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Abstract. Layered communication protocols frequently implement a FIFO message fiacility cm top
of an unrehable non-FIFO serwce such as that provided hy a packet-swltchmg network. This
paper investigates the possibdity of Implementing a reliable message layer on top of an underlying

layer that can low packets and deliver them out of order, with the addltlonzd restriction that the

implementatmn uses only a fixed fimte number of different packets. A new formalism is
presented to spcclfy communication layers and their properties, the notion of their implementa-
tion by 1/0 automata. and the properties of such implementations. An 1/0 automaton that
Implements a rellable layer over an unreliable layer is presented In this implementation, tbe

number ot packets needed to deliver each succeeding message increases permanently as addi-
tional packet-loss and reordering faults occur. A proof is gwen that no protocol can avoid such

performance degradatmn.

Categories and Subject Descriptors: B.4.4 [Input/Output and Data Communications]’ Perfor-
mtince Analysis and Design Aids—formal nzodel.s, [>erzfrcatmz, worst-case mdysLs; C.’2.O [Com-

puter-Communication Networks]: General—data co)ntn[{]zzc(ttio~zs, open Systenz Interconnection

rejercnce model (0S[); C.2.2 [Computer-Communication Networks]: Network Protocols—protocol

archztecturc’, protoco/ ~erglcatlotz; D.4.4 [Operating Systems]: Commurucations Management—ntcs-

sasc se)zduzg,rwtwork corronunicattot~; F. 1.1 [Computation by Abstract Devices]: Models of Compu-

t~tioll—u~~fo~?~{~ta: F. 1.2 [Computation by Abstract Devices]: Modes of C{>mputatlon—parallclisnz

General Terms: Algorithms, Design, Rehabdlty, Theory, Verification

Additional Key Words and Phrases Bounded packet header. datalink layer, fault recovery, FIFO
layer, layer implementation, layered communicahou protocol, message reordering, packet-swltch-

mg network, sequence transmission problem, transport protocol

In order to overcome the great engineering complexity involved, designers

typically organize a communication network as a series of layers. Each layer is

viewed as a “black box” that can be used by the next higher layer. Typical

higher layers provide communication services with “nicer” properties than the

lower layers upon which they are implemented. The 0S1 reference architecture

of the International Standards Organization is a well-known example of lay-

ered design. (See Bochmann and Gecsei [1977]; Tannenbaum [1989], and

Zimmerman [1980] for more details.)

One of the most important functions of a higher-level interprocess communi-

cation layer is to mask faults exhibited by a less reliable lower layer. A higher

reliable layer, which we call a First IH First Out (FIFO) layer, must deliver

messages correctly, exactly once, and in the intended order, whereas the lower

layer upon which it is implemented might lack one or more of these desirable

properties. Individual messages might be lost, duplicated. or corrupted, and

sequences of messages might be delivered out of order.

This paper studies the general problem of implementing a higher reliable
layer on a lower less-reliable layer. We call this the reliable message bmsmis-

sim problem ( RiWTP). Layers of the sort we consider arise, for example, at

different places in the 0S1 architecture mentioned above. A reliable transport
layer is often implemented using a connectionless network that permits mes-

sage reordering and message loss. A reliable data link layer is usually imple-

mented on top of a physical transmission medium that permits message loss

and message corruption faults. To avoid confusion when discussing the imple-

mentation of one layer on another, we often use packet to denote messages of

the lower layer, reserving the term “message” for the upper layer. We also

sometimes refer to the lower layer as a “channel”.
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Solutions to RMTP for certain kinds of channels date back to the early work

on communication protocols (cf. Aho et al. [19%2], Bartlett et al. [1969],

Stenning [1976]). Much of the early theoretical work was concerned with

optimizing the number of states or number of packets under various assump-

tions about the channel. For example, Aho et al. [1982] consider RMTP using

synchronous channels in which the loss of a packet can be detected by the

recipie~t at the next time step.

Three kinds of faults are of interest when discussing RMTP in asynchronous

systems: loss, reordering, and duplication of packets. Stenning’s protocol [1976]

solves RMTP and tolerates all three fault types. However, it requires packets

of unbounded length, since each packet contains a sequence number as well as

a message. This is not desirable in practice. For channels that use bounded

length packets, whether or not solutions to RMTP exist depends on which

combination of faults are to be tolerated. There are easy solutions for any one

of the three fault types in isolation. There is also a solution, the Alternating Bit

protocol, for the case of both 10SS and duplication faults [Bartlett et al. 1969].

By way of contrast, no solution is possible for the case of both reordering and

duplication faults [Wang and Zuck 1989] and consequently also for the case of

all three fault types.

The remaining case—channels that use only bounded-length packets and are

subject to both reordering and loss faults—is considered in this paper. These

channels are rather difficult to deal with. For example, if the transmitting

station sends the sequence 1011210001 of one-digit packets, the receiving

station might get 0011 or 1100 or 0000111112 or even nothing at all. It is not

clear how the receiving station can derive any useful information from what it

receives.

We use the term nomiuplication for a channel where reordering and loss

Paults can occur arbitrarily. This is a natural abstraction of the service provided

by a cormectionless network layer. If reordering can occur only to a limited

extent (so a packet cannot be overtaken by another which was sent more than a

fixed time later), then a simple solution is provided by using a variant of

Stenning’s protocol with sequence numbers kept as remainders to a fixed

modulus. This is done in existing communication networks, but it places

undesirable interdependencies between constants used in the implementations

of different layers, since the modulus used in the reliable layer depends cm the

extent to which packets can be reordered by the unreliable layer. If the

reordering is arbitrary, as in a ncmduplicating channel, then no modulus is

large enough for this strategy to work. Indeed, it has often been conjectured

informally that RIMTP cannot be solved by a nonduplicating channel.

In this paper, we both prove and disprove this conjecture. We avoid the

apparent contradiction in this statement by paying careful attention to the

formal definitions. We present a solution in a natural model in which only the

correctness of the layer implementation is required. We then show that there

are no “efficient” solutions. Intuitively, a solution is efficient if it has the ability

to recover form channel faults and resume transferring messages at a fixed

rate, regardless of past channel behavior.
The above discussion makes apparent that a precise formal model is neces-

sary to discuss RMTP and its possible solutions. We use the term, RMTP, in

the remainder of this paper to refer to the problem of finding a protocol that

implements a FIFO layer on a mmduplicating layer; hence, we need formal
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definitions of protocols and communication layers, and the notion of a protocol

implementing one layer on another.

A “reactive system” (in the sense of Harel and Pnueli [1985] and Manna and

Pnueli [1992]) is a system that interacts with its environment. A reactive system

generates a “behavior” consisting of the visible activity of the system. Commu-

nication layers, protocols, and 1/0 automata [Lynch and Tuttle 1987; 1989],

are all examples of reactive systems since they naturally generate behaviors.

The behavior of a communication layer is the visible activity that takes place

at the two sites that form its interface with the environment. This activity takes

the form of sends and receives of messages, which we call “actions”. Messages

to be transported by the layer are inserted into the layer at one site and

removed from the layer at the other site.

A “program” is an activity in which all actions take place at a single site. We

model programs by 1/0 automata. A “protocol” is a pair of programs that run

at distinct sites. A system consisting of a protocol on two sites connected by a

(lower) communication layer generates a behavior that is determined by the

individual behaviors of the system’s programs and communication layer and is

thus an instance of general parallel composition of reactive systems. The

system is said to “implement” a higher communication layer if its behavior

satisfies the requirements for the higher layer.

The definitions for reactive systems at a single site and their realizations as

1/0 automata are presented in Section 2. Communication layers are defined in

Section 3. The notion of a protocol implementing one layer on another is

presented in Section 4; it gives the basis for a modular decomposition of layer

implementations. This modularity is expressed by two general compositionality

results. The first expresses how a stack of layer implementations, each using

the service provided by the layer below, can be composed to give an implemen-

tation of the highest layer on the lowest one. The other allows two noninteract-

ing layers, running in parallel, to be viewed as a single layer. These definitions

and results give a formal framework in which to discuss communication

protocols that extends beyond the particular problem treated here.

Using these definitions and formalism, we exhibit (in Section 5) a modular

solution to RMTP built from two parts. The first part uses the Alternating Bit

protocol to implement a FIFO layer on an “order-preserving” layer, one that

can lose and duplicate packets but not reorder them. The second part imple-

ments an order-preserving layer on a nonduplicating layer. These relatively

simple parts are combined using the two compositionality results of Section 4

to yield an implementation of a FIFO layer on a nonduplicating layer. The

modular structure allows for a simple proof of correctness,

Our solution to RMTP, however, is not “efficient” in a sense made precise in
Section 6. In fact, we prove in Section 6 that no such efficient solution to

RMTP exists. Thus, the originally conjectured impossibility of solving RMTP

with nonduplicating channels turns out to be true after all when solutions are

required to be efficient. The proof is quite short because it relies on gener-

al properties of layers and their implementations that are given in Sections 3

and 4.

Results related to ours appear in several other papers. A collection of

general definitions and composition results about layered protocols in a model

related to ours is given in Lam and Shankar [1990]. A preliminary version of

Theorem 5.3.2 appears in Attiya et al. [1989]. A preliminary version of Theo-

rem 6.2.4 appears in Lynch et al. [1988]. Subsequent papers consider other
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versions of RMTP and other definitions of efficiency. For example, Mansour

and Schieber [1992] contains an impossibility result for efficient RMTP using a

related but incomparable notion of efficiency, and it extends the result to

channels where message loss is probabilistic rather than adversarial. A quanti-

fied version of Theorem 6.2.4 for a nonuniform model in which the transmitter

knows the entire input sequence when the protocol begins, as well as a similar

theorem for the case of channels that can reorder and duplicate packets, are

shown in Wang and Zuck [1989]. The efficiency of RMTP is investigated in

Tempero and Ladner [1990] relative to a new family of parameterized complex-

ity measures that measure the speed of recovery from errors and the efficiency

of message transmission in the absence of channel errors. Also, Fekete et al.

[1993] contains an impossibility result for RMTP in the presence of crashes

that lose information. Finally, Fekete and Lynch [1990] investigates the feasibil-

ity of solving RMTP with no headers at all.

2. Formal Definitions

2.1 SEQUENCES AND EVENTS. Let a = aO, al, . . . be an arbitrary finite or

infinite sequence. An occurrence of an element in a is called an el’ent of a.

