
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 24, 101-113 (1982)

Accessibility of Values as a Determinant
of Relative Complexity in Algebras*

NANCY A. LYNCH

School of Information and Computer Science, Georgia Institute of Technology,
Atlanta, Georgia 30332

Received March 15, 1981; revised September 4, 1981

I. INTRODUCTION

The present paper is a companion to [2], in which a general definition of straight-
line program length is proposed as a size parameter for complexity analysis in an
arbitrary finitely generated algebra. In [2], the general size parameter is defined and
its basic properties derived. Relative time complexity of algebras is defined in terms
of the size parameter, using alternative definitions based on two different abstract
programming languages (flowcharts and the very rudimentary “expression
assignment”‘ language). Relative time complexity defined using expression
assignments is seen to be a lower bound on relative time complexity defined using
flowcharts (or practically any other programming language), because the former
simply measures the relative accessibility of elements in the respective algebras.
Composition theorems are proved for relative complexity according to these
definitions. Finally, an extended example is given to show how these measures can be
used as the basis for a complexity theory for finitely generated groups.

In this paper, we classify several numeric and bit-string algebras by the relative
expression assignment complexity defined in [2]. These results are useful primarily as
coding-independent lower bounds on computation time in ordinary programming
languages. Results are seen to be fairly tight. Also in this paper, an apparent tradeoff
between expression assignment complexity and number of representations is
examined.

This paper is not intended to be self-contained. Reference (21 is used for many
necessary definitions and theorems. The reader is also referred to [2] for examples
which should clarify the formalism.

Reference [3] is a preliminary paper including earlier versions of the present
results as well as the results of [2].

II. UPPER BOUNDS

We examine seven natural algebras arising frequently in mathematics and
computer science, and obtain upper bounds on the relative expression assignment

*This research was supported in part by the National Science Foundation under Grants MCS77-
15628 and DCR75-02373.

101
0@22-0000/82/010101-13$02.00/o

CoPYrieht 0 1982 by Academic Press, Inc.
AlI Wts of rcpmduction in any form reserved.

102 NANCYA.LYNCH

complexity of these algebras, as defined in (21. We assume for the theorems of this
paper that Fun,, is a finite set.

The seven algebras are as follows: (Here, . f represents the set of nonnegative
integers, while P represents the set of integers.)

.)I‘ = (N; 0, SW), where sue(x) = x + 1,

P = (Z; 0, sue, pred), where pred(x) = x - 1,
r + = (N x N; 0, sue, up), where suc(x, JJ) = (x + 1, y)

and UP (x,y) = (x,y + l),
.Y = (Z x Z;, 0, sue, pred, up, down), where pred (x, y)

=(x-1,y)anddown (x,y)=(x,y-1),

K=({O, l}*;/I,osuc, lsuc), where A is the empty string,
Osuc(x) = x0, Zsuc(x) = xl,

6’ = ((0, l}*; ,I, Osuc, lsuc, pred),
pred(x0) = pred(x1) = x,

where pred(J) = 1,

N’=(N;O, 1,+).

Thus, Y’ and ,‘? are algebraic abstractions of matrices. d and 6’ are algebras
based on binary trees.

We use the definition (21 for “&’ <z”” L&” with complexity t” in order to classify
these algebras. We write d Gexp ST’ with complexity t to represent (32) [s’ <:X’S”
with complexity t]. For each pair &‘, ~6” chosen from the above algebras, it is not
difficult to show that &’ Gexp M” with complexity t for t with order of magnitude as
given in the following table:

.d’ -+
Jf

n

i2
2”
2”
2”

1 1 1 1 1
1 1 1 1 1
n 1 1 1 1

G 2”/2 n 2n/2 1 1 1 1 1
2” 2”/2 2n/2 1 1
2” 2”/2 2”/2 n n

“P

All of these bounds can be calculated directly, or else some can be calculated
directly and then others inferred from the main composition theorem of
[2, Theorem 3.5):

THEOREM 2.1 121. Assume ~2 <z”” ~8” with complexity t, where t is
nondecreasing and not identically equal to 0. Assume J/’ <:Yp .d” with complexity t’,

RELATIVE COMPLEXITY IN ALGEBRAS 103

where t’ is nondecreasing. Then ~2 <z”,f, sf” with complexity t”, where
t”(n) = CjN:)J-’ t’([CJ!:d t(j)] + i).

An outline of those upper bound proofs which are not entirely trivial is as follows.
% Gyp .Y+ : Use r((x, y)) = x --y. Then 0 is a r-simulator of 0; sue is a t-

simulator of sue, and up is a r-simulator of pred.

59 <‘,“” K: Define t so that a r-simulator of 0 is 1, and r-simulators of the four
unary operations are ,Ix[xOO], L~[x01], Lx[xlO] and Jx[xll], respectively.

