
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 22, 351-364 (1981)

A Time-Space Tradeoff
for Sorting on Non-Oblivious Machines*

ALLAN BORODIN

Department of Computer Science, University of Toronto, Toronto, Ontario, MSS 1A7, Canada

MICHAEL J. FISCHER

Department of Computer Science, FR35, University of Washington, Seattle. Washington 98195

DAVID G. KIRKPATRICK

Department of Computer Science, University of British Columbia, Vancouver, British Columbia
V6T I WS, Canada

NANCY A. LYNCH

School of Information and Computer Science, Georgia Institute of Technology, Atlanta. Georgia 30332

AND

MARTIN TOMPA

Department of Computer Science, FR35, University of Washington, Seattle, Washington 9819.5

Received April 18, 1980; Revised January 5, 1981

A model of computat ion is introduced which permits the analysis of both the time and
space requirements of non-obl ivious programs. Using this model, it is demonstrated that any
algorithm for sorting n inputs which is based on compar isons of individual inputs requires
t ime-space product proport ional to n*.

1. MOTIVATION AND CONTRAPOSITION TO PREVIOUS RESEARCH

The traditional approach to studying the complexity of a problem has been to
examine the amount of some single resource (usually time or space) required to
perform the computation. In an effort to better understand the complexity of certain
problems, recent attention has been focused on examining the tradeoff between the

* This material is based upon work supported by the Natural Sciences and Engineering Research
Council of Canada under Grants A7631 and A3583, and by the National Science Foundat ion under
Grants MCS77-02474 and MCS77-15628.

3.51
0022.0000,8 l /O3035 l-14SO2.00/0

Copyright 1 1981 by Academic Press, Inc.
All rights of reproduction in any form rcw~cd

352 BORODIN ET AL.

required time and space. This paper adopts the latter strategy in order to pursue the
complexity of sorting.

The vast majority of time-space tradeoffs recently demonstrated have been for
“straight-line” (or “oblivious”) programs [I, 6, 8, 11, 12, 14, 15, 161, that is,
programs in which the sequence of operations is independent of the actual values of
the inputs. In this model, “time” refers to the number of operations performed, and
“space” to the number of auxiliary (Le., non-input and non-output) registers used to
store intermediate results. (To distinguish this usage of space from others which
follow, this will be referred to as “data space.“) The problem of sorting has been
considered in this context by Tompa [161, who demonstrated that any oblivious
algorithm which sorts n inputs requires time-space product L?(n’).

Although oblivious sorting algorithms have been studied extensively (see Knuth
[7]), most sorting algorithms are non-oblivious; that is, they continually test and
branch based on comparisons of input values. In order to truly understand the
complexity of sorting, then, a model which admits non-oblivious algorithms should be
adopted. Toward this end, Munro and Paterson [lo] considered non-oblivious sorting
algorithms which use auxiliary registers to store selected inputs and can access other
inputs only through successive passes over all the inputs. Although they count only
data space (i.e., number of auxiliary registers used), the authors make it clear [10,
Sect. 21 that “control space” (used, for instance, to remember which inputs to fetch
into registers on a given pass) is also an issue in upper bounds. To sort n inputs
within their model, they demonstrate that the product of the number of registers and
the number of passes is e(n). Since each pass requires n moves of the input head,
their result might be interpreted as a lower bound of L?(n’) on the product of time and
data space. Adopting Cobham’s model [3], Tompa [171 in fact demonstrated a
similar tradeoff for sorting on any general string-processing model, exploiting only
the restriction of “tape input” (i.e., the input head can move at most one symbol left
or right in one step).

Thus there are at least three time-space tradeoffs for sorting already known
[10, 16, 171. Each of these, however, imposes some artificial restriction on the
algorithms considered (either obliviousness or tape input), and so they say more
about the inadequacy of these models for sorting-type problems than they do about
the inherent complexity of the problems themselves. To see this, one must simply
consult the three references and observe that each of these results applies as well to
the problem of merging two sorted lists of n elements, for which the standard (non-
oblivious, random access input) algorithm requires only O(n) time, no data space,
and O(log n) control space (for pointers).

