
Are Wait-Free Algorithms

HAGIT ATTIYA

Technion, HLLifLL, I.sruel

NANCY LYNCH

Masxzclu[sett~ Instztate of TcchnoloD, Cui?zbndge, Mmsuchusetts

ANEJ

NIR SHAVIT

Tel-Aii(; Utlil’er>ity, Tel-AL)ic, Israel

Abstract. The time complexity of wait-free algorithms in “normal” executions, where no failures
occur and processe~ operate at approximately the same speed, is considered. A lower bound of log
H on the time complexity of any wait-free algorithm that achieves appro.rimate agreenzent among n

processes is proved. In contmst, there exists a non-wait-h-cc algorithm that solves this problem in

constant time. This Implies an [)(log n) time separation between the wait-free and non-wait-free

computation models. On the positive side, we present an O(log n) time wait-free approximate
tgrcement algorithm; the complexity of this algorithm is within a small constant of the lower

bound.

Categories and Subject fkscriptor~: B.3.2 [Memory structures]: Design styles—shared rnenLov;

C. 1.2 [Processor Architectures]: Multiple data stream architectures (Multiprocessors) —nmktple-

zr~stn{ct[o~z-streu~rt, mzllttple-clata-)trea;?~ processors ( A41A4D); D. 1.3 [Programming Techniques]:

Concurrent programming—distributed progranzrning; D.4. 1 [Operating Systems]: Process manage-
ment —concurrem V, mzLlt~processi~zg\nz ultiprogrt~~?z/n~ng, synchro?zizatmn; F. 1.2 [Computation by
Abstract Devices]: Modes of computation—parullehsrn mzd concuwency

General Terms: Algorithms, performance, reliability, theory

Additional Key Words and Phrases: Approximate agreement, fault-tolerance, wait-free

A preliminary version of this work appeared in the Proceedings of the 31st Annual Synzposiunt 0}1

Foundations of Compater Sczence (St. Louis, Mo,, Oct.). IEEE, New York, 1990, pp. 55-64.

This work was supported by Office of Naval Research (ONR) contracts NOOO14-85-K-0168 and

NOO014-91 -J-1 046, by National Science Foundation (NSF) grants CCR 85-11442 and CCR
89-15206, and by DARPA contracts NOO014-87-K-0825, NOO014-89-J-1988, and NO014-92-J-4033.

Part of this work was performed while H. Attiya was at the Laboratory of Computer Science,
MIT.

The work of N. Shavit was performed at the Laboratory for Computer Science, MIT, and in part
also at the Hebrew University, Jerusalem. and at the IBM Almaden Research Center.

Authors’ present addresses: H. Attiya, Department of Computer Science, Technion, Halfa 32000,

Israel; N. Lynch, Laboratmy for Computer Science, Massachusetts Institute of Technology,
Cambridge, MA 02139; N. Shavit, Department of Computer Science, School of Mathematics,
Tel-Aviv University, Tel-Aviv 69978, Israel.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Asw)ciation for Computing Machinezy. To copy otherwise. or to republish, requires a fee and/or
speclflc permission.
o 1994 AcMooo4-5411/94 /0700-0725$ 03.50

Juurn.d of the A,.oc~dtmn t<,r Cc>mput>ng Machlncq, Vol 41. No 4, Julv 1994, pp 725-76’?



726 H. ATTIYA ET AL.

1. I?ltroductiotl

In shared-memory distributed systems, some number n of independent asyn-
chronous processes communicate by reading and writing to shared memory. In
such a computing environment, it is possible for processes to operate at very
different speeds, for example, because of implementation issues, such as
communication and memory latency, priority-based time-sharing of processors,
cache misses and page faults. It is also possible for processes to fail entirely.
Wait-free algorithms have been proposed as a mechanism for computing in the
face of variable speeds and failures: a wait-free algorithm guarantees that each
nonfaulty process terminates regardless of the speed and failure of other
processes [Herlihy, 1991; Lamport, 1986a]. 1 The design of wait-free algorithms
has been a very active area of research recently.z

Because wait-free algorithms guarantee that fast processes terminate without
waiting for slow processes, wait-free algorithms seem to be generally thought of
as jhst. However, while it is obvious from the definition that wait-free algo-
rithms are highly resilient to failures, we believe that the assumption that such
algorithms are fast requires more careful examination.

We study the time complexity of wait-free and non-wait-free algorithms in
“normal” executions, where no failures occur and processes operate at approx-
imately the same speed. We select this particular subset of the executions for
making the co~mparison, because it is only reasonable to compare the behavior
of the algorithms in cases where both are required to terminate. Since
wait-free algorithms terminate even when some processes fail, while non-wait-
free algorithms may fail to terminate in this case, the comparison should only
be made in executions in which no process fails, that is, in failL4re-free

executions. The time measure we use is the one introduced in [Lamport, 1976;
1977] and used to evaluate the time complexity of asynchronous algorithms, in,
for example, [Arjomandi et al., 1983], [Cole and Zajicek, 1989], [Lynch and
Fischer, 1981], [Lynch and Goldman, 1989], and [Peterson and Fischer, 1973].
To summarize, we are interested in measuring the time cost imposed by the
wait-free property, as measured in terms of extra computation time in the most
normal (failure-free) case.

In this paper, we address the general question by considering a specific
problem—the approximate agreement problem studied, for example, in [Dolev
et al., 1986], [Fekete, 1987a; 1987b], and [Mahaney and Schneider, 1985]; we
study this problem in the context of a particular shared-memory
primitive—single-writer multi-reader atomic registers. In this problem, each
process starts with a real-valued input, and (provided it does not fail) must
eventually produce a real-valued output. The outputs must all be within a given
distance ~ of each other, and must be included within the range of the inputs.
This problem, a weaker variant of the well-studied problem of distributed
consensus (e.g.. [Fischer et al., 1985: Lamport et al., 1982]), is closely related to
the important problem of synchronizing local clocks in a distributed system.

i Wait-free is the shared-memory analoguc of the no~zbkxkin~ proper’h for svnclzrwzoLiA trmrsac-

~on systems (cf. [Dwork and Skecn. 1983, Skeen, 1982]).
See, for example, Afek et al. [1993], Anderson [1990], Aspnes and Herlthy [1990], Dolcv et al.

[1988], Herllhy [1991], Lamport [1986a; 1986b], LI et al. [1989], Peterson [1983], Peterson and
Burns [1987]. Schaffer [1988], and Vltanyl and Awertnrch [1986].
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Approximate agreement can be achieved very easily if waiting is allowed, by
having a designated process write its input to the shared memory; all other
processes wait for this value to be written and adopt it as their outputs. In
terms of the time measure described above, it is easy to see that the time
complexity of this algorithm is constant —independent of n, the range of inputs
and e. On the other hand, there is a relatively simple wait-free algorithm for
this problem, which we describe in Section 3, and which is based on successive
averaging of intermediate values. The time complexity of this algorithm de-
pends quadratically on n, and logarithmically on the size of the range of input
values and on l/~. A natural question to ask is whether the time complexity of
this algorithm is optimal for wait-free approximate agreement algorithms.

Our first major result is an algorithm for the special case where n = 2,
whose time complexity is constant, that is, it does not depend on the range of
inputs or on e (Section 5). The algorithm uses a novel method of overcoming
the uncertainty that is inherent in an asynchronous environment, without
resorting to synchronization points (cf. [Gibbons, 19891) or other waiting

mechanisms (cf. [Cole and Zajicek, 1989]): This method involves ensuring that
the two processes base their decisions on information that is approximately,
but not exactly, the same.

Next, using a powerful technique of integrating wait-free (but slow) and
non-wait-free (but fast) algorithms, together with an O(log n) wait-free input
collection function, we generalize the key ideas of the 2-process algorithm to
obtain our second major result: a wait-free algorithm for approximate agree-
ment whose time complexity is O(log n k@ction 6). Thus, the time complexity
of this algorithm does not depend on either the size of the range of input
values or on E, but it still depends on n, the number of processes.

At this point, it is natural to ask whether the logarithmic dependence on n is
inherent for wait-free approximate agreement algorithms, or whether, on the
other hand, there is a constant-time wait-free algorithm (independent of n).
Our third major result shows that the log n dependency is inherent: any
wait-free algorithm for approximate agreement has time complexity at least log
n (Section 7).1 This implies an fl(log n) time separation between the non-wait-
free and wait-free computation models.

We note that the constant-time 2-process algorithm behaves rather badly if
one of the processes fails. The work performed in an execution of an algorithm
is the total number of atomic operations performed in that execution by all
processes before they decide. We present a trade-off between the time com-
plexity of and the work performed by any wait-free approximate agreement
algorithm. We show that for any wait-free approximate agreement algorithm
for 2 processes, there exists an execution in which the work exhibits a
nontrivial dependency on ● and the range of inputs.

In practice, the design of distributed systems is often geared towards optimiz-
ing the time complexity in “normal executions,” that is, executions where no
failures occur and processes run at approximately the same pace, whale

building in safety provisions to protect against failures (cf. [Lampson, 19831).
Our results indicate that, in the asynchronous shared-memory setting, there
are problems for which building in such safety provisions must result in

~ The lower bound is attained in an execution where processes run synchronously and no process
fails.
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performance degradation in the normal executions. This situation contrasts
with that occurring, for example, in synchronous systems that solve the dis-
tributed consensus problem. In that setting, there are earlv-stopping algorithms
(e.g., [Dolev et al., 1982; Dwork and Moses, 1990; Moses and Tuttle, 19881) that
tolerate failures, yet still terminate in constant time when no failures occur.
The exact cost imposed by fault-tolerance on normal executions has been
studied, for example, in [Coan and Dwork, 1986], [Dwork and Moses, 1990),
and [Moses and Tuttle, 1988]. For synchronous message-passing systems, it has
been shown that nonblocking protocols take twice as much time, in failure-free
executions, as blocking protocols [Dwork and Skeen, 1983].

Recent work has addressed the issue of adapting the usual synchronous
shared-memory PRAM model to better reflect implementation issues, by
reducing synchrony [Cole and Zajicek, 1989; 1990; Gibbons, 1989; Martel et
al., 1989; Nishimura, 1990] or by requiring fault-tolerance [Kanellakis and
Shvartsman, 1989; Kedem et al., 1990]. To the best of our knowledge, the
impact of the combination of asynchrony and fault-tolerance (as exemplified by
the wait-free model) on the time complexity of shared-memory algorithms has
not previously been studied. Martel et al. [1990] present efficient fault-tolerant
asynchronous PRAM algorithms. Their algorithms optimize work rather than
time and employ randomization, Another major difference is that they assume
that inputs are stored in the shared memory, so that every process can access
the input of every other process.

The rest of the paper is organized as follows: In Section 2, we present formal
definitions of the systems considered in this paper and introduce the time
measure. The approximate agreement problem is defined in Section 3, where
we also present a fast non-wait-free algorithm and a slow wait-free algorithm
for reaching approximate agreement. Section 4 introduces a “bias” function on
which the algorithms in the following sections are based. Proofs of the various
properties of this function are, deferred to Section 9, to ease the presentation.
A constant-time wait-free algorithm for approximate agreement between two
processes is presented and proven correct in Section 5; key ideas from this
algorithm are used in the O(log n) time wait-free approximate agreement
algorithm presented in Section 6. Section 7 contains the log n time lower
bound for wait-free approximate agreement algorithms. Section 8 presents the
lower bound for the trade-off between the time complexity and the work
complexity of a wait-free algorithm for approximate agreement. We conclude,
in Section 10, with a discussion of the results and directions for future
research.

2. Model of Compatalion aiul Time Measare

In this section, we describe the systems and the time measure we will consider.
Our definitions are standard and are similar to the ones in, for example,
[Arjomandi et al., 1983], [Herlihy, 1991], [Lamport, 1986a; 1986b], [Loui and
Abu-Amara, 1987], and [Lynch and Fischer, 1981].

