Modelling Shared State in a Shared Action Model

Kenneth J. Goldman and Nancy A. Lynch

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Abstract

The I/O automaton model of Lynch and Tuttle is extended
to allow modelling of shared memory systems, as well as sys-
tems that include both shared memory and shared action
communication. A full range of types of atomic accesses
to shared memory is allowed, from basic reads and writes
to read-modify-write. The extended model supports system
description, verification and analysis. As an example, Dijk-
stra’s classical shared memory mutual exclusion algorithm
is presented and proved correct.

1 Introduction

Reasoning about algorithms for asynchronous concurrent
systems is difficult, primarily because of the arbitrary inter-
leaving of process steps that may occur in an execution. As
a result, researchers have turned to formal models in order
to define problems precisely, give unambiguous descriptions
of algorithms, and construct careful proofs for safety and
progress properties. These models allow one to be explicit
about the possible interleavings that may occur in a dis-
tributed system and may specify which of those interleavings
are to be considered “fair” to the individual system compo-
nents. Examples include CSP [4], in which system compo-
nents communicate by sending messages over synchronous
channels, and UNITY [1], in which components communi-
cate by reading and modifying shared variables.

The 1/O automaton model [7, 8] is particularly well-
suited for modelling distributed algorithms described us-
ing message passing. The I/O automaton model is a (not
necessarily finite) state machine model that provides extra
support for classifying actions as input or output and for
describing fairness conditions. Precise problem statements
are defined in terms of the input and output actions that
occur at the boundary between the algorithm and its “en-
vironment.” These problem statements may include non-
trivial liveness constraints on the behavior of the algorithm.
Careful algorithm descriptions are constructed by specify-
ing the states and transition relations of I/O automata. A
range of proof techniques, from simple assertional reasoning
to hierarchical possibilities mappings, may be used to ver-
ify an algorithm satisfies a problem statement. In addition,
the model can be used for carrying out complexity analysis

This work was supported in part by the National Science Foundation
under Grant CCR-86-11442, by the Office of Naval Research under
Contract N00014-85-K-0168, and by the Defense Advanced Research
Projects Agency (DARPA) under Contract N00014-.83-K-0125.

CH2897-7/90/0000/0450$01.00 © 1990 IEEE

450

and for proving impossibility results. The communication
mechanism in a distributed system is modeled as an explicit
I/O automaton that shares actions with the other system
components. Therefore, the model can accommodate a va-
riety of message-passing systems, from systems with strictly
FIFO message delivery to those in which messages may be
delivered out of order or not at all.

Although the I/O automaton model provides excellent
support for modelling message-passing algorithms, many of
the important asynchronous concurrent algorithms are de-
scribed using shared memory. And in some cases one might
wish to use both shared-memory and message-passing to de-
scribe different parts of an algorithm. Therefore, it would
appear that introducing a shared-memory mechanism into
the I/O automaton model would be a useful unification of
these two approaches. The shared memory model of Lynch
and Fischer [5] introduced the separation of input and out-
put actions, and was a precursor of the current I/O automa-
ton model. However, until now it has not been clear how to
integrate the two basic approaches.

In this paper, we extend the I/O automaton model to
allow modelling of shared memory systems, as well as sys-
tems that have both shared memory and shared action com-
munication. A full range of types of atomic accesses to
shared memory is allowed, from basic reads and writes to
atomic read-modify-write. We define a special class of ac-
tions, called “shared memory actions,” to model atomic ac-
cesses to shared memory. Each shared memory action con-
tains extra information that corresponds to the contents of
the shared memory before and after the action occurs. A
“shared memory automaton” is then defined to be an 1/O
automaton that satisfies certain natural conditions regard-
ing its shared memory actions. For example, one condition
captures the idea that an access to shared memory must be
prepared to observe any value in the memory.

Since shared memory automata are simply special cases
of I/O automata, all the I/O automaton model definitions
and properties (notably composition and fairness) apply to
shared memory automata as well. We show that composing
of a collection of shared memory automata (for a given set of
shared variables) yields another shared memory automaton
(for the same set of variables). To combine shared memory
automata having different (not necessarily disjoint) sets of
shared variables, we define an “augmentation” operator that
is used to expand the set of shared variables for each com-
ponent before composing. We show that the natural com-
positionality results hold when we combine shared memory
automata in this way. For example, projecting the execution

of a composition on the individual components yields exe-
cutions of those components. Since we expose the observed
state of shared memory in the behavior of an automaton,
we also achieve compositionality of the behaviors of shared
memory automata. That is, in the standard sense of I/O
automaton composition, the behaviors of a composition of
shared memory automata are the same as the composition
of the behaviors of the individual automata.

Shared memory automata operate in a system in which
the environment is free to change the contents of the shared
memory at any time. We define a “closeout” operator, which
takes a shared memory automaton and a set of variables
and produces a new shared memory automaton in which
the given set of variables is made private, absorbed into the
local state. In this way, we restrict the set of components in
a system that may access portions of the shared memory.!
We provide an analogous closeout operator on sets of be-
haviors, and we show that the behaviors of a closed out
automaton are the same as the closed out behaviors of the
original automaton.

Just as does the original I/O automaton model, our ex-
tended model supports careful problem specification (includ-
ing both safety and progress properties), unambiguous sys-
tem description, verification and analysis. Both safety and
progress properties of algorithms may be shown using stan-
dard proof techniques (e.g., invariant assertions and variant
functions). To illustrate these techniques, we present and
prove the correctness of Dijkstra’s classical shared memory
mutual exclusion algorithm using the shared memory 1/O
automaton model.

The first author is currently developing the Spectrum
Simulation System, a research tool for the design of dis-
tributed algorithms [3]. Spectrum consists of a language
and simulator based on the I/O automaton model. Users
express distributed algorithms as I/O automata and simu-
late them directly, using the semantics of the formal model.
A graphical interface is provided for constructing systems
of automata and animating their executions. Using I/O au-
tomaton composition, Spectrum users may define composed
types hierarchically, study simulations at varying levels of
detail, and create specialized debugging and analysis de-
vices. Incorporating the shared memory extensions (specifi-
cally, the closeout operator) into this system will allow sim-
ulation of message-passing algorithms, shared memory al-
gorithms, and hybrid algorithms all within a single formal
framework. This is an added benefit of building a powerful
unified model that accommodates both message-passing and
shared memory communication. Although Spectrum does
not yet support the closeout operator, we were able to use
Spectrum to simulate the example algorithm presented in
Section 4 by explicitly constructing the closed out automa-
ton. The invariants and variant function were mechanically
checked for random executions of the algorithm.

The remainder of the paper is organized as follows. In
Section 2, we review the I/O automaton model. We define
our extensions for shared memory in Section 3 and show
some important properties that follow from these defini-
tions. In Section 4, the extended model is used to present
and prove correct Dijkstra’s shared memory mutual exclu-
sion algorithm. The paper concludes with a summary and
discussion.

1The ability to closeout with respect to a subset of the shared vari-
ables (as opposed to the entire set) may be likened to lexical scoping
of variable declarations in a conventional programming language.

2 The I/O Automaton Model

The following introduction to the I/O automaton model is
adapted from [8], which explains the model in more detail,
presents examples, and includes comparisons to other mod-
els.

2.1 I/O Automata

I/O automata are best suited for modelling systems in which
the components operate asynchronously. Each system com-
ponent is modeled as an I/O automaton, which is essentially
a nondeterministic (possibly infinite state) automaton with
an action labeling each transition. An automaton’s actions
are classified as either ‘input’, ‘output’, or ‘internal’. An au-
tomaton can establish restrictions on when it will perform
an output or internal action, but it is unable to block the
performance of an input action. An automaton is said to be
closed if it has no input actions; it models a closed system
that does not interact with its environment.

Formally, an action signature S is a partition of a set
acts(S) of actions into three disjoint sets in(S), out(S), and
int(S) of input actions, output actions, and internal actions,
respectively. We denote by ezt(S) = in(S) U out(S) the set
of external actions. We denote by local(S) = out(S)Uint(S)
the set of locally-controlled actions. An I/O automaton con-
sists of five components:

e an action signature sig(A),
e a set states(A) of states,
e a nonempty set start(A) C states(A) of start states,

¢ a transition relation steps(A) C states(A) x acts(A) x
states(A) with the property that for every state s’
and input action 7 there is a transition (s',7,s) in

steps(A), and

¢ an equivalence relation part(A) partitioning the set
local(A) into at most a countable number of equiva-
lence classes.

The equivalence relation part(A) will be used in the defini-
tion of fair computation. Each class of the partition may
be thought of as a separate process. We refer to an element
(s',7,8) of steps(A) as a step of A. If (s',7,3) is a step
of A, then 7 is said to be enabled in s’. Since every input
action is enabled in every state, automata are said to be
input-enabled. This means that the automaton is unable to
block its input.

An ezecutionof A is a finite sequence sg, 71, 81,...,%p, Sn
or an infinite sequence 8o, 71, 81, 72, ... of alternating states
and actions of A such that (s;, mit1,5i41) Is a step of A
for every i and sq € start(A). The schedule of an exe-
cution « is the subsequence of o consisting of the actions
appearing in . The behavior of an execution or schedule
a of A is the subsequence of a consisting of external ac-
tions. The sets of executions, finite executions, schedules,
finite schedules, behaviors, and finite behaviors are denoted
execs(A), finerecs(A), scheds(A), finscheds(A), behs(A), and
finbehs(A), respectively. The same action may occur several
times in an execution or a schedule; we refer to a particular
occurrence of an action as an event.