&Y’ <exp /tr’* Define r so that a r-simulator of A is 1 and r-simulators of the three . .
unary op>fations are 1x[3x], 1x[3x + I] and 1x[3x + 21, respectively.

All of the other codings above the major diagonal either are similar to or else
follow from these using Theorem 2.1.

.Y + <‘,“” X Define r((x + y)’ + 3x + y/2) = (x, y); t is Cantor’s projection
function.

Now, the bounds for 2 GexpM and .F+ Gexp X follow from the previous bound
and Theorem 2.1.

.Y <ypM: Define r to be a bijection between elements of N and pairs in Z x Z,
by regarding the Z x Z elements as points in the Euclidean plane as usual, and
enumerating these points in a “spiral” working outward from (0,O). The reader is
referred to the definition of “& <zxp J’ with weak complexity t” [2, Sect. 21 and
Theorem 2.3 [2] in order to verify this bound. Note that this bound is quadratic
(rather than linear) because of the necessity of simulating the four unary operations
by generating their representing values from 0 (rather than from representations of
their arguments).

.Y <zxp P: This is similar to the previous case, with the same spiral numbering
used to code elements of 55’ as nonnegative integers. This time, however, the bound is
linear, because the representations of pred(x) and up (x) can be generated quickly
within 8 from the representation of the argument x.

The bound for .?7 Gexp F + now follows by Theorem 2.1.

a <<‘,“” .F’+ : Simply correspond the set of all strings in order according to length,
with elements of N x N in order of increasing sum of coordinates. Generating values
from 0 suffices.

The bound for d gexp F, and also those for g Gexp .M and d Gexp 2 follow by
Theorem 2.1. A bit of calculation is required for the second of these bounds. Namely,
Theorem 2.1 immediately yields that for a constant c, a Gexp JV with complexity

[c.Zn/ZJ-,

(1

n-1

1 C 1 c . 2jJ2 + i
i=O j=O 1 1

[

n-1 [C.Z"P- 1

< C [c . 2”“] . c . 1 2j” + C i
j=O i=O I

[

n-1
= c ic . 2”/2] . c . 1 p/2 +

([c * 2”‘2] - l)([c * 29)

j=O 2 I>

104 NANCY A.LYNCH

which is O(2”). The results for F’ < exQ ,yi, F’ GexP ,y, 8’ GexPc/y” and a’ GexP 1:
are analogous, and the result for g’ Gexp a is easy.

JP <z”” Y+ : Once again, Cantor’s pairing function is used, but this time to
represent elements of N by elements of N x N. We show this bound in some detail,
since $ “ is the only algebra in this paper having a binary operation. If
sizegi,, (UK.,j((e, e’)) = n, then sizeAee (x,j ((e+e’})<n+ 1, and so val(e+e’)<2”.
Then size,+@,(e + e’)) < c . 2”‘* for some c.

Now, we can infer the bounds, 4’^’ Gexp ,Y;, .4”’ Gexp M and <Y“ Gexp 2, as before.

.a“’ <zxp K: The argument is similar to the preceding case, using a correspon-
dence between elements of N in increasing order and strings in the natural order given
in the case for g <z”” .Y’.

The bound for 4“’ <zxp F’ then follows.
The extent to which accessibility upper bounds such as those of this section can

actually be realized, as upper bounds on computation time in programming languages
based on the given algebras, depends both on the control structures of the
programming languages and on the relations allowed.

III. LOWER BOUNDS

In contrast to the significance of accessibility for upper bounds, accessibility lower
bounds are a priori lower bounds for flowchart and other program running time. We
now prove lower bounds for the pairs of given algebras, which are tight up to order of
magnitude in all cases but one. The exception is L!5’ Gexp Y+, where the best lower
bound we have is of the form Q(n”‘) rather than Q(n).

We require some definitions for lower bounds. An i.o. (infinitely often) style lower
bound seems most appropriate, so we use the following. We say t: N + R + is a lower
bound for x2 Gexp ,d’ if t is total, nondecreasing and unbounded, and for any t’ = c
a.e. (that is, on all but finitely many arguments), it is false that S’ GeXp s/’ with
complexity t.

An equivalent definition is provided by the following easily proved theorem.

THEOREM 3.1. Let t: N -+ R ’ be total, nondecreasing and unbounded. Then t is a
lower bound for SZY Gexp s/’ lfl the following condition holds.

For any t, 2’ having J@’ <:“~Lx?“, there is some f E Fun, and there are infinitely
many n E N for which (3e, ,..., e, E Dorn,,## (gn)[sizeBy,, (&,({e, ,..., e,}) < n and
f(e 1 ,..., e,) is defined, and size,,@,(f(e, ,.,., e,)): pr({e, ,..., e,})) > t(n)].