A system consists of n processes p“, . . . . P.- 1. Each process is a determinis-
tic state machine, with a possibly infinite number of states. We associate with

each process a set of local states. Among the states of each process are a subset
called the initial states and another subset called the decision states. Processes
communicate by means of a finite number of single-writer ma[ti-reader atomic
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registers (also called shared ~ariables). No assumption is made regarding the size
of the registers. Each process p, has two atomic operations available to it for
accessing a shared register R:

—write(R, u) writes the value u to the shared variable R.

—read(R) reads the shared variable R and returns its value t’.

A system configuration consists of the states of the processes and registers.
Formally, a configuration C is a vector (s.,. ... s,,_,, ~ll,. . . ) where s, is the

local state of process p, and L, is the value of the shared variable R,. Each
shared variable may attain values from some domain that includes a special
“undefined” value, L . An initial configuration is a configuration in which
every local state is an initial state and all shared variables are set to L . For a
configuration C = (sO, . ..s.,_l, ~~1,1,. . . ), state(p,, C ) denotes the state of p, in
C and Lal(R,, C) denotes the value of register RJ in C, that is, state( p,, C) = s,

and L’al(R,, C) = LJJ.

We consider an interleaving model of concurrency, where executions are
modeled as sequences of steps. Each step is performed by a single process. A
process p, performs either a write(R, L’) operation or a read(R) operation
(which returns a value u), but not both, performs some local computation, and
changes to its next local state. The next configuration is the result of these
modifications. We assume that each process p, follows a local algorithm A, that
deterministically determines p,’s next step: A, determines a variable R and
whether p, is to read or write R as a function of pi’s local state. If p, is to read
R, then Al determines pi’s next state as a function of pi’s current state and the
value l) read from R. If p, is to write R, then A, determines p,’s next state and
the value L] to be written to R as a function of p,’s current state. An algorithm

is a function A mapping each i to a local algorithm AZ for p,.

An event of p, is simply p,’s index i. A schedule is a finite or infinite
sequence of events. We denote by A the empty schedule, with no events. We
denote the configuration resulting from the application of a finite schedule u
to a configuration C by Co. An execution fragment starting from a configura-
tion C is a finite or infinite alternating sequence of configurations and events,
CO, il, Cl, . . .. C~_l. iL, ..., where C = CO and Ck = C~_lik, for all k > 1. We
assume that a finite execution fragment ends with a configuration. The sched-
ule associated with this execution fragment is il, ..., i~, . . . . Conversely, the
(unique) execution fragment resulting from applying a schedule u to a configu-
ration C is denoted by (C, o). An execution is an execution fragment starting
with an initial configuration.

Given an infinite schedule o, a process is faulty in o if it takes a finite
number of steps (i.e., has a finite number of events) in ~, and nonfaulv,

otherwise. An infinite schedule u is f-admissible if at most f processes are
faulty in u. In particular, a O-admissible schedule is called failLLre-flee. These
definitions also apply to execution fragments by means of their associated
schedules.

Let I be a fixed input domain and ~ be a fixed decision domain. Each
initial state of p, is associated with an input value in >. For each process p,

and d = ~ we define a subset, D, ~, of the states of p,. We assume that for
each p,, the sets D,, ~ are pairwise ‘disjoint. We also assume that decisions are
irrevocable, that is, the algorithm transitions are such that if p, is in a state of
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D,, ~ it will remain in a state of D,, ~. We call the set D, ~ the d-decision states
of p,.

A decision problem (or just problem) II of size n is a relation between ~“
and ~“. An algorithm f-solzes a decision problem H if in all executions the
decisions made can be completed to a decision vector that is in the relation H
to the inputs of the processes. Furthermore, in any f-admissible execution,
every nonfaulty process eventually decides. An algorithm that ( n – I)-solves a
problem H is also called a wait-flee algorithm for H. Intuitively, even if all
processes but one fail when a wait-free algorithm is executed, this process
eventually decides.

We now define how to measure the time an execution takes.~
We assign times to events in a schedule subject to the following constraints:

(a) the time assigned to the first event of any process is at most 1, (b) the time
between two events of the same process is at most 1, and (c) times are
nondecreasing and, if the execution is infinite, unbounded. The time of a finite
schedule m is the largest real time that can be assigned to the last event in the
schedule; denote this by time( CT). The time between two events in a schedule is
the largest amount of real time that can elapse between these two events under
any time assignment to this schedule. We define the time taken by an
execution a to be the time taken by the associated schedule, and denote this
time by time(a). (This definition follows [Lynch and Fischer, 1981; Peterson
and Fischer, 1977].)

An equivalent definition (cf. [Arjomandi et al., 1983]) is obtained by exter-
nally partitioning the computation into minimal rounds: A round is any
sequence of events such that every process takes a step at least once in the
sequence. A minimal roz4nd is a round such that no proper prefix of it is a
round. Every sequence of events can be uniquely partitioned into minimal
rounds.s The time for an execution is defined to be the number of segments in
the unique partition into minimal rounds. (This is the definition introduced in
[Lamport, 1976; 1977] and called the round complexity in [Cole and Zajicek,
1989].)

The running time for p, in an execution of an algorithm A is defined to be the
time associated with the shortest finite prefix of this execution in which p, is in
a decision state (~, if there is no such prefix). The time complexip of an

algorithm A is the supremum of the running times over all failure-free execu-
tions of A and all processes p,.

Note that our definition of running time applies only to failure-free execu-
tions. It is possible to extend this definition in a natural way to executions
where some processes fail; for example, by explicitly modeling failure events
and excluding failed processes from the requirement to take steps. In this
paper, however, we concentrate on the behavior of the algorithm in the “best
case,” where no failures occur, and measure running time only in failure-free
executions.

We conclude this section with some useful notation. Let X be a set of real
numbers. Define range(iY) to be the interval [rein ~● .Yx, max, ● xx] if X is

4 These definitions can also be formalized m the timed automaton model [Attiya and Lynch, 1994:

Merritt et al., 1988].
5 Except, possibly, for the last segment.
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nonempty and 0, otherwise. Define diam(X) to be maxi,, ~z~ ~ Ixl – XzI if X is

nonempty and O, otherwise. Note that if X is nonempty, then diam.( X) is the
length of the interval range(X). If X is nonempty, then

min ,cXx+maxX= X.x
mid(X) =

2

3. Basic Solutions to the Approximate Agreement Problem

3.1. THE APPROXIMATE AGREEMENT PROBLEM. We start by defining the

approximate agreement problem and describing non-wait-free and wait-free
algorithms to solve it. In the approximate agreement problem, processes start
with real-valued inputs, XO,..., x._ ~, and a constant c >0 (the same e for all
processes); all nonfaulty processes are required to decide on real-valued

outputs Y(l, ..., Y. _ 1, such that the following conditions hold:

Agreement. For any i, j, Iy, – y I s e, and

(Validi@. For any i, y, ~ range( xO, ..., x.- ~}).

3.2. CONSTANT TIME WAITING SOLUTION. This problem has a simple O(1)
time non-wait-free solution, described in Figure 1. Process pO maintains a
single-writer multi-reader atomic register, VO, to which it writes its input value
as soon as it starts the algorithm. All processes wait until VO is set to a value
that is not L and decide on this value. In the code, any assignment to a
shared variable implies a write, and a reference to the value of a shared
variable implies a read. Uppercase variables denote shared variables, while all
lowercase variables are local. In this algorithm, the values returned in the
return statements are the decision values. Later in the paper, we use this
algorithm as a “subroutine” in our main algorithm; then the values returned in
the return statements will not be the final decision values. Similar conventions
hold for later algorithms in the paper. We have:

THEOREM 3.1. Procedure wait-approx is a non-wait-free algorithm for the

approximate agreement problem whose running time is 0(1).

3.3. INEFFICIENT WAIT-FREE SOLUTION. We next present a wait-free algo-

rithm for approximate agreement. In addition to demonstrating that a wait-free

solution exists for this problem, this algorithm will also be used as a “building

block” in the construction of a more efficient algorithm, in Section 6.

Let us begin by outlining a simple variant of the algorithm for the case of

two processes. Each of the processes p,, i = {O, 1} has a register that it can
write and the other can read. Here and elsewhere, we let i denote the index of
the other process, that is, i = 1 – i. Due to the asynchrony in the system, it is
impossible to have processes agree on one of the input values (see [Dolev et al.,
1987], [Fischer et al., 1985], and [Loui and Abu-Amara, 1987]). Thus, our
algorithm has them gradually converge from the input values X. and x 1 to
values that are only ~ apart. A process p, repeatedly does the following: It
writes its value u, (initially the input value x,) into its register, and then reads
pi’s register. If p, reads L from Ui, it must decide on its own value, since it can
never know when pi will write its input value (if at all, because pi could have
failed before writing). If p, reads a non-1 value from Ui, it checks whether or
not 1Liz– u,I s ~. If it is, p, decides on its own value. If not, P, sets ~, to be

(u, + LIi)/2 and repeats.
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function wait-approx(z) returns real, function wait-approx (z) returns real;

begin begin

1 Vo = z; 1: repeat until VO # 1,

7-. return .z; 2 return VO,

end; end;

Process po Process p,, t # O

FIG. 1. Fast non-wait-free n-process approximate agreement.

Due to asynchrony, processes do not necessarily converge “directly” to a
value. Rather, the following type of scenario is possible: pi, having previously
written [It, reads pt’s current value ~’1, and is delayed just before writing

(~, + LIt)\2 to its register; then p, repeatedly reads and writes, cutting the
interval in half till its value is very close to tIi; finally, pi completes the write of
(~’, + L),)/2 to its register, so that in fact, p, has moved “too far” towards pi’s

old value. This can repeat itself again and again. However, it can easily be seen
that in every such step of 0(1) time (in which both p, and pi perform a read
and a write), the diameter of the proposed values, Iu, – t’il, is cut by at least a
half, and so the values converge in

time.h The algorithm is wait-free, since each process can reach a decision
independently of the other taking steps.

The algorithm for n > 2 processes is of the same flavor, but uses more
complicated mechanisms to synchronize among processes. It uses ideas similar
to those used in the randomized consensus algorithm of [Aspnes and Herlihy,
1990]. The computation proceeds in (asynchronous) phases; in each phase,
each process suggests a possible decision value. In a manner similar to that of
the two process scheme above, the range of suggestions shrinks by a constant
factor at each phase, until after

Hdiam({.xC,, . . ..x., _l})
o log

E 1)

phases it becomes small enough to allow processes to decide. Because there
may be more than two processes, a problem may arise in the case of an
execution in which certain slow processes temporarily stop taking steps (i.e.,
cease advancing in phases), while others (possibly more than one) continue to
advance. and then those slow processes resume taking steps again. The algo-
rithm must allow the fast processes to coordinate a decision, while at the same
time guaranteeing that the ones that are temporarily slow will converge to the
same decision once they resume activity. The key idea in achieving this task is
to allow fast processes that have converged to approximately the same sug-
gested value, and are ahead of all processes with different suggestions by at
least two phases, to decide. As will be shown, it can be guaranteed that the
processes at lower phases will accept this decision value.

“ Here, and in the rest of the paper, we use a truncated log function whose value is always at least

cmc.
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shared var

S : snapshot object [1..rs] of array [1.,] of real;

function wait-free-approx{z, E) returns real;

begin

1 phase .= 1;

repeat forever

2: update(S, [phase] := z );

3 5 := scan($);

4 rnaz-phse := max0~7<n-,{lsj l};
5:

/’ phase < max-phase ‘1
if phase = max-phase and phase > 2

and Sj [T] E n.[z]

for all ~ and all r z phase – 1 such that s] [r] is defined

then return x;

6 else r := min{phase + 1, macphase};

7: z := mid({sl [~] : ISII > T]);
8:

/’ This set M not empty. “/

phase := phase + 1;
fi;

end repeat

end:

FIG. 2. Slow wait-free n-process approximate agreement—Code for process I.