In order to be compelling, then, the model of computation used to study sorting-
type problems should be not only non-oblivious, but should also permit random
access input. In fact, the sole restriction which is placed on the sorting algorithms
considered in this paper is that they be “conservative”: inputs are viewed as
indivisible elements drawn from some total order, and the only operations allowed are
simple comparisons. Time will be taken as the number of comparisons, but an
appropriate notion of space is not immediately apparent. This section concludes by

ATIME-SPACE TRADEOFF FOR SORTING 353

giving an informal motivation for the measure of space adopted, to be formalized in
the next section.

An algorithm in this model m ight have random access read-only input registers
x, >***, x, 1 auxiliary data registers y, ,..., y,, random access write-only output registers
z , ,a.., zm, and control registers to record information about the state of the
computation. Since the only operations allowed are comparisons, each data register
can store only input values; since there is random access to the input registers them-
selves, the data register can be eliminated completely by using control space to
remember the k indices of inputs which would have been stored in the k data
registers. Of course, such control space would have to be capable of assuming nk
possible values, for which it requires k log, n bits; this corresponds to the intuition
that each of the k indices requires log, n bits.

This leads directly to the measure of (control) space which will be adopted:
suppose that the program enters Q(n) distinct configurations over all sequences of n
inputs, where a configuration reflects all aspects of the program’s status except the
contents of the input and output registers. Then the program will be said to have
log, Q(n) “capacity.” Capacity is certainly a lower bound on the program’s space
requirement, for without at least log, Q(n) bits of storage the program cannot
distinguish which configuration it is in, and therefore which comparisons to make
next.

The notion of capacity is taken from Cobham 13); the difference is only in the
context. It is important to note the non-effective nature of this concept: a space-
efficient encoding of the configuration m ight entail time-consuming encoding and
decoding procedures in practice, but such time considerations are ignored in this
model. Since the emphasis of this paper is on lower bounds, the model’s non-
uniformity (a different program may be used for each n) and non-effectiveness
strengthen the results.

The next section formalizes the model of computation which has been motivated
here. The model is sufficiently realistic to differentiate between the complexities of
merging and sorting, as it admits the O(n) time, O(log n) space merging algorithm,
while in Section 3 it is used to demonstrate the main technical result of the paper:
any algorithm for sorting n inputs which is based on comparisons of individual inputs
requires time-space product n(n’).

An algorithm which demonstrates that this lower bound is nearly tight was
discovered by Munro and Paterson [lo]. Frederickson [4] tightened their upper
bound further by exhibiting an algorithm which uses time-space product O(n’ log n).
for any amount of space which is R(log n) and O(n).

2. BRANCHING PROGRAMS

The model which has been used extensively to study the time requirements of
sorting-type problems is the model of “tree programs” (see Knuth [7]). Pippenger
(personal communication] suggested a generalization of tree programs which could

354 BORODIN ET AL.

be used to study the space requirements of these problems as well. These generalized
tree programs were studied initially in [17], where they were called “branching
programs.” This section defines and compares tree programs and branching
programs, and presents some simple properties of the latter.

A free program is a directed tree with bounded outdegree d whose internal vertices
are labelled by queries of the inputs, whose edges are labelled by the (at most d)
possible responses to those queries, and whose leaves are labelled by vectors of
outputs. Given an input vector, the query at the root is tested first, and control
follows that edge emanating from the root which is labelled by the correct answer for
the given input values. This leads to the next query to be tested, and processing
continues similarly. Each input vector thus determines a path from the root to some
leaf which is labelled with the correct output for the given input. Figure 1 shows an
example of a tree program which merges two sorted list (x,, x2) and (y,, y2)
satisfying x1 <x2 and y, < yZ, using queries of the form “Is xi < or > Yj?”

The time required by a tree program is the length of the longest path followed by
any input. The time required to compute a function f is the minimum, over all tree
programs P which compute S, of the time required by P.

