
A Modular Proof of Correctness
for a Network Synchronizer,

A. F e k e t e 2

N. L y n c h ~

L. S h r i r a 4

Research Summary

Abstract: In this paper we offer a formal, rigorous proof of the correctness of Awerbuch's

algorithm for network synchronization. We specify both the algorithm and the correctness con-

dition using the I /O automaton model, which has previously been used to describe and verify

algorithms for concurrency control and resource allocation. We show that the model is also a

powerful tool for reasoning about distributed graph algorithms. Our proof of correctness follows

closely the intuitive arguments made by the designer of the algorithm by exploiting the model's

natural support for such important design techniques as stepwise refinement and modularity. In

particular, since the algorithm uses simpler algorithms for synchronization within and between

'clusters' of nodes, our proof can import as lemmas the correctness of these simpler algorithms.

1 O v e r v i e w

1.1 Verification methods and models

As computer science has matured as a discipline, its activity has broadened from writing programs

to include reasoning about those programs: proving their correctness and efficiency, and proving

bounds on the performance of any program that accomplishes the same task. Recently distributed

computing has begun to broaden in this way (albeit a decade or two later than the part of

computer science concerned with sequential, uniproeessor algorithms). There are several reasons

why particular care is necessary to prove the correctness of algorithms when the algorithms

'The work of the second author was supported in part by the Office of Naval Research under Contract N00014-

85-K-0168, by the Office of Army Research under contract DAAG29-84-K-0058, by the National Science Foundation

under Grants MCS-8306854, DCR-83-02391, and CCR-8611442, and by the Defense Advanced Research Projects

Agency (DARPA) under Contract N00014-83-K-0125. The work of the third author was supported by an H.T.I.

fellowship

2Department of Mathematics, Harvard University

SLaboratory for Computer Science, Massachusetts Institute of Technology

4Laboratory for Computer Science, Massachusetts Institute of Technology

220

are distr ibuted. First , human thought tends to operate sequentially, that is, we usually focus

our at tention on one aspect of a problem at a time. This leaves us vulnerable when examining

distr ibuted protocols, where activity is happening concurrently in several places in a system~ since

we can easily fail to consider the subtle interactions between different activities. For example,

unexpected race conditions can lead to unexpected (and wrong) behavior. Second, distributed

protocols are required to cope with a certain level of nondeterminism in the system, such as

variable message delays, variable processor speeds, or even processor failures, and humans find it

hard to deal with the exploding number of different possibilities.

For these reasons one is not surprised tha t there have been several cases where algorithms

were published (and implemented) that seemed reasonable, but were later found to be flawed.

A famous example is the ARPAnet routing algorithm. We believe that rigorously proving the

correctness of distr ibuted algorithms is an important task, especially for algorithms that are going

to be used as building blocks of other protocols. For example, when a distr ibuted leader election

protocol is used to choose a primary copy for a replicated relation in a distr ibuted database, any

uncertainty about the behavior of the leader election will propagate to undermine confidence in

the correctness of the entire database management system.

Despite the reasons presented above, most work in distr ibuted algorithms contains only in-

formal correctness arguments and still omits rigorous proofs of correctness for the algorithms

described. The claim is often heard that the formal techniques do not support intuition and the

proofs are too complex. Obviously, the complexity of the verification is related to the conceptual

complexity of the algorithm but it may also be heavily influenced by the choice of the specific

verification procedure.

Good tools for distributed systems analysis have been sought by many researchers for a long

time. Temporal logic (e.g. [MP], [HO]) and Floyd-Hoare-style methods (e.g. [OG]) are among the

best known and indeed have been used successfully to verify a number of distributed algorithms.

While the proofs using these methods do indeed demonstrate correctness of the algorithms, they

often do not help the reader to understand why the algorithms are correct. The reader can be

lost in the details of the step by step proof and lose the intuition and the global picture.

Partially, the problem stems from the fact that the reader faces the full gap between the low

level implementation and the high level specification of the problem. The designer of the algo-

r i thm, however, when conceiving the algorithm or explaining it, often first argues in terms of high

level activities that comprise the solution, and considers interaction between those. At subsequent

design steps those activities are ' implemented' by refining them in turn. Only at the final step

are activities of each node in the system fully specified. The method allows each refinement to

221

remain manageably simple. To keep the designer's intuition, ideally, the verification procedure

should follow closely the design process. That is, the proof should follow the refinements. The

verification procedure then would be structured so that the proof of each refinement could be sim-

ple enough and the processes of design and verification would be brought together. To support

the stepwise refinement described above, the verification method has to be hierarchical.

Another vital feature of verification procedures is exposed when the designer of the algorithm

wishes to change an implementation of some activity, for example for optimization reasons. This

obviously results in a new algorithm. Often though, the redesign of one activity does not affect

others. In such cases, the verification method should be able to guarantee that only the changed

part needs to be proved correct anew. That is, the verification method should be modular or

compositional. Compositionality in proofs would also naturally support the fundamental 'off the

shelf building block' technique in algorithm design as it allows the use of the correctness proof

of the 'building block' in the proof of the algorithm without the need to reexamine it. But we

must be particularly careful when considering the intuitive notion of modularity as referred to

by algorithm designers. It is too often discussed informally in terms of several pieces needed to

solve 'subproblems' although the sense of 'subproblem' is not precise. It is not obvious th&t the

pieces fit together in any precise sense, especially when concurrency is considered. And as the

algorithms that one tries to build become more and more complex, the lack of formal notion of

modularity becomes more and more of a problem.

The commonly known verification methods do not seem to support both hierarchical and mod-

ular reasoning in natural ways. Thus the invariant assertion method allows hierarchical stepwise

reasoning, but offers poor support for modularity when distributed systems are concerned. The

proofs in temporal logic on the other hand, are composable but leave a large gap between the

implementation and the specification.

In this paper we will prove the correctness of a network algorithm using the I/O automaton

model. The model was introduced by Lynch, Merritt and Tuttle in [LM] and [LT], and it naturally

supports both hierarchical and modular reasoning. From our experience with this model, we feel

that it enables one to provide rigorous proofs of correctness that follow closely the informal

arguments used by the designers of distributed algorithms to explain their work. We describe

specifications, intermediate refinements and algorithm as I /O automata, and then show that

one ' implements' another. Also, the model includes a natural notion of composition of two

automata, that corresponds to the combined use of two algorithms, and its formal semantics are

compositional, in that the behavior of the composition can be deduced from the behavior of all

the component automata.

222

An example of hierarchical reasoning in the model can be found in [LT] where it was used to

verify correctness of a distributed resource arbiter. The modularity property of the model was

exploited in IWl] to deduce correctness of an n-processor mutual exclusion algorithm, from the

correctness of an arbitrary 2-process mutual exclusion algorithm, which is used as a subroutine

within the main algorithm. The model has also been successfully applied to describe and verify

a number of algorithms for concurrency control, recovery and replication management in nested

transaction systems, for example [LM],[FLMW],[GL],[HLMW]. In these, the model's features are

used to capture formally some intuitions of system designers, such as ' the correctness of replication

management only needs to proved in a serial system, as the correctness of concurrency control

for the replicas will then ensure that the replication algorithm is correct in a concurrent system'.

In this paper we demonstrate the ease with which the model allows one to prove the correctness

of a network algorithm that uses a superposition of two different algorithms operating concurrently

to accomplish almost independent subgoals, using claims that express formally the correctness of

the subalgorithms.

1 . 2 O u r p r o o f

The algorithm whose correctness we prove in this paper is a distributed protocol for network

synchronization. In designing algorithms to solve problems in a distributed computing environ-

ment, it is important to understand the assumptions being made about the processors and the

network connecting them. If fewer assumptions are made, it is more likely that they will be

satisfied by the hardware available, but it is harder to find algorithms that work correctly when-

ever the assumptions are satisfied. For example, most networks do not offer reliable bounds on

the time a message takes to arrive, so it is important to find algorithms that work correctly in

an asynchronous system, but it is very much easier to design algorithms if the network is syn-

chronous. Awerbuch ([Awl) proposed the use of a synchronizer that would enable one to convert

any synchronous graph algorithm into an algorithm that performs correctly in an asynchronous

(but failure-free) network. Using a synchronizer in this way has proved a successful methodology

for solving asynchronous problems in efficient ways ([Aw2]).

