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1 Introduction

This paper describes a comparative study of three formal methods for modeling
and validating agent systems. The study is part of a joint project by researchers
in MIT’s Theory of Distributed Systems research group and NTT’s Cooperative
Computing research group. Our goal is to establish a mathematical and linguistic
foundation for describing and reasoning about agent-style systems.

Agents are autonomous software entities that cooperate with other agents
in carrying out delegated tasks. A key feature of agent systems is that they
are dynamic in that they allow run-time creation and destruction of processes,
run-time modification of communication capabilities, and mobility.

Formal models are needed for careful description and reasoning about agents,
just as for other kinds of distributed systems. Important issues that arise in
modeling agent computation are: agent communication, dynamic creation and
destruction of agents, mobility, and naming. Our project examines the power of
the following three formal methods in studying different agent applications:

1. Erdös [1] is a knowledge-based environment for agent programming; it sup-
ports dynamic creation of agents, dynamic loading of programs, and migra-
tion. Erdös also supports automatic model checking using CTL [4].

2. Nepi2 [6] is a programming language for agent systems, based on the π-
calculus [8]. It extends the π-calculus with data types and a facility for
communication with the environment.

3. I/O automata [7] is a mathematical framework extensively used for model-
ing and reasoning about systems with interacting components. Prior to this
project, I/O automata were not used for reasoning about agents. As part of
this project, we have extended the I/O automata formalism to account for
issues that arise in agent systems, such as dynamic creation and destruction
of agents, mobility, and naming (see [3]).
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We model a simple e-commerce system using the three formalisms. In Sec-
tion 2 we describe the e-commerce system. We present the different agents that
comprise the system, and their interaction. In the following sections, we present
our modeling of two of the system components using the three formalisms. For
lack of space, we do not include models of the other system components, speci-
fications or correctness proofs. In [3] we present a variant of the example, with
all the system components, a specification, and a correctness proof.

Sections 3, 4, and 5 discuss I/O automata, Nepi2, and Erdös, respectively.
Each section begins with a presentation of the specific formalism, in particular,
describing how agent communication, dynamic creation and destruction, mobil-
ity, and naming are modeled. Each of these sections then continues to present
the e-commerce example in the specific formalism. Finally, each section discusses
the specification and verification styles used with the specific formalism.

Beyond examining the individual formalisms, we also strive to achieve cross-
fertilization among them: we aim to enrich each of the formalisms with concepts
from the others. For example, the mathematical framework of I/O automata may
serve as a semantic model for a language like Erdös, which is appropriate for
agent-style programming due to its knowledge-based style and standard agent
communication interaction. In Section 6, we show a generic transformation from
Erdös to I/O automata. In Section 7, we compare the three formalisms.

2 An Electronic Commerce Example

We consider a simple flight purchase problem, in which a client requests to
purchase a ticket for a particular flight, given by some “flight information” f ,
and specifies a particular maximum price mp that the client is willing to pay.
The request goes to a static (always existing) “client agent,” which creates a
special “request agent” dedicated to that particular request. The request agent
communicates with a static “directory agent” to discover a set of databases where
the request might be satisfied. Then the request agent communicates with some
or all of those databases. Each active database has a front end, the database
agent, which, when it receives such a communication, creates a special “response
agent” dedicated to the particular client request. The response agent, consulting
the database, tells the request agent about a price for which it is willing to sell a
ticket for the flight. The response agent does not send information about flights
that cost more than the maximum price specified in the request.

If the request agent has received at least one response with price no greater
than mp, it chooses some such response. It then communicates with the response
agent of the selected response to make the purchase. The response agent then
communicates with the database agent to purchase the flight, and sends a posi-
tive confirmation if it is able to do so. If it cannot purchase the flight, it sends
the request agent a negative confirmation.

Once the request agent has received a positive confirmation, it returns the
information about the purchase to the client agent, which returns it to the client.
Rather than attempting indefinitely to get a positive confirmation, the request
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agent may return a negative response to the client agent once it has received at
least one negative response from each database that it knows about.

After the request agent returns the purchase information to the client, it
sends a “done” message to all the database agents that it initially queried. This
causes each database agent to destroy the response agent it had created to handle
the client request. The request agent then terminates itself.