Formally, an event is a pair n = (i, a), where i G N and a is an arbitrary

element. The event m- is an euent of a if a, is defined and a = a,. Events are

partially ordered by the “earlier-than” relation, where (i, a) is earlier than

(i’, a’) if i < i’. The term, a-el’ent, is used to denote an event whose second
component is a. Let A be an arbitrary set. An event m is an A-event if it is an

a-event for some u = A.

A sequence a’ is a subsequence of a if c1 = a~,,, ~k,, . . . for some k(l <

k, < -“”. A sequence a’ is a finite prefti of a, written a’ < a, if a‘ =

ao, al, ..., al for some 1 < Ia 1. A sequence a’ is the restriction of a to A,

written a IA, if a’ is the subsequence of a obtained by deleting all non-A-events

in a. We extend restrictions to sets of sequences in the usual way.

The restriction a’ = alA = a~,,, a~ ,.. . induces a natural correspondence m

from events of a’ into events of a defined by m(i, a;) = (k,, a~,) and called

the embedding of a’ in a. Obviously, u maps a-events to a-events.

2.2. MULTISETS. A multiset (or bag) is a collection of elements with multi-

plicities. Formally, a multiset Q is a pair (dom[Q], copies[Q]), where dom[Q] is

a set and copies[Q] is a function from dom[ Q] to N – {O}. For every element

u ● donz[Q], copies[ Q](u) denotes the number of occurrences of Z4 in Q. We

define the size of Q to be X,l. ~O,.[~lcopies[Q]( u). Where convenient, we
extend copies[ Q] to larger domains U ~ dorn[ Q ] by defining copies[ Q ]( u ) = O

fOr L1 E u – d07?2[Q].

Familiar set operations can be extended to multisets. For two multisets Q

and Q’, we say that Q is a submultiset of Q’, written Q L Q’, if dom[Q] G

dom[Q’ ] and copies[Q](u) < copies[Q ](u) for every u G dom[Q]. We also
define Q E Q to mean Q E Q and Q # Q. This implies that copies[Q](u) #

copies[ Q’ ](u) for some u = dom[Q’ ]. If Q E Q, then we can define the multiset
difference, R = Q’ – Q, where dom[R] = dom[Q’ ] and copies[R](u) =

copies[Q’ ]( u) – copies[ Q](u ).’

‘Strictly speaking, donz[ R] should be reduced to include only those elements u for which
cfvvfd R1(7J) > (1
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We also have need in Section 6 for a more complicated partial ordering

among multisets. Let k be a positive integer. For a multiset Q, let Qk be the

k-bounded multiset defined by dom[Q~ ] = dom[Q], and copies[Q~ ]( u ) =

min( k, copies[ Q](u)) for every LL E dorn[ Q]. Thus, Q~ has at most k copies of
any element. For multisets QI and QL, define QI <L Qz if Q; c Q~. Note that

<~ is a strict partial order, that is, it is irreflexive, antisymmetric and

transitive.

The ordering <~ has an important finite chain property.

LEMMA 2.2.1. Let i% = Q, <,, Qz <k ““” be u possibly i~lfinite increasing

chain of multisets, and let U = l--),dom[Q1 ]. If U is finite, then % has at most

klUl + 1 elements.

PROOF. Define a measure ~(Ql ) = X,,. ~ min(k, copies[Q, ](u)). It is easily

shown that f(Q, +,) > ~(Q, ) + 1 and f(Q, ) s klUl for each i. Since also

f(Q1 ) >0, the result follows. ❑

2.3. REACTIVE SYSTEMS AND BEHAVIORS. We use the term, reacti[e system,

to describe computational entities which exhibit an ongoing activity, interacting

with their environment and possibly not terminating (cf. Harel and Pnueli

[1985]). The communication layers and protocols that we discuss in this paper

are examples of reactive systems. Intuitively, a reactive system is a black box

that, from time to time, performs externally visible atomic activities called

“actions”. An observer may record the history of a run by writing down the

sequence of visible actions as they occur. Obviously, after the system performs

a finite number of steps, the observed sequence is finite. We call it a “partial

trace”. A “trace” is the sequence observed when the system is allowed to run

forever. Traces can be finite or infinite; every finite trace is a partial trace, but

partial traces are not necessarily (finite) traces.

For many purposes, how the traces are developed is of no interest; all that

matters is the set of possible traces. We call the description of a system’s

possible traces the “behavior” of the system, and we often identify a system

with its behavior. Thus, our behaviors are based on trace semantics (cf. Hoare
[1985], Kahn [1974], and Milner [1980]).

Formally, a beha[’ior S is a pair (acts(S), traces(S)), where act,s(S) is a set of

actions and traces(S), the traces of S, is a set of finite and infinite sequences

over acts(S). Each element of traces(S) is called an S-trace. We call a a partial

S-trace if a is a finite prefix of some S-trace. In general, if the possible traces

of a reactive system R are described by a behavior S, then we write S = beh( R ).

A reactive system R with behavior S is often a component of a larger
system. A trace a of the larger system will in general contain symbols over a

superset of acts(S). Symbols in acts(S) describe activity involving the R-com-

ponent, and symbols not in acts(S) describe the activity of other parts of the

system. By restricting a to the symbols in acts(S), we obtain a sequence

describing the activity of R within the context of the larger system. We say that

a sequence a is S-consistent if a Iacts( S ) is an S-trace. Thus, if a is S-con-

sistent, then the S-activity it describes is allowable according to the definition

of S. We say that a is partial S-consistent if a is finite and a Iacts( S ) is a

partial S-trace. Equivalently, a is partial S-consistent iff it is a finite prefix of

some S-consistent sequence. Note that the above definition of S-consistency
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extends naturally to arbitrary sequences since the assumption that a describes

the activity of a “larger system” plays no formal role.

We often write S as shorthand for acts(S); thus, a IS denotes a lacts(S).

Similarly, we say that S and S’ are disjoint if acts(S) n acts(S’) = 0.

Let S~ and S~ be behaviors. We say that S~ refines S~ and write S~ 4 S~ if

acts(S~) z acts(S~ ), and eve~ S~-trace is S~-consistent. Intuitively, S~ is more

refined than S4 in the sense that it requires all of S~’s actions and possibly

more, and the restriction of any trace it permits to S~’s actions must also be

permitted by S,A.

The following is immediate from the definitions.

LEMMA 2.3.1. Refinement of behaz)iors is a transition relation.

The parallel composition of behaviors S1 and Sz is the behavior S = SI IISZ

such that acts(S) = acts(S1 ) u acts( Sz ) and traces(S) consists of all sequences

over acts(S) that are both S1- and Sz-consistent. Intuitively, the behavior S

describes the result of running S1 and Sz in parallel, where SI and Sz interact

through coordinating on mutual actions. For a behavior S and disjoint behav-

iors S1 and Sz, such that S = S1IISz, we say that S is decomposable into S1

and S1.

The following lemma, which is immediate from the definitions, shows that

parallel composition can be extended naturally to sequences that include

elements outside of the composed behavior.

LEMMA 2?.3.2. Let S1 and Sz be behaviors and a be an arbitraiy sequence.

Then

a is ( S1 l\Sz )-consistent iff a is both S1- and Sz-consistent.

An analog to Lemma 2.3.2 holds for partial behauior-consistent sequences

prooiding the two behauiors are disjoint.

LEMMA 2.3.3. Let S1 and Sz be disjoint behaviors and a an arbitrary finite

sequence. Then

a is partial ( S1IISZ)-consistent ifl

a is both partial S, -consistent and partial Sz-consistent.

PROOF. In one direction, assume that a s y for some (Sl \lSz)-consistent

sequence y. By Lemma 2.3.2, y is SI - and Sz-consistent and the implication

follows:

In the other direction, assume that a < y, and a < Yz, where y, is

S1-consistent and yz is Sz-consistent. Let YI = CIF1, and Yz = a/32. Since S,

and Sz are disjoint, there exists a sequence ~‘ such that 8‘ IS1 = p] IS I and

P’IS2 = PJ&. Let Y = CYP’.clearly, Ylsl = YIISI and ~ls~ = Y21s~;heIIC% ‘Y
is both SI - and S2-consistent. By Lemma 2.3.2, y is (S1 IISz )-consistent. The

implication now follows since a < y. ❑

The following lemma is immediate from the definitions. It shows that
parallel composition of behaviors is associative and commutative.

LEMMA 2.3.4. For el)ery behalior S1, Sz, and S~, S111(S211S~)= (S111S2)11S~

and SIIISZ = S21[S1.
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The following lemma captures the interaction between composition and

refinement.

LEMMA 2.3.5. Let S, S1, and Sz be behauiors. IfS1 4 Sz, then (SIIS1) 4( S11S2).

PROOF. Since SI 4 Sz, we have acts(S1 ) 2 acts(Sz ). Consequently,

acts(Sll S1) g acts(Sll Sz). It remains to show that every (Sll Sl)-trace is (Sll SQ)-

consistent. Let ~ be a (Sll Sl)-trace. Then ~ IS = traces(S) and ~ ISI E

traces(S1 ). Since S1 4 Sz, it follows that ~ ISj = ( ~ ISI )ISZ ● traces(Sz ). It fol-

lows from Lemma 2.3.2 that /3 is (S IISz )-consistent. ❑

2.4. I/0 AUTOMATA. Although the behavior of a system describes what the

system should do, it does not describe how it does it. We use a variant of the

1/0 automaton model [Lynch and Tuttle 1987; 1989] as a state-machine model

of a reactive system.

An 1/0 automaton is a state machine with state transitions labeled by

actions, classified as input actions, output actions, and internal actions. Intu-

itively, input and output actions are externally visible, and internal actions are

hidden. Input actions are assumed to originate in the environment and always

cause the automaton to take a step. Output and internal actions result from

autonomous steps of the automaton. The output actions are presented to the

environment, where they have the potential to affect other components.

Formally, an 1/0 automaton A, or simply an automaton, is described by:

(1) Three pairwise disjoint sets, in(A), out(A), and internal(A) which denote
the sets of input, output, and internal actions, respectively. Their union,

acMA), is the set of actions of A. The subset ext(A) = irz(A) U out(A) is

the set of externally uisible actions of A. The local actions of A are the

actions that are within A‘s control, namely, its internal and output actions.

(2) A set states(A) of A’s states and a set start(A) Q states(A) of A’s start

states.

(3) A set steps(A) c states( A) X acts(A) X states(A) of allowed steps. We say
that an action a is enabled from a state s if for some s’, (s, a, s’) = steps(A).

We require that A be input enabled, that is, every input action is enabled

from every state.

