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a running time of approximately 2~ti + Cd in the worst case. (It is assumed that Cz << d.) The
second result shows that any agreement algorithm must take time at least (~ – 1M + Cd in the

worst case.
The new agreement algorithm can also be applied in a model where processors are synchronous

(C = 1), and where message delay during a particular execution of the algorithm is bounded
above by a quantity 8 which could be smaller than the worst-case upper bound d. The running

time in this case is approximately (2~ – 1)8 + d.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed

Systems—distributed applications; distributed dattrbase~; network operatag systems; C.4 [Perfor-

mance of Systems]: reliability; availability; and serLliceabi/ity

General Terms: Algorithms, Performance, Reliability, Theory

Additional Key Words and Phrases: Agreement, consensus, distributed agreement, distributed

consensus, fault-tolerance, timeout, timing uncertainty

1. Introduction

Distributed computing theory has studied the complexity requirements of many

problems in synchronous and asynchronous models of computation. There is

an important middle ground, however, between the synchronous and asyn-

chronous extremes: models that include inexact information about timing of

events. This middle ground is reasonable for modeling real distributed systems,

in which the amount of time required for processes to take steps, for clocks to

advance, and for messages to be delivered are generally only approximately

known.

We are interested in determining the complexity of problems of the sort

arising in distributed computing theory in models with inexact timing informa-

tion. In particular, in this paper, we consider the time complexity of the

problem of fault-tolerant distributed agreement. In the version of the agreement

problem we consider, there is a system of n processes, p,,. ... p,,, where each

P1 is given an input Value ~1. Each process that does not fail must choose a

decision value such that (i) no two processes decide differently and (ii) if any

process decides u then u was the input value of some process. We assume that

processes fail only by stopping. This abstract problem can be used to model a

variety of problems in distributed computing, e.g., agreement on the value of a

sensor in a real-time computing system or agreement on whether to commit or

abort a transaction in a database system.

The time complexity of the distributed agreement problem has been well

studied in the synchronous “rounds” model. In this model, the computation

proceeds in a sequence of rounds of communication. In each round, each

non-failed process sends out messages to all processes, receives all messages

sent to it at that round, and carries out some local computational The most

basic time-bound results in these papers are matching upper and lower bounds

of f + 1 on the number of synchronous rounds of communication required for

reaching agreement in the presence of at most f faults. 2

lSee, for example, Berman et al. [1989], Coan [1986, 1987]: DeMillo et al. [1982]; Dolev et al.
[1986]; Dolev and Strong [1983]; Dwork and Moses [1990]; Fischer and Lynch [1982]; Hadzilacos
[1984], Lamport and Fischer [1982]; Lamport et al. [1’+32]; Merritt [1985]; Moses and Tuttle [ 19881:
Moses and Waarts [1988]; and Pease et al. [1980] for results involving time complexity in this
~odel.

We use ~ to denote the number of faults, instead of the more traditional t,since we want to
reserve t to denote time.
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We consider how these bounds are affected by using, instead of the rounds

model, one in which there is inexact timing information. In particular, we

assume that the amount of time between any two consecutive steps of any

nonfaulty process is at least c1 and at most C2, where Cl and c2 are known

constants; thus, C = c2/cl is a measure of the timing uncertainty. We also

assume that the time for message delivery is at most d.3 Since processes are

assumed to fail only by stopping, process failures can be detected by “timeouts”;

that is, if an expected message from some process is not received within a

sufficiently long time, then that process is known to have failed. The time

required to implement a timeout is roughly Cd. (We sometimes approximate

time bounds under the assumption that Cz << d. The formal statements of our

results give the exact bounds.)

Initially, we hoped to be able to adapt known results about the rounds model

to obtain good bounds for the version with inexact timing. Indeed, an (~+ l)-

round algorithm can be adapted in a straightforward way to yield an algorithm

for the timing-based model that requires time at most (~+ l)Cd if there are ~

potential faults. On the other hand, a simple modification of the proof that

f + 1 rounds are necessary yields a lower bound of time (~+ l)d. There is a

significant gap between these two bounds in case C > 1, namely, a multiplica-

tive factor equal to the timing uncertainty, C. The motivation for our work is to

obtain closer bounds on the time complexity of this problem, in particular, to

understand how this complexity depends on C.

The first result of this paper is an agreement algorithm in which the

uncertainty factor C is only incurred for one round, yielding a running time of

approximately 2~d + Cd in the worst case. This algorithm uses timing informa-

tion in a novel way in order to achieve fast time performance. An interesting

feature of the algorithm is that it can be viewed as an asynchronous algorithm

that uses a fault detection (specifically, a timeout) mechanism. That is, the

timing bounds, c1, C2 and d are used only in the fault detection mechanism.

The second result shows that any agreement algorithm must take time at

least (~ – l)d + Cd in the worst case. The proof of this lower bound combines

ideas used in the rounds model [Coan and Dwork, 1991; DeMillo et al., 1982;

Dolev and Strong, 1983; Dwork and Moses, 1990; Fischer and Lynch, 1982;

Hadzilacos, 1984; Lamport and Fischer, 1982; Merritt, 1985] in the asyn-

chronous model [Dolev et al., 1987; Fischer et al., 1985], and in timing-based

models [Attiya and Lynch, 1989]. More specifically, it uses a “chain argument”

such as those used previously to prove that f + 1 rounds are required in the

synchronous model, a “bivalence argument” such as those used previously to

prove that fault-tolerant agreement is impossible in an asynchronous system,

and a “time stretching” argument such as those used to prove lower bounds for
resource allocation problems.