In [Awl, a synchronizer (called ~ in that paper) is constructed for a network whose topology is

any fixed connected graph provided with a spanning forest subgraph, and a distributed technique

is given for finding a spanning forest subgraph for which the resulting algorithm has low time and

message complexity. The synchronization algorithm given is, however, asserted to be correct for

any spanning forest subgraph. The algorithm is derived as a superposition of a simple synchro-

223

nizer (called fl) executing within each 'cluster ' (a connected component of the spanning forest

subgraph), and another simple synchronizer (called a) that synchronizes between the clusters.

This description helps to explain the detailed algorithm, but no formal proof of correctness is

offered in law]. We provide a formal account of an algorithm closely based on Awerbueh's, and

rigorously prove results about its correctness. The proof of correctness is modular and hierar-

chical. It closely follows the outline of the informal arguments of law], by building on claims

that express formally the correctness of algorithms a and 13. Since these results have also not

been formally proved before, the full version of this paper includes such proofs for the sake of

completeness.

Our account of the synchronizer is given as follows. Firs t we provide a top level specification

for any network synchronizer by giving a single I /O automaton S that uses global information

about the system. Then we present the ~/algorithm itself, as a system DistSysS of I /O automata,

including one for each node of the graph with access only to local information and communicating

only along the edges of the graph. As this algorithm is a superposition of two algorithms a and 8,

following Awerbuch's informal reasoning we divide each node-automaton into two automata , one

containing the state and operations contributing to intercluster synchronization and the other

containing the state and operations contributing to the intracluster synchronization. The two

components do not interact at all, except when the node is the root (' leader') of its cluster.

In the language of our model, to verify the correctness of the algorithm we need to prove that

the system DistSysS of I /O automata implements the specification automaton S. We proceed in

the proof by refining the global specification according to Awerbuch's intuitive construction and

defining for each refinement the corresponding correctness claim that needs to be proved, until

the level of node algorithms is reached. We s tar t with the global specification S (see Fig. 1) and

refine it following the construction in law] by a system SysS that consists of one automaton SL for

each cluster, specifying the intracluster synchronization behavior, and also a single coordinator

automaton CS that specifies intercluster synchronization (see Fig. 2). The correctness claim for

this refinement is that all executions of the composed system SysS are acceptable behaviors of

the global specification S.

In the above refinement, automaton SL provides a specification for the intracluster synchro-

nization. According to [Aw] the intracluster synchronization is implemented by algorithm 8.

Thus, we further refine the intermediate specification SL by the distr ibuted specification SysSL

(see Fig. 3), that models the synchronizer fl (a simple synchronizer using communication over a

tree). The specification includes a separate node automata NDSL for each node in a cluster and

a special automaton LESL for the leader, as well as an automaton LISL to represent each link.

224

OK(p,i).

GO(p, i)

S(G)
OK(q,i).

GO(q,i) ~

I

Figure 1: S(G)

The correctness claim for this refinement is in fact established by the correctness proof for the

algorithm 8. If it were already carried out in our model, we could use it here as is.

Next, we consider the specification for the global intercluster synchronization coordinator CS.

In lAw] it is implemented by a distributed algorithm ~x, in which each cluster is a participant.

Thus we refine the global coordinator specification CS with a distr ibuted one SysCS (see Fig. 4),

where clusters are modeled by automata CLCS that interact according to algorithm ~ (a simple

synchronizer, using all the edges of the graph). Thus, the correctness claim of this refinement is

established by the correctness proof of algorithm a. Here again the proof could be imported if it

were available in the model.

Finally we consider the behavior of a cluster participating in a, which is specified by automaton

CLCS. Following law] we refine it by a distributed specification SysCLCS that specifies for each

node in a cluster its behavior contributing to the cluster 's part in algorithm ~x. This is done by

giving a node automaton NDCS for each non-leader node in a cluster and a leader automaton

LECS for the leader node, as well as automata LICS for the links (see Fig. 5). The correctness

claim for this refinement then requires a proof that the the composed system SysCLCS implements

the cluster specification CLCS. This is the last claim for the correctness proof of the network

synchronizer. It is due to the support for modulari ty and hierarchical reasoning provided by the

model of [LT], that the results described are sufficient to establish tha t the detailed node level

specification DistSysS correctly implements the high level specification S.

The above discussion has dealt with the safety properties of the algorithm. In the full paper

we also give proofs of the liveness and complexity analysis of the algorithm, by reasoning directly

about executions of the detailed system.

225

OK(q,i) ~ "~'~
.GO(q,i)

SL(D)

~ j

OK(p,i)(~ - ~

GO(p,i)t

OK(p',i)] SL(C)

GO(p',i)

CLUSTEROK(D,i)

CLUSTERGO(D,i)

CLUSTEROK(C,i)

CLUSTERGO(C,i)

CS

Figure 2: SysS(G)

226

L • .
.~ CLUSTEROK(C,i)

SL(~cLUSTERGO(C,i)

,,)
:q,i)

Figure 3: SysSL(C)

227

send(C,

Figure 4: SysCS

228

CLUSTEROK (C,i)_IT.~., ~'~
CLUSTERGO(C,i) ~ C S (~

CLUE q)
(q,i)

R]

rec(s,p)
CLUSTERSAI

t,P')
SAFE(q,i)

Figure 5: SysCLCS(C)

229

This paper shows how the properties of the I /O automaton model enable us to capture formally

some of the important intuitions used in designing algorithms. We believe that with this model,

it will not be difficult to prove the correctness of other algorithms whose design was guided by

these principles of stepwise refinement and modularity. We also hope that the insights into the

precise nature of modularity that are gained from this formalization will be useful to the algorithm

designers themselves.

2 I /O Automata

The following is a brief introduction to a model that is proving useful for describing and reasoning

about distributed systems. The model is developed at length, with extensions to express fairness

properties, in [LT], where proofs can be found of many of the claims made here.

All components in our system will be modeled by I /O automata. An I /O automaton ~ has

a set of states, some of which are designated as initial states. It has operations, each classified

as either an input operation or an output operation, or an internal operation. Finally, it has a

transition relation, which is a set of triples of the form (s',r,s), where s' and s are states, and r

is an operation. This triple means that in state s', the automaton can atomically do operation

r and change to state s. An element of the transition relation is called a step of the automaton.

The output operations are intended to model the actions that are triggered by the automaton

itself, while the input operations model the actions that are triggered by the environment of

the automaton. Internal operations are used to model communication within the automaton

(when we form an automaton from components, this will include communication between pieces

of the automaton). We will always give the transition relation of an automaton by giving pre-

and postconditions for each operation r . We give the preconditions as predicates depending on

s', and the postconditions as predicates depending possibly on both s' and s. These are to be

understood as saying that (s',r,s) is in the transition relationship exactly when the preconditions

are true of state s' and the postconditions are true of s' and s.

Given a state s' and an operation lr, we say that ~r is enabled in s' if there is a state s for which

(s',~r,s) is a step. We require the following condition.

I n p u t C o n d i t i o n : Each input operation ~r is enabled in each state s'.

This condition says that an I /O automaton must be prepared to receive any input operation at

any time. This is reflected in the fact that input operations have empty preconditions.

An execution of A is a (finite or infinite) alternating sequence s0,~rl, Sl,~r2,...,rn,Sn,... of states

and operations of 4, beginning with a state, and (if finite) ending with a state. Furthermore, s o

230

is a start state of ~{, and each triple (s',~r,s) that occurs as a consecutive subsequence is a step of

A. From any execution, we can extract the schedule, which is the subsequence of the execution

consisting of operations only. Because transitions to different states may have the same operation,

different executions may have the same schedule. We say that a schedule ~ of ~ can leave ~ in

state s if there is some execution of A with schedule a and final state s. We say that an operation

~r is enabled after a schedule ~ of A if there exists a state s such that ~ can leave ~ in state s and

is enabled in s.