Tree programs give no indication of the space requirements of problems and this
motivates the generalization to branching programs. A branching program is a
directed multigraph, with bounded outdegree and a distinguished vertex of indegree 0
called the source, whose vertices of non-zero outdegree are labelled by queries, and
whose edges are labelled by the possible responses to those queries together with
(possibly empty) vectors of outputs. Beginning at the source, processing proceeds
exactly as in tree programs, with the addition that whenever control traverses an edge
it outputs the associated output vector. Figure 2 shows an example of a branching
program which merges x, <x2 with y, < y2 using the same set of queries as the tree
program of Fig. 1. In fact, this branching program is derived from the tree program
by moving outputs as high as possible in the tree and then coalescing all identical
subtrees.

FIG. 1. Tree program for merging x, Q x2 with y, < y2.

ATIME-SPACETRADEOFF FOR SORTING 355

FIG. 2. Branching program for merging x, (x2 with y, 6 yl.

The time required by a branching program is the length of the longest path
followed by any input from the source to a vertex of outdegree 0. (If some input
causes control to go around a cycle, the time is undefined.) The capacity required by
a branching program is log, 1 I’(, where

V = {U (some input causes control to reach vertex v}.

The time (capacity) required to compute a function f is the m inimum, over all
branching programs P which compute f, of the time (capacity) required by P. As
discussed in Section 1, the capacity S required by branching programs is a lower
bound to within a constant factor on the space requirement of any “reasonable”
machine which solves the problem using the same set of queries, as any such machine
must assume at least 2’ different configurations, for which it requires L!(S) space.

It is reassuring to observe that branching programs share some of the same
relationships of time and space as the classical models:

PROPOSITION 1. If S and T are respectively the capacity and time required by
some branching program, then S = O(T) and T < 2’ (provided T is not undefined).

Proof. The first relationship follows from the observation that the number of
vertices reachable from a given vertex in a graph with outdegree d and depth T is at
most dTt ‘. The second relationship follows from the observation that T is the number
of vertices on a non-self-intersecting path followed by some input, whereas 2’ is the
number of vertices accessed by any input. I

Notice that it is possible for a branching program to have cycles and yet have a
finite time requirement, as long as no input can cause control to go completely
around any cycle. Pippenger’s original suggestion was that branching programs be
acyclic; that suggestion is justified by the following normal form:

PROPOSITION 2 (Pippenger). Let P be a branching program which uses time T

356 BORODIN ET AL.

and capacity S. Then there is a branching program P’ which, using the same set of
queries, computes the same function as P in time T and capacity at most
S + log, T < 2S, and has the property that its vertices can be partitioned into T + 1
sets V,, V,,..., V,,, such that any edge emanating from a vertex in Vi terminates at a
vertex in V, + , .

Proof: Suppose P is a branching program which uses time T and capacity S, and
let v = 2’ be the number of reachable vertices of P. P may have cycles, but no input
can force P to take more than T steps before halting. Define an acyclic version P’ of
P as follows: P’ has T + 1 copies of the vertex set of P, and the edges of P’ are
provided by the following rule: If some input causes control in P to pass from vertex
a to vertex b at time i, then there is an edge in P’ from copy i of vertex a to copy
i + 1 of vertex b. P’ uses time T and capacity at most log,(vT) = S + log, T< 2S, by
Proposition 1. 1

This proposition aids in conceptualizing branching programs, as it shows that, for
asymptotic considerations, it suffices to study those that arise from tree programs by
coalescing identical subtrees.

One final elementary observation concerning branching programs demonstrates
that they are indeed generalizations of tree programs:

PROPOSITION 3. If st@cient capacity is available, the time requirements of
branching programs and tree programs to compute a given function using the same
set of queries are identical, in the following strong sense: there is a tree program
which for each input x uses t, steps lfl there is a branching program which for each
input x uses t, steps.