In this paper we present models for the client and request agent components,
using the three formalisms. A fuller version of this paper [2] contains all five of
the system components. We have not modeled the client formally; we do not
need to, because we do not impose any restrictions on its submission of requests.
So far, we have not formulated specifications for properties to be satisfied by the
system. An example of such a property is: if (f , price) is returned to the client,
then (f , price) actually exists in some database, price ≤ mp, and a seat on the
flight is reserved in the database.

We have formulated all the system components using the three formalisms.
Due to space limitations, we include in this paper models only for the Client
Agent and for the Request Agent. Note that in this example, agents are not
mobile. In [3] we present a variant of this example, in which agents are mobile.

3 I/O Automata

3.1 Formal Foundation and the Modeling of Agents

The I/O automaton model [7] is a mathematical model for reactive systems and
their components. An I/O automaton is a nondeterministic labeled transition
system, together with an action signature. An automaton in a state s can ex-
ecute an action a and move to a new state s′ iff the triple (s, a, s′) is in its
transition relation. (We say that a is enabled in s.) The action signature parti-
tions the actions into input, output, and internal actions. We augment the basic
I/O automaton model to add support for dynamic behavior, including process
creating and destruction, changing interfaces and mobility [3].

Agent communication. Automata communicate by executing common actions:
an output action of an automaton can also be an input action of one or more
other automata. No action can be an output action of two or more automata.
Input actions must be enabled in every state of the automaton, i.e., inputs must
always be accepted. An internal action of an automaton cannot be an action of
any other automaton, so internal actions cannot be used to communicate. The
input and output actions are externally visible. The external interface of an I/O
automaton is the externally visible part of its action signature.

Dynamic creation and destruction. In addition to the “regular” actions of the
I/O automaton model, we have create and destroy actions. A create action adds
the specified automaton to the current set of automata that are considered
“alive,”; a destroy action removes it. The current “global state” of a system,
called a configuration, is a finite multiset of (automaton, local-state) pairs, with
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one pair for each alive automaton, and where the local-state component gives
the current local state of the automaton. There is no general restriction on who
may create or destroy an automaton, or on when this may happen.

Mobility. In our dynamic extension, automata may change their action signa-
tures; a state transition may result in new sets of input, output, and internal
actions for the automaton. The current action signature must always be con-
tained within a fixed “universal” signature. Moreover, any input action in the
signature corresponding to a state must be enabled in that state. Since the ex-
ternal interface is just the external part of the action signature, we can also
dynamically change the external interface. We use this feature to model mobil-
ity, for example, in [3]. We model a system as consisting of a set of “logical”
locations, and each agent (automaton) has a current location. In addition, we
can use an automaton to model a channel between two locations (which allows
us to model asynchrony, timing, message loss and/or reordering, etc.). An agent
can interact directly with co-located agents or with an endpoint of a channel
that is at the same location.

Naming. Naming is handled by assigning an identifier to each automaton. We
usually require that, in any configuration of a system, all automata have unique
identifiers. In this case, we say that the system is “clone-free.”

3.2 The Client Agent

Client Agent: ClAgt

Universal Signature
Input:

request(f ,mp), where f ∈ F and mp ∈ �+

req-agent-responser(f ,mp, p, ok), where r ∈ R, f ∈ F , mp, p ∈ �+, and ok ∈ Bool
Output:

response(f , p, ok), where f ∈ F , p ∈ �+, and ok ∈ Bool
Internal:

create(ClAgt ,RqAgtr(〈f ,mp〉)), where r ∈ R, f ∈ F , and mp ∈ �+

State
reqs ⊆ R×F ×�+, outstanding requests; initially empty
pends ⊆ R×F×�+, outstanding requests for whom a request agent has been created,

but the response has not yet returned to the client; initially empty
resps ⊆ R×F ×�+ ×�+ × Bool , responses not yet sent to client; initially empty
created ⊆ R, indices of created request agents; initially empty

Transitions
In request(f ,mp)
Eff: r ← choose(R− created);

created ← created ∪ {r};
reqs ← reqs ∪ {〈r, f ,mp〉}

Int create(ClAgt ,RqAgtr(〈f ,mp〉))
Pre: 〈r, f ,mp〉 ∈ reqs − pends
Eff: pends ← pends ∪ {〈r, f ,mp〉}