Given a schedule ~ of automaton A, we define the corresponding external schedule ext(~) to

be the subsequence of ~ consisting of those events that are occurrences of output operations or

input operations (that is, we form ext(c~) by removing from ~ the internal operations). We define

the behavior of 4, beh(~), to be the set of all sequences that are external schedules of A. Formally,

beh(~l) = {ext(c~) : ~ is a schedule of A). If ~ and B are I /O automata, we say that B implements

A if .4 and B have the same output and input operations, and beh(B) c beh(A). The intuitive

meaning of this is that B can be safely used for any task for which ~/is satisfactory. It is clear that

implementation is transitive, that is, if B implements A and C implements B then C implements

4. When B implements ~ and ~ implements B, then we say that ~ and B are equivalent.

We describe systems as consisting of interacting components, each of which is an I /O automa-

ton. It is convenient and natural to view a system itself as an I/O automaton. Thus, we define a

composition operation for I /O automata, to yield a new I/O automaton. A set of I /O automata

may be composed if, for each component ~ the set of internal operations of .~ is disjoint from

the set of all operations of the other components, and in addition, the sets of output operations

of the various automata are pairwise disjoint. A state of the composed automaton is a tuple of

states, one for each component, and the start states are tuples consisting of start states of the

components. The operations of the composed automaton are those of the component automata.

Thus, each operation of the composed automaton is an operation of a subset of the set of compo-

nent automata. An operation is an output of the composed automaton exactly if it is an output

of some component. An operation of the composed automaton is an internal operation exactly

if it is an internal operation of some component. An operation of the composed automaton is

an input operation exactly if it is not an output or internal operation of any component. (The

output operations of a system are intended to be exactly those that are triggered by components

of the system, while the input operations of a system are those that are triggered by the system's

environment.) During an operation r of a composed automaton, each of the components that has

operation ~r carries out the operation, while the remainder stay in the same state.

An execution or schedule of a system is defined to be an execution or schedule of the automaton

231

composed of the individual automata of the system. If a is a schedule of a system with component

4, then we denote by ~[.~ the subsequence of a containing all the operations of 4. Clearly, a l~

is a schedule of .~. The following temma expresses formally the idea that an operation is under

the control of the component of which it is an output.

L e m m a 1 Let a t be a schedule of a system $, and let a = ~tTr, where ~r is an output operation

of component 4 . f f a I ~ is a schedule of 4, then c~ is a schedule of S.

We now give the lemma that states that implementation is a compositional property. This is

a major reason why modeling algorithms by I /O automata permits modular proofs of correctness.

L e m m a 2 Suppose the automaton ~ is the result of eompoMng ~i , and B is the result of com-

posing B i. I f B i implements A i for each index i, then B implements 4.

When we consider a system composed of several components, we are often not interested in the

internal working of the system, and so we wish to ignore the operations that model communication

between the components. We therefore introduce the hiding transformation. If ~I is an automaton

and ~r an output operation of .4, then the result of hiding r in .~ is the automaton with the same

states, operations and transition relation as .~, but with r classified as an internal operation

instead of an output operation. Note that the schedules of the automaton after hiding are exactly

the same as the schedules of the original automaton, but the behavior, which is involved in

proving implementation, has changed. Clearly if r is an operation of exactly one component of

a system, the Yesult of hiding ~r in that component and then composing the automata, is the

same as composing the automata and then hiding r in the composition. We also introduce the

transformation that renames an operation of an automaton. So long as the renaming is done

consistently throughout a system of automata, and the new name is not already used for any

operation of any component, then the result of renaming an operation and then composing is the

same as the result of composing and then renaming. Finally we observe that renaming an internal

operation of an automaton, as long as the new name is not already used for an operation of the

automaton, does not alter the behavior of the automaton.

2.1 D i s t r i b u t e d So lut ions

We will use I /O automata to model both a global specification of the synchronizer, and the local

components of the distributed solution that we will give. Since the fundamental composition

mechanism described above is the simultaneous occurrence at several automata of an operation,

we have to be careful when modeling asynchronous communication. For example, it would not

232

be appropriate to have message passing as a single operation, shared by sender and receiver.

Instead we give explicit automata to represent the communication links~ just as we give an explicit

automaton to represent each node. Sending a message is an operation that occurs simultaneously

at the sender and the link. Similarly, receipt of a message is a shared operation between the

link and the recipient. We use nondeterminism within the automaton for the link to capture the

asynchrony of the communication network. Thus, we model an asynchronous unidirectional link

from p to q, conveying messages from the set ~ , by the following automaton.

Link Automaton: LIA{ (p,q)

Inputs:

send(p,q)M for M E Ai

Outputs:

rec(p,q)M for M E At

state:

multiset contents, initially empty

transitions:

send(p,q) M

Postconditions

s.contents -- s'.contents U M

rec(p,q) M

Preconditions

M E s'.contents

Postconditions

s.contents -- s'.contents - M

Suppose we are given a distributed problem. This will be specified by an automaton whose

schedules are acceptable behaviors for a solution, together with a graph G describing the topology

of the network on which a solution has to run, and an assignment loeale~ that gives for each

operation of the specification automaton the node of the network at which it occurs. We now

define what it means to say that a system of automata provides a distributed solution to this

problem. This means that the automaton that results from composing the members of the system

233

and then hiding all operations that are not operations of the specification, is an implementation

of the specification in the sense of the previous section, and in addition, the system satisfies the

following conditions:

1. The system consists of an automaton NODE(p) for each node p of the graph, together with,

for each edge (p,q) of the graph G, two link automata LI(p,q) and LI(q,p) as given above

for a suitable choice of message set.

2. For each operation ~r of the system, either there is a node p such that ~r is an operation

of the node automaton NODE(p) (and no other component), or there are nodes p and q

so that ~" is an input of NODE(p) and an output of LI(q,p) (and an operation of no other

component), or there are nodes p and q so that r is an output of NODE(p) and an input

of LI(p,q) (and an operation of no other component).

3. Each operation ~r of the specification automaton is an operation of NODE(p), where p=locale(~r)

is the node to which the operation is assigned, and of no other component.

3 The A l g o r i t h m

The algorithm will run on a network whose topology is given as a connected graph G, described

by giving for each node p a set of nodes neighbors(p). The nodes are partitioned into clusters,

so that each cluster is connected. Each cluster's subgraph has a distinguished rooted spanning

tree. This data is given as follows: for each cluster C there is a node leader(C), and for each node

p E C there is another node parent(p), which is the next node on the path to leader(C). If p =

leader(C) then parent(p) = nil. We let children(p) denote the set of nodes q such that parent(q)

= p. We say that cluster D is a neighbor of cluster C, written D E Neighbors(C), if there are

nodes p and q with p E C, q E D, and q E neighbors(p). For each pair of neighboring clusters,

a single distinguished 'preferred' edge is chosen between them. This is indicated by giving for

each node p a set preferred(p) of nodes that are neighbors of p along preferred edges. We say

that a node is special if any of its descendants in the tree (that is, itself, or its children, or its

children's children, etc.) have neighbors along preferred edges. We let specialchildren(p) denote

the subset of children(p) containing special nodes. Thus when there are at least two clusters, the

special nodes form the least subtree of a cluster's tree that has the same root and contains all the

endpoints of preferred edges.

234

3 . 1 T h e U s e o f t h e S y n c h r o n i z e r

We briefly discuss the architecture of the context in which the synchronizer is placed, and show

how I/O automata can be used to model all the pieces of such a system. At each node of the

asynchronous network is a proccess that executes the code for a graph algorithm in a synchronous

system. We model the process at node p by an I /O automaton CLIENT(p), whose operations

are synch-receive(p,i)~/ and synch-send(p,i)~, where 3/ is a collection of messages tagged with

source or destination information. Round i of the synchronous algorithm at node p is begun when

the automaton CLIENT(p) receives an input operation synch-receive(p,i))7, where the messages

in the set M are those that were included with destination p in the sets of messages in preceding

synch-send(q,i-1) operations. When the node has finished local processing of these messages,

it performs an output operation synch-send(p,i)~V I for a new set of messages and destinations.

Different synchronous algorithms will be described by different I /O automata, and we do not

constrain the choice except by simple syntactic conditions, such as requiring each p not to perform

a synch-send(p,i) operation unless a synch-receive(p,i) operation had occurred earlier, and not to

perform a synch-send(p,i) operation if a synch-send(p,i) operation had already occurred.