(4) A fairness partition, fair(A), on A’s local actions that has countably many
equivalence classes. As explained below, A‘s fair executions are those that
are weakly fair with respect to each class in fair(A) [cf. Francez 19861).

Fairness is an attempt to restrict a system’s behavior to be “realistic”. Each

class of fair(A) typically consists of the actions controlled by a single

component, so fairness means giving each component repeated opportuni-
ties to take a step.

An execution is a (possibly infinite) sequence CY= so, al, S1, az, . . . of alter-

nating states and actions such that each (s,, al+ ~, s,+ , ) is an allowed step of A,

s,, is a start state, and when a is finite, the last element is a state.
A finite execution is fairif no local action is enabled from its last state. An

infinite execution is fair if for every class F c fair(A), either actions from F

are taken infinitely many times or infinitely many times no F action is enabled.

In other words, an infinite execution ,s., al, s,, az, . . . is fair if for every class

F G fair( A ), either at G F for infinitely many i’s, or no action of F is enabled

from s, for infinitely many i’s.
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A sequence a over ext(A) is an A-trace if a = q Iext( A) for some fair

execution q of A. A finite sequence over ext(A) is a partial A-trace if it is a

finite prefix of some A-trace. Similarly, any sequence whose restriction to

ext(A) is an A-trace is called A-consistent, and any finite prefix of an

A-consistent sequence is partial A-consistent. We let traces(A) be the set of all

A-traces. Thus, tnzces(A) are exactly the sequences of the externally visible

actions in A’s fair executions, and we define beh( A) = (ext( A), traces(A)) to
be the behallior of A.

The following theorem establishes that finite executions of an automaton A

are partial A-consistent. The proof of the theorem appears in Lynch and Stark

[1989] and Reingold et al. [1992], where a state-by-state construction of a fair

execution starting with a finite execution is described. The proof depends on

the Axiom of Choice.

THEOREM 2.4.1. Let A be an automaton and let a be a finite execution of A.

Then a is partial A-consistent.

We sometimes write A as a shorthand for ext(A); thus, a IA denotes the

restriction of a to A’s externally visible actions. As with behaviors, we say that

A and A’ are disjoint if acts(A) (_?acts(A’) = 0.

2.5. COMPOSITION OF AUTOMATA. Two 1/0 automata running in parallel

and interacting through coordinated mutual actions can be described by

another 1/0 automaton, called the “composition”. We restrict composition to

“compatible” automata in order to maintain the idea that each action of the

composition is controlled by at most one component. We show in Lemma 2.5.1

that composition is an associative and commutative operation on mutually

compatible automata, and we show in Lemma 2.5.2 that the composition is an

explicit representation of the behavior generated by the parallel execution of

the component automata.

We say that two automata A and B are compatible if every action common

to both is either an input of one and output of the other, or is an input of both.

The composition of compatible automata A and B is an automaton C = A o B

such that:

(1) irz(C) = in(A) U irz(B) – (out(A) U out(B)).

(2) OUt(c) = out(A) U out(B).

(3) internal(C) = internal(A) U internaKB).

(4) states(C) = states(A) X states(B) and start(C) = start(A) X start(B).

(5) ((sA, SB), a, (sj, sj)) G steps(c’) if one of the following holds:

—a G acts(A) — acts(B), (s~, a, sj) E steps(A), and SB = s~;
—a G acts(B) — acts(A), (s~, a, sj) G steps(B), and S,4= S~4:
—a G acts(A) n acts(B), (s,q, a, sj) G steps(A), and (s~, a, sj) = steps(B).

(6) fair(C) = fair(A) U fair(n). Note that, since A and B do not have any

common local actions, fair(C) is indeed a partition of C’s local actions.

The following lemma is proved in Lynch and Tuttle [1987]. It establishes that

composition of automata is associative and commutative, modulo renaming of

states of the resulting automata.
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LEIMNfA 2.5.1. Let Al, Al, and A~ be painvise compatible automata. Then

AI O(Az OA~) = (A IO AZ)O Aj and AIo AZ =AZOA1 modulo renaming of

states.

The composition of automata induces a composition of behaviors. The

following lemma is proved in Lynch and Tuttle [1987], it shows that the

behavior of the composition of two automata is just the parallel composition of

the behaviors of the two automata.

LEMMA 2.5.2. Let A and B be compatible automata. Then beh( A o B) =

beh(A)llbeh(B).

We are often interested in the behavior of systems comprising both 1/0

automata and “black box” reactive systems. This is accomplished by composing

the behaviors of the components of the system. Formally, for a behavior S and

an automaton A, we define SIIA = AIIS to be the behavior Sllbeh(A). It

follows immediately from Lemma 2.3.2 that every sequence a is (Sll A )-con-

sistent if and only if it is both S- and beh( A )-consistent. Hence, if ext( A ) Q

acts(S), then &aces(S IIA) consists exactly of the S-consistent sequences in

traces(A).

3. Layered Communication Systems

In this paper, we consider three specific kinds of communication layers: FIFO

layers, nonduplicating layers and order-preserving layers. In FIFO layers,

successive messages from the same site are received, exactly once, in the order

sent. In order-preserving layers, messages can be lost or duplicated, but not

reordered. In nonduplicating layers, each message sent is received at most

once, but messages can be received in any order. Since these three kinds of

layers are similar in many ways, it is economical for formalize them all as

special cases of a general notion of conzm.unication layer.

3.1. LAYER ABSTRACTIONS. Informally, a communication layer moves mes-

sages back and forth between two sites. A transmission from a sending site to a

receiving site takes place in three steps. First, the sending site takes an action

that inserts a message into the communication layer. Next, the message flows

through the communication layer, possibly being corrupted, duplicated, de-

layed, or lost along the way. Finally, the receiving site takes an action that

removes a copy of the message from the communication layer. Many different

transmissions can be taking place concurrently in the communication layer,

since once the sending site has finished inserting a message into the communi-

cation layer, it is free to continue its computation, possibly inserting additional
messages, before the first message is received.

Our formal definition of communication layer is more abstract, ignoring

what goes on inside the layer and instead specifying only the behavior that is

visible at the sending and receiving sites, that is, the actions of inserting and

removing messages from the communication layer. Thus, in place of talking

about a message “flowing” through the layer, we must talk about a pair of

related actions which in general take place at different times and locations: the

“send” action that enters the message into the communication layer and the

“receive” action that removes the message from the communication layer. Any

additional properties we might want to impose, such as the fact that the receive
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action is “caused” by a corresponding send action (which must have occurred

earlier in time) must be specified explicitly in the definition of the particular

layer.

We can abstract further by ignoring the sites at which messages are sent and

received. Thus, we consider a “directionless layer” to be a particular kind of

behavior, as defined in Section 2.3, whose actions consist of sends and receives

of messages. It is defined by the set of messages that it can transmit and the set

of the albwable traces of any communication subsystem that correctly imple-

ments the layer. A communication layer then is a directionless layer with

additional structure that reflects the notion of independent two-way communi-

cation between two sites.

3.1.1. Directionless Layers. Let m be a message. We associate with m a

send action send(m) and a receil)e action recv(m). For a set M of messages, let

send(lf) = {send(m): m G M}, recv(M) = {recv(m): m G M}, and io(kf) =

send(lf) u recv(M).
A direclionless layer L consists of a set ML of messages and a behavior

beh(L), where acts(beh(L)) = io(ill~ ). We say that L is nondegetlerate if

ML # ~. We sometimes write L to refer to beh(L), so for example, ucts( L) is

the set of actions in beh( L). We refer to any m E Ml, as an L-message, and we

sometimes write send ~(m) and recv~(m ) with the layer name L as a subscript

to emphasize that m is an L-message. We also write send ~ and recvL without
arguments to denote the sets send( ML ) and recv( MI,), respectively.

We extend relations and operations defined for behaviors to directionless

layers in the obvious way. Let L] and Lz be directionless layers. Then L ~ and

Lz are disjoint if beh( Ll ) and beh( Lz ) are disjoint behaviors, and L, refines

L?, written L ~ ~ Lz, if beh(L ~) d beh( Lz ). Similarly, the parallel composition of

dfijoint directionless layers L ~ and I.z is the directionless layer L = L ,0L2,

where beh(L) = beh(L1)llbeh(Lz) and ML = M~, U Mr.,. For a layer L and

disjoint layers LI and L,, we say that L is decomposable into L I a~~d L? if

beh(L) is decomposable _into beh(L ~) and beh(L2), or equivalently, if L =

LIOLZ.

Let L be a directiordess layer. For a set M g ML, we define a directionless

layer L’ = LI M called the restriction of L to M. The layer L’ is defined by

M~, = M and beh(L’) = beh(L)lio(M). We note that, if L is decomposable

into L ~ and Lo ,then L IM is decomposable into L ~IM and L2 IM.

3.1.2. Communication Layers. A communication layer L (or layer for short)
between a site t and a site r is a directionless layer together with a pair

(M:, M;’) such that {MY, J&} is a partition of the message set Ml. and L iS
decomposable into (directionless layers) L IM; and L IM~’.

The elements of M: are the messages that can travel from site t to r, and

the elements of M:’ are the messages that can travel from site r to t.We

partition the actions of L according to where they occur. For messages

m G My, send(m) actions take place at site t and recv(m) actions take place

at site r. For messages m c M;t,the opposite is true. Thus, the set of actions

that take place at site t is actst( L) = send( M:) U recv( ML’), and the set of
actions that take place at site r is aclsr(L) = SWKX M~r) U reCV(M~” ).

A layer is diagramed in Figure 1. The two boxes represent the sites t and r.

The arrows represent actions. The wiggly line represents the network connec-

tion between the two sites.
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FIG. 1. A communication layer.

The definition of restriction of a directionless layer can be naturally ex-

tended to a communication layer: For a communication layer L between t and

r and a subset M c ML, the communication layer 1, M between t and r

consists of the directionless layer L IM together with the pair (My n M, M~l n
M). Obviously, LIM is decomposable into (L IM)I(MJ n M) and ( LIM)l(M~’

n M) since (LIM)l(M~ n M) = (L IM~)l M and (LIM)I(M:[ n M) =

(LIM:’)IM.

The layer L is one-way from t to r if M~t = 0. Hence, in a one-way layer

from t to r, all send actions take place at site t and all recv actions take place

at site r. A one-way layer from r to t is similarly defined. Obviously, for any

communication layer L, the layer L*’ = LIMf is a one-way layer from t to r;

we call it the restriction of L to the t-to-r direction. Similarly, L’t = L IM~r is also
a one-way layer; we call it the restriction of L to the r-to-t direction.