In req-agent-responser(f ,mp, p, ok)
Eff: resps ← resps ∪ {〈r, f ,mp, p, ok〉}

Out response(f , p, ok)
Pre: 〈r, f ,mp, p, ok〉 ∈ resps
Eff: reqs ← reqs − {〈r, f ,mp〉}

pends ← pends − {〈r, f ,mp〉}
resps ← resps − {〈r, f ,mp, p, ok〉}
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In the I/O automaton model of the client agent, the request input action (an
output action of the “client environment”, not modeled here) is parameterized
by the flight f (of type F) and the maximum price mp. ClAgt assigns a unique
identifier r ∈ R to each request, and adds the request to reqs. (R is an index set
for the requests.) Subsequently ClAgt creates a request agent RqAgtr(〈f ,mp〉)
Note that the model handles two requests with the same f and mp as separate
requests. The tuple 〈r, f ,mp〉 is added to the set pends of pending requests.

The req-agent-responser input action models the receipt of a response from a
request agent. The client agent adds the response to the set resps, and commu-
nicates the response to the client via the response output action. It also removes
all record of the request at this point.

Since signatures do not vary in this example, we do not explicitly indicate
their initial values; the signature is always equal to the universal signature.

3.3 The Request Agent

The request agent RqAgtr(〈f ,mp〉) handles the single request 〈f ,mp〉, and then
terminates itself. The DIRqueryr(f ) and DIRinformr(dbagents) actions model the
interaction with the directory agent to find the set of active databases, which
are indexed by D. RqAgtr(〈f ,mp〉) queries these using DBqueryr,d(f ,mp), and
receives a response via the RESPinformd,r(f , p) action. It attempts to buy a
suitable flight via the RESPbuyr,d(f , p) action, and receives a confirmation via
the RESPconfd,r(f , p, ok), which may be positive or negative, depending on the
value of ok . It uses the req-agent-response(f , p, ok) output action, which is also
an input action of ClAgt as described above, to send the information to ClAgt .

The DBdoner,d(f ,mp) action tells a database agent that it can destroy the re-
sponse agent that it created for that particular request. Finally, RqAgtr(〈f ,mp〉)
destroys itself with the destroy(RqAgtr(〈f ,mp〉)) action. (The more general treat-
ment in [3] also allows one automaton to destroy another one, in which case the
destroy action is written with two arguments).

Request Agent: RqAgtr(f , mp) where r ∈ R, f ∈ F , and mp ∈ �+

Universal Signature
Input:

DIRinformr(dbagents), where dbagents ⊆ D
RESPinformd,r(f , p), where d ∈ D and p ∈ �+

RESPconfd,r(f , p, ok), where d ∈ D, p ∈ �+ and ok ∈ Bool

Output:
DIRqueryr(f )
DBqueryr,d(f ,mp), where d ∈ D
RESPbuyr,d(f , p), where d ∈ D and p ∈ �+

req-agent-response(f , p, ok), where p ∈ �+ and ok ∈ Bool
DBdoner,d, where d ∈ D

Internal:
terminate(RqAgtr(〈f ,mp〉))
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State

resp ∈ (F ×�+ ×Bool)∪ {⊥}, flight purchased but not yet sent to client; initially ⊥
localDB ⊆ D ×F ×�+, flights known with price at most mp; initially empty
DBagts ⊆ D, known database agents; initially empty
DBagtsleft ⊆ D ∪ {⊥}, known database agents whose response agent has not yet

returned a negative response; initially ⊥
bflag ∈ Bool , boolean flag, true iff an attempt to purchase a ticket is in progress,

initially false
dflag ∈ Bool , boolean flag, true iff a response has been returned to the client agent,

initially false

Transitions

Out DIRqueryr(f )
Pre: true

In DIRinformr(dbagents)
Eff: DBagts ← dbagents

DBagtsleft ← dbagents

Out DBqueryr,d(f ,mp)
Pre: d ∈ DBagts

In RESPinformd,r(f , p)
Eff: localDB ← localDB ∪ {〈d, f , p〉}

Out RESPbuyr,d(f , p)
Pre: 〈d, f , p〉 ∈ localDB ∧ ¬bflag
Eff: bflag ← true

In RESPconfd,r(f , p, ok)
Eff: if ok then

resp ← 〈f , p, ok〉
else
localDB ← localDB − {〈d, f , p〉}
DBagtsleft ← DBagtsleft − {d}
bflag ← false