The separation of input and output actions will be im-
portant in our shared memory extensions for two reasons.

First, the fact that each action is under the control of exactly
one component means that by simply using actions to model
updates to the shared memory, we capture the notion of a
single module making an atomic update to shared memory
(without any active participation by other modules). Sec-
ond, the fact that input actions are always enabled means
that we can use shared memory input actions to construct
modules that passively observe the shared memory accesses
by others without interfering. We will return to these points
in Section 3.7.

2.2 Composition

We can construct an automaton modelling a complex sys-
tem by composing automata modelling the simpler system
components. When we compose a collection of automata,
we identify an output action 7 of one automaton with the
input action » of each automaton having 7 as an input ac-
tion. Consequently, when one automaton having r as an
output action performs x | all automata having x as an ac-
tion perform 7 simultaneously (automata not having = as
an action do nothing).

Since we require that most one system component con-
trols the performance of any given action, we must place
some compatibility restrictions on the collections of automata
that may be composed. A countable collection {Si},, of
action signatures is said to be strongly compatible if for all
1,5 € I satisfying i # 7 we have

1. out(S:) N out(S;) =0,
2. int(Si) N acts(S;) = @, and
3. no action is contained in infinitely many sets acts(S:).

We say that a collection of automata are strongly compatible
if their action signatures are strongly compatible.

The composition S = Hie} S; of a countable collection
of strongly compatible action signatures {S:},.; is defined
to be the action signature with

. in(S) = U,’g}in(S.’) - U.-ejout(S.-),
o out(S) = Uierout(S:), and
o int(S) = Uierint(S;).

The composition A = H-‘ez A; of a countable collection of
strongly compatible automata {4}, is the automaton de-
fined as follows:?

o sig(A) = H.'51 sig(Ai),
states(A) = [, states(A:),

start(A) = [,¢; start(4s),

steps(A) is the set of triples (7, 7, §3) such that, for all
t € I,if v € acts(A;) then (si[i], x, $3[i]) € steps(A:),
and if = € acts(A;) then 4[] = §[i], and

o part(A) = Uierpart(Ai).

ZHere start(A) and states(A) are defined in terms of the ordinary
Cartesian product, while sig(A) is defined in terms of the composition
of actions signatures just defined. Also, we use the notation 3[i] to
denote the sth component of the state vector 7.

452

Given an execution o = & m 4] ... of A, let a|A; (read “a
projected on A;”) be the sequence obtained by deleting =, ;
when 7; & acts(A,) and replacing the remaining §; by §;[s].

In defining the behaviors of a composition, it is some-
times convenient to hide actions, making them internal ac-
tions of the composition. The hidden actions are usually
locally controlled actions of the composition that are also
inputs to some of its own components.

2.3 Fairness

Of all the executions of an I/O automaton, we are primarily
interested in the ‘fair’ executions — those that permit each
of the automaton’s primitive components (i.e., its classes
or processes) to have infinitely many chances to perform
output or internal actions. The definition of automaton
composition says that an equivalence class of a component
automaton becomes an equivalence class of a composition,
and hence that composition retains the essential structure
of the system’s primitive components. In the model, there-
fore, being fair to each component means being fair to each
equivalence class of locally-controlled actions. A fair execu-
tion of an automaton A is defined to be an execution a of
A such that the following conditions hold for each class C
of part(A):

1. If o is finite, then no action of C is enabled in the final
state of a.

2. If & is infinite, then either o contains infinitely many
events from C, or o contains infinitely many occur-
rences of states in which no action of C is enabled.

We denote the set of fair executions of A by fairezecs(A).
We say that 3 is a fair behaviorof A if 8 is the behavior of a
fair execution of A, and we denote the set of fair behaviors
of A by fairbehs(A). Similarly, B is a fair schedule of Aif 8
is the schedule of a fair execution of A, and we denote the
set of fair schedules of A by fairscheds(A).

In our example progress proof of Dijkstra’s mutual exclu-
sion algorithm, we will rely on the built-in fairness feature of
the I/O automaton model in order to reason about progress
in a system containing several active, non-failing processes
accessing passive shared memory.

2.4 Problem Specification

A ‘problem’ to be solved by an I/O automaton is formalized
as a set of (finite and infinite) sequences of external actions.
An automaton is said to solve a problem P provided that its
set of fair behaviors is a subset of P. Although the model
does not allow an automaton to block its environment or
eliminate undesirable inputs, we can formulate our problems
(i.e., correctness conditions) to require that an automaton
exhibits some behavior only when the environment observes
certain restrictions on the production of inputs.

We want a problem specification to be an interface to-
gether with a set of behaviors. We therefore define a schedule
module H to consist of two components, an action signature
sig(H), and a set scheds(H) of schedules. Each schedule
in scheds(H) is a finite or infinite sequence of actions of
H. Subject to the same restrictions as automata, schedule
modules may be composed to form other schedule modules.
The resulting signature is defined as for automata, and the
schedules scheds(H) is the set of sequences B of actions of

H such that for every module H' in the composition, 8|H’
is a schedule of H'.

It is often the case that an automaton behaves correctly
only in the context of certain restrictions on its input. A use-
ful notion for discussing such restrictions is that of a module
‘preserving’ a property of behaviors. A set of sequences P
is said to be prefiz-closed if 3 € P whenever both 3 is a
prefix of @ and o € P. A module M (either an automaton
or schedule module) is said to be prefiz-closed provided that
finbehs(M) is prefix-closed. Let M be a prefix-closed module
and let P be a nonempty, prefix-closed set of sequences of
actions from a set ® satisfying ® Nint(M) = 0. We say that
M preserves P if Br|® € P whenever 3|® € P, 7 € out(M),
and B7|M € finbehs(M). Informally, a module preserves a
property P iff the module is not the first to violate P: as
long as the environment only provides inputs such that the
cumulative behavior satisfies P, the module will only per-
form outputs such that the cumulative behavior satisfies P.
One can prove that a composition preserves a property by
showing that each of the component automata preserves the
property.

3 Shared Memory Definitions

In this section, we present a set of definitions that extends
the I/O automaton model in order to allow modelling shared
memory algorithms. We do not redefine any concepts, but
simply add new concepts to the existing model. We model
each system component that accesses shared memory as a
restricted I/O automaton called a “shared memory automa-
ton”. The fact that shared memory automata are simply
special cases of I/O automata means that all the standard
definitions and properties of I/O automata (e.g., composi-
tion and fairness) can be used directly in descriptions and
proofs of shared memory algorithms.

3.1 Variables

We will model shared memory in terms of a collection of
variables, so the first step is to define what is meant by a
variable. We define a variable z to have a domain dom(z) of
values and an initial value init(z) € dom(z). Given aset X of
variables, we model a state of X by an assignment mapping
for X, denoted fx, that maps each variable z € X to a
value in dom(z). We let Fx denote the set of all possible
assignment mappings for X. We define init(X) to be the
assignment mapping fx € Fx such that Vz € X, fx(z) =
init(z). If X and Y are sets of variables such that Y C X,
we define fx|Y to be the assignment mapping fy € Fy
such that for all y € Y, fy(y) = fx(y). If X and Y are
disjoint sets of variables, and Sx, Sy are sets of assignment
mappings for X and Y, respectively, then we define Sx oSy
to be the set of assignment mappings S for X UY such that
for all s € 5,s}X € Sx and s|Y € Sy. As shorthand, we
may represent a singleton set of assignment mappings by its
only element. For example, if fx is an assignment mapping
for X, we write fx o Sy instead of {fx} o Sy. Analogously,
for fx € Fx and fy € Fy, we let fx o fy represent its only
element when it is clear from context that a mapping (rather
than a set of mappings) is called for. If f € Fx, £ € X, and
v € dom(z), we define fi;=,) to be the assignment mapping

f" such that f'|(X\ {z}) = f|(X\ {z}) and f'(z) = v.

453

3.2 Shared Memory Actions

Since the only “sharing” that occurs in the I/O automaton
model is the sharing of actions, we construct shared memory
on top of the existing shared action mechanism. We begin
by defining a special type of action called a “shared memory
action” that will be used to model accesses to the shared
variables®.

We fix £, a universal set of access labels. Let X be a
set of variables. We define a shared memory action for X to
be a triple of the form (f%,a, fx), where f%, fx € Fx and
a € L* We let sm-acts(X) denote the set of all possible
shared memory actions for X. We say that = is a shared
memory action iff it is a shared memory action for some X.
We say o is a shared memory step (for X) iff its contained
action is a shared memory action (for X).

To construct signatures for shared memory automata,
we need the following technical definition. Let II be a set of
actions and X a set of variables. We say that II is complete
for X iff V= € II, if * = (f¥,a, fx) is a shared memory
action for X, then Vf}, fx € Fx, (f}, e, fx) e IL

Let X and Y be sets of variables such that Y C X. If
7 = (fk, @, fx) is a shared memory action for X, we define
its projection on Y, denoted 7Y, to be (fx|Y,qa, fx|Y), a
shared memory action for Y. If § is a sequence of actions,
all of whose shared memory actions are shared memory ac-
tions for X, then we define B|Y to be the sequence that
results from replacing each shared memory action of 8 by
its projection on Y. Projections on sets of shared memory
actions, signatures containing shared memory actions, and
sets of sequences containing shared memory actions are de-
fined analogously. If o = (s’, 7, 8) is a step with x a shared
memory action for X, then o|Y is defined to be (s', 7|Y, s).