3.2. AXIOMS FOR COMMUNICATION LAYERS. Each send(m )-event in the
trace of a layer represents the sending of a copy of m, and each recv( m)-event

in the trace represents the receipt of a copy of m. In the layers we consider,

each recv-event is “caused” by an earlier send-event, so messages are not

spontaneously generated.

Real layers are not necessarily perfect. In a trace, messages may be cor-

rupted, duplicated, lost, or reordered. A message m is corrupted if a send(m)-
event causes a recv(m’ )-event for m’ # m, it is duplicated if a send(m )-event

causes more than one recv-event, and it is lost if some send( m )-event causes

no recv-event. Two messages m and m’ are reordered if some send( nz)-event

precedes a send(m’ )-event but their caused recv-events are not similarly

ordered.

We are also concerned with two types of fairness. A trace satisfies progress if

for every message m, if there are infinitely many send( m)-events, then

infinitely many of them cause recv-events. A trace satisfies weak progress if

either it contains infinitely many send-events that cause recv-events, or it

contains only finitely many send-events.
We define the layer families of interest, according to which of the following

axioms they are required to satisfy. Formally, given a message set M and a

sequence a, a LKzlid cause functioiz for M and a is a total function from the

recv( M)-events to the send( M)-events of a that maps each recv( M )-event to

an earlier send(M) -event. Given a valid cause function cause for M and a, we

define the following axioms for (M, a, cause).

LC1 [No corruption] For every m = M, for every r’ecv( m)-event n in a,

cause(n) is a send(m) -event.

LC2 [ lVo duplication] The cause function is one-to-one.
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LC3 [No loss] The cause function is onto.

LC4 [No reordering] For all recv(kf)-events T ~ and mz in a, if cause(n ~) is
earlier than cause(mz ), then ml is earlier than n-z.

LC5 [Progress] For every m E M, if a contains infinitely many send( m)-events,

then cause has infinitely many send(m) -events in its range.

LC6 [Weak Progress] If a contains infinitely many send(A4)-events, then cause

has an infinite range.

Let M be a message alphabet and let Z be a subset of axioms

(LC1) ,..., (LC6). A sequence a is %-consistent with respect to M if there exists
a valid cause function cause for M and a such that (M, a, cause) satisfies each

of the axions in %. The following lemma shows that the property of a sequence

being %-consistent with respect to M is determined solely by its subsequence

of actions in io( M).

LEMMA 3.2.1. Let Z be a subset of axioms (LC1),..., (LC6), let a be a

sequence, and let M be a message set. Then a is %-consistent with respect to Miff

a \io( M ) is P-consistent with respect to M.

PROOF. Let a’ = a lio(A4), and let CT be the embedding of a’ in a.

Assume that a is %-consistent with respect to M. Then there is a valid cause

function cause for M and a such that (M, a, cause) satisfies each of the

axioms in % For each recv(M)-event T in a’, we define cause’(n) =

u-1 ( cause( u (n ))).It is easily verified that cause’ is a valid cause function for M

and a’, and that (M, a’, cause’ ) satisfies the axioms in %. Consequently, a’ is

%-consistent with respect to M.

Conversely, suppose that a’ is %-consistent with respect to M. Then there is

a valid cause function cause’ for M and CY’ such that (M, a’, cause’) satisfies

each of the axioms in 2“. Let ~ be a send(ill)-event in a and define

cause(~) = o(cause’( & 1(T ))). It is easily verified that cause is a valid cause

function for M and a, and that (M, a, cause) satisfies the axioms in %.

Consequently, a is %-consistent with respect to M. ❑

A one-way layer L is said to be a one-way XZlayer if traces(L) is the set of all

sequences over acts(L) that are %-consistent with respect to ML. A layer L is

said to be an %-layer if both Ltr and L’t are one-way %-layers.

Our use of the term “%-consistent” is justified by the following lemma:

LEMMA 3.2.2. Let P be a subset of axioms (LC1),. . . . (LC6), let L be a

one-way Z-1ayer, and let a be a sequence. Then a is L-consistent iff a is

Z-consistent with respect to ML.

PROOF. From the definition of L-consistency, the sequence a is L-con-

sistent iff a Iio( ML ) is an L-trace. Since L is an %-layer, a Iio( ML ) is an

L-trace iff a Iio( ML) is %-consistent with respect to ML. By Lemma 3.2.1,

a [io( ML ) is 2Yconsistent with respect to ML iff a is %-consistent with respect

to ML. ❑

Let % be a subset of the axioms that includes (LC1) and does not include

(LC6). The following lemma shows that the family of one-way %-layers is closed
under restriction to a subset of the message alphabet.

LEMMA 3.2.3. Let Y be a subset of axioms ( LC 1)–( LC5) that includes

(LC1), and let L be a one-way ~-layer. Then for el’ey M c ML, LI M is a one-way
Hayer.
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PROOF. Let L’ = L IM. It suffices to show that tmces(L’) is the set of

all sequences over acts( L’ ) = io( M ) that are ~-consistent with respect to

ML = M.

Let a‘ be an L ‘-trace. Then there exists some L-trace a such that

cl’ = a Iio( M ). J3y Lemma 3.2.2, a is %-consistent with respect to ML. Hence,

there is a valid cause function cause for ML and a such that (MI, a, cause)

satisfies each of the axioms in :2’. Let CT be the embedding of a‘ in a, and let

T be a recv-event in a‘. Since % contains axiom (LC1), cause( u (m )) is an

io( M)-event a and hence is in the range of a. Thus, we may define cause’(n)

u– 1( cause( ~ ( ~ ))). It is easily verified that cause’ is a valid cause function

for M and a‘, and that (M, a‘, cause’) satisfies the axioms in 2?’. Consequently,

a‘ is %-consistent with respect to M.

Conversely, suppose a ‘ is a sequence over io( M ) that is %-consistent with

respect to M. Since M c ML, a‘ is a sequence over acts(L) that is %’-con-

sistent with respect to ML. Hence, a‘ is an L-trace. Since L’ = LIM and a‘ is

a sequence over io(M), it follows that a‘ is an L’-trace. ❑

Let %“ be a subset of the axioms that excludes (LC4) and (LC6). The

following lemma shows that the family of one-way %-layers is closed under

layer composition.

LEMMA 3.2.4. Let .?’ be a subset of axioms (LC1)–(LC3) and (LC5). Let LI

and L ~ be disjoint one-way .%-layers frcvn t to r. Then L ,OL ~ is a one-way Y-1ayer

from t to r.

PROOF. Let L = LIOLZ. It suffices to show that for every sequence a, a is

L-consistent iff a is Y-consistent with respect to ML = ML, U M~,.

Let a be E:consistent with respect to ML. From Lemma 3.2.2, it follows that

a is .“%-consistent with respect to ML and with respect to ML,. It therefore

follows that a is both L,- and Lz-con’sistent.

In the other direction, let a be L-consistent. For i = 1,2,since L, is an

.W]ayer, there exists a valid cause function cause, for M, and a such that

(M,, a, cause, ) satisfies the axioms in%. Define a new function cause by taking
the union of cause, and causez. We leave it to the reader to verify that cause is

a valid cause function for ML and a and that (ML, a, cause) satisfies the

axioms in % It therefore follows that a is %-consistent with respect to

MI. ❑

Let % be a subset of the axioms that includes (LC2) and (LC3), and let L be

an 2Ylayer. The following lemma shows that L-consistent sequences are closed

under the operation of removing an L-consistent prefix:

LEMMA 3.2.5. Let # be a subset of the cuioms that includes ( LC2) and

(LC3), and let L bean %layer. Let a and afi be L-consistent sequences. Then ~

is also L-consistent.

PROOF. By Lemma 3.2.2, a and Up are ~~consistent with respect to ML.

Thus, there exists a valid cause function cause for ML and a/? such that

(M., a~, cause) satisfies the axioms in % Because % includes axioms (LC2)
and (LC3), cause is a bijection. This implies that a has the same number of

send ~ and recv~ events. Since cause maps each recv~-event in a to an earlier

send[, -event in a, every send~-event in a is the image under cause of some

recv~-event in a. Hence, cause maps ~‘s recv~-events to send ~-event in ~.
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Let causeP be the restriction of cause to ~‘s events. We leave it to the reader

to show that causeP is a valid cause function for ML and ~ and that

(ML, ~, came. ) satisfies the axioms of %. It follows that ~ is %-consistent with

respect to ML. By Lemma 3.2.2, (3 is L-consistent. ❑

3.3. THREE LAYER ~AMILJES. We now define FIFO, nonduplicating, and
order-preserving layers.

Let %~1 be the set consisting of axioms (LC1)–(LC5). Any %~l-layer is called

a FIFO layer. Thus, the traces that are considered appropriate for each

direction of a FIFO layer are those in which every message sent is eventually

received, exactly once. Messages in each direction are received in the same

order as they are sent, and no message is received before it is sent.

Let %OP be the set consisting of axioms (LC1), (LC4), and (LC6). Any

.WoP-layer is called an order-presert~ing layer. Thus, the traces that are consid-

ered appropriate for each direction of an order-preserving layer are those in

which, for every message sent, zero or more copies are received. In addition,

for each message sent, any copy that is received arrives after the message was

sent and before any later message traveling in the same direction is received.

In other words, messages can be lost or duplicated but not reordered. Finally, if

infinitely many messages are sent, then infinitely many of those messages are

not lost.

Let %~~ be the set consisting of axioms (LCI), (LC2), and (LC5). Any

.2N~-layer is called a nonduplieating layer. Thus, the traces that are considered

appropriate for a nonduplicating layer are those in which, for every message

sent, at most one copy is received, and no message is received before it is sent.

If infinitely many copies of any message are sent, then infinitely many copies of

that message are also received.

3.4. PROPERTIES OF NONDUPLICATING LAYERS. The following lemma estab-

lishes closure properties of nonduplicating layers. The first two parts of the

lemma are the counterparts of Lemmas 3.2.3 and 3.2.4 for nonduplicating

layers but with the one-way restriction lifted. The third part establishes that

nonduplicating layers are decomposable according to partitions of their mes-

sage alphabet.

LEMMA 3.4.1. Let ND be a ~~~-layer. Then

(1) For el)ey M’ G A4ND ,NDIM’ is a 2Y~~-layer.

(2) For el!e~ .%’~~-layer ND’ disjoint from ND, ND’OND is a ~~~-layer.

(3) L& ~1 arzd Mz partition M~~. Then ND decomposes into ND IMl and

~.