Out req-agent-response(f , p, ok)
Pre: (resp = 〈f , p, ok〉 ∧ ok) ∨

(DBagtsleft = ∅ ∧ ¬ok)
Eff: dflag ← true

Out DBdoner,d(f ,mp)
Pre: dflag ∧ d ∈ DBagts
Eff: DBagts ← DBagts − {d}

Int destroy(RqAgtr(〈f ,mp〉))
Pre: dflag ∧DBagts = ∅

3.4 Specification and Verification Style

The external behavior of an I/O automaton is described using traces, i.e., se-
quences of externally visible actions. The model includes good support for re-
finement and levels of abstraction. Correctness is defined in terms of trace in-
clusion: if every trace of an implementation is also a trace of the specification,
then we consider the implementation to be a correct refinement of the specifi-
cation. Trace inclusion is verified by establishing a simulation relation from the
implementation to the specification, i.e., by showing that every transition of the
implementation can be matched by a trace-equivalent sequence of transitions
of the specification. I/O automata are usually described in a simple guarded
command (precondition/effect) style, which we use here.
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4 Erdös – An Internet Mobile Agents System

4.1 Formal Foundation and the Modeling of Agents

Erdös [1] is a knowledge-based environment for agent programming; it supports
functions such as dynamic creation of agents, dynamic loading of programs, and
migration. Erdös also supports automatic model checking using CTL [4].

An agent in Erdös consists of an agent program, a program stack, and a
knowledge base. The knowledge base consists of logical formulae. The program
consists of subprograms. The a subprogram “main” indicates the execution entry
point. Subprograms are sequences of “test-actions” clauses (as in [5]), which are
executed from head to tail, and take the following form:

If test then action1, ..., actionm else actionm+1, ..., actionn;

The test is a logical formula. In an execution of a “test-actions” clause, if the
test can be deduced from the current knowledge base of the agent, then the agent
executes action1, ..., actionm; otherwise, it executes actionm+1, ..., actionn. A
subprogram can call another subprogram using the call action, which specifies
the name of the agent that holds the subprogram; an agent uses the constant
“self” to specify its own name. The program stack maintains the execution state
of the agent program, and it allows the execution to continue after migration.

We now discuss different aspects of modeling agents with Erdös.

Agent communication. Agents communicate by adding information to other
each-other’s knowledge bases. Specifically, the action add(agt name: φ) adds
a formula φ to the knowledge base of the agent agt name. An agent can remove
a formula φ from its own knowledge base using the action rm(φ).

Dynamic creation and destruction. Agents are created using the
create(agt name: new agt name, sub prg name, arg1, ..) action. This ac-
tion creates a new agent whose name is new agt name; the “main” subprogram
of the new agent is sub prg name, and its program consists of all the sub-
programs recursively called from this “main” subprogram. The arguments
arg1,... comprise the knowledge base of the new agent. Agents are destroyed
using the kill(agt name) action, and can be stopped and resumed using the
stop(agt name) and resume(agt name) actions.

Mobility. An agent can migrate to the location url using the go(url) action.

Naming. Erdös uses global agent names; the consistency of agent names is man-
aged using a name server.

Interaction with the environment. In Erdös, the environment is thought as agents
with Erdös agents’ interface, That is, they exchange formulas with Erdös agents.
The difference is that the environment agents are not programmed in Erdös.
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4.2 The Client Agent

We present the Client Agent and the Request Agent using Erdös. In this example,
?mp, ?r, . . . are variables instantiated in the test procedure and substituted over
the “test-action” line. Agent and their names are dynamically created; these
names are passed between agents. A trailing “-” after a test formula φ indicates
that φ is to be removed from the knowledge base if the test succeeds. The return
values of the external methods ex call and ex call i (i ∈ N) are placed in the
knowledge base as the formulas Return(. . . ) and Return i(. . . ), respectively.

This code implements the specification of IOA as faithfully as possible. Of
course, we have to add some controls of execution by actions such as call and
idle. The only nondeterminism of Erdös agents is the matching of the test part.