Proof: Straightforward. (Note that the finiteness of Fun, is used here.) 1

The given definition is most suitable for application of Theorem 2.1, while the
equivalent version provided by Theorem 3.1 is usually more convenient for direct
lower bound proofs.

With the exception of the single entry for Y Gexp L?+, we can show that each
nonconstant entry in the table of Section II is a lower bound for the given pair of

RELATIVE COMPLEXITY IN ALGEBRAS 105

algebras, in the following sense. If t(n) f 1 appears as the entry in the row for J/ and
column for ,aP’, then for some c > 0, the function ct is a lower bound for J/ Gexp &“.
Also, for some c > 0, the function cnl’* is a lower bound for Y Gexp g +.

The techniques are generally size-of-neighborhood arguments somewhat like
those in [5], with some complications introduced by the fact that an algebra’s
constants are always available in one step, by the presence of binary operations, and
by “directionality” considerations. Once again, some results are proved directly and
others using Theorem 2.1. An outline of the lower bound proofs follows.

P <expc/y-: We state this bound as a theorem, since its proof is fairly \
complicated and since its proof ideas are also used in the proofs of other lower
bounds. It is a typical example of a coding-independent tradeoff lower bound for
embedding a two-directional system in a corresponding one-directional system.

THEOREM 3.2. There exists c > 0 for which An[cn] is a lower bound for
p <-p 4r \ c.

Proof. Choose c sufficiently small. (c = (5 - fl)/S suffices.) We show that, if
An[cn] is not a lower bound, then there are many pairs of expressions e,
e’ E Dom,*e (8) 3 having val(e) = val(e’), but Pe(e) # pde’). Then neighborhood size
limitations are used to give the result. Although these basic ideas are not difficult,
some care must be taken because of the one-step accessibility of 0 in JV.

Assume An[cn] is not a lower bound for % Gexp X. That is, assume B <‘,“iX,
a E N, a > l/c, and for all e E Dam,,, (8j, f E {sue, pred} and n > a, it is the case
that size,,= (&) < n implies sizeAedf(e)): pe(e)) < cn.

Write sue”‘(0) for the expression

suc(...suc (O)...). -

Let b E N be greater than a, and also greater than size&8(suc’“‘(O))).
Let A = {e: sizefle4 (%) (e) < 2b and b < val(e) and sue@‘(O) is a subexpression of

e). Note that val(A) = {b,..., 2b - 1). Then (1) and (2) follow.

For all e E A,fE {sue, pred}, it is the case that
sizeA8u(e)): &e)) Q 2bc. (1)

For all k < b, it is the case that
size&,(suc W+ “(0)): p&udk’(0))) < bc. (2)

By the Triangle Inequality for the size measure (Theorem 2.1(c) of [2]), applied
b-a times to (2), and by choice of b, it is easy to see that

size&8(suc’b’(0))) < b + (b - a)(bc) < b*c. (3)

There are two cases to consider.

106 NANCY A. LYNCH

Case 1. For some e E A,fE (sue, pred}, it is the case that size ,@,(f(e))) > 2bc
and Mf(e>> < &de>.

But in this case, size,@&-(e)): pg(e)) = size,n&@g(f(e))) > 2bc, contradicting (1).
Therefore, the only remaining possibility is the second case.

Case 2. For all e E A, fE (sue, pred}, if size,,@,(f(e))) > 2bc, then
h-UW> > e&9.

(Note that equality cannot hold.)
NOW, / {x: size,,-(x) < 2bc) 1 < 2bc; therefore, also 1 r({ x: size,Ax) < 2bcJ) 1 < 2bc.

But Ival(A)/ = b. Thus, if B = val(A) - r((x: size.,(x) < 2bcJ) c Z, it follows that
IBI > b(1 - 2~).

B has the following property.

fE (sue, pred), e E A and f(val(e)) E B together imply that

df(e)) > k&9. (4)

To see (4), 1etfE (sue, pred}, assume e E A and f(val(e)) E B. Then rQgdf(e))) =
val(f(e)) 6? r((x: size,,(x) < 2bc}). Thus, size&a(J(e))) > 2bc. Then the definition
for Case 2 yields (4).

Let C={xEB:x+l or x-lEB}. Then IC/>b(1-2c)-2bc=b-4bc
because at most 2bc members x of B have the property that x + 1 & B and x - 1 @I B.
Note that x E C implies x + 1 or x - 1 E C.

Next, we make the key claim which gives the large number of representations
which much be squeezed into a small neighborhood.