Proof: In one direction the statement is trivial, since any tree program is also a
branching program. In the other direction, suppose there is a branching program
which uses t, steps on input X. By Proposition 2 there is an acyclic version which
also uses t, steps. From this version a tree program can be constructed by beginning
at the source and splitting all vertices of indegree greater than 1, and finally pushing
all outputs down to the leaves. m

Masek [9] investigated space requirements for a type of branching program, but
considered queries of the form “What is the ith bit of the input?” The remainder of
this paper will not deal with such general programs, but will consider instead queries
based on simple comparisons of inputs. In the concluding section we return to
questions concerning the more general model.

A (<, > }-branching program (or a (<, > }-tree program) is one which employs
only queries of the form “x,: x,,” where x, and x, are inputs, and receives one of the
two replies “x, < xi’ or “xl > xj.” ({ <, =, >}-programs and {=, #}-programs are
defined analogously.) It is important to observe that since the action of a { <, > }-

A TIME-SPACETRADEOFF FOR SORTING 357

program is determined solely by the ordering of the inputs, it is sufficient to examine
its behavior on the n! permutations of (1,2,..., n).

The next section examines the time and capacity requirements of (<, > i-branching
programs for sorting.

3. A TIME-CAPACITY TRADEOFF FOR SORTING

Given distinct inputs xi, x2 ,..., x, drawn from some total order, the sorting problem
is to output a sequence r,, i,, r2, i, ,..., r,,, i,, where

(1) (rl, r2,..., r,) is any permutation of (1,2 ,..., n), and
(2) xi, is the rith smallest input, for all 1 <j Q n.

(In a more conventional version of sorting, (r-i, r2,..., r,) m ight be required to be
the identity permutation of (1,2,..., n). For the purpose of establishing more general
lower bounds, this restriction will not be assumed, nor even that the same
permutation is employed for all, inputs.)

This section is devoted to proving that any (<, >)-branching program which sorts
n inputs in time T and capacity S requires ST = $2(n’). It may be helpful at this point
to describe informally the mechanism by which branching programs may trade off
capacity for time. A tree program (that is, a branching program which maximizes
capacity) may be able to save time by the fact that at any point in the computation it
“remembers” the results of all previous queries. On the other hand if the number of
configurations reachable after j steps is restricted well below 2j, the resulting
“confusion” may well require extra time to be resolved. Theorem 1 shows that this is
in fact the case for sorting: if, at strategic points in the computation, the number of
configurations is restricted to 2 ‘, for any S = o(n), then the ranking of the next S
inputs is achievable only at the expense of Q(n) comparisons. Since all n inputs must
be ranked, the total time is Q(n’/S).

The proof of Theorem 1 proceeds through a sequence of four lemmas. Since
Theorem 1 measures the “confusion” which arises when many permutations reach the
same configuration, the lemmas deal with properties of arbitrary sets of permutations.
Lemmas 1 and 2 establish some interesting combinatorial relationships among certain
sets of permutations consistent with a given Hasse diagram. Lemmas 3 and 4 give
lower bounds on the times required by programs which determine the ranks of many
inputs.

A Hasse diagram over {i,, i, ,..., i,) is an acyclic directed graph with n vertices
which are labelled distinctly with the elements i,, iz,..., i,. A permutation
7r = (n(il), n(i,) ,..., 7r(i,)) of (iI, i, ,..., i,) is said to be consistent with a Hasse diagram
H if z(j) > n(k) whenever there is a directed path of positive length from j to k in H.
Two elements j and k are said to be comparable in H if there is a directed path either
from j to k or from k to j in H. If H is a Hasse diagram over {i,, iZr..., i,} define

(1) P(H) = (n) 71 is a permutation of (i,, i, ,..., i,) consistent with H).

358 BORODIN ET AL.

(2) C(H, i) = (j 1 j is comparable to i in H}.
(3) H - i is the Hasse diagram on n - 1 vertices which results from removing

the vertex labelled i and adding an edge (j, k) for each pair of edges (j, i) and (i, k) in
H.