Preconditions of IOA action may include some operations on data and, in
Erdös, these operations must be done by ex call actions before the associated
knowledge test. For example, the data operations in the precondition of the
create action of the IOA specification are executed in (1), (2) and (3). Here,
pop reqs method takes out an element from the set reqs and is in pend method
checks ¬∃r′ : 〈r′, f,mp〉 ∈ pends.

sub_p main()
{if Request(?f,?mp)- then ex_call(add_reqs, Ele(?f,?mp));
if true then ex_call_1(pop_reqs); (1)
if Return_1(?f,?mp) then ex_call_2(is_in_pends, Ele(-,?f,?mp)); (2)
if Return_2(no) then ex_call_3(pop_R-created)); (3)
if Return_3(?r)- and Return_2(no)- and Return_1(?f,?mp)- then

create(: ?r,req_agt_prg,Arg1(self),Arg2(?f),Arg3(?mp)),
ex_call(add_pends, Ele(?r,?f,?mp)),
ex_call(add_created,Ele(?r));

if Req-agent-response(?r,?f,?mp,?p,?ok)- then
ex_call(add_resps, Ele(?r,?f,?mp,?p,?ok));

if true then ex_call(pop_resps);
if Return(?r,?f,?mp,?p,?ok) then

add(user: Response(?f,?p,?ok)),
ex_call(rm_pends, Ele(?r,?f,?mp));

if true then call(: main);
}

4.3 The Request Agent

In (1), (2) and (3), an idle action and call actions are used to control
the execution. We also make copy DBagts* of DBagts for the control of
avoiding the duplication of DBquery. We omit the code of the subprogram
broad cast done to dbagts.

sub_p main()
{ if true then

add(dir_agt: DIRquery(self,?f)),
add(: Not-buy);

if DIRinform(?dbagents) then
ex_call(set_DBagts, Set(?dbagents)),
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ex_call(set_DBagtsleft, Set(?dbagents)),
ex_call(set_DBagts*, Set(?dbagents));

else idle;

if true then call(: business);
}

sub_p business()
{
if true then ex_call(pop_DBagts*);
if Return(?d)- and Arg1(?f) and Arg2(?mp) then add(?d: DBquery(self,?f,?mp));
if RESPinf(?resp_agt,?d,?f,?p) then ex_call(add_localDB,Ele(?d,?f,?p));
if true then ex_call(get_localDB);
if Return(?d,?f,?p)- and Not-bflg and RESPinf(?resp_agt,?d,?f,?p) then

add(?resp_agt: RESbuy(self,?f,?p)), ex_call(pop_localDB, Ele(?d,?f,?p)),
add(: Bflag), rm(: RESPinf(?resp_agt,?d,?f,?p));

if RESPconf(?resp_agt,?d,?f,?p,?ok?) then else idle; (1)
if RESPconf(?resp_agt,?d,?f,?p,true) then add(: Resp(?f,?p,true));
if RESPconf(?resp_agt,?d,?f,?p,false) then

ex_call(rm_DBagtsleft, Ele(?d)),
rm(: Bflag), add(: Not-bflag);

if Resp(?f,?p,true)- and Arg1(?clt_agt) then
add(?clt_agt: Req-agent-response(self,?f,?mp,?p,true)),
add(: Dflag), call(: broad_cast_done_to_dbagts); (2)

if true then ex_call(is_empty_DBagtsleft);
if Return(yes)- and Arg1(?clt_agt) then

add(?clt_agt: Req-agent-response(self,?f,?mp,?p,false)),
add(: Dflag), call(: broad_cast_done_to_dbagts);

if true then call(: business); (3)
}

4.4 Specification and Verification Style

Erdös programs can be validated using CTL model checking: Erdös transforms a
set of agent programs to a boolean formula that expresses the transition relation
of the possible asynchronous behaviors of the agents. CTL model checking can
then be applied to this formula.

The transition relation is expressed using the state variables agtk.sti, agtk.oj ,
runk and alivek. agtk.sti expresses the fact that the state of execution (i.e., the
program stack) at agent agtk is currently sti. The variable agtk.oj expresses the
fact that the formula with id fj currently occurs in the knowledge base of agent
agtk. runk expresses the fact that currently it is agtk’s turn to run, and alivek

expresses the fact that agtk is alive.
The test formula in a “test-actions” clause of agtk is the precondition of the

actions in the same clause. The test formula is transformed to the condition of
the boolean formula expressed by agtk.oj using theorem proving techniques.