1 (pg(e): e E A and val(e) E C) / > b2(i - 2~)‘. (5)

We show (5). Consider any e E A with sizeAce (BI(e) < 2b and val(e) E C. By
definition of C, either val(e) + 1 or val(e) - 1 is in C. Assume val(e) + 1 E C.
Property (4) implies that p,(suc(e)) > p&e). Now, sue(e) E A (since
size,,ee &e) < 2b). Also, val(suc(e)) - 1 = vai(e) E B, so (4) implies that
p,(pred(suc(e))) > p,(suc(e)). Thus, p,(pred(suc(e))) > p,(e); that is, e and
pred(suc(e)) have two distinct p,-images. Analogously, if val(e) - 1 E C, then
Msuc(predW) > &de).

This argument can be repeated to show that if val(e) + 1 E C, then e, pred(suc(e)),
pred(suc(pred(suc(e)))),... (as long as the sizes of these expressions are all at most
2b + 1) all have distinct p8-images. Analogously, if val(e) - 1 E C, then e,
suc(pred(e)), suc(pred(suc(pred(e)))),... have distinct pkmages. So consider any
x E C. Let e = SUC(~)(O), so that e EA and size,== (Bj(e) =x + 1. Repeated
application of the argument in the preceding paragraph, beginning with e, shows that

I {Ps(e’): e’ E A and val(e’) = x} I > b - .

RELATIVE COMPLEXITY IN ALGEBRAS 107

Now consider all x in C. It follows from the number of distinct elements in C and
the preceding paragraph that

1 {pa(e): e E A and val(e) E C} 1 > 1 + 1 + 2 + 2 + 3 + ... > b*(f - 2~)‘.
[Cl--4c)b]terms

(This sum represents the worst case-where all the elements of C are greater than all
the elements of B - C.) Thus, we have shown (5).

The rest of the argument is a consequence of the bound on neighborhood size in
JV. Namely, by (5), there must exist x E {pg(e): e E A and val(e) E C} with
size,(x) > b*(f - 2~)~. Fix e E A with val(e) E C and size,Xpg(e)) > b*(f - 2c)*.
Now, size,@,(e)) < size,@,(e): pg(suc’“‘(0))) + size,(p,(s&“(O))). Thus
b*(i - 2c)* < sizeA8(e): p,(s~c’~‘(O))) + b* c by (3). That is, b’(a - 3c + 4~‘) <
size,@,(e): pg(s~~‘b’(0))). By choice of c, the left-hand side of this inequality is at
least b2(2c).

The Triangle Inequality is now used to expand the right-hand side completely,
using successive substrings of e, all of which are in A. There are at most b - 1 terms
in this expansion, so (1) implies that size&,(e): pl(suc’b’(0))) < (b - 1) 2bc. This
contradicts the lower bound obtained in the preceding paragraph.

Thus, the initial assumption, that iln[cn] is not a lower bound, is false. 1

.Y+ Gexp 8: We show that t(n) = n/8 is a lower bound for Y+ Gexp 8. For if
not, then let Y’+ <ETfi 55, a > 1 be such that for all e E DomAde (9+j, fE {sue, up}
and n > u it is the case that sizeAce (Y+j(e) < n implies size,@,df(e)): PJe)) < n/8.
Then if size ,XiLe (3+j(e) < a + 1, it follows by the Triangle Inequality applied a times
that size,@B(e): p,(O)) < a*/8. But there are (a + l)(a + 2)/2 distinct elements x in
N x N with size,+(x) < a + 1. For each x, there is some e E DornAfe (9+j with
val(e) = x and size&,, (g) + (e) < a + 1, and since val(e) = Qg(e)), it follows that all
P8(e) for these x are distinct. Thus, there are at least (a + l)(a + 2)/2 distinct values
y in Z with size,@: ~~(0)) < a2/8. But this is impossible because of the structure of
3.

We can now use the first version of the lower bound definition, Theorem 2.1 and
the upper bounds of Section II to derive the lower bounds for .!Y+ GexpX and
.Y Gexp %. For instance, consider .Y’+ GexpM. We know that XGexp 2 with
complexity c for some constant c > 0, and that there exists c’ > 0 with no t having
both t(n) = c’n a.e. and Y+ Gexp Z with complexity t. Let c” = c’/c > 0, and show
that no t having t(n) = c”n a.e. can have .Y+ GexpM with complexity t. For if so,
then Theorem 2.1 implies that .Y’ Gexp B with complexity t’, where t’(n) = c[t(n)];
then t’(n) < c’n a.e. This is a contradiction. A similar argument is used for the other
result.

59 Gexp .E?+ : This is the case for which our upper and lower bounds differ. The
argument is fairly complicated, so we present it as a separate theorem. The proof
follows the style of the proof of Theorem 3.2.

THEOREM 3.3. There exists c < 0 for which An[c fi] is a lower bound for
.Y <exp F + \ (.