3.3 Shared Memory Automata

Let X be a set of variables, and let A be an I/O automa-
ton all of whose shared memory actions are external shared
memory actions for X. Let shared-in(A) denote the set of
shared memory actions that are inputs to A, and let shared-
out(A) denote the shared memory actions that are outputs
of A. We say that A is a shared memory automaton for X
iff it satisfies the following conditions:

1. The sets of actions shared-in(A) and shared-out(A) are
each complete for X.

2. For all steps (s, (fx,a, fx), s) € steps(A),
if (fx,a, fx) € shared-out(A), then for all f}(€ Fx,
there exists a state § and some f}(€ Fx such that
s, (f}, a, fx), §) € steps(A).

3. In the equivalence relation part(A), any two output

actions (fk, e, fx) and (f},a, fx) are elements of the
same equivalence class.

The first condition says that if A has a shared memory action
with a given label a, then it has all possible shared memory
actions with label a. For input actions, this means that A

3In some sense, this is the reverse of what is often done to in-
corporate message passing into a shared memory model. In UNITY
[1], for example, shared queue variables are declared to model “chan-
nels” and atomic accesses to these shared queues model “sending”
and “receiving” data across the channels.

4 These triples are action names, not to be confused with the steps
of an automaton.

must be prepared to handle any value it may observe in the
shared variables (since inputs are always enabled). For out-
put actions, this condition is simply a technical restriction
that makes composition of shared memory automata work
out properly, as we will see later. The condition also makes
describing the signatures of shared memory automata more
convenient, since we need not list all the allowable values
of the shared variables for each shared memory action label
used.

The second condition says that for each shared memory
output step, there exists a step from the same state for each
possible assignment of the shared variables. In essence, this
says that the preconditions of an output action may not de-
pend on the values of the shared variables. This corresponds
with the notion that one cannot observe the values of shared
variables except by accessing them, and that one must be
prepared to handle any value that might be observed.

The third condition says that the equivalence class mem-
bership of an output action may not depend upon the values
of the external variables. This is a technical condition that
prevents a nonsensical situation in which executions must
be “fair” to the different values of the shared variables.

Since a shared memory automaton is an I/O automaton,
all the standard I/O automaton definitions for executions,
schedules, behaviors, composition, and fairness carry over
to shared memory automata.

Theorem 1: The composition of a strongly compatible col-
lection of shared memory automata for X is a shared mem-
ory automaton for X.

Proof: We know that the composition of a strongly com-
patible collection of I/O automata is an I/O automaton.
Furthermore, since external actions of the components are
external actions of the composition, we know that all of
the shared memory actions are external actions in the com-
position. All of these are shared memory actions for X.
It remains to be shown that the composition satisfies the
three conditions imposed on shared memory automata for
X. Condition 1 holds, since the union of complete sets of ac-
tions is clearly a complete set. For condition 2, we note that
composition does not introduce any new output actions, nor
does it remove any existing output actions. Furthermore,
input-enabling and the definition of composition imply that
for each output step (s.,7,si) of a component A,, for all
states 8’ of the composition A, if s'| A = s{, then there ex-
ists a state s of A such that (s’, 7, s) is a step of A. Thus,
Condition 2 holds. Since the equivalence relation of the com-
position is the union of the individual equivalence relations
of the components, any two actions in the same equivalence
class in a component are in the same equivalence class in
the composition. Since the set of shared memory output ac-
tions for each component is complete, strong compatibility
assures us that no two shared memory output actions with
the same label occur in different classes of the composition.
This guarantees Condition 3. =

So far, we have given a general set of definitions for mod-
elling collections of modules that access shared memory. Our
accesses allow a module to atomically read the entire con-
tents of memory, perform some local computation (possibly
resulting in a state transition), and update the entire con-
tents of shared memory. This general type of shared mem-
ory access is, of course, an expensive operation to imple-
ment. Therefore, we would like to define systems in which

454

the shared memory accesses are more restricted. For exam-
ple, in the most restricted case, we might only allow read or
write accesses to single shared variables.

Let A be a shared memory automaton for X, let ¢ be an
access label of A, and let z € X. We say that ais a

1. read access to z iff V(s', (f', a, f), 8) € steps(A),
(a) f= 1 and

(b) Vf € Fx such that f(z) = f'(z), (s',(f.a,f),8) €
steps(A).

2. write access to © with value v iff Y(s',(f,a, f),s) €
steps(A),

(a) f= f[’z‘:v] and
(b) Vf € Fx, (5” (fvayf[:=v])y 3) € steps(A).

In a read access to «, the shared memory is unmodified
and the new state of A depends only upon the value ob-
served in variable z. In a write access to z, the “before”
and “after” states of shared memory differ only in the value
of variable z, and the new state of A and the new value of
z are independent of the “before” state of shared memory.

We now define a restricted class of shared memory au-
tomata called “single-variable read-write automata.” Insuch
automata, each access label for a shared memory output is
constrained to be a read access or a write access to a sin-
gle variable. Let A be a shared memory automaton for X,
and let 3 be a partition of the access labels for actions in
shared-out(A) such that there exist exactly two classes in ¢
for each variable in z € X, denoted ¥,(z) and ¥ (z). The
partition ¢ is called the access partition of A. We say that A
is a single-variable read-write automaton under ¢ iff Vz € X,
¥-(z) contains only read accesses to and () contains
only write accesses to z. We say that such an automaton
can read z iff ¢, (z) is nonempty, and can write z iff Y. (z) is
nonempty. If Q is a collection of single-variable read-write
automata, then a component of Q is said to own a variable
z if it is the only component that can write z; in this case,
z is said to be a single-writer variable. Multi-writer, single-
reader, and multi-reader variables are defined in the obvious
way.

Other classes of shared memory automata could be con-
structed in a similar manner. For example, one might define
test-and-set or memory-to-memory-swap accesses and define
automata in which the access labels are appropriately parti-
tioned into additional classes. In fact, this style of definition
can be used to define shared memory accesses for operations
on arbitrary data types, such as enqueue and dequeue. Of
course, any shared memory algorithm could be expressed
and studied using the general shared memory automaton
definition only, but being specific about the types of shared
memory accesses allowed makes the assumptions about the
underlying shared memory more explicit, and also may help
simplify reasoning about the algorithm.

3.4 Augmentation and Augmented-Composition

In building up I/O automaton systems, we may wish to com-
pose collections of shared memory automata having differ-
ent (either intersecting or disjoint) sets of shared variables.
We would like the result of this composition to be a shared
memory automaton for Z, where Z is the union of the sets
of shared variables of the automata being composed. In

order to accomplish this, we first “augment” each of the au-
tomata with additional shared variables so that its set of
shared variables is Z. Then we compose as usual.’

We now define what is meant by augmenting an au-
tomaton. Let X and Z be sets of variables, with X C
Z. Given a shared memory automaton A for X, we de-
fine augment(A, Z), read “the augmentation of A to Z,” to
be the automaton B as follows:

o in(B) = {n €sm-acts(Z) : x| X €shared-in(A)} U
(in(A)\shared-in(A)).

out(B) = {r €sm-acts(Z) : x|X €shared-out(A)} U
(out(A)\shared-out(A)).

int(B) = int(A).
states(B) = states(A).
start(B) = start(A).

steps(B) = all steps o = (s', 7, s) such that either
1. o € steps(A) and « is not a shared memory ac-
tion, or
2. o|X € steps(A) and 7 €shared-in(B), or
3. o|X € steps(A), * = (f5,a, fz) Eshared-out(B),
and f3|(Z - X) = fzl(Z - X).
part(B) = {C C local(B) : C|X € part(A)} such that

part(B) forms a partition of the locally-controlled ac-
tions of B.

Essentially, we augment A by making the signature com-
plete for Z, while leaving the set of states unchanged. For
each step involving a shared memory action = for X, we
substitute the set of all steps in which = is replaced by a
shared memory action for Z (call it #’) such that x'|X = =.
For output actions steps, we make the further restriction
that if #' = (f%,a, fz), then f3 and fz differ only in their
assignments to the variables of X. This models the fact that
outputs of B only change the values of shared variables in
X. We do not make this restriction for input actions be-
cause they are always enabled. This also highlights the fact
that the shared memory accesses of B are independent of
all shared variables other than those in X. The partition of
B is constructed from that of A to reflect the differences in
their signatures.

Theorem 2: Let X and Z be sets of variables, with X C Z,
and let A be a shared memory automaton for X. Then
augment(A, Z) is a shared memory automaton for Z.
Proof: Immediate from the definitions of augmentation
and shared memory automata. []

Our next result, Theorem 5, says that augmentation does
not (in any significant way) affect the behavior of an au-
tomaton. This is proved using the following lemmas.

Lemma 3: Let X and Z be sets of variables such that X C
Z. If Ais a shared memory automaton for X and a4 is
an execution of A, then there exists an execution ap of
B = augment(A, Z) such that ap|X = aa.