The following lemma relates P(H - i) to P(H):

LEMMA 1. Let H be a Hasse diagram on n vertices, one of which has label i.
Then n . JP(H - i)l ,< 1 C(H, i)l . IP(H

Proof: A permutation x is said to be i-consistent with H if, for all j # i and k # i,
n(j) > z(k) whenever there is a directed path of positive length from j to k in H.
Since there are n places to insert i into each permutation whose inverse is in P(H - i)
(ignoring the constraints of H on i) the left-hand side n . 1 P(H - i)l is the number of
permutations which are i-consistent with H. It remains to show that the right hand
side is an upper bound on this number.

Suppose II is i-consistent with H. Consider the set of elements each of which,
together with i, “disrespects” H; that is, the set DUD’, where

D = {j 1 n(i) < x(j) but there is a directed path from i to j in H},

D’ = {j 1 x(i) > x(j) but there is a directed path from j to i in H}.

Notice that DUD’ E: C(H, i). Notice also that either D or D’ must be empty, since
j E D and k E D’ implies n(j) > z(k) but there is a directed path from k to j in H,
which is impossible. Suppose D’ = (, the case when D = 4 being dual. Let the
elements of D be j, , j, ,.,,, j,, where x(j,) < Ir(j*) < ..a < a(j,). Consider the
following scheme which “rotates” the values of x at j,(=i), j, , j, ,..., j,:

7ftj) = djm), if j=j,,

n’(j) = 4.h - I 1, if j=j,,for 1 <h<m,

72’ (j) = n(j), otherwise.

Then n’ E P(H), since

(a) By the definition of D, i is now in its “correct” place.
(b) The only other pairs (j, k) which have changed relative positions (i.e.,

n(j) > n(k) but n’(j) (x’(k)) satisfy j E D and k & C(H, i). In this case there can be
no directed path from j to k in H, since if there were the directed path from i to j in H
would place k in C(H, i).

The fact that 1 C(H, i)l . [P(H)/ is an upper bound on the number of i-consistent
permutations follows from the observation that the pair (jl, n’) uniquely determines
at most one i-consistent permutation n. I

AI-ME-SPACETRADEOFF FOR SORTING 359

COROLLARY. Let H be a Hasse diagram on n vertices, k of which have labels
. . .I,,J~ ,... ,jk. Then

(n tk,, (P(H -j, -j, - *** - j,)l Q (*fi, I CWJI) - tP(H)I.

Proof. By induction on k.

Basis (k = 1): This is just Lemma 1.
Induction (k > 1):

(nr!k), IP(H-j,-j,-*** -.i,)l

(n - i)! =n. ,(n _ 1) _ (k _ l),! - IP((H-j,) -j2 - ... -.&)I

<PI (I! lC(H-j,.j,)l) . kVkA)l induction hypothesis
h=2

Let P(H, r, : j, , rz : j, ,..., r,: j,) = {z 1 IC E P(H) and rc(j,) = rh for all 1 ,< h < k 1.

LEMMA 2. Let H be a Hasse diagram, k of whose vertices have labels j, , j2,..., j,.
Then

I PW, rl : j, , r2 : j, ,..., rk:jk)l<IP(H-j,-j2-...-jk)(.

Proof: This is most easily seen by examining the inverses of permutations in
P(H, r,: j, ,..., rk: j,); that is, permutations with the value j, in the r,th position. The
removal of j,, j, ,..., j, from such permutations yields the inverse of a permutation in
P(H -j, -j, - +.a -j,), and such removal from distinct permutations cannot yield
identical permutations. I

Lemmas 1 and 2 lay the necessary foundation to prove an interesting result
concerning (<, >}-tree programs which compute a function related to sorting. Given
n distinct inputs x,, x2,..., x, drawn from some total order, the k-ranking problem is
to output a sequence r,, i,, r2, i, ,..., rk, i,, where

(1) (r,, r2,..., rJ is any permutation of any k elements from { 1, 2,..., n}, and
(2) xii is the r,th smallest input, for all 1 <j < k.

360 BORODIN ET AL.

(Notice that a tree program which computes the k-ranking problem may employ a
different permutation (rm,, , r,,* ,..., T,& at each leaf 0.)