The algorithm appears in Figure 2. The inputs to each process p, are real
numbers x, and ●.’ For a real number x, define n,(x), the neighborhood of
x, to be [x – e, x + ~]. The algorithm employs a single-writer atomic snapshot
object S as a basic memory primitive. Informally, this is a data structure
partitioned into n segments S,, each of which can be updated (written) by its
“owner” process p,, and all of which can be scanned (read) by any given
process in one atomic operation. Each process p, can thus perform an update
operation on S,, replacing all or part of the contents of S, with a new value, or
a scan operation on S, returning an “instantaneous” view of the contents of all
segments of S. (More precise specifications and implementations of snapshot
objects from single-writer multi-reader atomic registers can be found in [Afek
et al., 1993] and [Anderson, 1990].)

For each process p,, its segment of S is an array S,[1 ..] that in any state
contains a finite sequence of reals—its suggestions at different phases—
indexed by phase number. Initially, each sequence is A, the empty sequence. At
each phase, after updating (writing) a suggestion to its array (Line 2), a process
p, reads the arrays of all processes (Line 3), obtaining their suggestions for all
phases.x If p, is at the maximum phase and all the suggestions by other
processes for its phase, or the phase before it, are within e of its latest
suggestion, then p, decides on its latest suggestion (Lines 4–5). Otherwise
(Lines 6–8), p, advances to the next phase taking as its new suggestion the
midpoint of all the suggestions at the next phase if there are any, or of its
current phase if there are none.

7Although 6 n described as a parameter, It N assumed that all processes have exactly the same
value of c.
8 Though one can devise algorithms that do not require a process to maintain suggestions for all
past phases (cf. [Attiyah et al., 1989]), we have chosen to maintain all suggestions in order to
simplify the exposition and proofs.
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We now present the correctness proof for this algorithm. Since the only
shared data structure used by the algorithm is the atomic snapshot object S, an
execution of the algorithm can be viewed as a sequence of primitive atomic
operations that are updates and scans of S. Let a be any execution, and let
r > 1 be a phase number.

For any process j = {O,. ... n – 1} and any execution a, define S,a[r]
to be the value written by p, to s,,[r] in a ( 1 if there is no such value).
Note that this value is uniquely defined. Define S“[Y] to be {S,a[r] + L : j ●

{o,..., n – l}}. The following is immediate:

LEMMA 3.2. Let a be an execution and a‘ be a finite prefi~ of Q. Then

~“’[r] g ~a[r], forez’ey r > 1.

Throughout the proofs in this paper, a subscript i for a procedure denotes
invocation by process p,; similarly, a subscript i for a local variable name
denotes the copy of this variable at process p,. A process p, is said to be in

phase r if phase, = r. Denote by scan: the scan performed by p, at phase r,

and by update:(x) the update by p, at phase r. Note that, for r z 2, the scan
performed before writing a suggestion for phase r is denoted scan’-’.

For a finite or infinite execution a and r > 1, denote

rnids(a, r) = {mid(Sa’[r]) : a’ is a prefix of a and 5’a’[r] is nonempty],

that is, the set of midpoints of all the sets of suggestions for phase r at earlier
points of a. The next lemma is the key for proving that the algorithm is
wait-free. It will be used later, in Corollazy 3.7, to show that the range of
suggestions decreases by a constant factor with each phase. Intuitively, it states
that any suggestion for phase r must be in the range of the midpoints of all the
sets of suggestions for phase r – 1 at earlier points in the execution.

LEMMA 3.3. For any finite execution a und phase r z 2. range(S ‘[r]) G

range(mids( a, r – l)).

PROOF. By induction on the length of the execution. The basis holds

vacuously.

For the induction step, the interesting case is when a ends with update: (.~),
for some i, where x = S:[r]. Then scan: -‘ appears in a. Let a‘ be the
shortest prefix of a that includes scan{ -‘. Note that a‘ is a proper prefix of
a.

Let r‘ be the largest phase number read in scan;- 1. Since process p, reads
its own sequence, r’ > r – 1. If r’ = r – 1, then the code implies that x is the
result of the calculation in Line 7, and hence x is the midpoint of S” ‘[r – 1],

which suffices. If r‘ > r, then, by the code, x ==mid(S “’[r]). By the induction
hypothesis on a‘, ra~zge(Sa’[r]) G mrzge(rnids( a‘, r – l)). Thus,

x = mid(Sa’[r]) G rarzge(Sa’[r]) c ra~zge(nzids(cr’, r – 1))

g rtzrzge(nzids(a, r – l)),

as needed. ❑

Since ra~zge(nzids( a, r – 1)) c rarzge(S “[r – 1]). we have:

COROLLARY 3.4. For my jitzite execution CYand phase r 22, range(s “[r]) G

range(Sa[r – 1]).
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For the rest of the proof, we fix some infinite execution ~ of the algorithm.
The following lemmas are stated with respect to ~. The following is a corollary
of Lemma 3.3.

COROLLARY 3.5. For anyphase r z 2, rarzge(S ‘[r]) s rarzge(mids( ~, r – l)).

The next lemma states that the diameter of all the possible midpoints of the
suggestions in phase r is at most half the diameter of all the suggestions for
phase r.

LEMMA 3.6. For any phase r z 1, diam(mids( ~, r)) < #iam(S ‘[r]).

PROOF. If mids( p, r) is empty, then diam(nzids( ~, r)) = O and the claim
follows immediately, so assume that mids( ~, r) is nonempty. Let a‘ and a” be
two prefixes of ~ such that S” ‘[r] and S ““ [r ] are nonempty. It suffices to show
that lmid(S a“ [r]) – mid(S”’[ r])l s ~diam(S ~[r]). Without loss of generality,
suppose a “ is a prefix of a‘. By Lemma 3.2, S“’’[r] ~ S“’[r] G SP[r]. Suppose
first that mid(Sa’[r]) s mid(Sa’’[r]). Thus, mid(Sa’[r]) s mid(Sa’’[r]) s
max(S”’r[r]) s max(S”’[r]). Hence

lmid(Sa’’[r]) - mid(S”’[r])l s ~diam(S”’[r]) s ~diam(S6[r]),

as needed. A symmetric argument applies if mid(S ““ [ r]) > mid(S”’[ r]). ❑

The following lemma guarantees that suggestions become closer with each
phase; it will be used together with Lemma 3.9 to ensure wait-freedom.

LEMMA 3.7. For any phase r z 2, dianz(S ~[r]) s ~diarn(S @[r – l]).

PROOF. By Corolla~ 3.5, range(S ~[r]) c rarzge(nzids( /3, r – l)). Thus,

dianz(SB[r]) < diam(mids( B,r – 1))

< ~diam(S~[r – 1]) by Lemma 3.6. ❑

LEMMA 3.8. Ifsomeprocess retumsx inphase r and y = S ‘[r], then y E nc( x).

PROOF. Assume p, returns x in phase r. By the code, it must be that r z 2.
Assume, by way of contradiction, that there exists at least one process with a
suggestion for phase r that is not in HE(x). Let p, be such a process with the
property that scan~- 1 is the earliest among the scan”– 1 operations of these
processes, and let a be the shortest prefix of ~ that includes scanj -1. Let
y = S~[rl; by assumption, y E nJxl.

By the way pj was chosen, there is no update;,( y ‘), with y‘ ~ n,(x) in a;
thus, range(S “[r]) c n,[x]. Let r‘ be the maximum phase number read in
scan;- 1. If r‘ z r, then the minimum determined in Line 6 of p,’s code for
phase r – 1 is equal to r. Thus, in this case, the only values considered in
determining S,~[r] are values in S a[r]. Since range(S a[r]) G n,[x], it follows
that PI’s suggestion for phase r is in n,(x). This is a contradiction, and hence
r‘ s r – 1.Since process p, reads its own sequence, r‘ = r — 1.

The fact that r’ = r – 1 also implies that scan;- 1 precedes update;(x). Let
a‘ be the shortest prefix of ~ that includes scan:. Since update:(x) precedes
scan;, it follows that scan;- 1 precedes scan;, that is, a is a prefix of a‘.
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Since process p, returns in phase r, it follows from the code that rarzge(S” [r
– 1]) c rz,[x]. Since r – 1 is the maximum phase number read in scan;- 1, it

follows that y = mid (SU[r – 1]) E nmge(S”[r – l]). However, by Lemma 3.2.
S“[r – 1] ~ S“’[r – 1], and thus y e ~ze(x), a contradiction. o

LEMMA 3.9. For any phase r > 1, if diam(S ‘[r]) < ●, thetl e(’e~ notzfiiulp

process returns no later than phase r + 1.

PROOF. From the code h follows that every nonfaulty process either returns
or reaches phase r + 1. If diarn(~ fl[~l) s ~, it follows from Corollary 3.4 that
di6wd SP[r + 1]) < ● .

The proof proceeds by induction on the order in which processes perform
scanr+l. For the base case, let p, be the first process to perform scan’ ● 1.
Clearly. p, has phase, = r + 1 = rrzax-phase, and by assumption r + 1 >2.
Also, diam(S ‘[r]) and diam(S ‘[r + 1]) are less than or equal to ● . and thus.
~, will pass the test in Line 5 and will return in phase r + 1. The induction step
1s similar, and uses the fact that so far no process has advanced beyond phase
r + 1 to show that any process that reaches phase r + i passes the test in Line
5 and returns in phase r + 1. ❑

Thus, we can prove:

THEOREM 3.10. Proce(iure wait- free-approx is a wait-free algoridun for the

approximate agreement problem whose nuvling time on inpL[t (x(], . . . . x,,_, ) i~ at

most

M diam({x(, . . . ..x.. _l})
o nilog

E )1

PROOF. The validity condition clearly holds, since processes decide only on
their suggestions and these are always within the range of the inputs (Corollary
3.4).

To show agreement, assume that r is the minimum phase in which some
process returns, and let p, be a processes that returns .x in phase r. By Lemma
3.8, the suggestions of all processes for phase r are in n,( x). By Corollary 3.4,
the same is true for phase r + 1. By Lemma 3.9, all nonfaulty processes return
no later than phase r + 1, and thus, all nonfaulty processes return either in
phase r or in phase r + 1. Since processes return only their suggestions, all
returned values are in n,( .x), as needed.

Since the diameter of suggestions decreases by a factor of two with each
phase (by Lemma 3.7), it will eventually be less than or equal to ● and, by
Lemma 3.9, each nonfaulty process will eventually decide. This guarantees
wait-freedom.

To show the time bound, notice that, by Lemma 3.7, after

Ndiarn({x,,, . . ..xm_ l})
o log

E 1)

phases, the diameter of the set of suggestions will be at most c. By Lemma 3.9,
all nonfaulty processes will return by the next phase. The time it takes a
process to execute each phase is bounded from above by the number of
operations it executes. Using the implementation of atomic snapshots from
[Afek et al., 1993], this is bounded by 0(n2). ❑
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Since the input range is not bounded and e may be arbitrarily small, the

running time of the algorithm as a function of n is actually unbounded.

4. The Bias Function

The algorithms in Sections 5 and 6 return a decision value by performing a
calculation based on an input value and a counter for each process. We name
the calculated function bias, as the returned decision value is biased towards
(i.e., is closer to) the input value associated with the process having the largest
counter. Before presenting the algorithms, we present the function and explain
its properties. The proofs of these properties are purely arithmetic, involving
no arguments about synchronization between processes, and have therefore
been deferred to Section 9.

In order to understand the nature of the calculation performed by the bias

function, we briefly explain the structure of the algorithms using it. The new
algorithms are conceptually based on the following high-level two-process
algorithm. Process p, (similarly pc,), knowing only its own input value 1]1, will
repeatedly take incremental steps of size e, starting at O and ending upon
reaching the value L]1, unless it reads that the other process PO has also moved.
In the former case it decides on ~]1, and in the latter case its decision value is a
function of the relative number of incremental steps both processes managed
to take before each noticed the other had moved. However, since in either case
process p,’s decision must be guaranteed to be in range({u”, LI*}), itcannot just
be a value in the interval range({O, ZIl}). This is the purpose of the function
bias. It provides a mapping from the processes’ incremental walks in the
intervals range({O, Z’()}) and range({O, ZI1}), respectively, to walks of proportional
length in the allowed range({~l 0, c)’}). The code of bias appears in Figure 3. The
function takes as inputs two real number values L0 and L)1, two associated
counters, co and c 1 (integers denoting the number of incremental steps each
process p. or p, took), and ● .