108 NANCY A. LYNCH

ProoJ: Write rci(a, b) = a and 7z2(u, b) = b for (a, b) E N x N or Z x Z. Let
c = l/IO. Assume An[c fi] is not a lower bound for .Y Gexp P’. That is, assume
.F <:y; ,Y +) u E N, a > l/c and for all e E DornAee cr*-,,SE Fun,- {O), and n > u it
is the case that size,gtr, (3j (e) < n implies sizeP+@,(f(e)): p,(e)) < c fi. Choose
b E N with b > a’, and b > size,+@,(suc(@(O))). Let A = {e: size,cc (%(e) < 2b and
X, (val(e)) > b and SUC’~‘(~) is a subexpression of e}. Thus, val(A) can be represented
by the lattice points in the shaded area depicted below:

Note that 1 val(A)] = b2. Then (1) and (2) hold.

(1) For all e E A,PE Fun, - {0}, it is the case that

size,+@&%>>: P8(e)) & c P.

(2) For all k < b, it is the case that

size,+@,(suc (k+ l’(O)): pg(sudk’(0))) < c l/L.

Then size,+@8(suc’b’(0))) < b + (b - a)(c &) < 2bc fi by the Triangle Inequality
and assumptions on the magnitudes of a and b.

We consider two cases.

Case 1. For some e in A, fE Fun,- (O}, it is the case that
size,v+@sdfW)) > c fl and either ~,@,df(e))> < nl@&)> or n2@d.f(e))) <
~2@g(e)).

But a contradiction to (1) can be reached in this case, so this is impossible. Thus,
Case 2 holds.

Case 2. For all e in A, f in Fun, - {0}, if size,+@Bdf(e))) > c fi, then
74 hd..f(e)>> > nl @&)) and ~2@&W) > ~2@&))y and at least one of these two
last inequalities is strict.

Now, 1 {x: size,+(x) < c \/zt;} (< 2c*b, so]t((x: size,+(x) < c fl})] < 2c’b. But
]val(A)] = b*. So if B = val(A) - r({x: size,+(x) < c @}), then IBI > b* - 2c2b. B
has the following property.

(3) fE Fun, - {0}, e E A and f(val(e)) E B together imply that p,df(e)) has
both its components at least as great as the corresponding components of PA(e), and
at least one is strictly greater.

Let C = (x E B:f(x) E B for some fE Fun, - {O}}. Then (C] > b* - 4c*b (since
at most 2c2b members x of B have the property thatf(x) @ B for allfE Fun, - {O})
and]x E C impliesf(x) E C for somefE Fun, - (O}].

RELATIVE COMPLEXITY IN ALGEBRAS 109

The key claim is now the following.

(4) 1 {p8(e): e E A and val(e) E C} (> (a - 2c2) b3.
The bound is calculated as in the proof of Theorem 3.2, where now the sum to be

bounded is:

1 + *** +1+2+**.+2+3+***+3+*.*,
c-e

4(b- 1) terms 4(b-3) terms 4(b-5) terms

where the total number of terms is lb2 - 4c2b]. But this sum can be seen (using an
estimate by integration) to be at least ib3 - 4c2b([b/2]), which is at least
(i - 2c2) b’.

Thus, there must exist x E {Pe(e): e EA and val(e) E C} with size,+(x) >
\/2(i - 2~‘) b3 - 1. Fix e E A with val(e) E C and sizeg+@g(e)) >
\/2(6 - 2cZ) b3 - 1. Now, sizeg+(pl(e)) Q size,+@de): pa(sudb’(0))) +
sizeF+.@,(sudb’(0))). Thus, A$ - 2C2) b3 - 1 < size,+@,(e): p,(su~‘~‘(O))) +
2bc fi That is, (pT-- 2~) b312 - 1 < size,+@,(e): p,(su~‘~‘(O))). By choice of
c and the bounds on b, the left side of this inequality is at least c \/z b3’2.

The Triangle Inequality is now used to expand the right-hand side completely by
successive substrings of e, all of which are in A. There are at most b - 1 terms in this
expansion, so (1) implies that size,+@,(e): pg(s~~‘b’(0))) < (b - 1) c fi. But this
contradicts the lower bound obtained in the preceding paragraph. 1

,Y Gexp X: This lower bound is shown by a proof similar to those for Theorems
3.2 and 3.3.

E? Gexp 3: For this argument, we use the first lower bound definition. Let
t(n) = 2”/8. We show that t(n) is a lower bound for d Gexp 8. If not, then assume
t’ = t a.e. and d <:fi .Z with complexity t’. For any n, there are 2” - 1 elements
XE {O, l}* with size,(x) < n. Therefore, for n > 2, there is some e with
sizeSac &e) < n, for which size,@,(e): p&(A)) > 2”-2. But using the given upper
bound and the Triangle Inequality, we see that size,@de): pjA)) < C;:: t’(i). For
sufficiently large n, this sum will be strictly less than 2n-2, a contradiction.