LEMMA 3. Let z be a { <, >}-tree program which outputs 2k integers between 1
and n at each leaf, and let P(z) be the set of permutations of (1,2,..., n) for which t
correctly computes the k-ranking problem. Then IP(< (t + l)k (n - k)!, where t is
the length of the longest branch of r.

Proof. Let 4 be any leaf which is reached by some input, and suppose the
sequence output at # is r@,, , j,,, , rm,z, j,,, ,..., r9+k, j,,,. There is a natural Hasse
diagram H, on n vertices associated with 4; namely, edge (i, j) is in H, iff on the
branch from the root of r to d the response “>” to query “xi: xi’ was received (or
equivalently the response “<” to query “xj: XI)‘). Notice the following two facts about
H,:

(1) IC(H,, j,,,)l < t + 1, since there are at most t comparisons made on the
branch from the root of t to), and

(2) {P(H,)) d is a reachable leaf of r} partitions the set of n! permutations of
(1, 2 ,..., n).

Then

< r Lemma 2
6 rea%able

IW, -j,,, -L - - -&.,k)i

Q c (n Ik)’ (fi (C(H,, j,.,,i) . (P(H,)(corollary of Lemma I
m reachable n* h=l

G c
#reachable

(” --Ik’! (t + I)k . IP(H,)(fact (1)

= @ + lJk (n - k)! - -zable (P(H,)(n. I

=(t+ l)“(n-k)! fact (2). 1

COROLLARY. Let 5 be any { <, >}-tree program which computes the k-ranking
problem, and let P be an arbitrary set of permutations of (1, 2,..., n). Then for any t,
at least (PI - (t + l)k (n -k)! permutations in P each follow branches of length at
least t + 1 in 5.

Proof Suppose to the contrary that more than (t + I)k (n-k)! permutations
follow branches which terminate after at most t comparisons. The result of cutting off
all branches of t after t comparisons is a tree program which violates Lemma 3. I

We are finally in a position to prove a lower bound on the time required by

ATIME-SPACETRADEOFFFOR SORTING 361

(<, > }-branching programs to sort. For the remainder of this section it will be
assumed that branching programs are in the normal form described in Proposition 2
of Section 2.

LEMMA 4. Let 5 be any (c, >}-branching program which sorts n inputs, and let
Vj be the total number of vertices of distance at most j - 1 from the source of z. Let t
and k be arbitrary positive integers, and let i be any integer satisfying
O<i< \(n- l)/(k- 1)J. Then after (n - 2) + it comparisons, at least
n! - V o-2)+i((t t l)k (n -k)! permutations of (1,2,..., n) have each output only
i(k - 1) inputs together with their ranks.

Proof By induction on i.

Basis (i = 0): Every branch of any { <, >}-tree program which computes the I-
ranking problem must have length at least n - 1, since the Hasse diagram associated
with each leaf must be connected. The basis then follows from Proposition 3 of
Section 2.

Induction (i > 0): Let P be the set of permutations each of which has output at
most (i - l)(k - 1) ranked inputs after (n - 2) + (i- 1)t comparisons. By the
induction hypothesis, JPI >, n! - Vtn-2)+(i-l)r (t + l)k (n -k)!. Consider the set of
vertices v, , v2 ,..., v, at the (n - 1) + (i - 1)tth comparison along each path, and let
Pj be the set of permutations in P which arrive at vj. From the corollary to Lemma 3
and Proposition 3 of Section 2, at least IP,\ - (t + l)k (n - k)! permutations in Pj
require t + 1 comparisons starting at vj to output the next k indices and ranks. Then
the total number of permutations in P which require t + 1 additional comparisons is
at least

? (IPji - (t + 1)” (n -k)!)
jr1

=JPJ-m(t+ l)“(n-k)!

> (n! - ‘(n-*J+(i-l)t (t + l)k (n - k)!) - m(t + l)k (n - k)!

> n! - V,n-Z)+it(t + l)k (n -k)!