An example of the translation defined by bias k given in Figure 4 for the
case O < u0 < [I 1. Assume p. traverses a distance of length co “ ● away from O
towards l”, and p, a distance of length cl “ e away from O towards Z’1.The bias

function maps the respective distances of length co “ ● and cl . e (within the
interval [ – u0, u 1]), into distances of proportional length in the interval [L10,L”].

The starting point O in [ – L’ ‘), L)1], is replaced by the point new-O in [L’0, u 1],

which depends only on v 0 and [}]. The returned decision value is then the point
associated with the larger counter (larger traversed distance).

We now introduce several lemmas that formally outline the properties of
the bias function and on which the correctness proofs of the algorithms
in the sequel will be based. The first is a rather simple statement, namely, that
the returned value of any call to bias k h range({ LJO,u l}).

LEMMA 4.1. Let cO, c] be nonnegatiL1e integers, and L ‘), 1’1, e be real numbers,

with E > 0. Then biaS(LIO, LI’, co, c’, E) e range({L’(), LI1}).

The next three lemmas deal with an additional property required of the bias

function: that the values returned by different calls to bias always be approxi-
mately the same, even if the counter parameter values or the real parameter
values used in these calls, are slightly different. The first lemma states that
applying bias h a case where counter c’ is large yields a value close to L”.
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function bias (WO,IJ1,CO,Cl,&) returns real;

begin

1. if v“ = V1= O then return O

2 else if co < C1 then return V1 + ~(lv’1 - rnin{c’~, Iv’l})

3 else return V“ + &(lvOl - min{cO&, Iv”l})

fi,

end;

FIG, 3. The bms function—Code for process p,.

new-O v’

FIG. 4. The b]as mappmg.

LEMMA 4.2. Let c O,c‘ be nonnegative integers,

hers, E >0, m z O.

1
returned value

C4fd V[), L1l, E, m be real num -

(1) Sz4ppose c 1 > c‘) and ltll/e – nz s cl. Then lbias(t”, ~l’, c(’. cl, E) – LI]I s
me.

(~) Suppose co > c’ and lL’O1/E – m s co. T/zen lbias(z’”, ~’,c”,c], E) – LIO\ s

m ● .

The next lemma shows that the results of two calls to bias with approxi-
mately the same values (in a sense made precise by the lemma) for co, C1, and
the same z,I”,u 1, e, are approximately the same.

LEMMA 4.3. Let c~~,c~j, c?, c; be nonnegatil~e integers, and Lo, L 1, E, m be real

‘} = nzin{c!, c~} = 0 alzd IcI – c! Inumbers, .E> 0 and nt > 0, Suppose min{c~, CO

+lc~ – c~l < m. T}zen

]bias(zO,[ll, C:, C(,, C) – blaS(LIO, L’’, C~, c/, e)l <nz~.

The last lemma in this section states that applying bias, this time to real
numbers L’[) and t) 1 that are approximately (to within 8 ) the same, yet with
exactly the same counters c 0, c*, and is, results in values that are approximately
the same.

LEMMA 4.4. Let co, c 1 be no~znegcztiL1e itztegers, and L’:, L;. L1~, L’~, e, 8 be real

n14mbers, with c > 0, 8> 0. SLlppose Iz>; – L’~1 5 8 and /L1~ – L; I 5 8. Then

lbias(~~, LI/,, c“ c], e) — bias(Lf>L’:, co, c’, e)l < 68.
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5. Fast Two-Process Approximate Agreement

We now show that, for two processes, there exists a wait-free approximate

agreement algorithm whose time complexity is constant; that is, it does not

depend on the range of input values or ● . The n-process algorithm presented
in Section 6, when specialized to the case n = 2, also yields a (somewhat
larger) constant time complexity. We present the two-process algorithm be-
cause we believe its simplicity will help the reader develop an intuition for the
ideas that will be later used in the general algorithm.

5.1. INFORMAL DESCRIPTION. The key ideas underlying this algorithm are
as follows: A process, p,, running on its own, can assume that either it is
running very fast (and not much time has elapsed), or the other process, pi, has
failed. Thus, p, may take an unlimited number of steps without degrading the
time complexity for failure-free executions, as long as pi does not perform any
steps. Of course, if pi does not take any steps at all, then, in order to guarantee
the wait-free property, p, must eventually decide (unilaterally) on its own value.
In this case, in order to guarantee correctness, it is necessary that if and when
pi does appear, it must be able to know, just by reading pi’s registers, what p,

has decided. However, an inherent difficulty of programming asynchronous
systems is that, due to the uncertainty of interleaving, at least one process p,

has an “uncertainty of one step,” namely, it cannot tell whether pi read the
value written in p,’s latest write or the value written in p,’s preceding write. A
two-process solution that halves the distance between the suggested values is
thus of no use, since the “uncertainty of one step” can cause processes to
decide on values that are more than ~ apart. Our solution is to have a process
change its suggestions gradually with each step, more precisely, by an amount
less than c, so that the “uncertainty of one step” will result only in ~
inaccuracy in the decision value.

5.2. THE ALGORITHM. The code for process p, is given in Figure 5. Each
process p,, i G {O, 1} maintains a single-writer multi-reader atomic register with
two fields: ~—the input value, a real number, and C,—the counter, an integer.
Each process starts by writing its input and initializing a counter in the shared
memory (Line 1 in increase-counter). It then keeps incrementing this counter
until either it has taken a number of steps proportional to the absolute value of
its input, or the other process has taken a step, whichever happens first (Line 2
of increase-counter). When the process stops, it collects all the C and V
values and applies the function bias to get a decision value. As described in the
former section, the decision is within the input range and biased towards the
input value of the process with the larger counter. In particular, if a process
runs to completion without observing the other process, it decides on its own
input value. In the following subsection we show that the discrepancy in the
reading of the counters among the two processes is at most 1, and thus, based
on the properties of the bias function, the decisions based on the values of the
counters will differ by at most ● .

5.3. CORRECTNESS PROOF. An execution of the algorithm can be viewed as
a sequence of primitive atomic operations that are reads and writes of atomic
registers (and may include changing local data). Fix some execution a of the
algorithm. All lemmas in the rest of this section are stated with respect to a. In
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shared var

(V, C) array [0, ,1] of single ureter- r-egwter wzth

fields V real and C wzteger;

function fast-2 -apprOx(z, e) returns real;

1 M.Increase- counter (z, ~ ),

2 (7J”, ?J’, C”, C’) := (VO, VI, GJ, C1);

3 if c’ = L then return v’

4 else return Ixas (V’, V1, Co, C1, S);

end,

procedure Increase-counter (V) rnaz);

1’ (K, c.) “= (rJ, O),

2. while Cr = L and C, c max do C% .= C, + 1 od;

end,

FIG. 5. Fast wait-free two-process approximate agreement —Code for process p,.

the rest of this section, a value of L is treated as – 1 in arithmetic
expressions. The next lemma shows a crucial property regarding how close the
counter values collected by two processes are.

LEMMA 5.1. Assumepo andpl retunz jiom fast-2 -approx. Let i G {O, 1}, and

let c, and c, be the lalues of C, read by p, awl pi, respectively, in Line 2 of

fast-2 -approx. Then c, # L and c, – 1 s c, s c,.

PROOF. Since p, returns, it must be that p, writes to C,. Let m-, be the last
write by p, to C, in a. Since increase-counter returns after the last write to C,
and by definition p, is the only one to modify C’l, it follows that c, is the value

written to C’t in rr,. Since p, writes the value c, to C,, we have that c1 # 1.
Let +, be the read by pi of C’, in Line 2 of fast-2 -approx. Note that Cj is the

value returned in @i. Since the read of C, is atomic, it is clear that Ci < c,. We
now show that c, – 1 s cl.

If c, = O, then since c, s c,, c{ G {L , 0}; since L is mapped to – 1, the
claim follows. So assume c, > 0. Let rr~ be the penultimate write by p, to C,.
writing c, – 1. Let @, be the latest read of Cl by p, that precedes n-,; note that

m; precedes d,. Since p, performs at least one additional write after T:, it
must be that the value read in ~, is L . Let m-i be the write of O by p, to C[ in
a. From the code, it follows that mi preceds ~,. Since the value read in ~, is
1, and because Ci is written and read atomically, it follows that ~, precedes
z-,. From the above we thus have that w: precedes ~, which precedes Zi which
precedes 0,. Thus, the write w: precedes the read ~,. and it follows that

c1 — lS C,. ❑

We can now prove that the algorithm satisfies the agreement property:

LEMMA 5.2. For processes p. and p,, if fast-2-approx,, returns yt) and

fast-2 -approx, returns y,, then Iy(, – y, I s ~.

PROOF. The proof of this lemma is separated into two cases. In one case,
we apply Lemma 4.2. In the other case, we show that the sum of the
differences between the values of c’] and c1 used by pt, and by p, is at most 1,
and appeal to Lemma 4.3. The details follow.
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Denote by m, the first write by p, to C’,, writing O, for i = {O, 1}. Since both
processes decide, both n-(, and T, must appear in a. Assume, without loss of
generality, that n-,, precedes ml. (The other case is symmetric.) Assume that

] ) in Line 2 before deciding, and that process p,process pO reads ( l):, t’;, c~~, C(,

‘) in Line 2 before deciding. Note that, since p, first writes Oreads (LI~, t;, c!, c1
to C, and then reads C,, it must be that c: >0, for i c {O, 1}.

Let + be any read of C[l by pl, returning some value z. The code of the
algorithm implies that T ~ precedes +. Since m-. precedes m-,, m,, precedes ~.
Since reads and writes to C,] are atomic operations, this implies that z >0.
This implies, in particular, that c: >0, and thus, fast-2-approx, returns in
Line 4. In addition, this also implies that pl will not increase C’l beyond O, and

thus, since reads and writes to Cl are atomic, c ~ = O and c; e {1 , O}.
We separate the rest of the proof into two cases:

Clue 1. c; = 1. In this case, fast-2-approx,, returns ~1~= x{} in Line 3.
The code of increase-counter implies that \xol/.s s c:. From Lemma 5.1, since

c! > 0, it follows that lxO1/~ – 1 s c!. Also, L’! = xi). Since c! > 0 = cl, we
can apply Lemma 4.2(2) with m = 1 and get that lbias(~~, L1~,c~, c;, e) – ~’~~1s
e, as needed.

Case 2. c; = O. Then. fast-2 -approx0 returns in Line 4 and ~’~j= L’~. We
have that min{c~, c;} = cl = O and min{c~, c~} = c; = O. Also, IcI – c~l +

lc~ – c~] = IcI – c~l <1, by Lemma 5.1. The claim follows by applying Lemma
4.3 with m = 1. ❑

We have:

THEOREM 5.3. Procedure fast-2-approx is a wait-free algorithm for the two-

process approximate agreement problem whose time complexip is 0(1).

PROOF. Agreement follows from Lemma 5.2. It follows from the code and
from Lemma 4.1 that the values returned are in the range of the original input
values; hence, the validity property is satisfied. Each process p, executes at

most 0( Ix, l/E ) steps before deciding; thus, the algorithm is wait-free. Since
each process executes a constant number (i.e., independent of e and the range
of inputs) of steps after the other process performs its first step, the time
complexity of this algorithm is O(l). ❑

6. Fast n-Process Approximate Agreement

In this section, we present a fast ( O(log n) time) wait-free approximate agree-
ment algorithm for n processes. The algorithm is based on an alter~zuted-

interleaving method of integrating wait-free (resilient, but slow) and non-wait-
free (fast, but not resilient) algorithms to obtain new algorithms that are both
resilient and fast.