At each node of the network there is also a process that uses the asynchronous communication

system to transmit the messages of the client algorithm, and also to send and receive acknowl-

edgements for such messages. This process has the responsibility of notifying the synchronizer

when all the round i messages of the client algorithm have been acknowledged, and it must also

delay delivering the collected client algorithm round i messages until the synchronizer has given

permission for the start of round i + l at that node. We model this process at node p by an

I /O automaton FRONT-END(p). The operations of CLIENT(p) include synch-send(p,i)~V and

synch-receive(p,i)~/, which are shared with CLIENT(p). FRONT-END(p) also has operations

send(p,q)M(i), rec(q,p)M'(i), send(p,q)ACK-M'(i), and ree(q,p)ACK-M(i), where M and M' are

round i messages of the client algorithm. These operations are shared with link automata between

p and q. Finally the interaction with the synchronizer is modelled by input operations GO(p,i),

which indicate that all round i-1 messages being sent to p have already arrived (and that therefore

they can be bundled into a set and delivered to the client algorithm at any time once the client

has finished round i-l), and by output operations OK (p,i), which indicate to the synchronizer that

acknowledgements have been received at p for all round i messages of the client algorithm that

were sent from p. The full version of the paper includes a complete definition for the front-end

automata.

In the next section we wilt give a specification synchronizer automaton S(G), which uses

235

CLIENT(q)

CLIENT(p) I
t

~_ynch-receive(q,i) A/'I FRONT~ OK(q,i).
[END(q)/"GO(q'i)

send(q,p)ACK-M(i) ~ee(p,q)M(i)

LI(q,p) ~I(p,q)

rec(q,p)ACK-M(send(p,q)M(i)

~ OK(p,i)_
FRONT GO(p,i) END(p) /

synch-send(p,i) A/

S(G)

Figure 6: The whole system

236

global information about the OK(q,i) operations at all nodes to determine when to perform

GO(p , i+ l) . In particular, S(G) does not perform GO(p , i+ l) until OK(q,i) has occurred for

all q E neighbors(p). When S(G) performs GO(p , i+ l) , every neighbor of p has received an

acknowledgement for every round i message sent. In particular, acknowledgements have been

received for every round i message sent to p, and therefore every such message must have arrived

at p. Thus FRONT-END(p) will correctly deliver to CLIENT(p) all the round i messages in

the synch-receive(p,i+l) operation. It is straightforward to use the techniques of [LM] to turn

this argument into a formal proof that the system illustrated behaves (as far as each CLIENT

automaton can tell) just like a synchronous system, that is, one in which the clients share their

operations with a single communication system automaton, that accepts collections of messages in

synch-send input operations from all nodes, sorts out the destinations appropriately, and bundles

the messages and delivers them in synch-receive output operations after all client nodes have

finished the previous round. In this paper, we concentrate on the problem of showing that

a complicated but distr ibuted synchronizer implements the simple but centralized specification

synchronizer, where we illustrate the I /O automata model 's support for compositional modularity.

3 . 2 S p e c i f i c a t i o n

We give a single specification automaton S(G), called a synchronizer for the graph G. This has an

input operation OK(p,i), which is an indication from the front-end at node p that every message

it sent in round i has arrived at its destination. When every neighbor q of a node p has issued

its OK(q,i-1) operation, the synchronizer can issue an output operation GO(p,i), which indicates

to the front-end at node p that it can commence round i of the synchronous algorithm as soon

as the client has finished its local processing for round i- l , since there can be no more round i-1

messages in transit to p.

Synchronizer: S(G)

Inputs:

OK(p,i) for p E G, i positive

Outputs:

GO(p,i) for p E G, i positive

State:

array OKrec[p,i], initially all false

array GOsentIp,i], initially all false

237

transitions:

OK(p,i)

Postconditions

s.OKrec[p,i] -- true

CO(p,i)

Preconditions

i = 1 or (s'.OKrec[q,i-1] = true for all q E neighbors(p))

i = 1 or s'.GOsent[p,i-1] = true

s'.GOsent[p,i] = false

Postconditions

s.GOsent[p,i] = true

3 .3 T h e D e t a i l e d D i s t r i b u t e d A l g o r i t h m

We now give the distributed solution that is closely based on Awerbuch's algorithm "7, translated

into the I /O automaton model. We give an automaton ND(p) for each node p of the graph that

is not a leader of a cluster, and an automaton LE(C) for the leader of each cluster C. We also give

link automata for each edge of the graph G. The detailed code is given in Appendix I, together

with an account of the relationship between it and the code in [AwI.

To help the reader understand the algorithm, we give an informal account, paraphrasing lAw],

of the low level working of the system. Once a node p that is a leaf of its duster 's tree has received

the OK(p,i) input operation (indicating that the node is safe, that is, every message that node

sent in the i-th round has been received) p sends a SAFE(p,i) message to its parent in the tree.

Any node p that is not a leaf nor the leader sends a SAFE(p,i) message to its parent only after it

has both received the OK(p,i) input and also received SAFE(q,i) messages from all its children.

Thus SAFE(p,i) is not sent until every node in the tree that is a descendant of p is safe. This

pattern of communication, with a node passing a message to its parent only after receiving it from

all its children, is a common paradigm in distributed graph algorithms, and is called convergecast.

When the leader of cluster C has received SAFE(q,i) messages from all its children q, and also is

known to be safe itself (that is, has received OK(p,i)), it issues the CLUSTEROK(C,i) operation.

Once CLUSTEROK(C,i) has occurred, intercluster synchronization begins. The leader sends

238

each of its special children a CLUSTERSAFE(p,i) message. In addit ion it sends CLUSTER-

SAFE(p,i) messages over any preferred edges that originate at the leader. Each node p in the

tree, after receiving a CLUSTERSAFE(q,i) message from its parent q, sends CLUSTERSAFE(p,i)

to its special children, and also along any preferred edges. Thus the CLUSTERSAFE messages

are broadcast over the subtree of special nodes (this is another s tandard communication pat-

tern), and are also sent to neighboring trees. The cluster C uses a convergecast of READY(p,i)

messages (over the subtree containing only special children) to detect the fact that CLUSTER-

SAFE(q,i) messages have been received from all neighboring trees along preferred edges. When

the leader of the cluster has received READY(q,i) from each of its children, and also has received

CLUSTERSAFE(q' , i) along any preferred edges that go directly from the leader to neighboring

trees, it issues the CLUSTERGO(C, i+I) operation, which indicates the completion of intercluster

synchronization for cluster C.

Once the CLUSTERGO(C, i+I) operation has occurred, and also the whole cluster is known

to be safe (because the leader has received SAFE(q,i) messages from all its children, and also it

has received OK(p,i) itself) the leader p can issue GO(p , i+ l) (informing node p tha t the next

round can begin) and it can also send PULSE(p, i+I) messages to each of its children. The

PULSE(p , i+I) messages are broadcast over the tree, and when they arrive at each node, that

node is able to issue the GO(p , i+ l) operation.

We claim tha t the collection of automata, consisting of all the automata LE(C) for all C,

ND(p) for all non-leader nodes p, and LI(p,q) for all p and q such that (p,q) is an edge of G,

is a distr ibuted solution to the problem specified by the automaton S(G), the graph G, and the

requirement that the operations GO(p,i) and OK(p,i) be assigned to node p. Since it is clear that

the system is properly distr ibuted, all that remains is to show tha t the automaton DistSysS(G),

the result of composing the automata and then hiding all operations except GO(p,i) and OK(p,i),

implements S(G). This will be done in Theorem 10.

4 T h e Ver i f i cat ion

We now begin the process of verifying that the algorithm given implements the specification. First

we divide the code at each node into two pieces, containing the operations and state relevant to

inter- and intracluster synchronization, respectively. Then we give the specification SL for an

intracluster synchronizer, and remark that the actual code gives an implementation of this using

algorithm ft. Similarly we note that the collection of automata doing intercluster synchronization

in one cluster implements the representative CLCS. In turn, CLCS acts as the whole cluster

239

should, as a piece contributing to intercluster synchronization using algorithm a. Then we give

the specification of the coordinator CS, which represents intercluster synchronization, and note

that algorithm a is a correct implementation of this. We prove formally that the combination of

CS with the automata SL(C} implements the specification S, that is, that synchronization can

be achieved by combining intra- and intercluster synchronization. Finally we combine all these

results to see that the distributed algorithm ~ as described by the detailed code implements the

global specification S.

Although the subsidiary claims are given here in a particular bottom-up order, we note that

these results are independent, and could be carried out separately and in any order, or even

imported from other work (if available).