Therefore, after only t additional comparisons (n - 2 + it in total), at least this many
permutations will have output only (i - l)(k - 1) + (k - 1) = i(k - 1) indices and
ranks. I

THEOREM 1. Any (<, >}-branching program which sorts n inputs in time T and
capacity S requires ST = I2(n’).

Proof. Let k = S and i = \(n - l)/(S - l)J in Lemma 4. (These choices maximize
ST asymptotically.) Then t can be chosen as large as desired, subject to the
constraint that at least one permutation remains; that is, n! - V,(t + 1)” (n - S)! > 0.
Choosing t + 1 = [(n - S)/2J satisfies this, as

362 BORODIN ET AL,

n!-+(t+1)~(n-S)!&2!-2~[(n-S)/2J~(n-S)!

2 n! - (n - S)S (n - S)!

>n!-n(n-l)... (n - s + l)(n - S)! = 0.

Then by lemma 4,

T> (n - 1) + if = (n - 1) + [(n - l)/(S - I)J(/(n - S)/2J - 1)

2 (n - 1) + ((n - S)/S)((n - S - 3)/2)

or 2ST>(n-S)(n-S-3)+2S(n-l)=n*-3n+S2+S. I

COROLLARY. Any { <, =, > l-branching program which sorts n (not necessarily
distinct) inputs requires ST = J2(n’).

Proof: Removal of the “=” branches yields a { <, > l-branching program which
sorts n distinct inputs. #

THEOREM 2. Any { <, >}-branching program which sorts n inputs requires
SF= f?(n’), where T is the average time required when all n! permutations are
considered equally likely.

ProoJ: Choosing t + 1 = [(n - S)/4J in the proof of Theorem 1 shows that not
one but n!(2S - 1)/2’ of the n! permutations require at least half the stated time. I

4. QUESTIONS FOR FURTHER RESEARCH

This paper has presented a time-space tradeoff for sorting using a very general
model which is non-oblivious, has random access input, and places no restrictions on
the manner in which space is used. Its only restriction is its “conservative” nature:
inputs are assumed to be indivisible entities which can only be compared. Borodin
and Cook [2] have extended the techniques introduced here to prove a similar
tradeoff for sorting on general (non-conservative) string processing models with
random access input.

It is natural to ask whether the techniques presented can be used to establish more
dramatic tradeoffs for branching programs. Although there are natural problems
which appear to be candidates for such dramatic tradeoffs, results of Cook and
Tompa (see [171) show that such a tradeoff would have broader ramifications: if no
{=, #}- or { <, >}-branching program solves a given problem in capacity S and time
T, then no general string-processing machine solves the problem in space S - log n
and time T/n. The work of Borodin and Cook indicates that the combinatorial focus
of branching programs may well lend itself to the establishment of such general lower
bounds.

There are also questions relating specifically to branching programs that do not

ATIME-SPACE TRADEOFFFOR SORTING 363

appear to yield such implications for general string-processing models. For example,
the set of allowable queries m ight be extended from simple comparisons to
comparisons of linear functions of the inputs. (Yao [181 has extended the time-space
tradeoff for sorting proved in this paper to such a model.) The results of Cook and
Tompa do not seem to apply to these generalized branching programs. However, the
resulting model would be a compelling one for demonstrating time-space tradeoffs
for problems such as determining shortest paths and network flows.

The method used in this paper to prove the time-space tradeoff for sorting seems
inapplicable to problems with few outputs, as the main lemma used (lemma 4) states
that roughly n comparisons must be made for every S outputs. However, because of
certain similarities to sorting, it seems reasonable that the tradeoff ST = Q(n’) m ight
hold for the following two decision problems : (1) given n inputs, determine if they are
all distinct, and (2) given two sets each of size n, determine if they are disjoint. By
applying Reingold’s reduction from sorting to set disjointness [13], these tradeoffs
would follow if the generalization of Theorem 1 to a less constructive variant of
branching programs holds: instead of actually producing outputs at specific points
along each path, the branching program need only satisfy the condition that the path
followed by any input receives responses suflicient to determine the sorted order.