The bounds for &?’ Gexp X, d gexpJtr and 6’ GeXpM now follow easily.
To conclude several of the other bounds, we use a lemma.

LEMMA 3.1. There is a constant d with the following property. If t(n) = c . 2”i2
a.e. and t’(n) = c’n, ~2 Gexp sf ’ with complexity t and JY’ gexp &‘I with complexity
t’, then AX? Gexp sf” with complexity t”, where t” = dc’c’2” a.e.

Proof. By a careful analysis of the bound yielded by Theorem 3.5 of [2].
Namely, we see immediately that M’ Gexp ~2” with complexity t”, where t”(n) =
c’ Cj!!:)l-’ (/Cy:i t(j)J + i) for all n, Q c’ C/Zi”/2J-’ ([J$:i c + 2”2] + i + k) for
some constant k and all except finitely many n. This expression is at most

110 NANCY A. LYNCH

< dc2c’ . 2” a.e., for some d independent of c, c’ and k. 1

Using Lemma 3.1 and lower bounds already proved, we can now infer the bounds
for d Gexp Y’, d GexpY, 6’ Gexp Y’+ and 6’ Gexp .Y.

(6“’ <exp P: Similar to the proof for K GeXp 3.
The bounds for ,/I’“’ Gexp. f’-, I b^’ Gexp .Y+ and .H’ Gexp ? follow.

.4 “ Gexp R: We show that t(n) = n/8 is a lower bound fo5.M’ Gexp ?5. For if
not, then let . 4“ <‘,“i K, a > 32 be such that for all e, e’ E DomY,oL CM,), and all
n >a it is the case that sizeLsec C,y,,({e, e’}) < n implies size.@,(e + e’):
&{e, e’ I>> < 48.

Let A’ = (x E N: size,,(x) < a/2}. Then IA’/ > 2“‘4, so choose an arbitrary
A crA’, with IA I= 2a’4. For each x E A, fix e, E Domgiee CJy’) with
’ size, up (,Yo(e,) < a/2 and val(e,) =x. Note that sizefiAe CJ-,)({exr e,}) < a for all x,

yE A.
For each x E A, let B, = {y E A: size,@,(e, + e,): P8(e,)) < a/8}. Then

IB,l < 1(2”‘+’ - 1) + (2”‘8 - 1) = 3.2”” - 2. (The first term counts the values
accessible from P8(e,) and the second counts those accessible from II; note that A
itself requires one step.)

Note that all x and y in A have size,@,(e, + e,): P8({e,, e,})) < a/8, by
assumption. Thus, we can define a function a with domain {(x, y): x, y E A and
x # y) as follows. a assigns to (x, y) a pair (z, b) with z E {x, y}, such that
size,@,(e, + e,): pg(e,)) < 48. (This is possible since d has only unary operations.)
b E (A, 0, 1 } * codes a sequence of Fun, operations which can be applied to pg(e,) to
yield P8(e, + e,), with the length of the sequence at most u/8.

For each x, any y for which a(x, y) = (x, b) for some b, must be in B,. Thus, at
least IAl - 1 B,I - 1 > 2a’4 - (3.2”18 - 2) - 1 = 2a/4 - 3.2”” + 1 of the values y E A,
y f x must have a(x, y) = (JJ, b) for some b.

Now, we show that a is “almost one-to-one,” more precisely, that a is injective on
C= {(x,y):xEA,yEA-B,}. If a(x,y)=a(x’,y’), y&B, and v’&B,,, then
a(x, y) = (+v, 6) = @‘, b) = a(x’, r’). Thus, y = y’ and the same sequence of operations
can be applied to Pe(e,) to obtain either pg(e, + e,,) or P,(e,, + e,,). But then
pF(e, + e,,) =p8(ex, + e,,), so that Qg(e, + e,)) = t@&,, + e,,)), or val(e, + ey> =
val(e,, + e,,,), or x + x’ =y + y’. But then x = x’ and y = y’.

Now, 1 C/ > 2a’4(2a’4 - 3.2a’R + 1). Thus, Irange(> 2n’4(2a’4 - 3.2”” + 1). But
/ range(a)1 < 2a’4(3.2a’8 - 2), by definition of a. Thus, 2a’4(2a’4 - 3.2”” + 1) <
2a/4(3.2aiR - 2), so that 2a’4 + 3 < 6.2”“, a contradiction.

Finally, the bound for .P < exp g’ follows from Theorem 2.1 and the bounds on
l“<F and F’<F.