4 . 1 T h e D i v i s i o n b e t w e e n I n t e r - a n d I n t r a c l u s t e r A l g o r i t h m s

Following Awerbuch's informal correctness arguments, we will regard the activity of the system

as consisting of both inter- and intracluster synchronization. The messages CLUSTERSAFE(p,i)

and READY(p,i) are used for intercluster synchronization, while the messages SAFE(p,i) and

PULSE(p,i), as well as the operations OK(p,i) and GO(p,i) are part of intracluster synchroniza-

tion. The operation CLUSTEROK(C,i) serves to communicate from the intracluster synchronizer

to the intercluster synchronizer, while CLUSTERGO(C,i) communicates the other way. Thus we

give two sets of automata: NDCS(p), LECS(C) and LICS(p,q) to represent the intercluster syn-

chronization, NDSL(p), LESL(C) and LISL(p,q) to represent the intracluster synchronization.

The detailed code can be found in the full version of this paper, as it is extremely similar to the

code of the full algorithm. Essentially we divide the operations, state variables and transition

relationships of ND(p) between NDCS(p) and NDSL(p) so that each gets the operations, state

variables and transitions relevant to its own part of the synchronization. Similarly we divide

LE(C) into LECS(C) and LESL(C), and LI(p,q) into LICS(p,q) and LISL(p,q).

It is clear that the composition of the automata NDCS(p) and NDSL(p) is equivalent to the

automaton ND(p). The only difference, in fact, is that the composition has two multisets for out-

going messages, while ND(p) has only one multiset buffer. Similarly the composition of LECS(C)

and LESL(C) is equivalent to LE(C), and the composition of LICS(p,q) and LISL(p,q) is equiv-

alent to LI(p,q). Therefore DistSysS(G) is equivalent to DistSysS(G)', the result of composing

all the automata mentioned in this subsection, and then hiding all the operations except GO(p,i)

and OK(p,i). Our task will thus be to prove that DistSysS(G)' implements S(G).

240

4 . 2 A n I n t r a c l u s t e r S y n c h r o n i z e r

The collection of automata that perform intracluster synchronization for a cluster C use algorithm

8. The combined activity of these automata is to synchronize the cluster, and in addition to inform

the intercluster synchronizer (via CLUSTEROK(C,i)) when the whole cluster is safe, and to delay

the GO(p,i) at any node until all neighboring clusters are known to be safe. (The intercluster

synchronizer reports this by CLUSTERGO(C,i).) Thus the behavior of the cluster as a whole can

be specified by the following automaton:

Modified Synchronizer for eluster C: SL(C)

(This is a slightly modified synchronizer specified, with extra operations that interact with the

intercluster synchronizer.)

Inputs:

OK(p,i) for p E C, i positive

CLUSTERGO(C,i) for i positive

Outputs:

GO(p,i) for p E C, i positive

CLUSTEROK(C,i) for i positive

State:

array OKrec[p,i], initially all false

array GOsent[p,i], initially all false

array CLUSTEROKsent[i], initially all false

array CLUSTERGOrec[il, initially all false

transitions:

OK(p,i)

Postconditions

s.OKrec[p,i] = true

CLUSTERGO(C,i)

Postconditions

s.CLUSTERGOrec[i] = true

GO(p,i)

241

Preconditions

i = 1 or (s'.OKrec[q,i-1] -- true for all q E Neighbors(p) N C)

i = 1 or s'.GOsent[p,i-1] = true

s'.CLUSTERGOrec[i] = true

s'.GOsent[p,i] = false

Postconditions

s.GOsent[p,i] = true

CLUSTEROK(C~i)

Preconditions

s'.OKrec[p,i] = true for all p E C

s'.CLUSTEROKsent[i] = false

Postconditions

s.CLUSTEROKsent[i] = true

In order to express formally the fact that the algorithm ~ is correct, we let SysSL(C) denote

the result of composing the automata LESL(C), NDSL(p) for all p E C except leader(C), and

LISL(p,q) for all p and q so that (p,q) is an edge of G and both p and q are nodes of C, and then

hiding all the operations that are not operations of SL(C). Then we have the following lemma,

whose proof is found in the full version of this paper.

L e m m a 3 SysSL(C) implements SL(C).

4 . 3 A C l u s t e r R e p r e s e n t a t i v e f o r I n t e r c l u s t e r S y n c h r o n i z a t i o n

In giving his informal account of this algorithm, Awerbuch refers to the intercluster synchroniza-

tion being performed by using algorithm a between the clusters. Thus, we give, for each cluster

C, an automaton that specifies the activity of the whole cluster as a participant in intercluster

synchronization, using algorithm a. Thus the cluster sends messages to its neighbors once it has

heard (from CLUSTEROK(C,i)) that the cluster is safe, it receives messages from its neighbors

indicating that they are safe, and performs CLUSTERGO(C,i) once all the neighboring clusters

are known to be safe.

Cluster representative: CLCS(C)

Inputs:

242

CLUSTEROK(C, i) for i a number

rec(D,C)CLUSTERSAFE(D, i) for D • Neighbors(C), i positive

Outputs :

CLUSTERGO(C, i) for i positive

send(C,D)CLUSTERSAFE(C, i) for D • Neighbors(C), i positive

state:

array CLUSTERGOsent[i] , init ially all false

array CLUSTERSAFErec[D,i] , initially all false

mult iset mess, init ially empty

transi t ions:

CLUSTEROK(C, i)

Postcondit ions

s.mess = s ' .mess U {(C,D)CLUSTERSAFE(C, i) : D • Neighbors(C)}

rec (D,C)CLUSTERSAFE (D,i)

Postcondit ions

s .CLUSTERSAFErec[D,i] = true

CLUSTERGO(C, i)

Precondit ions

i -- 1 or (s ' .CLUSTERSAFErec[D,i-1] ---- t rue for all D E Neighbors(C))

i = 1 or s ' .CLUSTERGOsent[i] = true

s ' .CLUSTERGOsent[i] = false

Postcondit ions

s .CLUSTERGOsent[i] ---- t rue

send(C,D) CLUSTERSAFE(C, i)

Precondit ions

(C,D)CLUSTERSAFE(C, i) E s' .mess

Postcondit ions

s.mess = s' .mess - {(C,D)CLUSTERSAFE(C, i)}

243

We denote by SysCLCS(C) the system formed by composing all the au tomata LECS(C),

NDCS(p) for p • C - leader(C), and LICS(p,q) for p and q in C such that (p,q) is all edge of G,

then renaming send(p,q)CLUSTERSAFE(p,i) as send(C,D)CLUSTERSAFE(C,i) and rec(q,p)-

CLUSTERSAFE(q,i) as rec(D,C)CLUSTERSAFE(D,i) when (p,q) is the preferred edge between

C and D, and finally hiding all operations that are not operations of CLCS(C). Then we have the

following claim, that the detailed algorithm in each cluster implements the required behavior. Its

proof is found in the full version of this paper.

L e m m a 4 SysCLCS(C) implements CLCS(C}.

4 . 4 A n I n t e r c l u s t e r S y n c h r o n i z e r

If we consider all the automata CLCS(C) for each cluster C, together with link au tomata LICS(C,D)

(each of these is just LICS(p,q) for (p,q) the preferred edge between C and D with operations

renamed, with p replaced by C and q replaced by D), then these together perform algorithm

to synchronize between the clusters. Thus we introduce an automaton that is just a specification

synchronizer for the quotient graph formed by identifying all the nodes in a cluster together,

except that each state and operation name is prefixed by 'cluster ' .

Intercluster Synchronizer: CS

Inputs:

CLUSTEROK(C,i) for C a cluster, i positive

Outputs:

CLUSTERGO(C,i) for C a cluster, i positive

State:

array CLUSTEROKrec[C,i], initially all false

array CLUSTERGOsent[C,i], initially all false

transitions:

CLUSTEROK(C,i)

Postconditions

s.CLUSTEROKrec[C,i] = true

244

CLUSTERGO(C,i)

Preconditions

i = 1 or (s'.CLUSTEROKrec[D,i-1] = true for all D 6 Neighbors(C))

i = 1 or (s'.CLUSTERGOsent[C,i-1] =true}

s'.CLUSTERGOsent[C,i] = false

Postconditions

s.CLUSTERGOsent[C,i] = true

We denote by SysCS the automaton formed by composing the automata CLCS(C) for all

clusters C, and LICS(C,D) for all pairs of clusters C and D that are neighbors, and then hiding

all operations that are not operations of CS. The fact that algorithm a is correct is expressed

simply by the following lemma, whose proof is given in the full version of this paper.

L e m m a 5 SysCS implements CS.