5When composing a shared memory automaton with an “ordinary”
I/0 automaton, no augmentation is necessary, since an ordinary 1/O
automaton is by definition an SMA for any set of variables X

455

Proof: Clearly, if a 4 contains no actions, the claim holds.
For the inductive hypothesis, let a4 = a’,7as be an exe-
cution of A, and let a’y be the execution of B such that
as|X = a4. Clearly the state of A after o’y is the same
as the state of B after a’y. Let this state be s’. It remains
to be shown that some 7p is enabled from s’ in B, result-
ing in state s, where xg|X = w4. If x4 is not a shared
memory action, then the result is trivial, since the steps
of A and B differ only with respect to shared memory ac-
tions. If x4 is a shared memory action (fy,a, fx), then
by the definition of augmentation, there must be a step
(s', 78 = (fz,8, fz), s) € steps(B) such that xp|X = 74.
[

Lemma 4: Let X and Z be sets of variables such that X C
Z. If A is a shared memory automaton for X and ap is
an execution of B = augment(A, Z), then there exists an
execution a4 of A such that a4 = ap|X.

Proof: If ap has no actions, the claim holds. For the
inductive hypothesis, let ap = a'’gxps be an execution of
B, and let o4 be the execution of A such that o/4|X = 4.
Clearly the state of B after a is the same as the state of
A after a’y. Let this state be s’. It remains to be shown
that some 74 is enabled from s’ in A, resulting in state s,
where 74 = 7p|X. If x5 is not a shared memory action,
then the result is trivial as before. If xp is a shared memory
action (f%,a, fz), then by the definition of augmentation,
the step (s, (fz|X, a, f2|X), s) € steps(A). Therefore, the
second claim holds.]

Theorem 5: Let X and Z be sets of variables such that
X C Z. If Ais a shared memory automaton for X, then

1. behs(augment(A, Z))| X = behs(A), and
2. fairbehs(augment(A, Z))| X = fairbehs(A).

Proof: Part 1 is immediate from Lemmas 3 and 4.

For Part 2, let a4 be a fair execution of A, and let 84 =
beh(as). From Lemma 3, we know that there exists an
execution ap of B = augment(A, Z) such that ap|X =
aas. To show that ap is fair, we apply the definition of
augmentation. From the construction of steps(B), a shared
memory action © € acts(B) is enabled in state s of B only
if #|X is enabled in state s of A. The remaining actions
x € acts(B) are enabled in in state s of B only if = is
enabled in state s of A. Furthermore, any two actions = and
7' are in the same equivalence class of B iff #|X and ='|X
are in the same equivalence class of A. So, since a4 is fair,
ap is fair.

Now, to show the other direction, let ap be a fair exe-
cution of B. By Lemma 4, there exists an execution a4 of
A such that @4 = ap|X. To show that a4 is fair, we argue
similarly to above. a

We can now define augmented-composition, making use of
the augmentation definition and standard I/O automaton
composition.

Augmented-Composition: Let {X:},.; be a collection
of (not necessarily disjoint) sets of variables,let Z = U;e; X,
let each A; be a shared memory automaton for X;, and
let the collection {augment(A;)},¢; be strongly compatible.

We define the augmented composition H?el A; to be the
ordinary I/O automaton composition I-LEI augment(Ai, Z).

Theorem 6: Let {Xi},.; be a collection of (not necessar-
ily disjoint) sets of variables, let Z = U;¢;1X;, let each A;
be a shared memory automaton for X;, and suppose that
the collection of automata {augment(A:, Z)},¢, is strongly

compatible. Then the augmented composition nj’e I
shared memory automaton for Z.

Proof: By Theorem 2, for each A;, augment(A;,Z) is a
shared memory automaton for Z. Therefore, by Theorem 1,

the result holds.]

Aiis a

The following three compositionality results follow immedi-
ately from the corresponding results in [8], together with
Theorems 5 and 6. The first result says that an execution of
an augmented-composition induces executions of the com-
ponent shared memory automata.

Corollary 7: Let {Xi},c; be a collection of sets of vari-
ables, where Z = U1 X;. Let {A:},¢; be a collection of au-
tomata such that each A; is a shared memory automaton for
Xi. Let the collection of automata {augment(A;, Z)}ier be

strongly compatible, and let A = H?e! Ai. If a € ezecs(A)
then (a|augment(Ai, 2))|X; € ezecs(A;) for every i € I.
Moreover, the same result holds if ezecs() is replaced by
fairezecs(), scheds(), fairscheds(), behs(), or fairbehs().

The next result says that executions of component shared
memory automata can often be pasted together to form an
execution of the augmented-composition.

Corollary 8: Let {X;};.; be a collection of sets of vari-
ables, where Z = UierXi. Let {A:},¢; be a collection of au-
tomata such that each A; is a shared memory automaton for
Xi. Let the collection of automata {augment(A;, Z)},c, be
strongly compatible, and let A = H?’er A;. Suppose a; is a
(fair) execution of A; for every ¢ € I, and let 8 be a sequence
of actions in acts(A) such that (Bjaugment(A:, 2))|X: =
sched(a;) for every i € I. Then there is a (fair) execution o
of A such that § = sched(a) and ai = (a|augment(A;, Z))|X;
for every ¢ € I. Moreover, the same result holds when acts()
and scheds() are replaced by ezt() and beh().

Finally, schedules and behaviors of component shared mem-
ory automata can also be pasted together to form schedules
and behaviors of the augmented-composition.

Corollary 9: Let {X'}iel be a collection of sets of vari-
ables, where Z = UierXi. Let {Ai};c; be a collection of
automata such that each A; is a shared memory automaton
for X;. Let the collection of automata {augment(A;, 2)Yier
be strongly compatible, and let A = H?'GIA.-. Let 8 be a
sequence of actions in acts(A). If (Blaugment(A;, Z))|X; €
scheds(A;) for every i € I, then B € scheds(A). Moreover,
the same result holds when acts() and scheds() are replaced
by ext() and behs(), respectively, and similarly when re-
placed by acts() and fairscheds() or by ext() and fairbehs().

3.5 The Closeout Operator

So far, we have introduced shared memory actions to model
accesses to shared variables, and we have defined a special
kind of I/O automaton containing shared memory actions
in its signature. We have interpreted the first triple of each
action as the “before state” of shared memory and the third
component as the “after state.” However, we have not yet
placed any restrictions on the the relationship between the

456

“after state” of one shared memory action and the “before
state” of the next. A shared memory automaton is not guar-
anteed that the value it writes to a given shared variable will
be the value observed by the next system component reading
that variable. In other words, we permit the environment to
freely modify the values in shared memory. We would like
to construct systems in which the set of components that
may modify a particular shared variable is fixed, closed to
the environment. We therefore define a “closeout” operator,
which takes a shared memory automaton A and produces a
new automaton B such that some or all of the shared vari-
ables of A become part of the local state of B. In this way,
the “absorbed” variables can be touched only the by the ac-
tions of B. Since A may be the result of composing several
shared memory automata, the closeout operator achieves
the desired result of restricting shared variable accesses to a
particular collection of system modules.

We now define the closeout operator C. Since the state
of an automaton may be thought of as a mapping from a
set of variables to a set of values, we will feel free to operate
on states as if they were assignment mappings. Let X and
Y be disjoint sets of variables, let Z = X UY, and let A be
a shared memory automaton for Z. We define B = C(4, X)
as follows:

o sig(B) = sig(A)|Y
states(B) = states(A) o Fx,
start(B) = start(A) o init(X),

o steps(B) contains exactly the following set of steps:

for each step (s', 7, 3s) in steps(A),

1. if # = (f3, a, fz) is a shared memory action, then
(s'o(f21X), (fz1Y, a, £2]Y), s0(f2| X)) € steps(B)
2. if r is not a shared memory action, then
{(s'o fx, a, so fx): fx € Fx} C steps(B), and

part(B) = part(A), where each class is projected on
Y.

Essentially, the variables in X are absorbed into the internal
state of the “closed out” automaton. If z € X, we use the
familiar record notation s.r to refer to the value of z in a
particular state s of B. That is, if sp = s4 0 fx, where 34
is a state of A, then sp.z = fx(z).

Given the definition of the closeout operator, we get the
following natural result.

Theorem 10: Let A be a shared memory automaton for Z
and let X and Y be disjoint sets of variables such that Z =
X UY. Then B = C(A, X) is a shared memory automaton
for Y.

Proof: To show that B is an [/O automaton, we must
demonstrate that for all states s’ and input actions 7 of B,
there exists a state s’ of B such that (s, 1,s) € steps(B).
Since this property is true of A, and since shared-in(A) is
complete, this property is also true of B by the construction
of steps(B). (When we construct the steps of B, complete-
ness of shared-in(A) guarantees that we include all possible
values for X in the “before states” of the steps for each input
action.)

We now show that I/O automaton B is a shared memory
automaton for Y. Clearly, all the shared memory actions
of B are external shared memory actions for Y. We now
show that each of the three conditions in the definition of

)

a shared memory automaton hold for B. For the first con-
dition, since shared-in(A) is complete for Z, shared-in(B)
= shared-in(A)|Y must be complete for Y. Similarly, for
shared-out(B). The second condition requires that for every
step (', (f{,a, fr),s) in steps(B), if (fy,a, fr) € shared-
out(B), then for all f, € Fy, there exists a state & and
some fy € Fy such that (s, (f;,,a, f¥),3) is in steps(B).
Since this condition is true for A, we know that for each
shared memory output action label a, there exists a step
(s'y (fx o fv,a, fx o fr), s) for every possible assignment
mapping f% o fi for Z. Therefore, when we project on Y
in constructing steps(B), we have a step (s', (fy, s, fr),s)
for each possible assignment mapping fy for Y. The third
condition, regarding membership of equivalence classes, is
obviously true of B. []

3.6 Closeout for behaviors

We now give a closeout definition for behaviors that is anal-
ogous to the one for automata.