RELATIVE COMPLEXITY IN ALGEBRAS 111

IV. MULTIPLICITY OF REPRESENTATION

In Section III, relative complexity was classified purely on the basis of
accessibility. Here we consider the multiplicity of representations often used in
Section III to achieve fast accessibility. There appear to be inherent tradeoffs between
accessibility and number of representations in three cases: the codings of % in ;% ‘,
6’ in E-and Yin 6’. We express these tradeoffs in this section in terms of our size
parameter. Similar tradeoffs (for the third case) were demonstrated in [4, 11, in a
framework of finite graphs and uniform bounds rather than algebras and size
parameter bounds.

We begin with definitions expressing simultaneous bounds on accessibility and
number of representations. The style is chosen to parallel the bound definitions of
Sections II and III. Let s, t: N-1 R + be nondecreasing and unbounded, r, 8 as usual.
We say & <:s &’ with time-value complexity (t, s) provided & <\<:“i&’ with
complexity t and if for all II, X, it is the case that] {pg(e): size,<& (&((e) < n and
val(e) =x)1 <s(n). We say ~8 <, exp XI” with time-value complexity (t, s) provided
(38)[~8 <:$ ~2’ with time-value complexity (t, s)], and J& Gexp &’ with time-value
complexity (t, s) provided (32) [-,P <, exp &’ with time-value complexity (t, s)]. We say
(t, s) is a time-value lower bound for &’ Gexp ~8” if t, s: N + R + are total,
nondecreasing and unbounded, and for any t’ = t a.e., s’ = s a.e., it is false that
.d GexQ &” with time-value complexity (t’, s’). As before, an equivalent formulation
is the following. For any r, B having &’ <:4 M”, there are infinitely many n E N for
which at least one of (a), (b) holds.

(a) There is some f E Fun, for which (3e, ,..., e,) E DomAee cJn
[sizefit& (Jj({e, ,..., e,}) < n and f(e, ,..., e,) is defined and size,,@,v(e, ,..., e,)):
k(le, y...y emI>) > WI.

(b) There is some x E Dom, with] {P8(e): sizeXeee (&n(e) < n and val(e) = x} 1 >
s(n)*

THEOREM 4.1. There exists a nonzero constant c such that (An[c \/;;I, Ln[cn]) is
a time-value lower bound for B GexQ F’.

Proof: We follow the method of Theorems 3.2 and 3.3. Choose c to be
sufficiently small. Assume the contrary, so B <:yig=‘, a is sufficiently large (with
respect to c), such that for all e E Domfie8 (8j, fE {sue, pred} and n > a it is the case
that sizeAee (&) < n implies size9+@&(e)): p,(e)) < c \/;;, and also such that for
all x E Z and n > a it is the case that) {ps(e): sizesee tB(e) < n and val(e) = x} (,< cn.
Choose b sufficiently large (with respect to a). Let A = {e: sizeAec (B)(e) < 2b and
b < val(e) and sue@‘(O) is a subexpression of e}. Then (1) and (2) follow.

(1) For all e E A, fE {sue, pred}, it is the case that size9+@8df(e)):
4&)) < c+

(2) For all x E Z, 1 {Pa(e): sizeYadl (Bj(e) < 2b and val(e) = x) 1 < 2bc.

We consider two cases, identical to those of Theorem 3.3 except that {sue, pred) is

112 NANCY A.LYNCH

used in place of Fun,. As before, Case 1 leads to a contradiction, so Case 2 holds.
Construct B from A as in Theorem 3.3, and let C = {x E B: f(x) E B for some
fE {sue, pred}}. Then /Cl > (1 - 4~‘) 6. Thus, since C E (b,..., 2b - l), there is some
x < (1 + 4~‘) b in C. Fix such an x.

But then the argument for the justification of (5) in Theorem 3.2 shows that
I{p,(e):eEA and val(e)=x)l>/b-[(x-1)/2]hb--[(1+4c*)(b-1)/2]>2cb
(since c is sufftciently small). Thus, 1 {Ps(e): sizeYael cs,(e) < 2b and val(e) = x) 1 > 2bc,
which contradicts (2). I

THEOREM 4.2. There exists a nonzero constant c such that (Ln[cn], Ln[2C”]) is a
time-value lower bound for 6’ Gexp 6.

Proof. This is again similar (but somewhat more difficult). Choose c sufficiently
small. Assume K’ <::i 6, a is sufficiently large, such that for all e E DornSel or-r),
fE {Osuc, lsuc, pred} and n 2 a it is the case that sizegi,, (d,i(e) Q n implies
side&,): Me)> Q cn, and also such that for all x E {0, 1 } * and n > a it is the
case that I {pK(e): sizeAeb (g,)(e) < n and val(e) = x} I < 2’“. Choose b suffkiently
large. Let A = (e: size,,.. (g,) (e) < 2b and val(e) has Ob as a prefix and OSUC’~‘@) is a
subexpression of e}. Then IvaI(= 2’ - 1. Now (1) and (2) follow.