4 . 5 H i g h L e v e l S t r u c t u r e

Consider an automaton SysS(G), which is formed by composing the intracluster synchronizers

SL(C) for all clusters C, together with the intercluster synchronizer CS, and then hiding all

the operations except GO(p,i) and OK(p,i). The fa~t that performing inter- and intracluster

synchronization is a way to synchronize the whole graph, is expressed in the following simple

statement: SysS(G) implements S(G). In order to prove this statement, we first give several

results that relate the schedules of the automata involved to the states in which the automata are

left. First we discuss the specification automaton S(G).

L e m m a 6 Let a be a schedule of S(G), and let s be the state of S(G) after a. Then

1. s.OKrec[p,i]=true if and only if a contains OK(p,i}.

e. s.GOsent[p,i]=true if and only if a contains GO(p,i}.

Proof : We give the proof of (1), as the proof of (2) is almost the same. We use induction on the

length of a. If a is empty, then it does not contain OK(p,i), and s is the initial state, for which

s.OKrec[p,i]=false. Thus suppose a = atr , and let s' be the state of S(G) after a'. If 7r is OK(p,i),

then a contains OK(p,i), and by the postcondition of the operation OK(p,i), s.OKrec[p,i] = true.

Otherwise r is an operation whose postconditions do not mention OKrec[p,i], and so we have

s.OKrec[p,i] = true if and only if s'.OKrec[p,i] = true, which by the induction hypothesis occurs

245

if and only if a ' contains OK(p,i). But (since ~r is not OK(p,i)) we also have in this situation that

a ~ contains OK(p,i) if and only if a contains OK(p,i). This completes the proof of (t). Q.E.D.

We next give the lemmas about the state of the components of SysS(G). The proofs are almost

identical to that for Lemma 6, and so are left to the reader.

L e m m a 7 Let a be a schedule of CS, and let s be the state of CS after a. Then

1. s.VLUSTEROgrec[C,i]--true if and only if a contains CLUSTEROK(C,i) .

2. s.CLVSTERGOsent[C,i]=true if and only if ex contains CLUSTERGO(C,i) .

L e m m a 8 Let a be a schedule of SL(C), and let s be the state of SL(C) after a. Then

1. s.Ogrec[p,i]=true i /and only if ~ contains og(p, i) .

Z. s.GOsent[p,s']=true if and only if a contains GO(p,i).

8. s.CLUSTEROKsent[i]=true if and only if a contains CLUSTEROK(C,i) .

$. s.CLUSTERGOrec[i]=true if and only if a contains CLUSTERGO(C,i) .

Now we can prove the claim above, which says that intracluster synchronization and intercluster

synchronization combine to provide synchronization for the whole graph G.

L e m r n a 9 SysS(G) implements S(G).

Proof : Since every input and output operation of S(G) is an input or output of some component

SL(C) from which the system SysS(G) is formed, we only need to prove that whenever a is a

schedule of SysS(G), and fl denotes the subsequence of a consisting of the operations of S(G),

then fl is a schedule of S(G). This is proved by induction on the length of a. If a is empty, then

so is/3, so that fl is a schedule of S(G). So let us assume that a = a~Tr. Letting fit denote the

subsequence of a ~ consisting of operations of S(G), we have by the induction hypothesis that fl~ is

a schedule of S(G). If r is not an operation of S(G), then fl = fl', and we are done. Otherwise fl

= / ~ ' r . If r is OK(p,i), then ~r is an input to S(G), and so is enabled after any schedule of S(G),

by the Input Condition, and therefore/~ is a schedule of S(G).

Thus we suppose that r is GO(p,i). Let s denote the state of SL(C) after a', where C is the

cluster containing p. Let t denote the state of S(G) after/~'. We have that ~r is enabled (as an

operation of SL(C)) in t, and we will deduce that it is enabled (as an operation of S(G)) in s. By

the preconditions for r , t.GOsent[p,i] = false, and thus by Lemma 8 a' does not contain GO(p,i).

Therefore/~' does not contain GO(p,i), and so by Lemma 6, s.GOsent[p,i] -- false. Also by the

246

preconditions, either i -- 1 or t.GOsent[p,i] = true. If i ~ 1, by Lemma 8 a ' contains GO(p,i-1),

and thus/~' contains GO(p,i-1). Therefore, by Lemma 6, either i = 1 or s.GOsent[p,i-1] --- true.

Suppose tha t i ~ 1. Then the preconditions of ~r as an operation of SL(C) imply that

t.CLUSTERGOrec[i] = true and that t.OKrec[q,i-1] = true for all q e Neighbors(p) N C. By

Lemma 8, a' contains CLUSTERGO(C,i) and OK(q,i) for all q E Neighbors(p) M C. Now, by

examining the preconditions for the operation CLUSTERGO (C,i) of the intercluster synchronizer

CS, and Lemma 7, we see that the prefix of a ' preceding the CLUSTERGO(C,i) operation must

contain CLUSTEROK(D,i-1) for all clusters D that are neighbors of C. Therefore, by the precon-

ditions of the operation CLUSTEROK(D,i-1) of SL(D) and Lemma 8, we deduce that the prefix

of a ' preceding each CLUSTEROK(D,i-1) contains the operations OK(q,i-1) for all nodes q in

cluster D. Thus c~' (and hence/~') contains OK(q,i-1) for all q E Neighbors(p), as any such q is

either in Neighbors(p) N C, or else is a member of a cluster D that is in Neighbors(C). By Lemma

6, s.OKrec[q,i-1] -- true for any q e Neighbors(p).

Thus we have shown that s.GOsent[p,i] = false, that i = 1 or s.GOsent[p,i-1] = true, and that

i= l or (s.OKrec[q,i-1] -- true for all q e Neighbors(p)). That is, we have shown that ~r is enabled

in state s, completing the proof. Q.E.D.

4 . 6 T h e M a i n T h e o r e m

We can now combine the results given above to verify the correctness of the detailed algorithm

for network synchronization.

T h e o r e m 10 DistSysS(G) implements S(G).

P r o o f : We first consider DistSysCS, the automaton that results from composing all the automata

NDCS(p), LECS(C) and LICS(p,q), and then hiding all operations except CLUSTERGO(C,i) and

CLUSTEROK(C,i). By the associativity of composition (and the fact that renaming and hid-

ing behave well in composition), this is equivalent to composing all the automata SysCLCS(C)

and LICS(C,D), and then hiding the remaining operations except CLUSTERGO(C,i) and CLUS-

TEROK(C,i). Since by Lemma 4, SysCLCS(C) implements CLCS(C) for each C, we have that

DistSysCS implements SysCS by Lemma 2. Since by Lemma 5, SysCS implements CS, we deduce

that DistSysCS implements CS.

Now DistSysS(G) is equivalent to DistSysS(G)', the result of composing all the automata

NDCS(p), NDSL(p), LECS(C), LESL(C), LICS(p,q) and LISL(p,q), and then hiding all oper-

ations except GO(p,i) and OK(p,i). But DistSysS(G)' is, by the associativity of composition,

247

equivalent to the result of composing DistSysCS with all the automata SysSL(C), and then hid-

ing operations. Since by Lemma 3 SysSL(C) implements SL(C), and, as we saw above, DistSysCS

implements CS, we can deduce from Lemma 2 that DistSysS(G)' implements SysS(G), the result

of composing CS with all the automata SL(C) and then hiding all operations except GO(p,i) and

OK(p,i). By Lemma 9, SysS(G) implements S(G), and therefore DistSysS(G) ' implements S(G).

Thus DistSysS(G) implements S(G). Q.E.D.

5 S u m m a r y a n d Fur ther D i r e c t i o n s

In this paper we have offered a formal, rigorous proof of the correctness of Awerbuch's algorithm

for network synchronization. We specified both the algorithm and the correctness condition using

the I /O automaton model. Our proof of correctness followed closely the intuitive arguments made

by the designer of the algorithm by exploiting the model 's natural support for such important

design techniques as stepwise refinement and modularity. In part icular, since the algorithm uses

simpler algorithms for synchronization within and between 'clusters ' of nodes, our proof could

have imported as lemmas the correctness of these simpler algorithms, if these had been proved

before. Alternatively, the understanding of the modulari ty that the proof gives us would allow us

to see how to safely change the choices of implementation of the separate parts of the synchronizer,

independently of one another. Also, we clearly benefit from having carried out the correctness

proof in the I /O automaton model which supports modularity, since the network synchronizer

is often used as an 'off-the-shelf building block' component in a larger system, and proofs of the

correctness of the system will be able to use our proof without change.