We begin by showing how one can reduce, in constant time, the problem
of n-process approximate agreement with arbitrary input values to a special
case of the problem where the set of input values is included in the union
of two small intervals. We do this by performing an alternated-interleaving
of a wait-free and a non-wait-free algorithm. We then show, again based
on an alternated-interleaving of wait-free and non-wait-free algorithms, that
in processes with values in two small intervals can “simulate,” in O(log rz)
time, two virtual processes running the fast approximate agreement algorithm
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type

group = {a, 6},

shared var

(V, G, C): array [l. n]ofszngte wrzte~regzsterwzth

fields V real, G. group, and C. znteger,

function fast- n-approx (z,&) returns Teal;

begin

o (v)g) .= n-to-2 (z,&),

1 Increase- counter(v, 9, *);

2, (Z,],q .= fast-collect (L’, G, C),

3: if c~ = L then return V9

4: else return blas(va,vb,c” )c~,e/6n),

end:

function n-to-2 (z, E) returns (real, group);

begin

(v, g) = begin-alternate

1. (wait-free-apprOx (z, &/12), a)

and

2: (wak-approx(z), b),

end-alternate,

3 return (v, g)

end;

procedure Increase-counter (v, g, rnaz);

begin

1 (K> G,, C,) := (v, g,o);

begin-alternate

2, while C~ = L and C9 < max do C, = C,+ 1 od,

and

3: synch (C);

end-alternate;

4: T%:= true;

end;

FIG. 6. Fast wait-free n-process dpprowmak agreement—Code for proces$ p,

of Section 5, thus solving the approximate agreement problem for n processes
each having one of two values. Combining the two algorithms yields an
O(log n ) wait-free approximate agreement algorithm.

6.1. INFORMAL DESCRIPTION. The first part of the algorithm—the one that

achieves the constant-time reduction to two small intervals, is encapsulated in

procedure n-to-2 (Figure 6). The idea is simple: Interleave the execution of the

slow wait-free-approx procedure (of Figure 2) with that of the fast wait-approx

(of Figure 1), stopping when the first of them does. The resulting algorithm is
wait-free since even if n – 1 processes fail, wait-f ree-approx will terminate. It
takes at most 0(1) time in the failure-free execution since wait-approx termi-
nates within 0(1 ) time. However, some processes (group a) might finish the
alternated execution with a value from wait-approx, while others (group b)
finish with a value from wait-free-approx. Thus, this strategy does not solve the
approximate agreement problem, but guarantees that the returned values are
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included in the union of two small intervals. More specifically, the procedure
n-to-2 returns an output value u, and a group g, G {a, b} to which p, is said to
belong. It is guaranteed that output values for processes in the same group
g, ~ {a, b} are at most e/12 apart.

The second part of the algorithm solves n-process approximate agreement in
O(log n) time, assuming that processes are partitioned into two groups with
approximately the same initial value in each group. The solution is based
on having the processes in group a (respectively, b) jointly simulate a vir-
tual process p. (respectively, pl ) that executes the function fast-2-approx of
Figure 5.

The following straightforward simulation is expressed by Lines 1–2 of the
procedure increase-counter in Figure 6. The counter CO of fast-2-approx is
replaced by a joint counter, which is defined to be the sum of local counters C,,
for all i in group a. Each step of the simulated counter Co is implemented by
O(n) steps of the joint counter for a. Each step of this joint counter is, in turn,
implemented by a single step of one of the individual counters in group a.

Similarly, the processes in group b simulate counter Cl of fast-2 -approx. In
Line 2 of increase-counter, in order to decide on the values of the joint
counters of a and b, a process reads the values of all local counters. If the
counter simulated by pt’s group is not large enough and the counter simu-
lated by the other group is 1, then p, advances the counter simulated by its
group (by incrementing its local counter C,), and repeats. Otherwise, p, exits
increase-counter.

One can see that, in an execution where processes operate synchronously,
each iteration of the while loop in Line 2 of increase-counter has 0(n) time
complexity since reading all memory locations to calculate the simulated
counter takes 0(n) steps. However, one can improve the time complexity
based on the following observation. If p, ever detects that all processes have
set their counters in Line 1 of increase-counter, then it knows that one of the
following holds: either some process from the other group has set its local
counter (and hence that group’s simulated counter), to a value other than L,
or the other group is empty. In the former case, the loop predicate in Line 2
must be false, while in the latter case, the final value for the other group’s
counter will be 1-. In either case, p, can stop executing increase-counter, and
be guaranteed to correctly simulate the behavior of the two-process algorithm.
In order to detect in less than O(n) time that all processes have set their
counters, we use an O(log n) non-wait-free synch procedure, described in
Section 6.3.2, whose termination ensures this condition. To achieve the better
time, the algorithm alternates synch with the (wait-free) loop in Line 2 of
increase-counter.

The delicate synchronization provided by synch and its effect on the rest
of the algorithm guarantee that after some process exits increase-counter,
individual counter values increase at most by 3. Thus, after exiting increase-
counter, a process can perform an O(log n) wait-free fast-collect, described in
Section 6.3, in order to collect all the values needed to decide on the returned
value in Lines 3–4. The above property ensures that the simulated counter
values used by different processes do not differ much.

6.2. THE ALGORITHM. The code for the algorithm is presented in Figure 6.
Alternated procedures are enclosed within begin-alternate and end-alternate
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brackets. This construct means that the algorithm alternates strictly between
executing single steps of the two alternated procedures, and terminates the
first time one of the procedures terminates.g When an alternation is used in an
assignment statement, the value assigned is the value returned by the proce-
dure that terminates first. The algorithm uses the bias procedure of Figure 3.
In addition to the shared data structures used by wait-free-approx and wait-
approx, process p,. i E {(.), . . . . ?1 – 1}, has a Single-}vriter nlLdti-reader atonlic

register with the following fields: ~—the value returned in p,’s first phase; G,
—denoting the group to which p, belongs; ~, —pl’s contribution to its group’s
counter: T1—p(’s Boolean synch termination flag.

In the code for process i, we abuse notation and denote by V~, where g is a
group’s name, the “group’s value” calculated as follows: If g = g,, then it is ~;
and if g # g, then it is an arbitrary ~, such that p, is in group g if it is
non-empty, and 1, otherwise. The value L’g is calculated in a similar manner
from the corresponding local copies. (Recall our convention that lowercase
letters stand for local variables and uppercase letters for shared variables. )
When g is a group name, ~ denotes the other group’s name, for example, if
g = a, then jj = b. The notation c’s, for g ● {a, b}, stands for the sum of those
C, such that G, = g and C, + 1, if there is any such C,, and L , otherwise.
The value c K is calculated in a similar manner from the corresponding local
copies.

6.3. FAST INFORMATION COLLECTJON AND SYNCHRONIZAHON. We now pre-
sent the procedures for information collection and synchronization and prove
their properties.

6.3.1. Fast Information Collectiotl. We start with a wait-free algorithm for
irzpLlt collectio~l—returning the current values in the entries of an array R. The
time complexity of the algorithm is O(log n).

This problem is interesting on its own as it underlies any problem of
computing a function, for example, max or sum, on a set of initial values that
reside in the shared memory. 1(’Once a process collects all the values, comput-
ing the function can be done locally in constant time. Since fl(log n) is a lower
bound on the time for the information collection problem (see, e.g., [Cook et
al., 1986]), this implies that for problems whose output depends on all the
initial values in memory, and only on them, there exists an optimally fast
wait-free solution.

Our algorithm, presented in Figure 7, is a wait-free variation of the pointer-

jumping technique used in PRAM algorithms (e.g., [Wyllie, 1979]). Think of the
registers R,, i ● {1 . . n}, as being arranged in a circle (hence, indices are
modulo n). To achieve logarithmic time complexity, a process writes in the
register R, not only its value, but also all other values it has lew-ned about.
Proceeding in a cyclic fashion, p, first reads R, +,. If R,+, has already
collected, say, 3 values R,+, RL+4, then p, next reads R,+ ~. It continues in
this fashion until it has transitively collected values from all n registers.

‘) Wc remark that this is just a coding con~cnience, used to simplify the control structure of the

algorvthm. It IS Implemented locally at one process and does not cause spawmng of new processes
1“ Note that these problems are very different form the dec-nmn problems considered untd now ]n
thn paper, where inputs are local to the processes and do not rewdc in the shared memory.
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type

strtng = amay [1. .n] of Tegzster values;

shared var

R : array [1. .n] single wrder register;

function fast-collect (R) returns strwzg;

begin

1: 1 := 1;

2: while 1< n do /+ a knows fewer than n values. *J

3: R, := concatenate (~,, ~($+~) ~odn)j /’ Read what p[,+i) knows. “/

4, [ := Iq;

od;

5: return truncate(ll.,, n);

end;

FIG.7. Fast wait-free information collection—Code for process p,

We use the following functions in the algorithm: For sequences R, R‘ and a
nonnegative integer n, we define concatenate R, R‘) as returning the concate-
nation of R‘ to R, and truncate( R, n) as returning the first n elements of R if
IRI > n, and R, otherwise. The initial value 1 is treated like any other value
and may be returned by the algorithm for entries that have not yet been set.

Fix some execution a of the fast-n-approx algorithm. We clearly have:

LEMMA 6.1. Assume fast-collect, is inloked by p, in a, and let a‘ be the

shortest prefti of a that includes some inl]ocation of fast-collect. Then fast-

collect, returns a L1ector containing, for each p], a La[ue that appears in R] at

some point at or after a‘. h40reo11er, fast-collect, returns within at most 2n steps

bY P, .

PROOF. Each iteration of the while loop in procedure fast-collect takes at
most two steps, and the loop is executed at most n times. ❑

The next lemma is the crux of the time analysis for this algorithm.
For the rest of this Section, let t be the time of the last event in the shortest

finite prefix of LY that includes an invocation of fast-collect by every p,,
iG {O,..., n – 1}, if such a prefix exists, cc otherwise.

LEMMA 6.2. ZkSLlnle t < CO. For el’e~ i @ {O,..., n – 1} and elery integer r,

O < r < [lognl, IRZI a min{2’, n) at time t + 3r.

PROOF. The proof is by induction on r. The base case, r = O, is trivial.
For the induction step, assume that r z 1. If at time t + 3r, IR, I z n, the

claim follows. So suppose, IR, \ < n at time t + 3r. Then also IR, I < n at time

t + 3(r – 1). Then by the induction hypothesis, IR1 I z 2’-1 at time t + 3(r – 1).

By the code, there must be some time t‘,where t + 3(r – 1) < t‘ < t +

3( r – 1) + 2, at which p, reads some RJ. Fix j to be the index of the first such
read that occurs. By the induction hypothesis, IR, I > min{2’ – 1,n] at time
t + 3(r – 1). Since p, reads R] by time t + 3(r – 1) + 2, the code implies that

P, subseWentlY writes R, by time t + 3r. It follows that IR, I z 2’-’ +

min{2’– 1,n} > min{2’, n} at time t + 3r. ❑
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In particular, at time t + 3[log n], we have 1R, I z tZ for every i. Thus,
fast-collect, returns by time t + 3[log nl. We have:

LEMMA 6.3. Let a‘ be a finite prefm of a. Assume that in a‘, fast-collect, is

inlloked by p,, for eue~ i = {O, . . . . n – 1}. Then for ece~y i G {O, . . . . n – 1},

fast-collect, returns within at most O(logn) time after time( Q ‘).

6.3.2. Fast Synchronization. The synchronization procedure, synch, is used
to guarantee that at least one of two events has occurred: (a) all processes have
started executing increase-counter, or (b) some process has completed execut-
ing increase-counter. It uses a similar transitive information collection strategy
to that used by fast-col Iect, but it is not wait-free. In case the processes run
synchronously, it is guaranteed to terminate within time O(log n).

The code appears in Figure 8. In the code, each process p] uses a flag ~ to
indicate that it has completed executing increase-counter. If a process, while
executing synch, ever finds any other process’ flag equal to true, it terminates
execution of synch.