Let X and Z be sets of variables with X C Z. If S is
a sequence of actions of a shared memory automaton A for
Z, then we say that B is consistent for X iff the following
conditions hold:

1. if (fz,6, fz) is the first shared memory action in 3,
then fz|X = init(X), and

2. if (fz', a1, fz) and (f3, a2, fz) are shared memory ac-
tions in 8 such that no shared memory action occurs
between them, then f7|X = fz|X.

If £ is a set of sequences of actions of a shared memory
automaton for Z, then we define C(X, X) to be the set
Ex|(Z — X), where Lx is the subset of ¥ containing ex-
actly those sequences that are consistent for X.

Lemma 11: Let X and Z be sets of variables such that
X C Z. Let A be a shared memory automaton for Z, and
let ap be an execution of B = C(A, X) with behavior 5.
Then there exists an execution a4 of A, with behavior 84
consistent for X, such that 84|(Z — X) = fs.

Proof: LetY = Z — X. We construct the sequence
a4 from ap as follows. For each step (s’ o fx, 7, s0 fx) in
ap, if # = (fy,a, fy) is a shared memory action of B, then
we let the corresponding step in a4 be (s',(fy o fx,a, fy o
fx),8); and if 7 is not a shared memory action, we let the
corresponding step in a4 be (s',,s).

Let B35 = beh(aa). Clearly, B5|Y = Ba. It remains to be
shown that a4 is an execution of A and that 84 is consistent
for X. We show that a4 is an execution of A by showing
that each step of a4 isin steps(A). Let o = (s’ofx, 7,30 fx)
be a step of B. If # = (fy, a, fy) is a shared memory action
of B, then by the construction of steps(B) in the definition
of closeout, (s', (fy o fx, a, fr o fx), s) must be a step of A.
Similarly, if 7 is not a shared memory action, then (s, x,s)
must be a step of A. Therefore, the construction produces
an execution of A.

Finally, we show that 34 is consistent for X. Since every
initial state of C(A, X) is in states(A) o init(X), it must be
that the first shared memory action (fz,a, fz) of fp has
| X = init(X), so the first consistency condition is satis-
fied. We know that the second consistency condition must
be satisfied, since any two successive steps (s"’, 71, ") and
(s, m2,) of any execution must have s” = s’, the assign-
ments to the variables of X are part of the state of C(4, X),

457

and the only actions that may change the valunes for X in
the state of C(A, X) correspond to shared memory actions
for for Z. u

Lemma 12: Let X and Z be sets of variables such that
X C Z. Let A be a shared memory automaton for Z and
let a4 be an execution of A with behavior fa. If B4 is
consistent for X, then there exists an execution ap of B =
C(A, X) such that B4]|(Z — X) is the behavior of ap.

Proof: LetY = Z — X. Let ap be the execution
constructed from o4 as follows. For each shared memory
action 7 in a4, let the corresponding action in ap be 7|Y.
Leave the remaining actions as in a4. For each state s in
a4, let the corresponding state in ap be s o (fz|X), where
fz is the third component of the preceding shared memory
action in a4 (or fz = init(Z) if there is no preceding shared
memory action).

Clearly Ba|Y = beh(ap). We claim that ap is an exe-
cution of B. To prove this claim, we proceed by induction
on the length of ap, showing that each action is enabled
from the state in which it occurs. Clearly, if ap contains
no actions, then the claim holds. Let (s, w,34) be a step
of a4, and let o’ be the portion of o up to (but not in-
cluding) the action =|Y for the corresponding step in ap.
We wish to show that if o’y ends in state s, then the step
(s's, 7|Y,sB) € steps(B), where sp is the next state of ap.
By the construction, we know that sz = s’ o(fz|X), where
f7 is the third component of the preceding shared memory
action in a4 (or fz = init(Z) if there is no preceding shared
memory action), and similarly for sp. There are two cases
for =:

1. If = is not a shared memory action, then clearly it is
enabled from s’, since (by the construction) s’y and
s’y are identical except that s/, does not assign values
to the variables in X. Furthermore, since = is not
a shared memory action, sg|X = s5|X, so the step
exists by the definition of the closeout operator.

2. f # = (fz,a,fz) is a shared memory action, then
consistency of 34 requires that f; be the third com-
ponent of the preceding shared memory action in a4
(or init(Z) if there is no such preceding action). By the
definition of closeout, we know steps(B) contains the
step (54 0 (f51X), (f3]Y, a, f21Y), 540 (fz1X)). And
by the construction, s’y o (f%|X) = s and sa0(fz|X)
= sp. Therefore, the desired step exists.

In both cases, r|Y is enabled and leads to state sp.]

Theorem 13: Let X and Z be sets of variables such that
X C Z. If A is a shared memory automaton for Z, then

1. behs(C(A, X)) = C(behs(A), X), and
2. fairbehs(C(A, X)) = C(fairbehs(A), X).

Proof: Partl: Let Y = Z—X. By Lemma 11, we know
that if 8]Y is a behavior of C(A, X), then f is a behavior of
A that is consistent for X. Therefore B|Y € C(behs(A), X),
by definition. If B|Y € C(behs(A), X), then by definition
of closeout on behaviors, f is consistent for X. Therefore,
Lemma 12 tells us that B|Y € behs(C(A, X)).

Part 2: First, we show that fairbehs(C(A, X)) contains
C(fairbehs(A), X). Let 85 be a fair behaviorof B = C(4, X),
and let op be an execution of B with beh(ap) = fp. Con-
struct execution a4 of A from o p as in the proof of Lemma 11

such that beh(a4)|(Z — X) = Bp. Since A is a shared mem-
ory automaton, we know that shared-out(A) is complete and
that for any given access label a € £, all shared memory ac-
tions with label a belong to the same class. Furthermore,
by the definition of closeout, 74 and 4 belong to the same
equivalence class in A iff 74|X and 7/|X belong to the
same equivalence class in B. Therefore, given that ap is
fair, we can show that a4 is fair by arguing that an action
74 is enabled in state s of aa iff 74|X is enabled in the
corresponding state sg of ap. This is easily seen from the
construction of steps(B), since s4 = sB|(Z — X).

Now, we show that C(fairbehs(A), X) contains the set
fairbehs(C(A, X)). Let B4 be a fair behavior of A that is
consistent for X, and let a4 be an execution of A with
beh(aa) = Ba. Construct execution ap of C(4, X) from
a4 as in the proof of Lemma 12 such that 84[(Z - X) =
beh(ap). The remainder of the proof is argued as above. ®

3.7 Discussion

Important in defining our shared memory extensions were
the built-in features of the I/O automaton model, most no-
tably composition and the separation of inputs and outputs.
By using the built-in notion of an output action being un-
der the control of a single process, we were able to capture
the idea of a single module making an atomic update to
shared memory (without any active participation by other
modules). In addition, by exposing the values of the shared
variables as part of the shared memory accesses, we were
able to not only carry forward the compositionality proper-
ties of I/O automaton behaviors but also provide a useful
notion of a shared memory action as an input. We expect
normal communication through shared variables to be mod-
eled using output actions only, but the input actions allow
a module to passively observe the accesses to shared mem-
ory made by other processes. We see two potential uses for
this feature. First, one might use shared memory actions as
inputs to construct external processes that are not part of
the algorithm but monitor the use of shared memory (possi-
bly as a means to check algorithms in a simulation system).
Second, in a modular algorithm design, it may be appropri-
ate to divide a task into several I/O automaton components
such that only one component accesses the shared memory
while the others are kept “informed” of these accesses by
receiving them as inputs (e.g., to model a collection of pro-
cesses “snooping” on a memory bus to update local caches).

4 Example: Dijkstra’s mutual exclusion al-
gorithm

In order to illustrate the shared memory extensions just pre-
sented, we apply them to Dijkstra’s classical shared mem-
ory mutual exclusion algorithm. We begin by defining the
mutual exclusion problem in terms of the I/O automaton
model. We then present Dijkstra’s algorithm as a composi-
tion of shared memory automata. The safety and progress
proofs that follow demonstrate how proofs using standard
assertional techniques may be expressed straightforwardly
using this model.

458

4.1 The Mutual Exclusion Problem

Fix n, a positive integer, and let T = {1,2,...,n}. We de-
fine schedule module M with sig(M) as follows:

UserTry;, ¢ €Z Outputs: Crit;,i €7
UserExiti, 1 € Rem;,1 €T

Inputs:

Schedule module M interacts with an environment that
may be thought of as a collection of n user processes u;,
i € I, where each process u; has outputs UserTry; and
UserExit;, and has inputs Crit; and Rem;. A UserTry: ac-
tion means that process u; wishes to enter its critical section.
A Crit; action by M gives u; permission to enter its critical
section. A UserExit; action means that process u; is leav-
ing its critical section. Finally, the Rem; action gives u;
permission to continue with the remainder of its program.
If B is a sequence of actions of M, then we define §|i to
be the subsequence of B containing exactly the UserTry;,
Crit;, UserExit;, and Rem; actions. Before defining the al-
lowable schedules of M, we define the set of well-formed and
user-live sequences of actions of M. Let 8 be a sequence of
actions in sig(M). We say that 8 is well-formed iff for all
i € Z, all prefixes of B]i are prefixes of the infinite sequence
UserTry;, Criti, UserExit;, Rem,, UserTry;, Crit;,.... This
says, for example, that a process will not issue a try request
while in its critical section. If B is a sequence of actions of
S, we say that 8 is user-live iff for all ¢+ € Z, B|i is either
infinite or does not end with Crit;. Informally, this says that
no user u; stops in its critical section. An execution is said
to be well-formed (user-live) iff its behavior is well-formed
(user-live).