PROOF. The rather tedious proof of the first two parts follows directly from

Lemmas 3.2.3 and 3.2.4, using the observation that for every M’, M“ G MND,

ND IM’ /M“ = ND IM“ [M’. The third part is an immediate corollary of the

second part. ❑

The following lemma shows that in a nonduplicating layer ND, finite prefixes

of ND-consistent sequences are ND-consistent. Thus, any partial ND-con-
sistent sequence is itself ND-consistent—no further actions need take place to

achieve ND-consistency. This is in contrast, for example, to a FIFO layer FI,

where F1-consistency is not achieved until every message sent has been

delivered.
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LENIIMA 3.4.2. Let ND be a %~~-layer. Ellery partial ND-consistent sequence is

also ND-consistent.

PROOF. This follows from the fact that cause is not required to be onto in

nonduplicating layers. ❑

Let ND be a nonduplicating layer and let a be a finite ND-consistent

sequence. We write rctd( a, ND) to denote the multiset of ND-messages

received in a. Formally, donz[rc~d( a, ND)] = {m G M~~: recvND( m) occurs in

a} and copies[ rc~d( a, ND)](nz) is the number of times recv~D(~?2) occurs in a.

Similarly, we write sent( a, ND) to denote the multiset of ND-messages sent in

a. Finally, we define pend( a, ND) = sent( a, ND) – rc~’d( a, ND) to be the

multiset of ND-messages pending at a. These are the messages that are “in

transit’’—they have been sent but not yet received. Note that from (LC2) it

follows that pend( a, ND) is always defined. The next lemma says that any

submultiset of pending ND-messages after an ND-trace can be delivered at

any time.

LEMMA 3.4.3. Let ND be a P~D-layer atzd let a be a finite ND-trace. Let ~ be

a finite sequence of recv~D-eL1ents such that rcud( ~, ND) E pend( a, ND). Then

afl is an ND-trace.

PROOF. Since a is ~~~-consistent with respect to M~~, there exists a valid

cause function cause for M~~ and CYsuch that ( M~~, a, cause) satisfies the

axioms of %~~. Since %~~ includes axiom (LC2), cause is one-to-one. More-
over, since rcud( ~, ND) c pend( a, ND), cause can be extended to a valid

cause function cause’ for M~D and a~ that is also one-to-one and maps every

recv( m )-event in ~ to a send( nZ)-event that is not in the range of cause. We

leave it to the reader to verify that (M

2~D ❑

~~, afl, cause’) satisfies the axioms of

The next lemma says that after any finite period of activity, a nonduplicating

layer may act just like a nonduplicating layer starting from the start state. This

is because a nonduplicating layer may lose messages, so the pending messages

need never be delivered.

LEMMA 3.4.4. Let ND be a YN~-layer, let ~ be a finite ND-consistent

sequence, and let ~‘ be any ND-consistent sequence. Then ~~’ is ND-consistent.

Moreoter, pend( P, ND) E pend( By, ND) for every finite y s ~’.

PROOF. The proof relies on the fact that a nonduplicating layer can lose

finitely many messages. Details are left to the reader. ❑

The special properties of 1/0 automata allow us to prove an analog to
Lemma 2.3.3 for the composition of an automaton with a nondisjoint layer.

LEMMA 3.4.5. Let A be an automaton and ND a Z.?N~-layer. Let a be a finite

sequence oler any superset of acts( A IIND ). Then a is partial( A IIND )-consistent

iff a is partial A-consistent and CYis ND-consistent.

PROOF. In one direction, the claim is trivial. In the other direction, it

suffices to show the existence of an execution q of A which is both fair and

ND-consistent, such that a 1(A IIND ) < q 1(A IIND). Such an execution q is

constructed along the same lines as the proof of Theorem 2.4.1. ND-con-

sistency of q is guaranteed by occasionally adding recv(rn) actions to the
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execution when such an action does not violate ND-consistency. Being input

actions of A, they can always be added. This will guarantee that axiom (LC5) is

satisfied. ❑

4. Implementation of Layers

The idea of a layered architecture (cf. Tannenbaum [1989], Bochmann and

Gecsei [1977] and Zimmerman [1980]) is to find protocols to implement a

given communication layer L, on top of another given communication layer

Lz. A protocol consists of two independent processes A’ and A“ for sites t and

r, respectively, that have the proper interface to L, and Lz. When the protocol

is expressed as a pair of 1/0 automata, the two processes running together in

parallel can be viewed as a single 1/0 automaton A = At o A’. Having a

proper interface to L ~ means that A has the sets of actions required by L,.

For example, A’s output actions should include recv( ML,). A proper interface

to Lz means that A interacts with Lz in the correct manner. For example, A‘s

output actions should include send(A4La ). Such an implementation only makes

sense when L ~ and Lz are disjoint. ‘The implementation is correct if the

behavior of A when restricted to Lz-consistent sequences yields L l-consistent

sequences.

Because most of the properties of interest in an implementation depend only

on the composition automaton A, we first define the general notion of an

automaton A implementing L ~ on Lz: We then define a protocol implement-

ing Ll on Lz as an “independent” pan- ( Af, A’) of automata whose composi-
tion At o A“ implements LI on Lz.

4.1. LAYER IMPLEMENTATIONS. Formally, let L ~ and Lz be directionless

layers. We say that an automaton A is consistent with L, on Lz if L, and Lz

are disjoint, and the following conditions are satisfied:

(1) in(A) Q sencKML,) u recv(ML,).
(2) out(A) 2 recv(ML,) u send(i$f~,).

We say that A implements L, on Lz if A is consistent with L, on L1 and

AIILZ u belz(Ll).

The following theorem shows that A implements L, on Ll if every L ~-con-
sistent A-trace is also L ~-consistent:

THEOREM 4.1.1. Let L1 and LJ be directionless layers, and let A be automaton

that is consistent with L ~ on L ~. Then A implements L ~ on L ~ iff el’ey A-trace

that is Lz-consistent is also L ~-consistent.

PROOF. In one direction the claim is trivial. In the other direction, assume

that every A-trace that is Lz-consistent is also L, -consistent. We must show

that A implements L1 on Lz, that is, that A IILz ~ beh(L, ).

Let S = AIILZ. By definition, acts(S) = acts(A) U acts(Lz) z acts(A). The

compatibility requirements imply that acts(A) Q acts( L ~). Hence, acts(S) Q

acts( L1 ). It remains to show that every sequence in traces(S) is L, -consistent.

Let ~ ● traces(S). Then ~ 1A G traces(A) and ~ ILZ G traces. Since
acts(A) 2 acrs(Lz), we have ( p IA)ILZ G races; hence p 1A is an A-trace

that is Lz-consistent. By assumption, f? IA is L ~-consistent. But this means that

( BIxOI-L,G @acdL,L sinceacts(A) 2 acts(L,l then( PIA)IL., = PIL,; thus
B IL1 G traces; that is, ~ is L l-consistent.
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We have shown that AIILZ Q beh( L1 ). That is, A implements L1 on Lz. ❑

The following theorem establishes a transitivity property of layer implemen-

tations.

THEOREM 4.1.2. Let L,, Lz, and L~ be paitwise disjoitzt clirectionless layers.

Let A and B be autormita such that A implements L, on Lz, and B implements L ~

cm LB.Z Assume further that acts(A) n acts(B) = acts(Lz). Then A o B imple-

ments Ll on Lj.

PROOF. From the assumptions of the theorem, it follows that A and B are

compatible automata and that A o B is consistent with L, on L~. It remains to

show that beh(A o B)llbeiz(L~) ~ beh(L1).

From the given implementations, we have

beh(A)llbeh( Lz)-dbeh(L1) (1)

and

beh(B)llbeh(L,) 4belz(L2). (~)

Lemma 2.3.5 applied to (2) yields

beh(A)l\(bel-z( B)llbeh(L~)) abeh(A)l\be/z(Lz). (3)

By Lemma 2.3.1, (1) and (3) yield

beh(A)ll(beh( B)l\beh(L~)) d beh(LI). (4)

By Lemmas 2.3.4 and 2.5.2

beh(A o B)llbeh(Lj) = beh(A)ll( beh(B)llbeh(L~)). (5)

Consequently, (4) and (5) yield

beh(Ao B)llbeh(LJ) Ubeh(L1). (6)

Hence, (A o B) implements L, on L~. ❑

The following theorem describes a parallel composition of layer implementa-

tions.

THEOREM 4.1.3. Let L ~, Lz, K,, and Kz be pairwise disjoint directionless

layers. Suppose A, and A ~ are disjoint automata SLICh that A, implements L, on

KI and Az implements Lz on Kz. Then Al o Az implements LIOLZ on KIOKZ.

PROOF. The proof is trivial because of the disjointness assumptions. Details

are left to the reader. n

4.2. PROTOCOLS. A protocol is a pair of automata that communicate over

an underlying layer. We assume two physical sites t and r. One automaton, Af,

is located at site t and the other, Ar is at site r. The underlying layer is

naturally assumed to be a communication layer between t and r. Formally,

the pair P = (At, A’) is a protocol if At and A’ are disjoint automata. It is

said to be with respect to a communication layer L if acts( At ) z acts~( L ), and

acts(A’ ) z actsr(L). The composition A = At o A’ is the automaton of P.

: Here and in the remamder of the paper, we assume without explicit mention that the internal
action set of any automaton is disjoint from all other sets of actions under consideration.
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A-send(M~l)
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! send(M~2) recv(kf~~ ) ,
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FIG. 2. Implementation of layer L, on layer .LC.

Protocols can be composed in the obvious way. The protocols PI = (A’, A’ )

and P, = ( I?t, B‘) are compatible if At and B~ are compatible automata, A“

and B; are compatible automata, and PI o Pz = (At o B‘, A’ o B’) is a protocol.

The protocol PI o Pz is called the composition of PI and Pa. Note that if L,

and Lz alre disjoint layers between t and r, PI is with respect to L, and Pz is

with respect to Lz, and PI and Pz are compatible, then PI o PZ is with respect

to LIOLZ.

Let L ~ and Lz be layers between t and r, and let P be a protocol. Then P

implements L ~ on Lz if P is with respect to both L, and Lz, and the

automaton of P (directionlessly) implements L, on Lz. Figure 2 illustrates

such a protocol. Furthermore, P is a clean implementation of L, on Lz if

acts(A) = acts( L *) U acts( Lz ), where A is the automaton of P.

The following theorem establishes a transitivity property of protocols imple-

menting layers. It follows immediately from the definitions and Theorem 4.1.2.