In the absence of such early termination, a process executing synch attempts

to determine that all processes have written their fields of the shared array R.

Itdoes so using the transitive collection strategy represented in Lines 5-6. The
waiting loop in Line 4 ensures that (in the absence of early termination) the
process does not terminate until all processes have written their fields of the
array R. That is, when a process terminates, it must be that either all R, are
non- L or some ~ = true. The fact that the information collection is done
transitively implies a logarithmic upper bound in case all processes run syn-
chronously.

For the rest of this subsection, fix some execution a of fast-n-approx.

The first lemma gives the correctness claim. Its proof is straightforward.

LEMMA 6.4. Let a‘ be a finite prefti of a. Assume that in a‘, synch, returns,

jor some p,. Then, at the end of a‘ either all R entries are # 1 or ~ = true for

some j.

The next lemma gives a linear upper bound on the time required by synch.

LEMMA 6.5. Let a‘ be a finite prefix of a and let i = {O, . . . . n – 1}. Assume

that in a‘ all R entries are set to [’alues + 1, and that synch, is in Loked by p,.

Then, synch, returns within at most 6tI steps by p, after the end of a‘.

PROOF. Each iteration of the while loop in procedure synch takes at most
six steps. (There are three operations, and because of alternation they might
require six steps. ) The claim follows, since the loop will be executed at most n
times. ❑

The following lemma gives the O(log n) time bound.

LEMMA 6.6. Let a‘ be a finite prefti of a. AssLu?le that in a‘ all R entries are

set to L1alLles # 1, and synch, is iruoked by p,, for e[’ey i = {O, . . . . n – 1}.

Then, e[’ery process terminates synch within at most O(log n) time after the end

Of a’.

PROOF. Let t be the time of the last event of a‘. We prove that for every
process p, and for every integer r, O < r s [log nl, by time t + 10r, either p,

sets ~ = trL[e or IR, I > min{2r, ~2}. The claim follows by taking r = [log nl: by
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shared var

R : array [1..n] of single wrtter regtsteT;

procedure synch(R);

begin

1: repeat until R, # 1; j“ z has written. “/

2: 1 := 1;

3: whale 1 < n and T,+f~odn = 1 do 1* p,+l~~d~ has not yet terminated. ‘/

4: repeat until R,+l ~O,fi # 1; ~* P+lnmdn has written *j

5: R, := concatenate (R,, R[,+lJ~~d~),

6: 1 := IR, I;

od;

end:

FIG. 8. Fast non-wait-free synchronization—Code for process p,.

time t + 10[log nl, either p, sets ~ = true or Il?,l > n. If p, sets ~ = true, then

P, has already terminated SYnCh,. On the other hand> if IR, I ~ n> then P,
returns from synch, within 0(1) time.

The proof is by induction on r. The base case, r = O, is trivial.
For the induction step, assume that 1 s r s [log n 1. If p, sets ~ = true by

time t + 10r, then the claim is immediate, so assume that T, is not true by time
t + 10r. In particular, ~ is not true by time t + 10(r – 1). Hence, by the
induction hypothesis, IR, I > min{2r - 1,n.} = 2’-1 by time t + 10(r – 1).

By the code, there must be some time t‘,where t+lO(r–l)<t’<t +

10(r – 1) + 6, at which p, reads some ~. (This bound takes into account the
fact that the synch procedure is executed in strict alternation with another
task.) Fix j to be the index of the first such read that occurs. If ~ = true by
time t + 10(r – 1), then when p, reads ~ the value is true and p, sets

~ = true by at most 2 time units later, that is, by time t + 10(r – 1) + 8< t +
10r. This is a contradiction, so it must be that ~ # true by time t + 10( r – 1).
By the induction hypothesis for r – 1, IR, I z 2’-1 by time t + 10( r – 1). Since

P, reads ~ bY time t + 1O(r – 1) + 6) the code imPlies that P, reads R, and
then writes R, by time t + 10r. Then, the length of R, at time t + 10r is at
least 2’-1 + 2’-1 = 2’. as needed. ❑

6.4. CORRECTNESSPROOF. We remind the reader that an execution of the
algorithm is viewed as a sequence of primitive atomic operations that are reads
and writes of atomic registers. We now fix some execution a of fast-n-approx.

As in the proof of the two-process algorithm (Section 5), the crucial point in
the proof of the algorithm is showing that, in Lines 3–4 of fast- n-approx,
processes use “close” values for c“ and Cb. We show that the value of an
arbitrary counter when some process invokes fast-collect is at most 3 less than
the maximum value that this counter ever attains. This is formalized and
proved in the next lemma: (As before, we identify 1 with – 1 in arithmetic
expressions.)

LEMMA 6.7. Assume that p, invokes fast – collect, in a. Fix some process p];

let k be the value of Cl returned by fast-co llect,. Let k‘ be the maximum llalue

attained for C, in a. Then, k’ – 3 s k < k’.
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PROOF. The inequality k < k‘ follows immediately from the Pact that reads
and writes of the shared register are atomic. To prove the other inequality, let
p, be the first process to execute the write operation in Line 4 of
increase-counter. Such a process exists because p, performs this write opera-
tion before invoking fast-co llect,. Let a‘ be a shortest prefix of a that includes

Plus write to T’. Let k“ be the value of C, at the end of a‘. Since any
invocation of fast-collect follows this last write operation in Line 4, Lemma 6.1
and the fact that reads and writes to C, are atomic imply that k“ s k. Thus, it
suffices to show that k‘ – 3 < k“. There are two cases according to the way p, ~

exits the alternate construct in Lines 2–3 of increase-counter:

Case 1. plr exits the while looP. It must be that one of the halting
conditions of the while loop is false for p, ~. If p, and p, are in the same group,

that is, g, = g,, then p, will perform at most one iteration of the while loop
after a‘ before p, also sees the corresponding condition to be false. If p,, and
p, are not in the same group, that is, g, # g,, then p, will perform at most one
iteration of the while loop after a‘ before p, sees the first condition to be false
(by observing C, # L). The claim follows.

Case 2. pi returns from synch,. By definition, for all 1 G {0,..., n – 1},
Tl = 1 when p, terminates synch,,. It follows from Lemma 6.4 that, for all
/= {0,..., H – 1}, the value of C, at the end of a‘ is # 1. By Lemma 6.5, p,

will exit synch,(C) after performing at most 6n of its own steps after a‘. It
follows from the definition of alternate that p, will perform at most 3n steps in
the while loop in Line 2 of increase-counter, before synch,(C) terminates.
However, each iteration of the while loop takes at least ~z steps (since 11
registers have to be read). Thus, p, will perform at most three additional
iterations of the while loop, before synchj( C) terminates. The claim
follows. ❑

This implies that, for each local counter, the values read by two different
processes differ at most by 3. Hence, the values used by different processes for
the joint counters c” and Ch differ at most by 3~z.Formally, we have:

LEMMA 6.8. Suppose i, j = {O,..., n — 1} and g = {a, b}. Assume the lalues

returned by fast-collect, and fast-col Iect, are c; and Clr, respectively. Then.

Icf – C:l < 3n.

We can now prove that the algorithm satisfies the agreement property:

LEMMA 6.9. If fast-approxl retunzs y, and fast-approx, returns y,, then

Iy, -yll = ● .

PROOF. The general outline of the proof parallels that of Lemma 5.2;

however, some of the details are different. First, the discrepancy between

processes’ view of the joint counters might be 3n; to compensate for that, we
use bias with E/6rz. In addition, we must allow for the possibility of using
different values from the same group (by applying Lemma 4.4). The details
follow.

We start with the proof for the case where p, and p~ are not in the same
group; without loss of generality. assume g, = a and g, = b.

Assume that the values computed by p, based on fast-collect, to be used in
Lines 3–4 of fast-n -approx are ( L),”, L),b, c:, c!); similarly, assume that the
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values computed by p, based on fast-collectJ to be used in
fast-n-approx are (t) J’, L)b, CJ’, c;). Note that since p, is in group
~],” + 1 ; similarly, since p, is in group b, c; > 0 and vlb # 1.

For any process pk, denote by w~ the write by process p~

increase-counter (if it appears in a). Since p, and P, decide, n-,

749

Lines 3–4 of
a, c; k O and

in Line 1 of
and T, must. . . .

appear in a. Let pl, be such that n, t is the ‘first write of Lin~ 1 of
increase-counter in a. Assume, without loss of generality, that p,, is in group
a. Intuitively, we assume that the first process to start the second phase of the
algorithm belongs to p,’s group, a.

The code of the algorithm implies that, for any p, in group b, Tj precedes
any calculation of Co by p],. Since m-,, precedes T] it follows that plt will
always calculate C“ # 1. Thus, Clu> 0 and hence fast-n-approxl returns in

I,ine 4 and L~ # 1. Also, the above implies that C’b never increases beyond 0.
Thus, c; = 0 and c: = {J- , O}. We separate the rest of the proof into two cases:

~b=lCase 1. . Then, fast-n-approxl returns z]; in Line 3. From the
code, it follo& that c: > I~1,”16n\E. By Lemma 6.8, cl’ > I~’,”16n\E – 3n. Since
C,” > (1 = c~, applying Lemma 4.2 (2) with n] = 3n we get that

(1)

Also, Theorem 3.1 implies that 1L,” – L~JaI < E/lz. Applying Lemma 4.4 with

8 = .E/12, co = c;, c’ = c;, v: = u;, L’; = L)b, L1f = u:, l]! = L’lh, We get that

From (1) and (2), it follows that

as needed.

Case 2. Cb = O. Thus, fast-n-approx, returns in Line 4 and L),b+ J-. We
have that m’in{c~, c:} = c: = O and min{c~, c;) = c: = O. Also, lc~ – c~l +
lc~ – c~l = lc~ – c~l < 3n by Lemma 6.8. Applying Lemma 4.3 with m = 3~~
we get

Also, Theorems 3.1 and 3.10 imply that lu~ – LI~l s E/12 and IL’? – ZI~l s 6/12.
By applying Lemma 4.4 with 8 = ●/12, we get

From (3) and (4), it follows that

as needed.



750 H. ATTIYA ET AL.

We now consider the case where p, and p] are in the same group; without
loss of generality, assume g, = g, = a. Let p, be such that WI~ is the first write
of Line 1 of increase-counter m a. (As before, m-k is the write by process p~

in Line 1 of increase-counter.) Assume first that p,, p, belong to the group
that wrote first, that is, g, ~= g, = g,. In this case! ~!, ~~ ● {L, 0} (by arguments
similar to those above). We separate the rest of the proof into three cases:

case 1. c: = 1. Then fast-n-approxl returns LIZUin Line 3. If c; = L ,
then fast-n-approx, returns L~ “m Line 3, and the claim follows, since Theorem
3.1 implies that I~,” – [~’1 < e/12. Otherwise, c: = O. From the code, it follows
that c; > 1~,’16n/e. By Lemma 6.8, c; > l~,”16~z/~ – 3n. Since C,a>0 = c:,
applying Lemma 4.2(2) with m = 311,we get that

(5)

From (5) and (6), it follows that

as needed.

Case 2. c; = L is symmetric to Case 1.

Case 3. C;= c;= O. Thus, fast-n-approxl and fast-n-approx, return in
Line 4 and L’,h,L’: # 1. We have that min{c~, c~} = c: = O and min{c,”, C,h}= c;
= O. Also, Ic; – C,UI+ lc~ – c~l = lc~ – C,als 3n by Lemma 6.8. Applying
Lemma 4.3 with m = 3n, we get

Also, Theorems 3.1 and 3.lCI imply that IL,” – [~1 < E\12 and IL’,6– UJhl< E/12.
By applying Lemma 4.4 with 8 = ~/12, we get

From (7) and (8), it follows that

as needed.
Assume now that p, and pJ are not in the group that wrote first, that is,

g, # g,. By arguments similar to those above, c: = C,a= O, c: >0 and C,h>0.
Thus, fast-n-approxl returns in Line 4 and L): + 1. We have that min{c~, c:}
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=C; = O and min{c~, c~} = c; = O. Also, lc~ – c~l + lc~ – c~l = lc~ – c~l <
3n by Lemma 6.8. Applying 4.3 with m = 3n, we get

Also, Theorems 3.1 and 3.10 imply that Il,” – ~~I s ~\12 and I~T,b– L1lbI s E/12.