CTL model checking is restricted to finite state systems. We therefore have to
extract a finite state abstraction of the system. To this end, we assume an upper
bound on the depth of program stack (this bound results from static analysis of
the agent program). We require programmers to manually abstract into finite
infinite length data structures used in the program.

The asynchronous behavior is expressed by the interleaving model. More
specifically, we impose boolean formulas

∧
i<j ¬(runi ∧ runj) and

∨
i runi, to

model the fact that each agent has one thread.

5 Nepi2

5.1 Formal Foundation and the Modeling of Agents

Nepi2 [6] is a programming language based on the π-calculus [8]. It extends the π-
calculus with data types and a facility for communication with the environment.
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Nepi2 supports control primitives such as parallel composition of processes
(par P1 P2), alternative choice (+ P1 · · · Pn), conditional (if condition P1 P2),
generation of a fresh channel c (new c P ), channel input (? c (x) P ) and output
(! c (v) P ). These primitives are derived from the π-calculus.

The semantics of Nepi2 are described in the style of structural operational
semantics. For instance, communication, recursion and parallel composition are
defined by the following rules:
COMM: If c1 = c2, then

(par (+ · · · (! c1 (v) P ) · · · ) (+ · · · (? c2 (x) Q) · · · )) τ→ (par P Q[v/x]).

REC: If there is a process definition (defproc A (x) P ), then

(A v) τ→ P [v/x].

PAR: For every action a,

P
a→ P ′

(par P Q) a→ (par P ′ Q)
.

Agent communication. Communication in Nepi2 is synchronous (also called
rendezvous-style) because an output action and the corresponding input action
occur simultaneously.

Dynamic creation and destruction. Agents can be dynamically created using
the parallel composition operator. For example, a code fragment (par P1 P2)
can cause the creation of a new agent P1 in parallel with the invocation of the
original agent’s continuation, P2.

Mobility. An agent is migrated by passing its code over a channel to a different
location.

Naming. When a fresh channel is generated using new it is assigned with a new
name. One or more fresh channels are given to a created agent as its identity.

Interaction with the environment. Nepi2 is implemented in Lisp, and Lisp func-
tions can be used for data operations in Nepi2 programs. Communication with
the environment is supported using Unix standard input and output.

5.2 The Client Agent

(defproc ClientAgent (request response dir req-agt-resp)
(+
(? request (fltinfMp)
(par
(new req (new reqconf
(ReqAgtInit fltinfMp dir req-agt-resp req reqconf)))
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(ClientAgent request response dir req-agt-resp) ))
(? req-agt-resp (ok?FltinfP)
(! response (ok?FltinfP)
(ClientAgent request response dir req-agt-resp) ))))

A client agent ClientAgent gets four channels as arguments: request and
response for communication with the client, dir of the directory agent, and
req-agt-resp for communication with request agents. It chooses the following
actions nondeterministically: receiving a tuple fltinfMp of the flight information
and maximum price via request, or receiving a tuple ok?FltinfP of the flag,
flight information and price via req-agt-resp. If the former action is chosen,
then the primitive par creates a request agent and the continuation of the client
agent. The created request agent is given two fresh channels req and reqconf
as its identity.

5.3 The Request Agent

(defproc ReqAgtInit (fltinfMp dir req-agt-resp req reqconf)
(! dir ((list req (car fltinfMp)))
(? req (DBagents)
(par (DBMulticast DBagents ’query req fltinfMp)

(ReqAgt req-agt-resp req reqconf DBagents
(length DBagents) )))))

(defproc ReqAgt (req-agt-resp req reqconf DBagents DBagentsLeft)
(? req (respFltinfP)
(! (car respFltinfP) ((cons reqconf (cdr respFltinfP)))
(? reqconf (ok?FltinfP)
(if (car ok?FltinfP)
(! req-agt-resp (ok?FltinfP)
(DBMulticast DBagents ’done req fltinfMp) )

(if (== DBagentsLeft 0)
(! req-agt-resp (ok?FltinfP)
(DBMulticast DBagents ’done req fltinfMp))

(ReqAgt req-agt-resp req reqconf DBagents
(- DBagentsLeft 1) )))))))