THEOREM 4.2.1. Let L ~, Lz, and Lj be pairwise disjoint layers. Let PI be a

protocol that implements LI on Lz, and let Pz be a protocol that implements L1

on LJ. Assume jiwther that Pi and Pz are compatible. Then Pl o P1 is a protocol

that implements L ~ on Lz.

The following theorem describes a parallel composition of protocols imple-

menting layers. It follows immediately from the definitions and Theorem 4.1.3.

THEOREM 4.2.2. Let L,, Lz, Kl, and Kz be pairwise disjoint layers. Let PI be
a protocol that implements L ~ on KI, and let Pz be a protocol that i.rnpkrnents L z

on Kz. Assume farther that PI and Pz are compatible. Then PI o Pz is a protocol

that implements L ~OL ~ on KIOK~. Moreouer, if PI and Pz are both clean

implementations of their respectille layers, then PI o Pz is a clean implementation of

LIOL1 on KIOKZ.

4.3. THE RELIABLE MESSAGE TRANSMISSION PROBLEM. The reliable mes-

sage transmission problem is to show that for every FIFO layer, there is a

protocol that implements it on a suitable nonduplicating layer.

More formally, let FI be a FIFO layer, let ND be a nonduplicating layer,

and let P be a protocol with respect to ND. We say that the pair (P, ND)
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Transmitter At Receiver A“

Variables: Variables:
queue, a finite queue over MFI, queue, & finite queue over l)[F1,

initially empty initially empty

flag, a Boolean, initially true jag, a Boolean, initially false

sendp~(rn), m C fvfFI: reCVFr(m), m E kfpr:

effect: precondition:
add m to queue m is first on queue

effect:
send ~P(m, b) m E MF1, b a Boolean: remove first element from queue

precondition:
m is first on queue send Op(b), b a Boolean:

b = flag precondition:
b = jag

recvop(b), b a Boolean:

effect: recvop(m, b), m E kfp~, b a Boolean:

if b = flag then effect:

remove first element from queue if b # flag then

jlag := Tjlag add m to queue

ffag := 7Jag

FIG, 3. A distributed Implementation of FI on OP.

solues RMTP for FI if P implements FI on ND. The reliable message transmis-

sion problem ( RMTP) is to show that for every FIFO layer FI, there exists a

pair (P, ND) that solves RMTP for FI.

5. A Solution to RMTP

We construct a solution to RMTP for an arbitrary FIFO layer FI with a finite

message alphabet. Following Afek and Gafni [1988], we obtain the solution

from two basic constructions. The first implements an arbitrary one-way FIFO

layer with a finite message alphabet on a suitable two-way order-preserving

layer and is given in Section 5.1. The second implements an arbitrary one-way

order-preserving layer with a finite message alphabet on a suitable two-way

nonduplicating layer and is given in Section 5.2. These constructions are

combined in Section 5.3.

5.1. IMPLEMENTATION OF A FIFO LAYER ON AN ORDER-PRESERVING LAYER.

Let FI be a one-way FIFO layer from a “transmitter” t to a “receiver” r and

let OP be a disjoint order-preserving layer with M{P = MF, x {O, 1} and

M~> = {O, 1}. We construct a protocol PA = (A’, A’) that implements FI on

OP. The protocol PA is the 1/0 automaton version of the Alternating Bit

Protocol [Bartlett et al. 1969].

The automata AT and A’ are given in Figure 3, in a form that is standard for

1/0 automata. (See, for example, Lynch and Saias [1992].) The fairness

partition for A’ has one class containing all of the send Op actions. The
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fairness partition for A’ has two classes: one for all of the sendop actions, and

one for all of the recvF1 actions.

In the Alternating Bit Protocol, the transmitter conveys to the receiver a

sequence of values. The values correspond to the F1-messages given to the

transmitter. Since 1/0 automata are input-enabled, incoming F1-messages

may arrive at the transmitter faster than it can process them. At uses a variable

queue to buffer those messages. Likewise, the receiver uses a variable queue to

buffer FY-messages until they can be output to the environment. This is also

necessary because of input-enabledness.

To convey an F’1-message to the receiver, the transmitter sends it repeatedly,

tagged with a bit corresponding to the parity of the index of that F1-message in

the sequence. A’ uses a Boolean variable flag for the tag and sends OP-mes-

sages of the form (m, b), where m is the F1-message to be conveyed, and b is

the current value of flag. Axiom (LC6) insures that at least one copy is

eventually received. The transmitter stops sending the current F1-message and

starts sending the next F1-message in the sequence when it receives an

acknowledgment for the current F1-message. The acknowledgment is a Boolean

value equal to the current tag. When At receives an OP-message b, where

b = j?ag, it removes the first element from the queue and complements its ji!ag.

The receiver learns a new FI-message when it receives an OP-message with a

new tag. A’ uses a Boolean variable fag, which, at any given time, is equal to

the parity of the index of the last IV-message which it has learned. When it

receives an OP-message of the form (m, b) where b + j-lag, it adds m to

its queue and complements flag. After the receiver has learned the new FI-

message, it acknowledges it by repeatedly sending the parity of the index of the

F1-message just received. A’ accomplishes that by repeatedly sending jl’ag.

Axiom (LC6) insures that at least one copy of the acknowledgment is eventu-

ally received.

Standard arguments about the Alternating Bit Protocol (see, e.g., Halpern

and Zuck [1992]) can be used to show the following correctness theorem.

LEMMA 5.1.1. The protocol PA implements FI on OP.

Obviously, if OP above is replaced by a different order-preserving layer OP’,

which has the same size message alphabet in each direction, and which is

disjoint from FI, then PA can be easily modified to implement FI on OP. This

argument and Lemma 5.1.1 imply the following theorem:

THEOREM 5.1.2. Let FI be a one-way FIFO layer from t to r with a finite

message alphabet. Let OP be an order-presen’ing layer, disjoint from FI, such that

IiW&’PI = 2 “ Ii’kf~, I and IM;> I = 2. Then it is possible to construct a clean imple-

mentation qfFI on OP.

5.2. IMPLEMENTATION OF AN ORDER-PRESERVING LAYER ON A NONDUPLICAT-

ING LAYER. Let OP be a one-way order-preserving layer from a “transmitter”

t to a “receiver” r with finite message alphabet i1401,, and let ND be a disjoint
nonduplicating layer with MJD = MOP X {O} and i%f~~ = {quev}. For every

m G Mop, we abbreviate the pair (m, O) G M.D by fi. We construct a protocol
PB = (B’, B’) that implements OP on ND. The protocol PB implements the

idea of a “probe” as introduced in Afek and Gafni [1988].
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‘Transmitter Bt Receiver B’

Variables: Variables:

latest, an element of MOP U {rrll}, pending, a nonnegative integer,

imtially niI initially O

unanswered,, a nonnegative integer, old, a nonnegative integer, initially O

initially O for each m c Mop, cormt[rn],

a nonnegative integer, initially O

sendop[m), m c Mop:

effect: recvop(m), m E Mop:

latest := m precondition:

count [m] > old

r.XvN~(@eT?J): effect:

effect: cmmt[w] := O for all w E MOP
unanswered := unanswe~ed + 1 old := pending

SerrdND(7h), m E lt!fop: send~D(query):

precondition: effect:

unanswered > 0 pending := pending + 1
m = latest # nil

effect: reCVND(7%), m E kfop:

unanswered := unanswered – I. effect:

pending := pending – 1

count[m] := cormt[rn] + 1

FIG. 4. A distributed implementation of OP on ND.

The automata B f and B r are given in Figure 4. The fairness partition for B’

has one class containing all of the send ND actions. The fairness partition for

B’ has two classes: one for all of the send ND actions, and one for all of the

recvoP actions.

The transmitter sends an OP-message to the receiver only in response to a

quev message from the receiver. The OP-message it sends is always the most

recent OP-message nz that was given to it, saved in latest. To ensure that it

answers each que~y message exactly once, the transmitter keeps a variable

unanswered, which is incremented whenever a new quety message is received,

and decremented whenever an OP-message is sent.

The receiver continuously sends quely messages to the transmitter, keeping

track, in pending, of the number of unanswered query messages. The receiver

counts, in cowzt[ m ], the number of copies of each OP-message nz received
since the last time the receiver output an OP-message (or from the beginning

of the run if no OP-message has yet been output). At the beginning, and

whenever a new OP-message is output, the receiver sets old to pending. When

count[ m ] > old, the receiver knows that m was the OP-message of latest at

some time after the receiver performed its last recvoP-event. It can therefore
safely output m by performing a recvoP( m)-action.

The following lemmas are used to establish the correctness of P~.

LEMMA 5.2.1. Let q be an ND-consistent execution of P~. There exists a

fimction f that maps each recvo,,(m)-elvnt rr of q to an earlier send ND(fll)-euent

f(m) of v such that there are no recvop-euents between f(n-) and v in q.



A Solution to RMTP 1289

PROOF. Let q be an iVD-consistent execution of protocol P~. Let q’ < ~

be any execution that is a prefix of q, let a e acts( B’ o B’), and let 1 be a

program variable. We write #(a, n’) to denote the number of a-events in q’,

and we write us/( l’, ~’) to denote the value of u at the last state of q’.

Let cause~~ be a valid cause function for kl~~ and q such that

(M~~, q, cause ~~) satisfies the axioms in %~~. Let n be a recvo[,( m)-event in

q, and let ql s q end with the state immediately preceding n. From the

precondition on recvoP-actions, it follows that t’al(coz.mt[rn], ql ) >0. Since

count[nz] can only be incremented by recvND( /2 )-actions, it follows that some

recv~~(tiz )-event m’ occurs earlier than rr in q. Hence, cause~[](v’ ) is a

send ~~(fi)-event that occurs earlier than m-. Let ~(v) be the latest

send ~~(~ii)-event that is earlier than n in q. We must show that there are no

recvor-events between ~(n) and n.

Assume by way of contradiction that there is some recvoP-event between

jln) and n-. Let m-,, be the last such event. Let qt, s q end with the state

immediately following TO. Since the action recvop(m ) is enabled at ql, it

follows from B’ that ual(count[m ], ql ) > zal(oki, VI). We proceed to show

that this cannot be the case.