We define the set scheds(M), the allowable external be-
haviors of M, as follows. Let 8 be a sequence of actions
in sig(M). Then 8 € scheds(M) iff the following conditions

hold
1. M preserves well-formedness in S.
2. If B is well-formed, then

(a) (mutual exclusion) Vi,j € Z, if Crit; and Crit;
occur in 8 (in that order), then UserExit; occurs
between them.

(b) (progress) if 3 is user-live, then either § is infinite
or Vi, 8|t ends with Rem;.

Condition (2a) is the safety property: no two processes
are in their critical sections simultaneously. Condition (2b)
is the progress property: either all processes eventually end
up in their remainder regions or some process enters the crit-
ical region infinitely often. Both properties are guaranteed
only if the user processes preserve well-formedness, and the
progress condition is guaranteed only if user processes even-
tually exit the critical region. In this variant of the mutual
exclusion problem, only a very weak progress requirement is
made. For example, correct solutions to this problem admit
executions in which a process is locked out of the critical
section.

4.2 Dijkstra’s Mutual Exclusion Algorithm

In this section, we model Dijkstra’s shared memory mu-
tual exclusion algorithm [2] as an illustration of our shared
memory extensions to the I/O automaton model. As pre-
sented here, the variable names and structure more closely

o UserTry:
Eff: s.stage; = try
t Try:
Pre: s'.stage; € {try, failed}
Eff: wv.controli] =1
s.checked; = {i}
s.stage; = read
T Read;
Pre: s'.stage; = read
Eff: sk ="k

if s.ki = ¢ then
s.stage; = control2
else
s.stage; = check

t Check(j):

Pre: s'.stage; = check
j = 3'.k.‘
Eff: if v'.control[j] = O then
s.stage; = set
else
s.stage; = read
T Set;
Pre: s'.stage; = set
Eff: v.k=1
s.stage; = read
t Control2;
Pre: s'.stagei = control2
Eff: wv.control[t] = 2

s.stage; = final_check
t FinalCheck(y):

Pre: s'.stage; = final_check
j € s'.checked;
Eff: if v'.control[j] = 2 then
s.stage; = failed
else
s.checked; = s’.checked; U {j}
o Crit;
Pre: s'.stage; = final_check
|s’.checked;| = n
Eff: s.stage; = crit
¢ UserExit;
Eff: s.stage; = exit
s.checked; = {i}
1 Reset;
Pre: s'.stage; = exit
Eff: v.control[i] = 0
s.stage; = done
¢ Rem;
Pre: s'.stage; = done
Eff: s.stage; = remainder

Figure 1: Transition Relation for p; in Dijkstra’s Algorithm

follow the description in [6], although the algorithm is the
same,

We implement schedule module M by a collection of n
automata pi, ¢ € 7, where each p; interacts with u; through
shared actions and interacts with the other p;’s using shared
variables. Each p; has three state components: stage € {try,
read, check, set, control2, final check, failed, crit, exit, done,
remainder}; k, an integer in the range 1 to n; and checked, a
set of integers in the range 1 to n. Initially, stage = remain-
der, k is arbitrary, and checkedis the empty set. Automaton
pi is a shared memory automaton for V, where V has the
following variables: k, an integer in the range 1 to n; and
controllj] for j € Z, which take on values from {0,1,2}. Ini-
tially, k has an arbitrary value and all control variables are
0. The code for automaton p; is shown in Figure 1. Shared
memory actions are listed by their access labels and distin-
guished by daggers (1); all other actions are listed by their
action names. All actions of p; are outputs, except UserTry;
and UserExit,, which are its inputs. “Pre” and “Eff” denote
“precondition” and “effect”, respectively. For shared mem-
ory actions, the step (s',(v',a,v),s) is in steps(p:) exactly
when the precondition for a is satisfied in state s’ and s and
v are derived from s’ and v’ according to the effect clause.
For all other output actions, the step (s’, 7, 3) is in steps(pi)
exactly when the precondition for = is satisfied in state s’
and state s is derived from state s’ according to the effect
clause. If an action has no precondition, it is always en-
abled. If a state component or variable is not mentioned
in the effect clause, it is left unchanged by the action. The
partition consists of a class for each 1 € Z that contains all
the output actions of p;.

Essentially, the algorithm proceeds in two stages. After
receiving a UserTry, input, p: sets its control variable to 1
and enters stage one. In stage one, it continually reads k and
checks to see if control[k] is 0. If it finds a 0 in control[k],
it sets k to its own index ¢. If it reads k and finds it equal
to i, p; proceeds to stage two and sets its control variable
to 2. In stage two, p; performs a final check by examining
the control variables of all the other processes. If any of
these control variables are found to be 2, then p; fails and
returns to stage one (where it sets its control variable back
1). Otherwise, p; finds all the control variables to be less
than 2 and issues a Crit; action, allowing u; to proceed to
the critical section. After u; leaves the critical section (and
issues a UserExit, action), p; resets its control variable to 0
and issues a Rem; action.)

We associate with each p; an access partition ¢' as fol-
lows: For each j € Z, ¢;(control[j]) contains the labels
Check(5):; and FinalCheck(j):. Also, ¥}, (control[i]) contains
the labels Try;, Control2;, and Reset;. And for each j # 1,
¥ (controls]) is empty. Finally, 4 (k) contains Read; and
¥y, (k) contains Set;. The following result follows immedi-
ately from inspection of the code.

Lemma 14: For all 1 € 7, automaton p; is a single-variable
read-write automaton under ¥*.

We let system S = C(Ili<i<npi, {k, controli],i € I})
be the composition of the processes of Dijkstra’s algorithm,
closed out on k and the control variables. Furthermore, we
hide all shared memory actions of S so that the external
signatures of M and S are the same. One may note that
all the p,’s in system S can read and write shared variable
k, whereas the variable control[i] may be written only by p:

and read by the other p,’s. That is, each control[i] is owned
by pi, while k is a multi-writer variable.

We wish to show that system S solves schedule mod-
ule M. The proof has three parts. First, we show that S
preserves well-formedness in all executions, Condition (1) of
module M. In Section 4.3, we give the safety proof, Condi-
tion (2a). Finally, we present the progress proof, Condition
(2b), in Section 4.4.

If i is a process index and s is a state of system S,
we say that process p; is a contender in state s, written
contender(i, s), iff s.stage; € {read, check, set, control2, fi-
nal_check, failed}.

Lemma 15: Let o be an execution of system S with be-
havior 8. Then system S preserves well-formedness in 3.

Proof: By induction on the length of a. For the base
case, if o contains no actions, then it is well-formed. Let
a = o'sw, where beh(a’) is well-formed and = is an output
action of S. There are two cases.

o If v is a Crit; action, then by the preconditions of
that action it must be that p; is a contender in state
s. Therefore, the last action in beh(a')|i must be
UserTry;, for any other action would leave p; in a non-
contender state.

e If # is a Rem; action, then by the preconditions of
that action it must be that stage; = done in state s.
Therefore, the last action in B’|i must be Reset;, for
any other action would leave p; in a state with stage; #
done. Since Reset; is only enabled when stage; = exit,
the last action in beh(8')|: must be UserExit;, for any
other action would leave p; in a state with stage; #
exit.

In both cases, 8 is well-formed. []

The following lemma will be used in the safety proof
to rule out the occurrence of UserTry and UserExit actions
from certain states.

Lemma 16: Let o be an execution of system S with be-
havior 8. If B is well-formed, then for all states s in a, if
s is immediately followed by a UserTry; (UserExit;) action,
then s.stage; is remainder (crit).

Proof: 1f s is followed by UserTry;, then by definition
of well-formedness, the preceding action in B|i is a Rem;
action, and a Rem; action leaves stage; = remainder. Fur-
thermore, no output actions of p; are enabled while stage;
remainder. If s is followed by UserExit;, then by definition
of well-formedness, the preceding action in 3|7 is a Crit; ac-
tion, and a Crit; action leaves stage; = crit. Furthermore,
no output actions of p; are enabled while stage; = crit. =

4.3 Safety Proof

Let s be a state of system S. To denote the set of processes
in (or about to enter) their critical sections, we define the
set ready(s) = {i : (s.stagei = crit) V (|s.checked;| = n)}.
The proof is based on a set of invariants, proved in the fol-
lowing Lemma.® Using Spectrum, this Lemma was checked
mechanically for all states of random executions of the al-
gorithm.

6 Although the last invariant of Lemma 17 is used only in the live-
ness proof, we present it here because of its similarity to the others.

460

Lemma 17: Let a be a well-formed execution of system S.
In states s of a, for all processes p; and p;, the following
facts hold:

1. s.control[i] = 2 iff s.stage; € {final check, failed, crit,
exit}.

2. If s.checked; # {i} then s.stage; € {final_check, failed,
crit}.

3. If i # 5, then i € s.checked; = j & s.checked,.
4. If i € ready(s) then s.checked; = {1,2, ...n}.

5. If s.stage; € {control2, final_check, failed, crit, exit,
done}, then s.k; = 1.

Proof: In the initial state of S, Vi € Z, control[i] = 0,
checked; = {i}, and stage; = remainder. Therefore, all the
facts hold in the initial state. Let « = a’xs, and assume
that the facts hold in all states of a’, and specifically in the
last state s’ of a’. We consider each fact in turn, showing
that it must hold in state s as well.