In the future, we hope to study other network protocols in the same way. We still need to

understand how to use the model to capture the intuition behind other, less clear-cut, forms of

'modular i ty ' . For example many network algorithms operate over spanning forests that change

with time, and so seem to be hard to represent as intermediate specifications implemented by

collections of automata. Nonetheless, we expect that the I /O automaton model will provide

support for verifying many protocols, once we understand the precise nature of the modularity.

6 Bibliography

[Aw] Awerbuch, B., 'Complexity of Network Synchronization, ' JACM, 32, 4, 804-823 (1985).

[Aw2] Awerbueh, B., 'Reducing Complexities of Distr ibuted Maximum Flow and Breadth-Firs t

Search Algorithms by means of Network Synchronization, ' Networks, 15, 425-437 (1985).

248

[FLMW] Fekete, A., Lynch, N., Merritt, M., and Weihl, W., 'Nested Transactions and Read/Write

Locking,' Proceedings of 6th ACM Symposium on Principles of Database Systems, 1987.

[GL] Goldman, K., and Lynch, N., 'Nested Transactions and Quorum Consensus,' Proceedings

of 6th ACM Symposium on Principles of Distributed Computation, 1987.

[HLMW] Herlihy, M., Lynch, N., Merritt, M., and Weihl, W., 'Correctness of Orphan Elimi-

nation Algorithms,' Proceedings of 17th IEEE Symposium on Fault-Tolerant Computing,

1987.

[HO] Hailpern, B., and Owicki, S., 'Verifying Network Protocols Using Temporal Logic,' Pro-

ceedings of IEEE Conference on Trends and Applications: 1980, Computer Network Proto-

cols.

[LM] Lynch, N., and Merritt, M., 'Introduction to the Theory of Nested Transactions,' Technical

Report MIT/LCS/TR-367, MIT Laboratory for Computer Science, Cambridge, MA., July

1986.

[LT] Lynch, N., and Tuttle, M., 'Hierarchical Correctness Proofs for Distributed Algorithms,'

Proceedings of 6th ACM Symposium on Principles of Distributed Computation, 1987.

IMP] Manna, Z., and Pnueli, A., 'Verification of Concurrent Programs: the Temporal frame-

work,' In The Correctness Problem in Computer Science, R. Boyer and J. Moore, eds,

Academic Press, 1981.

lOG] Owicki, S., and Gries, D., 'An Axiomatic Proof Technique for Parallel Programs I,' Acta

Informatica 6, 4, 319-340 (1976).

[Wl] Welch, J., 'Synthesis of Efficient Mutual Exclusion Algorithms,' manuscript

A p p e n d i x I: The Deta i led Code for the Synchronizat ion

Algorithm

We give the code for each automaton ND(p) for a non-leader node p, and also for each automaton

LE(C) for the leader node of cluster C. Afterwards, we discuss the code for two operations, to

give the interested reader some feeling for the model. We also discuss the way our algorithm is

developed from the code in [Aw], which is written for an interrupt-driven model.

Non-leader node: ND(p)

249

Inputs:

rec(q,p)READY(q,i) for q • children(p), i positive

ree(q,p)CLUSTERSAFE(q, i) for q • Preferred(p) or q = parent(p), i positive

OK(p,i) for i positive

rec(q,p)SAFE(q,i) for q • children(p), i positive

rec(q,p)PULSE(q,i) for q = parent(p), i positive

Outputs:

send(p,q)READY(p,i) for q = parent(p), i positive

send(p,q)CLUSTERSAFE(p, i) for q • children(p) U Preferred(p), i positive

GO(p,i), for i positive

send(p,q)SAFE(p,i) for q -- parent(p), i positive

send(p,q)PVLSE(p,i) for q • children(p), i positive

state:

array CLUSTERSAFErec[q, i] , initially all false

array READYrec[q,i], initially all false

array OKree[i], initially all false

array GOsent[i], initially all false

array SAFErec[q,i], initially all false

array pulse[i], initially all false

multiset mess, initially empty

transitions:

rec(q,p)READY(q,i)

Postconditions

s.READYrec[q,i] = true

if q E specialchildren(p)

and (s'.READYrec[q',i] = true for all q' E (specialchildren(p)-{q}))

and (s ' .CLUSTERSAFErec[q' , i] = true for all q ' • Preferred(p))

then s.mess = s' .mess U {(p,parent(p))READY(p,i)}

rec(q,p) CLUSTERSAFE(q, i)

Postconditions

250

s.CLUSTERSAFErec[q,i] = t rue

if q = parent(p)

then s.mess = s ' .mess U {(p ,p ')CLUSTERSAFE(p, i) : p ' • specialchildren(p) t2 Preferred(p)}

if q • Preferred(p)

and (s'.READYrec[q',i] = t rue for all q' • specialchildren(p))

and (s ' .CLUSTERSAFErec[q ' , i] = t rue for all q ' • (Preferred(p)-{q}))

then s.mess = s ' .mess U {(p,parent(p))READY(p, i)}

OK(p,i)

Postcondit ions

s.OKrec[i] = true

if (s ' .SAFErec [q , i] = t rue for all q • c h i l d r e n (p))

t h e n s . m e s s = s ' . m e s s U { (p , p a r e n t (p)) S A F E (p , i) }

rec(q,p)SAFE(q,i)

Postcondit ions

s.SAFErec[q,i] = true

if (s ' .SAFErec[q',i] = t rue for all q' • children(p)-{q}

and s'.OKrec[i] = true)

then s.mess = s ' .mess U {(p,parent(p))SAFE(p, i)}

rec(q,p)PULSE(q,i)

Postcondit ions

s.pulse[i] = true

s.mess = s ' .mess t2 {(p,p ')PULSE(p, i) : p ' e children(p)}

send(p,q) READY(p,i)

Precondi t ions

(p,q)READY(p,i) e s ' .mess

Postcondit ions

s.mess = s ' .mess - {(p,q)READY(p,i)}

send(p,q) CLUSTERSAFE(p , i)

251

Precondit ions

(p ,q)CLUSTERSAFE(p, i) e s ' .mess

Postcondit ions

s.mess = sLmess - {(p,q)CLUSTEF~SAFE(p,i)}

GO(p,i)

Precondi t ions

s'.pulse[i] = true

i = 1 or s' .GOsent[i-1] = true

s' .GOsent[i] = false

Postcondit ions

s.GOsent[i] = t rue

send(p,q) SAFE(p,i)

Precondi t ions

(p,q)SAFE(p,i) e s ' .mess

Postcondit ions

s.mess = s ' .mess - {(p,q)SAFE(p,i)}

send(p,q) PULSE(p,i)

Precondi t ions

(p,q)PULSE(p,i) e s ' .mess

Postcondi t ions

s.mess = s ' .mess - {(p,q)PVLSE(p,i)}

Leader: LE(C)

Inputs:

rec(q,p)READY(q,i) for p ---- leader(C), q e children(p), i positive

rec(q ,p)CLUSTERSAFE(q, i) for p = leader(C), q C preferred(p), i positive

OK(p,i) for p = leader(C), i positive

rec(q,p)SAFE(q,i) for p = leader(C), q e children(p), i positive

Outputs :

CLUSTERGO(C, i) for i positive

252

send(p,q)CLUSTERSAFE(p, i) for p = leader(C), q E children(p) u preferred(p), i positive

GO(p,i), for p ---- leader(C), i positive

CLUSTEROK(C, i) for i positive

send(p,q)PULSE(p,i) for p -- leader(C), q E children(p), i positive

state:

array READYrec[q,i], initially all false

array CLUSTERSAFErec[q, i] , initially all false

array clustergo[i], initially all false

array OKrec[i], initially all false

array GOsent[i], initially all false

array SAFErec[q,i], initially all false

array clustersafe[i], initially all false

array pulse[i], initially all false

array CLUSTEROKsent[i] , initially all false

multiset mess, initially empty

transitions:

rec(q,p) READY(q,i)

Postconditions

s.READYrec[q,i] = true

rec(q,p) CLUSTERSAFE(q,i)

Postconditions

s.CLUSTERSAFErec[q,i] = true

OK(p,i)