From the IVD-consistency of ~ and the use of unanswered in B’, it follows

that

#(sendND(quey), qo) > #(recvNIJ(query), qO) > ~ #(send ND(W), yIO).
w= A4(}F>

From B’ and the Ml-consistency of q, it follows that

ual(pending, qo) = #(send ND(cfue~), To) – ~ #(recvND(ti), q,))
wEM(IP

It therefore follows from the ND-consistency of q that for every w c Mop,

L’al(pending, qO) > #(sendND(iO), q.) – #(recvND(iO), q(}) 2 0. (7)

From B’ and the fact that there are no recvoP-events between m,, and rr, it

follows that ~al(old, ql) = Lal(old, qO). From B’, Laz(o~d, qfl) =

uzl(pending, VO). From line (7), we have ~jal( pending, q.) > #(send ND( fi), qO)

– #(recvNDG%), qo). Since there are no send ~D(#z )-events between ~(, and m
and v is ND-consistent, the number of recv~~(ti)-events between T() and m is

at most #(send~~(rh), qu) – #(recv~~(rh), qo). Finally, ~’al(count[nz], qo) = O

and cou~zt[m ] is incremented only by recv~~( h )-events, so ~wl(count[rn ], ql ) is

at most the number of recv~~(fi )-events between To and m. Consequently,

ual(cowzt[ m], q,) < val( old, ql ), a contradiction. ❑

LEMMA 5.2.2. Let q be an ND-consistent execution of P~. There exists a

jimction g that maps each serld~~(h)-eL’ent ~ of q to an earlier send op(rn)-eLent

g(r) of q such that there are no sendoP-eLlents between g(~) and r in q.

PROOF. Let q be an ND-consistent execution of protocol P~. Let t- be a

send ND(~?z)-event in q. From the precondition on send ~~-actions, latest + nil

in the state immediately preceding r. Since latest can only be set by send ~P-ac-

tions, some send Op-event # occurs earlier than I- in q. Let g(~) be the most
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recent send ~p-event that is earlier than ~. It follows immediately from B[ and

the definition of g that latest = m in every state between g(~) and ~. Hence,

g(~) is a sendoP(m)-event as required. ❑

LEMMA 5.2.3. Let q be an infinite fair ND-consistent execution of P~ contain-

ing at least one send ~P-el’ent. Then q has infinitely many recv<lP-eL’ents.

PROOF. Assume q is an infinite fair ND-consistent execution of PB contain-

ing at least one send ~P-event. Then from some point on, latest + nil. Because

of the fairness of B’, there are infinitely many send ND(que~)-events. Because

of the ND-consistency of q, there are infinitely many recv~~( query )-events.

Because of the fairness of B‘ and the assumption that latest # nil, there are

infinitely many send~~-events. Since the message alphabet is finite, there is

some m for which there are infinitely many send ~D(fi )-events. From the

ND-consistency of q, there are infinitely many recv~~(?~z)-events. From Br and

its fairness, it follows now that there are infinitely many recvop( m)-events. ❑

lkMMA 5.2.4. The protocol P~ implements OP on ND.

PROOF. Consider a fair ND-consistent execution q of P~. Since B’ o B“ has

actions that are continuously enabled, q is infinite. Let f and g be the

functions whose existence is guaranteed by Lemmas 5.2.1 and 5.2.2, and define

causeop(m ) = g( f (m )) for each recvo P-event m-. It suffices to show that causeof,

opt V, caliseo,,) satisfies theis a valid cause function for Mop and q and that (M

axioms in .YOP.

Since both f and g map events to earlier events, causeop is a valid cause

function for MOP and q. The properties of f and g guarantee that causeop

maps recvoP(m)-events to sendop( m)-events, so axiom (LC1) is satisfied. If n,

and Tz are recvoP-events and m ~ is earlier than n-z, then f and g guarantee

that causeop(~, ) is not later than causeoP(~z ), so axiom (LC4) is satisfied. If

there are only finitely many send Op-events, axiom (LC6) is trivially satisfied.

Otherwise, there are infinitely many recvop-events by Lemma 5.2.3. Since there

are no recvop-events between any f(n) and m-, f is one-to-one and has infinite

range. Since g maps each send ND(M[D )-event to the most recent of the

earlier send ~p-events, g also has infinite range. Hence, causeop has infinite

range and axiom (LC6) is satisfied. ❑

As before, the existence of a specific protocol implies a more general result.

THEOREM 5.2.5. Let OP be a one-way order-presening layer from t to r with a

finite message alphabet. Let ND be a nonduplicating layer, disjoint from OP, such

that Iikf~~ I = IMop I and Ik’~~ I = 1. Then it is possible to construct a clean
implementation of OP on ND.

The following theorem establishes that any order-preserving layer can be

implemented on a nonduplicating layer with an appropriate message alphabet.

THEOREM 5.2.6. Let OP be an order-preserving layer with a finite message

alphabet. Let ND be a nonduplicating layer, disjoint from OP, such that ~M{~ ~=

IM~p I + 1 and IM;; I = /M;; I + 1. Then it is possible to consnwct a clean

implementation of OP on ND.

PROOF. From Lemma 3.4.1 it follows that ND can be decomposed into

disjoint nonduplicating layers ND, and NDZ such that IiVfJ~, I = IA4JP 1,
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IMfij,l = 1, lM~j,[ = lhf~~l, and lM~~,l = 1. From Theorem 5.2.5, it follows
that there exist a clean implementation P~r of OPtr on ND ~ and a clean

implementation P“r of OPrt on Nllz. Since all four layers are pairwise disjoint

and the implementations are clean, Ptr and P’f are compatible. It therefore
follows from Theorem 4,2.2 that Pfr o P“ is a clean implementation of OP on

ND. ❑

5.3. A SOLUTION TO RMTP. We now construct a solution to RMTP using

the constructions of Sections 5.1 and 5.2 and the general composition results of

Section 4.1. First we apply Theorem 4.1.2 to Theorems 5.1.2 and 5.2.6 to

implement a one-way FIFO layer on a suitable nonduplicating layer. We then

compose two copies of such an implemention, one in each direction, to

implement a general (two-way) FIFO layer on a suitable nonduplicating layer,

thereby solving RMTP.

THEOREM 5.3.1. Let FI be a one-way FIFO layer from t to r with a finite

message alphabet. Let ND be a nonduplicating layer, disjoint from FI, such that

lA4{’/ = 2“lM~[l + 1 andklfi~ = 3. Let M be a set of messages that is disjoint

from ill~[ u M~~ such that IMl = 2 “ lM~I I + 2. Then it is possible to construct a

protocol that implements FI on ND with automaton A such that acts(A) =

acts(FI) u acts(ND) U io(M).

PROOF. Let OP be an order-preserving layer with message alphabet M

such that IM~P I = 2. IM~I I and IM~\ ] = 2. It follows from Theorem 5.1.2 that

it is possible to construct a clean implementation PI of FI on OP. Since

lMJ~l = 2“IM,II + 1 = IM$PI + 1, and similarly lM~~l = 3 = lM~jl + 1, it

follows from Theorem 5.2.6 that it is possible to construct a clean implementa-

tion PI of OP on ND. Since FI, OP, and ND are pairwise disjoint, and Pl and

Pz are clean implementations, it follows from the definitions of layer imple-

mentations that P, and Pz are compatible. Hence, it follows from Theorem

4.2.1 that PI o P1 implements FI on ND. Let A be the automaton of PI o Pz. It

is easy to see that acts(A) = acts(FI) U acts(ND) U io(M). ❑

THEOREM 5.3.2. Let FI be a FIFO layer with a finite message alphabet. Let

ND be a nonduplicating layer, disjoint @om FI, such that IMC~ I = 2 “ IMH I + 4

and IM& I = 2. IMj~ I + 4. Then it is possible to construct a protocol that imple-

ments FI on ND.

PROOF. From Lemma 3.4.1, it follows that ND can be decomposed into two

disjoint nonduplicating layers ND, and NDZ such that lM~~ ,I=241MKI+L
lM;~ I = 3, lMjj I = 21M:jl + l,and lM.& ,1 = 3. Let M, and Mz be disjoint
message sets sucfi that IMl I = 2. IM#I I + 2 and IMz I = 2 “ IMj~ I + 2, and as-

sume further that Ml and Ml are disjoint from M~( and M~~. From Theorem

5.3.1, it follows that there exists a protocol PI with automaton A ~ that

implements FI’r on ND] such that acts( A ~) = acts(FI” ) U acts(NDl ) U

io( Ml ), and a protocol Pz with automaton A ~ that implements FIrf on NDZ

such that acts(Az) = acts(FI’t) U acts(NDL) U io(Mz ). Hence, Al and Az are

disjoint, so P, and Pz are compatible. From Theorem 4.2.2, it now follows that

PI o Pz implements FI on ND. ❑

6. Bounded Protocols

The solution of RMTP presented in Section 5 is inefficient since as more

ND-messages are lost, more are needed to transmit subsequent messages.
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Consequently, the protocol runs more and more slowly as more and more

fVD-messages are lost.

One can measure, after each partial trace of the system, the number of

lVD-messages that the transmitter must send in order for the receiver to learn

a new message, assuming a “best-case behavior” of the ND-layer. A solution to

RMTP is bounded when this measure is bounded by a constant for a large class

of partial traces. We show that there are no bounded solutions to RMTP.

6.1. BOUNDEDNESS. Let FI be a FIFO layer and let ND be a nonduplicat-

ing layer. Boundedness measures the efficiency of an RMTP solution (P, ND)

in recovering from faultiness permitted by the ND layer. Intuitively, consider a

partial trace a of the automaton of P. An F]-message can be delivered with

effort k after a if there is an ND-consistent sequence ~ in which some

F1-message, and at most k copies of ND-messages, are received, and aj3 is a

partial trace. We call /3 a “k-good” extension of a, and a partial trace that has

a k-good extension is called “k-recoverable”. (The term “recoverable” is

borrowed from Tempero and Ladner [1990 ].) Since a k-good extension is

required to be ND-consistent, the k-recoverability of a does not depend on

the ability to deliver messages that are pending at a. We call a protocol

“’k-bounded” if the set of k-recoverable partial traces is sufficiently large. In

particular, it should include infinitely many F1-consistent prefixes of every

trace that has infinitely many such prefixes. We remark that there is no

agreement among authors on how the intuitive notion of k-boundedness

should be formalized, and the technical definitions contained in the various

papers on the subject differ along many dimensions. The definition we present

here is a compromise between simplicity and generality.