1: If ¢'.control[i] = 2, then by the induction hypothesis
' stage; € S = {final_check, failed, crit, exit}. There-
fore, » must be either Try;, FinalCheck(j):, Crit;,
UserExit;, or Reset;. (Lemma 16 rules out UserTry;.)
The actions FinalCheck, Crit;, and UserExit; do not
change the value of control[i] and result in s.stage; € S.
The actions Try:; and Reset; both cause s.control[i]
2, but also result in s.stage; € S. Therefore, the
property is preserved if s’.control[s] = 2.

If ¢'.control[i] # 2, then by the induction hypothesis
s'.stage; € S. Therefore, * must be either UserTry;,
Tryi, Read;, Check(j)i, Set;, Control2;, or Rem;. (By
Lemma 16, UserExit; is ruled out.) Actions UserTry;,
Read;, Check(j):, Seti, and Rem; do not change the
value of control[t] and result in s.stage; ¢ S. Fur-
thermore, the action Try; sets control[i] = 1 and re-
sults in s.stage; € S. Finally, the action Control2; sets
control[i] = 2, but also results in s.stage; € S. There-
fore, the property is preserved if s’.control[i] # 2.

2: If &'.checked; = {i}, then the only possibility for =
which could cause s'.checked; # {i} is FinalCheck(j):.
This action is only enabled if s'.stage[s] = final_check.
The FinalCheck(j); either does not change stage; or
sets s.stage; = failed. Therefore, the property is pre-
served.

If ¢’ .checked; # {i}, then by the induction hypothesis,
s’ stage; € {finalcheck, failed, crit}. Therefore, the
only possibilities for # which could cause s.stage; &
{final_check, failed, crit} are Try; and UserExit;. (The
action UserTry; is ruled out by Lemma 16.) However,
in both cases, s.checked; {i}, so the property is
preserved.

3: The proof is by contradiction. Suppose 3i # j such
that 1 € s.checked; and j € s.checked;. Without loss
of generality, suppose that ¢ € s'.checked;, and let 7 be
the action that adds j to checked;. (By the induction
hypothesis, we know that j ¢ s’.checked;.) The only
possibility for 7 is FinalCheck(s);. By the transition
relation, = can only add j to checked; if s’.control[y]
2. However, by the induction hypothesis (Fact 2),
we know that s'.stage; € {finalcheck, failed, crit},

since s’.checked; # {j}. Therefore, by Fact 1, we know
that s'.control(j] = 2, a contradiction.

4: Recall, from the definition, that i € ready(s) iff s.stage;
= crit V |s.checked;] = n. By a pigeonhole argu-
ment, the fact clearly holds when |s.checked;| = n.
If s'.stage; # crit, then the only possibility for = to
make s.stage; = crit is the Crit; action. That action
has as a precondition that |checked;| = n, and does not
change the value of checked;. Therefore, the property
is preserved. If s’.stage; = crit, then the only possi-
bility for = to make |s.checked;| # n is UserExit, but
this also results in stage; = exit.

5: If s'.stagei € {control2, final_check, failed, crit, exit,
done}, then by the inductive hypothesis, s'.ki = 1.
Furthermore, the only action which can change k; is a
Read; action, which is only enabled if stage; = read, so
s.ki = s’ .ki = i. If s'.stagei € {control2, final _check,
failed, crit, exit, done}, then the only possible action
for # which could cause s.stage; to be in that set is a
Read; action. (Lemma 16 rules out UserExit;.) How-
ever, the Read; action can only set s.stage; = control2
if s.k; = 1. Thus, the property is preserved.

All five facts hold in state s.]
We can now show that no two processes may be in (or about
to enter) their critical sections.

Theorem 18: If s is a state of system S, |ready(s)| < 1.
Proof: By contradiction. Suppose that [ready(s)| > 1.
Then by Fact 4 of Lemma 17, there must exist two processes
pi and p; such that s.checked; = s.checked; = {1,2,...n}.
However, this contradicts Fact 3 of Lemma 17.]

It follows that the algorithm satisfies mutual exclusion.

Corollary 19: Let o be a well-formed execution of system
S. Then Vi,5 € Z, if Crit; and Crit; occur in o (in that
order), then UserExit; occurs between them.

Proof: By well-formedness and inspection of the code for
system S, if a Crit; action occurs in o then stage; = crit
in all states up until the next UserExit; action. Suppose
(for contradiction) that there exist two processes p; and p;
such that Crit; and Crit; occur in o (in that order) and no
UserExit; occurs between them. Then after Crit; occurs,
stage; = crit and stage; = crit. However, by Theorem 18
and the definition of ready, this is impossible. []

4.4 Progress Proof

In this section, we show that Dijkstra’s algorithm makes
progress: if a process is attempting to enter the critical
section, then eventually it or some other process will en-
ter the critical section. We define a “no-progress execution”
of system S and then show that no such executions exist.
The proof is by contradiction: We define a well-founded
variant function, or progress metric. Then we show that
in no-progress executions the function is nonincreasing and
must eventually decrease. Since no infinite-length decreas-
ing chains are possible, this shows that no-progress execu-
tions do not exist. The notion of fairness, which we inherit
“for free” from the original I/O automaton model, is used
to show that the variant function eventually decreases.

Let v+ = aff be a fair well-formed user-live execution of
system S. Furthermore, let none of the following actions

461

occur in fB: UserTry, Crit, UserExit, Rem. If 8 begins with
a state in which some process has stage # remainder, then
B is said to be a no-progress ezecution suffiz and v is said
to be a no-progress execution.

Lemma 20: Let 8 be a no-progress execution suffix, and
let s be a state in 8. Then Vi € T, s.stage; ¢ {crit, exit,
done}.

Proof: Immediate from the definitions of no-progress ex-
ecution suffix, fairness, and p;. [|

Before defining the variant function, we identify an im-
portant predicate on system states. If s is a state of S,
we say that s is consistent, denoted consistent(s), iff for all
i € Z, contender(i, s) = s.k; = s.k.

We now define the variant function.
system S, we define

Given state s of

f(s)=(A,B,C,D,E,F,G,H,1,],K),

where each tuple component has the nonnegative integer
value defined as follows:

A= |{i: try}|.

read}| if —contender(s.k, s),

s.stage;

B = |{i : s.stage;
0 otherwise.

C = |{:: s.stage; = check A —contender(s.ki, s)}|.
D = 0 if contender(s.k, s), 1 otherwise.

E = |{i: sstage; = set}|.

F = |{t: s.stage; = control2 A i # s.k}|.

G = |{i : s.stage; = final_check A i # s.k}|.

H = |{i : contender(s,s) A k; # s.k}}.

I = Zi(n — |checked;}), for all i # s.k such that
s.stage; = final_check.

IE

n if (—consistent(s) V s.stage, x # final check),
n — |checked, x| otherwise.

s.stage; = failed A i # s.k}|.

We define a lexicographic total order on the elements in
the range of f. We will show that f is nonincreasing and
will eventually decrease in a no-progress execution suffix,
but first we explain the components of f. The components
A, E, F, G, and J simply count the number of processes
in a certain stage (in some cases ignoring the process whose
index is the value of the shared variable k). These compo-
nents measure progress of the contenders through the dif-
ferent stages of the algorithm. Components B and C serve
a similar purpose for the “read” and “check” stages, but
are more complicated because contenders may cycle through
these two stages while they wait for some other process to
“get out of the way.” Component B’s purpose is to count
the number of processes in the “read” stage; however, when
the shared variable k is the index of a contender, B = 0. In
this way, the value of B does not increase when a contender
“backs off” to read k again. Component C counts the num-
ber of processes in the “check” stage whose local k variables
contain indices of non-contenders.

Component D becomes 0 when the shared variable %
is set to the index of a contender, and remains 1 otherwise.

Components I and K both count down the number of indices
that are missing from the checked sets of processes whose
stage is “final_check.” Component I hold the sum of this
count for all the contenders whose indices are not equal to
the shared variable k. Component K holds this count for
the (at most one) contender whose index is equal to the
shared variable k, but only starts counting down after all
other contenders are “out of the way,” meaning that their
local k’s are equal to the shared k.

In studying the variant function, two important progress
“landmarks” should be noted. The first is when component
D reaches 0, after which point the value of k is always the in-
dex of a contender. After D reaches 0, the second landmark
is when component H reaches 0, meaning that all later states
are consistent. After this point, all processes other than px
cannot escape the Read-Check cycle, so nothing stands in
px’s way.

We now show that the value of the variant function f
is nonincreasing in no-progress execution suffixes, and that
only certain steps leave f unchanged. Using Spectrum, this
lemma (and earlier incorrect versions of it) was checked
for random algorithm executions. That is, for each step it
was mechanically verified that either (1) progress was being
made (see Lemma 20), or (2) the variant function decreased,
or (3) the variant function was unchanged and one of the ex-
ceptions held.

Lemma 21: Consider any state s’ in 3, a no-progress exe-
cution suffix. If action = of process p; occurs from state s’
producing state s, then the following conditions hold:

1. £(s') 2 f(s), and
2. either f(s’) > f(s) or one of the following hold:

(a) = is a Read action and s'.k; = s'.k, a contender,
or

(b) = is a Check action and s'.k; is a contender, or

(c) = is a Try action, i = s'.k, and s'.stage; = failed,
or

(d) = is a Control2 action and ¢ = s'.k, or

(e) = is a FinalCheck action, 1 = s’.k, and
—consistent(s’).