Postconditions

s.OKrec[i] =- true

if (s'.SAFSrec[q,i] -- true for all q E children(p))

then (s.clustersafe[i] -- true

if (s'.SAFErec[q,i] = true for all q ~ children(p)

and s ' .clustergo[i+l] = true)

253

then (s.mess = s'.mess U {(p,q)PULSE(p,i+I) : p e children(p)}

and s.pulse[i+l] = true))

r e c (q , p) S A F E (q , i)

P o s t c o n d i t i o n s

s .SAFErec [q , i] = t r u e

if (s ' . S A F E r e c [q ' , i] = t r u e for all q ' e c h i l d r e n (p) - { q }

a n d s ' .OKrec [i] = t rue)

t h e n s .c lus tersafe[i] = t r u e

if (s ' . S A F E r e c [q ' , i] = t r u e for all q ' E c h i l d r e n (p) - { q }

a n d s ' .OKrec[i] -- t r u e a n d s ' . c l u s t e r g o [i + l] = t r u e)

t h e n (s .mess = s ' . m e s s U { (p , q) P V L S E (p , i + l) : p ~ c h i l d r e n (p))

a n d s . p u l s e [i + l] -- t r u e)

C L U S T E R G O (C , i)

P r e c o n d i t i o n s

i = 1 o r ((s ' .RE A D Yr ec [q , i - 1] = t r u e for all q E s p e c i a l c h i l d r e n (p))

a n d (s ' . C L U S T E R S A F E r e c [q , i - 1] = t r u e for all q @ P r e f e r r e d (p)))

i = 1 or s ' . c lus te rgo[i -1] = t r u e

s ' . c lus te rgo[i] = fa lse

P o s t c o n d i t i o n s

s .e lus tergo[i] = t r u e

if (i = 1 o r s ' . c lus te rsa fe [i -1] -- t r ue)

t h e n (s .mess -- s ' . m e s s u { (p , p ') P U L S E (p , i) : p ' C c h i l d r e n (p) }

a n d s.pulse[i] = t r u e)

s e n d (p,q) C L U S T E R S A F E (p,i)

P r e c o n d i t i o n s

(p , q) C L U S T E R S A F E (p , i) E s ' . m e s s

P o s t c o n d i t i o n s

s .mess = s ' . m e s s - { (p , q) C L U S T E R S A F E (p , i))

GO(p,i)

254

Precondi t ions

s'.pulse[i] = t rue

i = 1 or s' .GOsent[i-1] = t rue

s ' .GOsent[i] = false

Postcondi t ions

s.GOsent[i] = t rue

CLUSTEROK(C,i)

Precondi t ions

s'.clustersafe[i] = t rue

s ' .CLUSTEROKsent [i] = false

Postcondi t ions

s .CLUSTERTOKsent [i] = t rue

s.mess = s ' .mess U { (p ,q)CLUSTERSAFE(p , i) : q E (specialchildren(p) U Preferred(p))}

send(p,q) PULSE(p, i)

Precondi t ions

(p,q)PVLSE(p, i) E s ' .mess

Postcondit ions

s.mess = s ' .mess - {(p,q)PVLSE(p, i)}

For each p and q for which (p,q) is an edge of G, we let LI(p,q) be a link au tomaton from p to

q, for the message set J~ described next: if (p,q) is a preferred edge, then J~ is the set of messages

C L U S T E R S A F E (p , i) for posit ive i; if p = parent(q) then ~ is the set of CLUSTERSAFE(p , i)

and PULSE(p, i) for posit ive i; if p E children(q) then J~ is the set of READY(p, i) and SAFE(p, i)

for posi t ive i; if (p,q) is nei ther a preferred edge nor a tree edge then ~ is the empty set (so in

this case the link au tomaton is the tr ivial au toma ton with no operations!).

As an aid in unders tanding the code above, we consider the pre- and postcondit ions for the

operat ion r ec (q ,p)CLUSTERSAFE(q , i) of the non-leader node au tomaton ND (p). This is an input

operat ion, and so it has no preconditions, since it can occur at any t ime. When it occurs, the fact

tha t it has happened is recorded in the state by sett ing the value of CLUSTERSAFErec[q , i] to

true. The other effects depend on whether this is a message being broadcast over p 's own cluster

(this is the case if q is p's parent) or whether this is a message f rom a neighboring cluster (when

255

q is a neighbor of p over a preferred edge). In the first case, a CLUSTERSAFE(p,i) message to p'

is added to the multiset of outgoing messages, for each p' among p's children and also for each p'

that is a neighbor along a preferred edge. In the second case, the node checks to see whether all

the conditions are now satisfied, in order to play its part in the convergecast of READY messages.

The convergecast can occur if a READY(q',i) message has been received from every special child q'

(as recorded in the state of the READYrec[q',i] variables) and if a CLUSTERSAFE(q',i) message

has been received from every neighbor q' along a preferred edge (except, of course, for q itself).

If all of these have been received, the node places a READY(p,i) message for its parent, in its

buffer of outgoing messages.

As another example, consider the operation GO(p,i) for a non-leader node p. This can occur

provided the PULSE(q,i) message has arrived from p's parent (a fact reflected by the variable

pulse[i] being true) and if the previous GO operation (if any) has already occurred, and if the

GO(p,i) itself has not occurred (this is necessary as the other conditions once true, remain true

forever). The fact that the operation has occurred is reflected in the state by setting GOsent[i]

to true.

T h e R e l a t i o n s h i p t o A w e r b u c h ' s O r i g i n a l A l g o r i t h m

We have given the detailed algorithm for network synchronization by using I /O automata, where

a node changes state after receiving a message, and a message can be sent (and the node's state

can change accordingly) whenever the send(p,q)M operation is enabled. In his account, Awerbuch

used the interrupt-driven model that is more common among designers of network algorithms,

where the effects of a message receipt include (atomically) both changes in the state of the node

involved and the sending of messages from that node, but where messages are not generated

spontaneously. As the reader can see, we have expressed the interrupt-driven code 'on receipt

of M from q: change the value of variable v from v-old to v-new = f(v-old), and send M 1 to

q l , M2 to q2, etc.' by an input operation rec(q,p)M with no precondition, and postcondition

s.v = f(s'.v), s.mess --- s'.mess U {(p,ql)Ml,(p,q2)M2,...}. Also we have, for example, an output

operation send(p,ql)M 1 with precondition (p,ql)M1 C s'.mess and postcondition s.mess = s'.mess

- (p,ql)M1. Thus our model does not send out messages atomically on receipt of a trigger

message, but rather places them in a multiset of outgoing messages, and sends them at some later

time. We note that this difference is not important for the correctness of the algorithm. After

all, even in the interrupt-driven model, the time of message receipt is delayed arbitrarily, and so

additional uncertainty, about the delay before the message is sent, does not cause trouble.

256

Some other differences between our presentation of the algorithm and the original version in

[Aw] should be mentioned. The first is that we have 'hard-wired' the distinction between the

leader of a cluster and other nodes, while Awerbuch gives a uniform algorithm for every node

that branches, depending on whether or not the node is a leader. Also Awerbuch uses several

subroutines that are called from different places, whereas we have included these 'in-line' at every

occurrence. Another minor difference is that the events that we call CLUSTERGO(C,i) and

CLUSTEROK(C,i) , and treat as operations of the leader of cluster C, are regarded by Awerbuch

as the leader sending itself a message (PULSE and CLUSTERSAFE, respectively). None of these

differences is at all significant for the correctness or performance of the algorithm.

There is one respect, however, in which our algorithm is significantly altered from the one given

by Awerbuch. In that version, each node delayed sending the READY message to its parent until

it had received the CLUSTERSAFE message for its own cluster, as well as the CLUSTERSAFE

message for every neighboring cluster along a preferred edge and the READY message from

every child. In contrast, we allow the READY messages to be sent without waiting for the

cluster itself to be safe. Instead we check only at the leader, before commencing the broadcast

of PULSE messages. We therefore use only the subtree containing special nodes, rather than

the whole tree, for the convergecast. Similarly, the CLUSTERSAFE messages are broadcast

only over the subtree of special nodes. This alteration does not affect correctness, and may

improve running time by allowing the convergecast of READY messages to overlap the broadcast

of CLUSTERSAFE messages. It may also reduce the number of messages sent. The change also

makes the verification simpler, as it increases the degree of independence between the inter- and

intracluster synchronization.