(1) For all e E A, fE (Osuc, lsuc, pred}, it is the case that
siq&,U(e)): &e)> < 2bc.

(2) For all x E (0, 1 } *, I {Ps(e): sizeA,, (6,)(e) < 2b and vaI(e) = x} I Q 22bc.

We consider two cases, the first of which leads to a contradiction of (1).

Case 1. For some e E A, fE {Osuc, lsuc, pred}, it is the case that
size,@&(e))) > 2bc and p,(e) is not a prefix of p&(e)).

Case 2. For all e E A,fE (Osuc, lsuc, pred}, if size,@,(J(e))) > 2bc, then pde)
is a proper prefix of P&(e)).

Now, 1 (x: size,(x) < 2bc} I < 22bc - 1, so if B = val(A) - t({x: size,(x) Q 2bc)),
then ISI > 2b - 22bc. ThenthereissomexE{O,l}*suchthatIx~=~(1+2c)b+l]
and such that all strings xy with lxy 1 < 26 - 1 are in B. (That is, some element very
near the root of the tree of values represented by A must be in B, along with all of its
descendants in that tree of values.) Fix such an x. Also fix e E A with
size.,LL (R,J(e) = I(1 + 2c) b + 21 and val(e) = x.

Let D = (e’ E A : size&*& (6,i (e’) = [tb J and e’ consists solely of applications of
Osuc and lsuc to e}. Then Ips(D)j=lDl=2 [(3/2)b I- [(I + 2C)bt2 I. The J’ri&e

Inequality and (1) imply that all e’ E D have size&,(e’): pde)) < b2c. By defmition
of B and the condition for Case 2, we see that p&e) is a prefix of pde’) for all
e’ E D. The three preceding statements together imply that there exists E G D, I E I >
2’(3’2)bj--[(1 + 2c)bt21/b2c such that no element of p8(E) is a prefix of any other. But
since c is small, we see that 1 El > 22bc.

Now let F = {e’ E Dornfidt (g,): val(e’) = x and e’ consists solely of applications of
pred to elements of E}. By definition of B and the condition for Case 2, it follows

RELATIVE COMPLEXITY IN ALGEBRAS 113

that each pde’), for e’ E F, has some pde”) as a prefix, where e” E E; moreover, no
two values of e’ have the same value of e”. Thus, by incomparability of elements of
E, it follows that [p,(F)/ > 22bc. But this contradicts (2). m

Unlike the previous two bounds, the final bound we consider, that for LF Gexp g’,
is probably not as sharp as it ought to be. The result that seemingly ought to hold is
the following.

Conjecture. There exists a nonzero constant c such that (An[c log n], Ln[2”‘]) is a
time-value lower bound for L% Gexp 6’.

We have attempted to redo the tradeoff arguments from [4.1] in terms of the size
parameter. However, this effort has so far only succeeded for the degenerate case
which proves a lower bound for time when the number of representation is limited to
one. (The conference version of this paper, [3], contains a Theorem 9 which claims a
more general tradeoff. The proof of this theorem has since been found to be
incorrect.) The best result we have for this case is the following.

THEOREM 4.3. There exists a nonzero constant c such that (An[c log n], Ln[11) is
a time-value lower bound for Y Gexp 6’. (Note: We take the liberty of temporarily
regarding log 0 as 0.)

Proof: A version of an argument in [2] can be redone in terms of the size
parameter. I

ACKNOWLEDGMENTS

The author thanks Michael Loui, Chee Yap, and Ann Yasuhara for their meticulous readings of the
original manuscript and their very valuable suggestions for its splitting and revision. The present paper
and its companion [2] are very much improved for their efforts.

REFERENCES

1. R. A. DEMILLO, S. C. EISENSTAT, AND R. J. LIPTON, Space-time tradeoffs in structured
programming, J. Assoc. Comput. Mach. 27, No. 1 (January 1980), 123-127.

2. N. A. LYNCH, Straight-line program length as a parameter for complexity analysis, Theoret. Comput.
Sci., in press.

3. N. A. LYNCH, Straight-line program length as a parameter for complexity measures, in “Proceedings
1978 Tenth Annual ACM Symposium on Theory of Computing,” San Diego (May 1978), pp.
150-161.

4. R. A. LIPTON, S. C. EISENSTAT, AND R. A. DEMILLO, Space and time hierarchies for classes of
control structures and data structures, J. Assoc. Compuf. Mach. 23, No. 4 (October 1976), 720-732.

5. A. ROSENBERG, Preserving proximity in arrays, Siam J. Compuf. 4 (1975), 443-460.