Condition (1) says that the variant function is nonincreas-
ing. Condition (2) says that every action must decrease the
variant function, except for a few special cases. Exceptions
(2a) and (2b) handle the case of a process cycling through
the “read” and “check” stages, waiting for some other pro-
cess to get out of the way. Note the relationship between
items (2a) and (2b) and the variant function components
B and C, respectively. A process does not make progress
when it reads the same value of the shared variable k that it
read the previous time. Similarly, a process does not make
progress if it discovers that the control variable correspond-
ing to its local k is nonzero. Exceptions (2c), (2d), and (2e)
pertain only to the contender whose index is the value of
the shared variable k. Process px may “back off” several
times before it finally enters the critical section, and the
variant function is carefully constructed not to change when
pr backs off. These last three exceptions are the necessary
result.

Proof: By case analysis. For each possible action, we
note the changes in the components of the variant function

462

. (We will use A’ and A to denote the first components
of f(s') and {(s), respectively. Similarly for B’ and B, etc.)
Each case may be verified by Lemma 20 and inspection of the
preconditions and effects of the action under consideration.

o If * = (v, Try, v), there are three cases:
(1) If s'.stage; = try, then A’ > A, decreasing f.
(2) If s'.stage; = failed and i # s'.k, then J' > J,
and no components increase. (Component B cannot
increase because Fact (5) from Lemma 17 tells us that
if stage; = failed, then k; = i, a contender by defini-
tion.) Therefore, f is decreased.
(3) If s’ stage; = failed and i = s'.k, then f(s') = f(s),
satisfying Condition 1 and exception 2c.

o If x = (v, Read,, v), there are three cases:
(1) If ¢'.k is not a contender, then B’ > B and A is
unchanged, so f decreases.
(2) If s'.ki # s'.k, then H' > H and no higher order
components are increased, so f decreases.
(3) If s".ki = s'.k, a contender, then f(s') = f(s),
satisfying Condition 1 and exception 2a.

o If # = (v, Check(j)i, v), there are two cases:
(1) If s’ ki is a contender, then f(s') = f(s), satisfying
Condition 1 and exception 2b.
(2) Otherwise, C' > C, and A and B are unchanged,
so f is decreased.

o If # = (v, Set, v), then B=0,D =0, F' > E,and A
and C are unchanged. Therefore f decreases.

o If # = (v', Control2;, v), there are two cases:
(1) If i = &'k then f(s’) = f(s), satisfying Condition
1 and exception 2d.
(2) Otherwise, F' > F and no higher order compo-
nents are changed, so f decreases.

o If # = (v', FinalCheck(j)i, v), there are three cases:
(1) If i # s'.k, then I' > I and no higher order com-
ponents are changed, so f decreases.

(2) If { = s’.k and —consistent(s’), then f(s’) = f(s),
so Condition 1 and exception 2d are satisfied.

(3) If i = s'.k and consistent(s’), then K is the only
component that may change. Suppose, for contradic-
tion, that K does not decrease. By the effects of Fi-
nalCheck and the definition of K, the only way for
this to happen is for s’.control[j] = 2. If s’.control[j]
= 2, then Fact 1 of Lemma 17 tells us that s’.stage(j]
€ {final_check, failed, crit, exit}. Therefore, by Fact
5 of the same Lemma, s’.k; = j. Since ' is consis-
tent, s'.k; = s’.k, and we have stated that s'.k = 1.
So, by transitivity, j = 1. By the preconditions on Fi-
nalCheck, 5 ¢ s’.checked;. But i € s'.checked,, since
1 € checked; initially and no action may remove it from
that set. Therefore j # i, a contradiction.

In each case, the Lemma holds. The set of cases is complete
by Lemma 20 and the definition of a no-progress execution.
[]

We have just shown that the value of the variant function
f never increases in a no-progress execution suffix, and that
only certain steps leave its value unchanged. Now we will
show that a fair execution cannot proceed using only those
certain steps, so the function must eventually decrease.

Corollary 22: Let a be a no-progress execution suffix. Then
f must eventually decrease in a.

Proof: Suppose that f is fixed in o', a suffix of . Then,
by Lemma 21 for all states s’ of o’, if * occurs from s’, then
one of the following hold:

¢ 7 is a Read action and s'.k; = s'.k, a contender, or

e 7 is a Check action and s’.k; is a contender, or

e 7w is a Try action, i = 3.k, and s'.stage; = failed, or

e 7 is a Control2 action and i = s’.k, and

e 7 is a FinalCheck action, 3 = s'.k, and —consistent(s’).

Since no action in o’ is a Set action, the shared variable
k is fixed in o'. Fairness tells us that all contenders must
continue taking steps. (Inspection of the code will reveal
that a contender always has some step enabled.) Therefore,
by the four conditions above, all contenders other than px
must have stage € {read, check}; otherwise their steps would
decrease the value of f, contradicting our assumption that f
is fixed. Therefore, by the same fairness argument, a Read
action must eventually occur for each of these contenders,
. after which point its local value of k¥ matches the shared k.

Let a” be the suffix of o’ after which all contenders other
than px have their local k’s equal to the shared k. Now, con-
sider px, which must continue to take steps in a”, and let
s" be a state in " from which px takes a step. If pi takes a
FinalCheck step, then by Fact 5 of Lemma 17, s”.kx = 3" k.
However, this implies that s is consistent. Therefore, the
conditions above imply that no FinalCheck actions can oc-
cur. If px takes a Control2 step, then a FinalCheck action
will become enabled and remain enabled until it occurs, so
fairness tells us that a FinalCheck action will eventually oc-
cur, but we have just ruled this out. The only remaining
actions for px are Read, Check, and Try. If px takes a Read
step, then it will observe that the shared k contains its own
index and proceed to stage = control2, meaning that it must
eventually take a Control2 step, which we have already ruled
out. If px takes a Check step, then since (by statement 2
above) s”.k; is a contender, it will proceed to stage = read,
meaning that it must eventually take a Read step, which we
have just ruled out. Finally, if px takes a Try step, it will
also proceed to stage = read. Therefore, if px continues to
take steps, it eventually will decrease the value of f, giving
us our contradiction. .

Our main liveness result follows immediately.

Theorem 23: The set of no-progress executions for Dijk-
stra’s algorithm is empty.

Proof: By Lemma 21, we know that the value of the
variant function f is nonincreasing in a no-progress execu-
tion suffix. Furthermore, by Lemma 22, the value of f never
reaches a fixed point. Therefore, since f cannot infinitely
decrease, the theorem holds. []

Finally, we show that the above theorem implies that Dijk-
stra’s algorithm satisfies the required progress property.

Corollary 24: Let a be a fair well-formed user-live execu-
tion of system B. Then either Vi, a|i ends with Rem;, or 3i
such that a|i is infinite.

Proof: By contradiction. Suppose that « is finite and
that there exists some ! € 7 such that o|l does not end with

463

Rem;. Then there exists a suffix of o in which p; has stage
remainder and ali is empty for all 5. This is a no-progress
execution suffix, by definition. Therefore o is a no-progress
execution, which is a contradiction of Theorem 23.]

5 Conclusion

We have extended the /O automaton model to allow mod-
elling of shared memory systems, as well as systems that
include both shared memory and shared action communica-
tion. The extended model was shown to support all types
of atomic accesses to shared memory, from the very restric-
tive single-variable reads and writes to operations on arbi-
trary abstract data types. By building our shared memory
model on top of I/O antomata, we could take advantage
of the fairness definitions and compositionality properties
already present in that model. This resulted in a unified
model with relatively few new concepts. An example algo-
rithm, Dijkstra’s classical shared memory mutual exclusion
algorithm, was presented in this model and its safety and
progress properties were shown using standard assertional
and variant function techniques.

Acknowledgment

We thank Kathy Yelick for her careful reading of an earlier

draft.

References

[1] K. Mani Chandy and Jayadev Misra. A Foundation
of Parallel Program Design. Addison-Wesley, Reading,
MA, 1988.

E.W. Dijkstra. Solutions of a problem in concurrent
programming control. Communications of the ACM,
8(9):569, September 1965.

(2]

[3] Kenneth J. Goldman. Distributed algorithm simulation
using input/output automata. Ph.D. Thesis, M.I.T. Lab-

oratory for Computer Science, in progress.

C.AR. Hoare. Communicating Sequential Processes.
Prentice-Hall International, Englewood Cliffs, New Jer-
sey, 1985.

(4]

[5] Nancy A. Lynch and Michael J. Fischer. On describing
the behavior and implementation of a distributed sys-
tem. Theoretical Computer Science, 13:17-43, 1981.

[6] Nancy A. Lynch and Kenneth J. Goldman. Distributed
Algorithms. Technical Report MIT/LCS/RSS-5, M.I.T.
Laboratory for Compuer Science, May 1989. MIT Re-
search Seminar Series.

{7] Nancy A. Lynch and Mark R. Tuttle. Hierarchical cor-
rectness proofs for distributed algorithms. In Proceedings
of the 6th ACM SIGACT-SIGOPS Symposium on Prin-
ciples of Distributed Computing, pages 137-151, August
1987. A full version is available as MIT Technical Report
MIT/LCS/TR-387.

Nancy A. Lynch and Mark R. Tuttle. An introduction
to input/output antomata. CWI-Quarterly, 2(3), 1989.