By applying Lemma 4.4 with 8 = ~/12, we get

( )(bias L),”, V,b, c;, c!, ~ – bias u,”, l)lh, c:, c;, :
)

<;=;. (lo)
6n 6n

From (9) and (10), it follows that

as needed. ❑

We have:

THEOREM 6.10. Procedure fast-n-approx is a wait-free algorithm for the

n-process approximate agreement problem whose time complexity is O(log n).

PROOF. Agreement follows from Lemma 6.9. Validity follows immediately
since the values returned by wait-free-approx and wait-approx are in the range
of the original inputs, and the bias function preserves this property (by Lemma
4.1).

The algorithm is wait-free because the first alternative of each alternation
construct and fast-collect are wait-free.

Within O(1) time all processes finish n-to-2. Thus, within O(1) time all
processes start procedure increase-counter, write to C, and invoke synch. By
Lemma 6.6, within O(log n) time, each process terminates synch. Thus, within
O(log n) time, all processes exit increase-counter and invoke fast-collect. By
Lemma 6.3, all processes return from fast-collect within O(log n) time. Hence,
the total time complexity is O(log n). ❑

7. A log n Time Lower Bound

In this section, we show that the log n dependency exhibited by the algorithm
of Theorem 6.10 is inherent: The time complexity of any wait-free algorithm
for n-process approximate agreement is at least log n. Together with Theorem
3.1, this result shows that there are problems for which wait-free algorithms
take more time (by an fl(log ?2) factor) than non-wait-free algorithms.

In the rest of this section, we assume that each process has only one register
to which it can write. Since the size of registers is not restricted and since only
one process may write to each register, there is no loss of generality in this
assumption. Let R, be the register to which p, writes. For a configuration C
and a process p,, let st( p,, C) be the pair consisting of the local state of p, and
the value of R, in C, (that is, st(p,, C) = (state(p,, C), ual(R,, C)).

The synchronized schedule is the schedule in which processes take steps in
round-robin order starting with pO, essentially operating synchronously. The
sequence of r rounds in the round-robin order is denoted u,. For any
configuration C, the corresponding synchronized execution from C is uniquely
determined by the algorithm. Note that this is a failure-free execution.
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We now define the set of processes that could have influenced p,’s state at
time r in the synchronized execution from a configuration C. Let C be a
configuration; by induction on r > 0, define the set LVF( p,, r, C’), for every
iE {t),..., n – 1}, using the following rules:

(1) r= O: lAJF(pz, r,O = {p,}, for every z’~ {0,... $/2 – 1}.
(2) r >1: If pi’s rth step in (C, q) is a read of R,, then LVF(p,, r, C) =

INF’(pl, r – l,C) U INF(p,. r – l, C). If p’s rth step is a write (to l?,).
then INF(p,, r,C) = lNF(pl, r – I, C).

LEMA4A 7.1. IINF( p,, r, C)l s 2’ for elery configumtioil C, r z O and i G

{o, . . . . /’2 – 1}.

~ROOF. By induction on r. ❑

The next lemma formalizes the intuition that INF includes all the processes
that can influence p’s state up to time r.

LEMMA 7.2. Let Cl and Cj be nvo con&zwations, let p, be any process and let

r k O. If st(p~, Cl) = st(p~, C2) for all p~ = INF(p,, r, Cl), tilt’n st(p,, Clq) =

st( p,. C2 q ).

PJ<OOF. The proof is by induction on r. For the base case, r = O, we have
INF( p,, 0, Cl ) = {p,} and aO = A Then, the claim follows immediately from
the assumption.

To prove the induction step, assume r > 1 and the claim holds tor r – 1, and
suppose that ,st(pk, Cl ) = st( pk, Cj ) for all p, G INF( p,, r, C1 ). Since, by defi-
nition, INF(pl, r – 1, Cl) G INF(pl, r, Cl), it follows that st(pk, Cl) =

st( p~, C.) for all pL c INF( p,, r – 1, Cl ). Then, by the induction hypothesis,
st( PI. Cl-q _,) = st( p,, Cz q _, ). We consider two cases:

If p,’s rth step in (Cl, q ) is a write. then the fact that st(p,, Cl q _,) =

st(p,, C: q-, ) implies that st(p,, Cl q ) = st( p,, C2q ), as needed.
On the other hand, suppose that p,’s rth step m (Cj, q ) is a read, say from

R,. By definition, INF( pj, r – 1, Cf ) c INF(p,, r, Cl ), and hence, st(pk, Cl ) =

st( pk, C.) for all pL E INF( p,, r – 1, Cl). Then. by the induction hypothesis,
st(p,, C1-cr -l) = st(p,, L’2~_, ). Since also st(p,, C1q_, ) = st(p,. C,q_l), it
follows that st(p,, C’l q ) = st(p,, Czq), as needed. u

We can now prove:

THEOREM 7.3. Any ~vait-free algorithm for the n-process approximate agree-

ment problem ilas time complexity at least log n.

PROOF. Assume that A is a wait-free approximate agreement algorithm.
We prove a slightly stronger claim: There exists a failure-free execution a in
which no process decides before time log ~z.Suppose, by way of contradiction,
that in all failure-free executions some process decides before time log ~z.

Fix some ~ < 1. Let o be the infinite synchronized schedule. Consider the
execution (C(l, cr ) of A from the initial configuration C,, where processes start
with inputs (O. . . . , O). Let t be the time associated with the first decision event
in ( Ctl, cr ), and let p, be the process associated with this event; by assumption,
t < log n. By the validity property, p, must decide on O since all processes start
with O.
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By Lemma 7.1, we have that IINF( p,, t, Co)l s 2’< n. Thus, there exists
some process, say p,, that is not in lAT’( p,, t, CO).

Intuitively, to complete the proof, we create an alternative execution in
which p] “starts early” with input 1, runs on its own and thus must eventually
decide 1. We then let the rest of the processes execute as if they are in the
synchronized execution from Co and use Lemma 7.2 to show that process p,

still decides on O, which is a contradiction to the agreement property, since
E<l.

More precisely, apply ~, an infinite schedule consisting of steps of p, only, to
the initial configuration C’2, where processes start with inputs (1,. . . . 1). The
resulting execution (C’2, ~) is (n – 1)-admissible, and thus, since A (n – l)-
solves the approximate agreement problem, and since pJ is nonfaulty in ~,
there exists a finite prefix r‘ of 7 in which p] decides. By validity, p] decides
on 1. Now apply t-’ to the initial configuration Cl where all processes but p,

start with input O, and p, starts with input 1. By induction on the prefixes of ~‘,
it follows that st(p,, C17’) = st(p,, Czr ‘). Thus, p, decides on 1 in Clr’. Since
p, can write only to RI, it follows that for all processes pk + p,, st( p~, C17’) =

St(pk, CO). By Lemma 7.2, state( p,, C,~ ‘o-f) = state( p,, C,, Ot). Thus, p, decides
on O in Clr’ at, and p] decides 1, which is a contradiction to agreement, since
e<l. ❑

8. A Trade-Off between Work and Time

We now consider the performance of wait-free algorithms when failures occur.
A drawback of the fast algorithms we have presented in this paper is that, if a
failure does occur, then the remaining processes will have to take many steps
before halting. We show that this phenomenon is unavoidable. Roughly speak-
ing, we prove that if an algorithm terminates in a small number of steps in
executions where failures do occur, then it is slow in normal executions. In the
rest of this section, we restrict our attention to the two-process case.

Let the work performed by an algorithm be defined as the maximum, over all
executions, of the total number of operations performed by all processes
before deciding. To bound the work from below, we show a stronger bound:
We prove a lower bound on the number of operations a single process
performs before deciding when running on its own. Clearly, this also gives a
lower bound on the work.

Let k z 1 be an integer. An algorithm is k-bounded if from any reachable
configuration, a process that executes k consecutive steps on its own must
decide. Fix a k-bounded wait-free algorithm A for approximate agreement; all
definitions and lemmas in the rest of this section are with respect to A. For
each process p, and each configuration C reachable in an execution of A,

define pref(C), the preference of pi in C, to be the value on which p, decides
in the execution fragment starting from C in which it runs alone until it
decides.

A finite schedule is a block if it consists of a positive number of events by p.

followed by one event by pl, or vice versa.

LEMMA 8.1. Let w be a finite schedule, and let C,, be an initial configuration.

Let C = COq. Then, there exists a jinite block schedule o‘ such that

~refo(Ca’) -prefl(Ccr’)l > ~lprefo(C) -prefl(C)l.
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PROOF. The proof considers the tree of all block schedules applied to C. A

case analysis, according to the types of steps taken, similar to the one in [Loui

and Abu-Amara, 1987], is used to show that it cannot be that all the pairs of
preferences associated with leaves of this tree are close together. The details
follow:

Let TO= Ok, that is, the schedule consisting of k events of p,]. Similarly, let
7-, = l~. Let (C, ~o) ==C, Cl,..., ~,~, and (C, ~l) = C, C{,..., Cj. For any 1,
1<1< k, define D[ = C1l, that is, the configuration that results from applying
an event of pl to Cl. Similarly, for any 1, 1 < 1 < k, define llj = CjO. Define
L’“( = prefo(~l), u; = prefl(~l), ILL = prefO(~~) and u; = prefl(~~).

Since A is k-bounded, it must be that pfl decides in Cro; by definition, it
must decide on pre~o(C ). Similarly, p, decides on prefl(C) in CT,. Note that

pre~O(C) = pre~o(Ck ) = pre~,,(CL 1) = L:, and prefl(C) = prefl(Cj ) = prefl(CjO)

= 14;.

We show that for all 1, 1 s 1< k, either ~{1= ~)~ i or z’; = L!+ 1. There are
four cases, depending on the type of operation taken in p~,’s step from C[ to

Cl+ 1 and in PI’s step from C[ to 111:

(1) P(I writes and PI writes: commutativity implies that ~)~1= ~(1+1.
(2) pO reads and pl reads: commutativity implies that ~. = [{1+1.

(3) p,, writes and PI reacls: ui = LI~+ 1, since the state of p{] is the same in D,O
and Dl+ ~.

(4) PO reads and p, writes: l); = L’;+ 1, since the state of pl is the same in D,

and Dl+ 1.

By symmetric arguments we can show that for all 1, 1 <1< k, either

~+1 or Lt~ = u!+].11; = 11(, In a similar manner, we show that either L] = u] or
u; = u~, by case analysis, depending on the type of operation taken in PO’S step

from C to Cl and in pi’s step from C to C{:

(1) p. writes and PI writes: commutativity implies that l’; = u~ and LI] = zf~.

(2) PO reads and PI reads: commutativity implies that L); = U\ and LI\ = u].

(3) PO writes and pl reads: U; = u~), since the state of PO is the same in ~1

and D;.

(4) PO reads and PI writes: L): = u], since the state of p[ is the same in DI

and D\.

Suppose, for instance, that L)~ = u{. (The argument is analogous if r; = L{~.) It
is possible to show (e.g., by induction) that IL’I – u 1I s X!= 1 IL)i – L’{ 1, and that

Iu; – U;l < z;=, Iu{ – u~l. Therefore, Iu$ – u:l ~ Xf=, lL’f, – L’~1+ 2;=11z4~ –

u~ 1. By simple calculations, this implies that either there exists some 1 such that
lu~ – L;l > l/2klL’~ – u~l, or there exists some 1 such that, lu~ – u~l >

1/2kl U( – 14; 1. Recall that prefo(C) = L);, and prefl(C) = u;. Therefore, ei-
ther there exists some 1 such that IL’: – LIjl 2 l/2klprefO(C) – prefl(c)l, or
there exists some 1 such that, Iui – u; I > l\zklpre~o(C) – pre~l(C)l. In the
first case, the claim follows by taking o‘ = 0~1; in the second case, the claim
follows by taking u‘ = 1~0.