Finally, there are problems which have been shown to possess surprisingly good
algorithms with respect to simultaneous time and space requirements. These include
string-matching [5) and computing the median \ lo]. It would be satisfying to
establish corresponding lower bounds for (=, #}- and { <. =) > }-branching programs.
respectively. For example, is it true that any linear time (or perhaps “real time”)
{=. #}-branching program for string-matching requires o(log n) capacity (in the
terms of 15 1, more than a fixed number of registers)?

REFERENCES

I. H. ARELSON. A note on time-space tradeoffs for computing continuous functions, Inform. Process.
Letl. 8 (1979). 215-217.

2. A. BORODIN AND S. A. COOK, A time-space tradeoff for sorting on a general sequential model of
computation, in “Proceedings, Twelfth Annual ACM Symposium on Theory of Computing.” Los
Angeles, CA, April 1980, pp. 294-301.

3. A. COBHAM, “The Recognition Problem for the Set of Perfect Squares,” Research Paper RC- 1704,
IBM Watson Research Center, Yorktown Heights, N.Y., April 1966.

4. G. N. FREDERICKSON. “Upper Bounds for Time-Space Trade-Offs in Sorting and Selection.”
Technical Report CS-80-3. The Pennsylvania State University, University Park, PA, January 1980.

5. Z. GALIL AND J. SEIFERAS. Saving space in fast string-matching, in “Proceedings, 18th Annual
Symposium on Foundations of Computer Science,” Providence, R. I., Oct.-Nov. 1977, pp. 179-188.

6. D. Yu. GRIGORYEV, An application of separability and independence notions for proving Lower
bounds of circuit complexity, Notes of Scientific Seminars No. 60, pp. 38-48, Steklov Mathematical
Institute, Leningrad Department, 1976 (in Russian).

7. D. E. KNUTH, “The Art of Computer Programming.” Vol. 3. “Sorting and Searching.”
Addison-Wesley, Reading, Mass., 1973.

8. T. LENCAUER AND R. E. TARJAN, Upper and lower bounds on time-space tradeoffs, in
“Proceedings, Eleventh Annual ACM Symposium on Theory of Computing.” Atlanta. GA.
April-May 1979. pp. 262-277.

364 BORODIN ET AL.

9. W. J. MASEK, “A Fast Algorithm for the String Editing Problem and Decision Graph Complexity,”
M. SC. Thesis, M.I.T., May 1976.

10. J. I. MUNRO AND M. S. PATERSON, Selection and sorting with limited storage, in “Proceedings, 19th
Annual Symposium on Foundations of Computer Science,” Ann Arbor, MI, Oct. 1978,
pp. 253-258.

Il. W. J. PAUL AND R. E. TARJAN, Time-space trade-offs in a pebble game, Actu Inform. IO (1978),
111-115.

12. N. PIPPENGER, A time-space trade-off, J. Assoc. Comput. Much. 25 (1978), 509-515.
13. E. M. REINGOLD, On the optimality of some set algorithms. J. Assoc. Comput. Much. 19 (1972),

649-659.
14. R. REISCHUK, Improved bounds on the problem of time-space trade-off in the pebble game, in

“Proceedings, 19th Annual Symposium on Foundations of Computer Science,” Ann Arbor, MI,
Oct. 1978, pp. 84-91.

15. J. E. SAVAGE AND S. SWAMY, Space-time tradeoffs on the FFT algorithm, fEEE Trans. Inform.
Theory 24 (1978), 563-568.

16. M. TOMPA, Time-space tradeoffs for computing functions, using connectivity properties of their cir-
circuits, in “Proceedings, Tenth Annual ACM Symposium on Theory of Computing,” San Diego,
CA, May 1978, pp. 196-204.

17. M. TOMPA, “Time-Space Tradeoffs for Straight-Line and Branching Programs,” Ph. D. Thesis.
Technical Report 122/78, University of Toronto, July 1978.

18. A. C. YAO, “On the Time-Space Tradeoff for Sorting with Linear Queries,” Stanford University.