(defproc DBMulticast (DBagents cmd req fltinfMp)
(if (eq* DBagents nil)
end
(! (car DBagents) ((cons cmd (cons req fltinfMp)))
(DBMulticast (cdr DBagents) cmd req fltinfMp) )))

A process ReqAgtInit queries the directory agent for the available database
agents, multicasts a query about fltinfMp to them, and invokes ReqAgt. Upon
receiving a response via req, ReqAgt send a ‘buy’ request for the response. Then,
if it receives a positive confirmation via reqconf, it forwards the response to the
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client agent via req-agt-resp, and multicasts a ‘done’ message to all the avail-
able database agents. Otherwise, it repeats the same thing with DBagentsLeft
decremented, or, if all the database agents responded negatively, it forwards the
last negative response to the client agent.

5.4 Specification and Verification Style

Currently, there is no support for property specification and verification in Nepi2.
It should be straightforward to adapt these from the well-developed theory of the
π-calculus, which uses verification methods based on bisimulation equivalence,
and Hennessy-Milner logic extended by a fixed point operator.

6 From Erdös to I/O Automata

Erdös is a convenient language for knowledge-based programming of agent sys-
tems. We now show how the mathematical framework of I/O automata may
serve as a semantic model for Erdös: we show a generic transformation from
Erdös to an I/O automaton.

The transformation is not difficult – the computational semantics of Erdös
have much common with I/O automata. Both formalisms employ state based
control, and with both, input actions are always enabled. Below, we give an
example of a generic transformation of an agent, agtk, to an I/O automaton.

We denote by KBagtk
the knowledge base of agtk, and by Fagtk

, the set of
formulae that may occur in KBagtk

. prg stk is the program stack of the agent.
We denote the actions that appear in the n‘th “test-actions” clause of the
subprogram subp as: 〈subp, n〉. The test match(prg stk, 〈subp, n〉) checks if the
top of prg stk points to 〈subp, n〉. modify(prg stk, 〈subp, n〉) modifies the prg stk
according to the action 〈subp, n〉 In the automaton below, we only show the
actions in the “then” clause. Those of the “else” clause are similar; the only
difference is that KBagtk

 test〈subp,n〉 is replaced by KBagtk
� test〈subp,n〉.

Transitions

In add(agtk : f)f ∈ Fagtk

Eff: KBagtk = KBagtk ∪ {f}

Out add(agtj : ψ)
Pre: match(prg stk, 〈subp, n〉) ∧KBagtk � test〈subp,n〉
Eff: modify(prg stk, 〈subp, n〉, none)

Int rm(: ψ)
Pre: match(prg stk, 〈subp, n〉) ∧KBagtk � test〈subp,n〉
Eff: KBagtk = KBagtk − {ψ}

modify(prg stk, 〈subp, n〉, none)

Int call(agtj : sub prg)
Pre: match(prg stk, 〈subp, n〉) ∧KBagtk � test〈subp,n〉
Eff: modify(prg stk, 〈subp, n〉, sub prg)
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Int idle
Pre: match(prg stk, 〈subp, n〉) ∧KBagtk � test〈subp,n〉

Int create(agtj : agtm, sub prg, arg1, . . . )
Pre: match(prg stk, 〈subp, n〉) ∧KBagtk � test〈subp,n〉
Eff: modify(prg stk, 〈subp, n〉, none)

Int ex call(method, arg)
Pre: match(prg stk, 〈subp, n〉) ∧KBagtk � test〈subp,n〉
Eff: method(arg)

modify(prg stk, 〈subp, n〉, none)

7 Discussion

We have presented three formalisms for modeling and reasoning about agent-
style distributed systems; we now compare several aspects of these formalisms.

I/O automata is a mathematical model for modeling interacting components.
The same mathematical model can be used at several levels of abstraction, from
modeling of implementations to specifications. Advantages of the I/O automata
approach include the fact that it supports compositional, invariant, and sim-
ulation proofs, including computer-assisted verification. In particular, the I/O
automata model has a well established infinite-state verification method. Also,
the allowance of nondeterminism is a big advantage for specifications. However,
in contrast to knowledge-based programming and variants of π-calculus, there
is little experience in using I/O automata to model dynamic systems. In our
project, we are gaining such experience.