These facts can be used to show (e.g., by induction) that Iu: – L)~I < X;= ~ IL’{

– [jl, and that lu~ – 248I < Z!= 1 Iu~ – u~ 1. 13y simple calculations, this implies
that either there exists some 1 such that ILI~ – u ~I > l\2k Il): – uf 1,or there
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exists some 1 such that, Iu& – u~l 2 l/2klLl$ – u; 1.Recall that pre~()(C ) = LI~,

and pi’e~l(C) = u;. Therefore, either there exists some 1 such that \LJ~ – u ~I z

l/2kl prefo(C) – prefl(c’)l, or there exists some 1 such that, Iu[] – u{ I >
l/2k Ipre~O(C) – pre~l(C)l. In the first case, the claim follows by taking u‘ =
O~l; in the second case, the claim follows by taking o-’ = 11O. ❑

Note that the validity condition implies that if p,’s input in an initial
configuration C is u, then pref(C) = .L’l. Starting with this fact and applying
Lemma 8.1 iteratively, we can bound the rate at which a k-bounded algorithm
converges. We get:

THEOREM 8.2. Let A be a k-bounded wait-free algorithm for approximate

agreement between two processes, and let XO and x ~ be arbitrary real numbers,

X() + xl. Then there exists an execution of A where processes start with inputs

(x,, xl), in which the time complexity is ~(log2k(lx(, -x, I/e)).

PROOF.

inputs x{)

that CT[ is

Let C be an initial configuration in which the two processes have
and xl, respectively. We construct, inductively, a schedule ml such
a sequence of 1 blocks and for Cl = Cml,

lprefo(C[) -prefl(C1)l 2
()

& llprefo(C) -prefl(C)l.

This is done by repeatedly applying Lemma 8.1. We have that time( ml) = 1,

since o-l consists of 1 blocks. The validity condition implies that pref( C) = x,.
Thus, IprefO(C) – prefl(C)l = IXO – xl 1. The claim follows by noticing that
it cannot be that both pO and p ~ have decided in a configuration D if
lprefO(D) – prefl(D)l > E. ❑

REMARK 8.3. The case analysis in the proof of Lemma 8.1 can be extended

to handle multi-writer multi-reader registers; thus, the above trade-off applies

also to algorithms that use multi-writer multi-reader atomic registers.

9. Properties of the Bias Function

In this section, the interested reader may find the long postponed proofs of
Lemma 4.1 through 4.4. We begin with the rather straightforward proof of
Lemma 4.1.

LEMMA 4.1. Let cO, cl be nonnegatil~e integers, and 1)0, u ~, ● be real numbers,

with E > 0. Then

bkiS(L”,LJ1, CO,C1, E) G L’ULZge({U(’, U1}).

PROOF. Let y = bias(v”, U1, co, C1, E). The claim is trivial if y is calculated
in Line 1. If y is calculated in Line 2, then
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If the min is attained in the second term, then y = L 1 and the claim follows. So
assume cl~ < ILI11,so

u“ — L“
y=~)l+

1~”1 + IL,l 1(1 L’ll ‘CIE)

Assume L’1 2 v”. (A symmetric argument applies when L)’ < 1)“.) Then, 1”) – 1’1
S O, so y S ~)1.Since

/1” — /!’

IL’(’I + IC1l I
(IL’ll – CIE) 5 L1l – L“],

it follows that y 2 LJ0.

The case where y is calculated in Line 3 is symmetric. ❑

The following is the proof of Lemma 4.2:

LEMMA 4.2. Let co, c 1 be nonnegatiL,)e integers, and L’”, L”, c, m be real nunz-

bers, E >0, m >0.

(1) suppose c] > c“ and lL’ll/E – m s c’. Then lbias(L’’’, L,c”, c,,’, ●) – LI’I s
me.

(2) Suppose co > c] and \L’Ol\e – m s co. Then lbias(L’”, L“, c“, c’, ~) – L!”I <
me.

PROOF. We present the proof only for (2); the proof for (1) follows from
symmetric arguments. Let y = bias( z”, L,’l,co, C1, E). If y is calculated in Line 1

“ = O and the claim follows. hence, sinceof the bias code, then y = O and L’

co > c 1, it follows that y is calculated in Line 3 of bias, that is,

If the min attains its value in the second term, then y = LI 0, and the claim
follows. Otherwise, C“e < IL~”l; thus,

Iy _ ~)o,= “1 – L’”

11’”1+ IL’l

ILJ’ - L’ol

lUOl + IL’ll

(IL’01 – cOE)

lL’O] – COEl

< \lu”l –CoEl = IL)(]I – c“~<m~,

by the hypothesis of the lemma. ❑

Next is the proof of Lemma 4.3.

LEMMA 4.3. Let c;, c;, c?, cl be nonnegative integers, and lJO,L1~, E, m be real

numbers, e > 0 and m > 0. Suppose min{c~, c;} = nzin{c~, c;} = O and lc~ – c! I

+ lc~ – c~l s m. Then

lbias(uO, L’l, c~, c~, e) – biaS(L’O, LI’>c~, c;, e)l SmE.
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PROOF. Let y,] = bias(zr), ~1, c:, c;, ~), and yl = bias(uo, L1l, c!, c1, E).

If ~’0 = u 1 = 0, then both ytl and yl are calculated in Line 1 of bias, that is,

y{) = y ~ = O and the claim follows.
Now ~ssume yO is calculated in Line 2 of bias, while yl is calculated in Line

3 of bias (the reverse case is symmetric). Thus, c1 < C;, while C] s c!. Thus,
by assumption, cl = c~ = O. Since lc~ – c~l + lc~ – c~l s m, h follows that

Ic!’1 + lc~l= c: + c~,< m. Thus, min{c~, ltOl/~} + min{c~, l~’ll\e} < m. So,

min{c~e, 1~’”1}+ min{c~e, 1~~11}s m~. We have

~)o— U1
= 1’1– ~)o+

ILJ(’I+ ILIII
([ LJ’JI + It”l)

as needed.
Now assume that both y. and y, are calculated in Line 2 of bias (the case

where both are calculated in Line 3 of bias is symmetric), that is,
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If, for y,,, the min is attained in the second term, then c; e > Iz’L1, and
ytl = ~]l; since Icj – c~l s nz, it follows that c; > 1~)11/~– m. Because VI is
calculated in Line 2, c ~ < c ~ and the claim follows from Lemma 4.2(l). A

similar argument applies if for yl the min is attained in the second term. So
assume that for both y. and y ~ the min is attained in the first term. Thus,

In the proof of the next lemma, we use the following two facts:

CLAIM 9.1. If x, y, x‘, y‘ are real numbers, such that lx] + Iyl # O and

\x’1 + Iy’1 + O, cmdforsome 8, lx –x’l <8 and Iy –y’] <8, then

Ixl(y -x) Ix’l(y ’ -r’) ~ ~a

1X1+ I.YI - Ix’1 + IJ”I “

We prove this claim by first showing that

X(y –x) X’(y ’ –x’)
< 3s,

.x+y x’ +y’

using calculus, then handling the absolute values by case analysis.

CLAIM 9.2. If x, y, x’, y’ are real nLwnbers, such that Ix I + Iy I # O and

Ix’1 + Iy’1 # O, andjbrsonze 8, lx –x’I g 8 and 1~’ –y’] s 8, then

(y –x) (y -x) 28

1X1+ Iyl - Ix’1 + Iy’1 < min(lxl + Iyl, lx’1 + Iy’1) “

We prove this claim by straightforward calculations and a case analysis.

Finally, we can prove Lemma 4,4,

LEMMA 4.4. Let co, C1 be nomzegatile integers, and L:, L)~,, L1f, L!, E, 8 be real

numbers, with e > 0, 8 > 0. Suppose IL’: — LI~l < S and lLI~ – L1}I s 3. Then

PROOF. Let yO = bias(t~, L;, c’], c], E), and y, = bias(~~, L’~, co, cl, E). If

t,;: 1 – O then y. = O. Thus, lLI~\ s 8 and \L’~1 < 6. So, from Lemma 4.1, it‘L’o —,

follows that Iy, I s 8 and the claim follows. The case LJ~ = L){ = O follows from

symmetric arguments. So assume at least one of LI~, L); is nonzero and similarly

for at least one of u!, l;.
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Assume that c” < cl, that is, y. and yl are calculated in Line 2. (The other

case, where c 1 < co and y,, and yl are calculated in Line 3, is symmetric.)

Then

and

First, assume the min for y. is attained in the second term; then y. = u;. In

this case, if the min for y, is also attained in the second term, then yl = v ~,

and the claim follows. On the other hand, suppose the min for y ~ is attained in
the first term. Since the min for y. is attained in the second term, c 1~> IL);I >

lL’~\ – 8. Applying Lemma 4.2(1) with m = 8/e, we get that Iyl – u~l s 8.
Since 1~’~– z)~l < ti, we have lyO –yll s 2S.

Now assume that in both cases the min is attained in the first term. In
particular, ck < Iu! I and Cte s lu~l. We have,

❑
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10. Discussion and Further Research

We have presented a relatively fast, O(log iz) time, wait-free algorithm for
n-process approximate agreement. This shows that wait-free algorithms for
approximate agreement can be fast, but not as fast as the best non-wait-free
algorithms for this problem: we have shown that log n is a lower bound on the
time complexity of any wait-free approximate agreement algorithm, while there
exists an O(1) time non-wait-free algorithm.

Using the emulators of [Attiya et al., 1990], our algorithms can be translated
into algorithms that work in message-passing systems. The algorithms have the
same time complexity (in complete networks) and are resilient to the failure of
a majority of the processes.

There are many ways in which our work can be extended. An interesting
direction is to consider the impact on our results of using other shared memory
primitives. For example, if powerful Read-Modijj-Write registers are used, then
a constant time wait-free approximate agreement algorithm can be devised.
What happens if mLdti-writer multi-reader registers are used’? The existence of
faster wait-free algorithms using these primitives will imply a lower bound on
the time complexi~ (in normal executions) of any implementation of multi-writer
registers from single-writer registers.

Another avenue of research is to see whether the techniques presented in
this paper, both for algorithms and lower bounds, can be applied to other
problems. We believe, for example, that the 0(1) time algorithm for two-pro-
cess approximate agreement can be generalized to a~zv decision problem of size
2, using the characterization result of [Biran et al., 1990]. It is interesting to
explore whether similar results can be proved for problems that require
repeated coordination (e.g., l-exclLLsion).

Finally, there remains the fundamental unanswered question raised by this
work: Can wait-free (highly resilient) computation be performed at the price of
no more than a logarithmic slowdown? Even more strongly, are there O(log n)
time wait-free algorithms for all problems that have wait-free solutions?

Since the preliminary presentation of our work, first steps have been made
towards answering this question in the context of randomized computation
[Saks et al., 1991]. Based on the alternated-interleaving method presented in
Section 6.2, Saks et al. [1991] are able to show that any decision problem that
has a wait-free or expected wait-freel 1 solution algorithm, has an expected
wait-free algorithm with the same worst-case time complexity, that takes only
O(log n) expected time lz in fault-free executions. However, the above question
itself is still far from being answered.

ACKNOWLEDGMENTS. We would like to thank Jennifer Welch, Ophir Rach-
man, Marios Mavronicolas, and the anonymous referees for reading earlier
versions of the paper and for many helpful comments. Thanks are also due to
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‘‘ An e~pectcd wait-free algorlthm is a randomized algorithm that n only expected, rather than
guaranteed, to terminate within a finite number of steps.

‘2 This is optimal by a straightforward extension of our lower bound to the case of randomized

computation (see Saks et al. [1991]).
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