg, "Optimal Clock Synchronization," J. ACM,
vol. 34, no. 3, pp. 626-645, July 1987.

J. Lundelius Welch, "Simulating Synchronous Processors," Information
and Computation, vol. 74, no. 2, pp. 159-171, Aug. 1987.

96

[WL] J. Lundelius Welch and N. Lynch, ~A New Fault-Tolerant Algorithm for
Clock Synchronization," In]ormation and Computation, vol. 77, no. 1, pp.
1-36~ April 1988.