Formally, assume (P, ND) solves RMTP for H. Let A be the automaton of

P, and let k be some integer. A sequence over acts( All ND) is k-good if it is

ND-consistent and it contains some recvF,-event and at most k recvND-events
For every partial (A IIND )-trace a, we say that a is k-recoL’erable if there exists

a k-good sequence /3 such that a~ is a partial ( A IIND)-trace. IHerc a

represents an observation of a finite portion of an execution, and the k-re-

coverability of a implies that the execution can continue so that the obserw

able portion of the continuation is k-good. The requirement that /3 be

ND-consistent prevents it from being considered k-good if it depends on the

delivery of ND-messages that are pending at the end of a. The pair (A, ND) is

k-bounded if, for every (A IIND)-trace a, if a has infinitely many F1-consistent

prefixes, then a has infinitely many prefixes that are both FY-consistent and

k-recoverable.

6.2. NONEXISTENCE OF A BOUNDED SoLumoN TO RMTP. Fix FI to be a

nondegenerate one-way layer from t to r. We establish properties of general

and bounded solutions to RMTP for FI that allow us to prove that for no k is

there a k-bounded solution to RMTP for F1.

The first lemma states that if (P, ND) solves RMTP for FI and A is the

automaton of P, then after any F1-consistent partial ( All ND)-trace a, in order

for the receiver to learn a new F1-message, it must receive a sequence of

ND-messages whose multiset was not pending at a. Intuitively, if the lemma

were not true, then the pending messages would be sufficient to fool the

receiver into thinking a new FI-message had been sent, and the resulting
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partial (A llND)-trace would not be partial F1-consistent, contrary to the
assumption that (P, ND) solves RMTP for F].

LEMMA 6.2.1. Let (P, ND) solw R14TP for FI, and let A be the autonluton of

P. Let a bean FI-consistent partial (A/l ND)-trace. Let P be a sequence such that

afl is a partial (A IIND)-trace and /3 contains a recv~[-euent. Then for some

m G M;D ,

copies[ rc~d( ~, ND)](m) > copies[ pend( a, ND)](m).

PROOF. Let P = (At, A’ ). I-et a and /3 be sequences satisfying the condi-
tions of the lemma. Assume, by way of contradiction, that rcui( /3, ND”) c

pe?zd( a. ND”).

Our proof proceeds as follows: We first show the existence of’ a partial

( All ND)-trace CY/3i such that /31 describes the situation where all activity at
the transmitter At stops after a and the receiver continues behaving as it did

in ~. Such a ~1 exists because the ND-messages sent by At in (3 are not

needed to satisfy ND-consistency—the pending messages at c can be used

instead. We then show that a~l is not partial F’1-consistent, contradicting the

assumption that (P, ND) solves RMTP for F1.

Define f31 = ~ IA’. We first show that a/31 is a partial (All ND)-trace. By the

disjointness of A’ and A’, ( a~l)/A’ = alAf; hence (a/31)lA’ is a partial

beh(A’)-trace. Since ( afll)l A” = (aji’)\A”, ( ci/3, )lA’ is a partial beh(A’ )-trace.

Since a~i is both partial beh( A’)-consistent and partial beh(~r)-consistent, it

follows from Lemmas 2.3.3 and 2!.5.2 that it is a partial beh(A)-trace. Since

rccd( fll, NDr”) = HZ’d( ~, NDt’ ) G pend( a, NDf’ ), it follows from Lemma 3.4.3

that a~ ~ is NDrr-consistent. The sequence PI is finite and contains no

recv~~,,-events, therefore it is ND’ ~-consistent. It follows now from Lemma

3.4.3 that a~lis NDr’-consistent. Since ND = ND~’OND’r, Lemma 2.3.2 gives

that a/31 is ND-consistent. Since aj31 is an ND-consistent partial beh( A )-trace,

it follows from Lemma 3.4.5 that a~l is a partial (AI IND)-trace.

Since (P, ND) solved RMTP for F’1, Theorem 4.1.1 shows that every se-

quence in traces( A IIND ) is F’1-consistent. Thus, a~l is partial Ff-consistent.

Since a is F1-consistent and ,Y~, includes axioms (LC2) and (LC3), Lemma

3.2.5 implies that ~1 is partial F1-consistent. However, this contradicts the fact

that PI is not partial F’{-consistent since ~1 has no send ~l-actions and at least

one recv~f -action. ❑

Let FI be a FIFO layer, ND be a nondup]icating layer, and let (P, ND )

solve RMTP for FI. The following lemma states that at any point in P‘s

automaton’s execution. all the pending ND-messages can be lost, and P’s

automaton still continues to operate correctly. The proof is similar to that of

Lemma 3.4.5 and is omitted.

LEMMA 6.2.2. Let FI be a FIFO layer, let ND be a notzduplicuting layer, let

(P, ND) sok>e RMTP for FI, and let A be the automaton of P. Let a be a partial

(A lHND)-trace. Tl~en there exists an ND-consistent sequence y such that ay is a
(A 1]ND)-trace, and a y has infinite~ many FI-co?wistent p~efties.

The next lemma states that any partial execution of a k-bounded solution to

RMTP can be extended so that the multiset of ND-messages that are pending

increases with respect to the <~ ordering.
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LEMMA 6.2.3. Let (P, ND) be a k-bounded solution to RMTP for FI, and let

A be the automaton of P. Let a be a pat?ial (A IIND)-trace. Then there exists a

pat~ial ( All ND)-trace CY’such that pend( a, ND”) <~ pend( a’, ND’”).

PROOF. From Lemma 6.2.2, it follows that there exists an ND-consistent

sequence y such that cry is an ( A IIND)-trace and cry has infinitely many

F1-consistent prefixes. Since (P, ND) is k-bounded, infinitely many of the

F1-consistent prefixes of ay are k-recoverable. Thus, there exists an F1-con-

sistent k-recoverable a, = CYy’ such that a s a, s ay. The k-recoverability

of a ~ implies that there exists a k-good sequence ~ such that a, ~ is a partial

(A IIND)-trace. From Lemma 6.2.1, it follows that, for some m G M~~,

copies[pend( al, ND)](m) < copies[rc~d( /3, ND)](m). (8)

We fix m to be such a message for the remainder of this proof. From (8), ~

contains a recv~~( m)-action. Since ~ is ND-consistent, it follows that ~ also

contains a send~~(m)-action; hence it has a prefix of the form plsend~~(m).

Let a’ = al plsendND(m). Obviously, a’ is a partial (All ND)-trace. It remains

to show that pend( a, ND”) <k pend( a’, ND”).

Since ~ is k-good, it contains at most k recv~~-actions, so from (8) we have

copies[perzd( al, ND,)](m) < k. (9)

From Lemma 3.4.2, every prefix of ~, in particular PI and plsendND(m), are

ND-consistent. It therefore follows from Lemma 3.4.4 that

copies[pend( al, ND)](m) < copies[pend( al fll, ND)l(m)

< copies[pend( a’, ND)](m). (10)

Since y’ is a prefix of y, Lemma 3.4.2 gives that y’ is ND-consistent. By

Lemma 3.4.5, a is ND-consistent. By Lemma 3.4.4, al = ay’ and a’ =

al ~lsend ND(m), are ND-consistent, and

pend( a, ND) G pend( al, ND) E pend( a’, ND). (11)

Since ND consists of two disjoint layers, ND” and ND’”, it follows from (11)

that pend( a, ND”) E pend( a’, ND’r ). Similarly, since m = MJ~, it follows

that (9) and (10) still hold when restricted to the one-way layer ND”. Conse-

quently,

pend( a, ND” ) <k pend( a’, ND”). ❑

The following theorem establishes that any k-bounded solution of RMTP for
a one-way FIFO layer requires the underlying nonduplicating layer to have an

infinite message alphabet in the same direction.

THEOREM 6.2.4. Let FI be a noizdegenerate one-way FIFO layer from t to r,

and let (P, ND) be a k-bounded solution to RMTP for FI. Then M~~ is infinite.

PROOF. Let A be the automaton of P. Let aO be the empty sequence

(which is trivially ND-consistent). A simple induction using Lemma 6.2.3
. .

establishes that there exists an infmlte sequence aO, a,, . . . of finite ND-
consistent partial ( A IIND)-traces such that for every i > 0, perzd( a,, ND”) <L

pmzd( al +,, ND”). Lemma 2.2.1 therefore implies that M~~ is infinite. ❑
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A trivial corollary of Theorem 6.2.4 is:

Co~o~~A~Y 6.2.5. Let FI be a nonclegenerate FIFO layer, and let (P, ND) be

a k-bounded solution to RMTP for FI. Then M~~ is infinite.

It follows that there is no k-bounded solution to RMTP for FI that uses a

finite ND-message alphabet.

7. Conclusions

In this paper, we have considered the problem of reliable communication over

unreliable channels. We have presented both an algorithm and an impossibility

result. On the one hand, we have demonstrated that, seemingly contrary to

popular belief, there exists a correct protocol that uses only finite packet
alphabets. On the other hand, we have demonstrated that any such protocol

must exhibit serious degradation of performance, as more and more messages

are lost and delayed. This raises the question of whether practical finite-

alphabet protocols can exist for channels that can lose and reorder packets.

The answer to this questions probably lies in the interpretation of the term

“practical”.

If “practical” means maintaining a bandwidth similar to the underlying

channels, then the performance of our protocol is horrendous. Moreover, this

is not simply a shortcoming of our protocol, but, as our impossibility result

shows, it is an inherent limitation. The impossibility result says that any

finite-alphabet protocol must require a large number of packets to send each

message; this imposes a large penalty on the bandwidth of the channel. Later

theoretical work has strengthened the claim that communicating with bounded

headers over a channel that can reorder packets must incur a severe bandwidth

penalty. The interested reader is referred to in Mansour and Schieber [1992],

Tempero and Ladner [1990], and Wang and Zuck [1989], where a variety of

impossibility results related to ours are shown.

On the other hand, the development of newer, extremely high bandwidth,

communication channels raises the serious possibility that a communication

protocol could be considered reasonably efficient even though it reduces the

bandwidth of the underlying channel. Even then, our impossibility result shows

that no jited reduction in bandwidth can be maintained; rather, the reduction

must worsen over time.

As usual, it is necessary to be cautious in making practical inferences from

the theoretical results, for the theoretical results are based on a set of

assumptions that might be weakened in practice. For example, we have

assumed that the protocols must be asynchronous; however, simple and effi-

cient protocols can be constructed that use information about real time, in the

form of local processor clocks and bounds on the lifetime of packets (e.g.,

Sunshine and Dalal [1978]). Also, we have assumed that the protocols must

always work correctly; however, efficient randomized protocols can be con-

structed that allow a small fixed probability of error (e.g., Goldreich et al.

[1989]). A challenging problem is to find models that are realistic, yet are
simple enough to admit theoretical analysis.
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