Erdös is an agent programming system/language. Erdös programs may be
verified using CTL model checking. An advantage of Erdös is that it is suit-
able for knowledge-based programming and reasoning, as is often employed in
agent systems. The knowledge-based style makes the program semantics easy
to understand. Erdös also offers an automated verification facility. However, in
contrast to I/O automata, Erdös’ verification methods are limited to finite-state
systems. Currently, we overcome this limitation by manually abstracting pro-
grams to a finite-state system. Using I/O automata as a semantic model for
Erdös (as illustrated above) may present a solution to this limitation.

Nepi2 is a network programming system. Its language and computation model
are based on an extension of the π-calculus with data type. A major advantage
of Nepi2 is that a problem can be written concisely using π-calculus primitives,
which have been used extensively for agent modeling. In particular, the fresh
channel generation operator new is helpful for naming created agents. Currently,
there is no support for property specification and verification in Nepi2. It should
not be difficult to adapt these from the well-developed theory of the π-calculus.

Communication and control. With both I/O automata and Erdös, an input ac-
tion is always possible (enabled). In Nepi2, on the other hand, communication
is based on a handshake model: an input action is possible only when it is per-
formed explicitly, and an output action can block the execution in the absence



On Formal Modeling of Agent Computations 61

of corresponding input actions. Input-enabling lends itself naturally to program-
ming in event driven style. It is more difficult to model event driven systems us-
ing handshake-based communication, especially if different system components
(agents) are developed independently.

With I/O automata and Nepi2, agents in different systems interact via differ-
ent actions. In contrast, with Erdös agents in all systems interact via a generic
interface of “add” actions.

Dynamic creation and naming. All three formalisms provide simple interfaces
for creating new agents. The dynamic version of I/O automata uses indices to
differentiate agents created by the same automaton. It is left to the programmers
to maintain unique names for agents created by different automata. Upon cre-
ation of a new agent, Erdös assigns it a name consisting of the creating agent’s
name and a programmer specified name. Nepi2 uses a name server which is part
of the environment to produce new agent names. Thus, the uniqueness of names
used with I/O automata and Erdös depends on the programmer, whereas with
Nepi2 it depends on the name server.

With all three formalisms, the name of a created agent may be passed as a
parameter to other agents, to notify them of the new agent’s existence. However,
Erdös’ verification model does not presently support passing of agent names.

Mobility. All three formalisms supports the mobility of agents in their compu-
tation models. In the dynamic version of I/O automata, mobility is modeled by
changing the signature of an automaton. With Erdös and Nepi2, on the other
hand, mobility is modeled explicitly, and it does not change the semantics of
computation. Of the three formalisms, Erdös is the only one that supports dy-
namic loading of programs in its computation model. This feature is useful for
agents that need to adapt to unknown environments.

Specification and Verification. Being a mathematical model, properties of I/O
automata can be specified in any sound mathematical form. In particular, prop-
erties are typically specified in one of two ways: either as trace properties formu-
lated in logic, or as state machines that generate the set of legal traces. Specifica-
tions are usually formulated with a high level of nondeterminism. An algorithm
is said to implement the specification if its traces are a subset of the traces of the
specification. Both algorithms and specifications, in general, are infinite state.

For state machine style specifications, verification is done by showing a sim-
ulation from the algorithm to the specification. Simulations can be verified using
interactive theorem provers.

In contrast to I/O automata, in the π-calculus, specifications are based on
bi-simulation and algebraic equivalences. The verification methods used in the
π-calculus emphasize bi-simulation equivalence, and Hennessy-Milner logic ex-
tended by a fixed point operator. With bi-simulation, the specifications must be
less permissive and more deterministic. This limits the flexibility in designing
specifications; in general, one want to write specifications as nondeterministi-
cally as possible. With such specifications, showing that an algorithm meets the
specification involves only one-way simulation and not showing equivalence.
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Erdös systems are specified in the propositional branching-time temporal
logic CTL. As a formal language, CTL provides structure and guidance for
users. In particular, complicated properties are often formulated as conjunctions
of simple ones. On the other hand, the language structure limits the flexibility
and expressiveness. e.g., specifications are restricted to finite-state systems. Ver-
ification is based on CTL model checking. The advantage of this technique is
that it is fully automated, for finite-state systems.
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