Although these bounds are not completely tight, they do demonstrate that

the time complexity only involves the “timeout bound” Cd in a single additive

term; Cd is not multiplied by f (the total number of potential failures) as it is

in the naive algorithm. Note that this new bound represents a significant

improvement over the naive algorithm in case C is large (greater than 2), as

3Results of Fischer et al. [1985] and Dolev et al. [1987] imply that If either one of the bounds c1 or
d does not exist, then there is no agreement algorlthm tolerant to even one fault. In the case that
only Cz does not exist, agreement tolerant to one fault is impossible assummg that receiving and
sending are not part of the same atomic step.
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might happen in the presence of inaccurate processor clocks or variable-time

process swapping.

Although our initial motivation was to understand the time to reach agree-

ment in models where there is uncertainty in process step time, our new

algorithm can be applied to more general situations. As noted above, our

algorithm works in an asynchronous system with a fault detection (timeout)

mechanism. The running time of the algorithm is expressed in terms of a

timeout bound T, an upper bound on the elapsed time between the failure of a

process and the time at which all correct processes detect the failure. Again, a

straightforward modification of a rounds-based algorithm gives an upper bound

of time (~ + l)T. In the new algorithm, the timeout bound T enters as a single

additive term (not multiplied by ~).

Another application of our algorithm yields upper bound results for a related

model used by Herzberg and Kutten [1989] to study fault detection in host-to-

host protocols. In their model, process steps are completely synchronous, that

is, C = 1, and there is, as above, an upper bound d on the worst-case time for

any message to be delivered. Even though algorithms must be designed to be

correct in the case that any message delay is d, in reality, message delivery

could be much faster than d in many executions. Therefore, it makes sense to

express the time complexity of an algorithm in terms of a new parameter 8, the

actual message delay during execution of the algorithm, as well as in terms of

the worst-case bound d. Again, a straightforward adaptation of an (~ + 1)-round

agreement algorithm gives an agreement algorithm for this model that runs in

time (~ + l)d, even in executions where 8<< d. In contrast, the main agree-

ment algorithm of this paper runs in time approximately (2~ – 1)8 + d. That

is, the number of faults multiplies the actual message delay 8 rather than the

worst-case delay d. Our lower bound techniques can be modified to give a

lower bound of time (2~ – n)ti + d, if n s 2~, for this model [Dwork and

Stockmeyer, 1991].

There has, of course, been a considerable amount of previous work on the

agreement problem in various models; a representative selection of references

to this work appears above. However, there has been very little work so far on

this problem with inexact timing information.

Some prior work on distributed agreement in a model with inexact timing

information appears in [Dwork et al., 1988]. The main emphasis in [Dwork

et al., 1988] was on determining the maximum fault tolerance possible for

various fault models; only rough upper bounds on the time complexity of the

algorithms were given, and no lower bounds on time were proved. In contrast,

the main emphasis of the present paper is on time complexity.

Related work on the latency of reaching agreement when processes are not

completely synchronous appears in [Cristian et al., 1985] and [Strong et al.,

1990]. (The lateney is defined to be the worst-case elapsed time as measured on

the clock of any correct process.) These papers assume that process clocks are

synchronized to within some fixed additive error, and the case S < d is not

considered. Unlike the results in our paper, these results are stated in terms of

clock time rather than absolute real time. Although it is possible to translate
results from those papers into our model, doing so appears to yield results with

a less precise dependency on the timing uncertainty than we obtain here.

(More detailed comparison between the models was performed by Ponzio and
Strong [1992].)
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This work is part of an emerging study of the real-time behavior of dis-

tributed systems. Other work in this area includes the extensive literature on

clock synchronization algorithms.4 More recently, the mutual exclusion prob-

lem has been studied in a timing-based model with C >1 [Attiya and Lynch,

1989]. Also, the time complexity for a synchronizer algorithm to operate in a

timing-based network is studied in [Attiya and Mavronicolas: 1990] and [Rhee

and Welch, 1992], and the time complexity of leader election algorithms in a

timing-based model appears in [Coan and Thomas, 1990].

The rest of the paper is organized as follows: Section 2 contains a description

of the formal model we use for timing-based distributed systems and a

statement of the distributed agreement problem. In Section 3, we describe a

useful “subroutine” for timing out failed processes. Section 4 contains a

discussion of some simple upper-bound results that arise easily from the known

results for the rounds model. In Section 5, we give our main upper-bound

result. Section 6 contains our lower-bound result. Section 7 contains our results

for the model with synchronous processes and uncertain message delivery time.

Finally, Section 8 contains our conclusions.

2. Definitions

2.1. FORMAL MODEL. In this section, we present the definitions for the

underlying formal models

An algorithm consists of n processes p ~, ..., p.. Each process p, is modeled

as a (possibly infinite) state machine with state set Q,. The state set Q,

contains a distinguished initial state go,, and a distinguished fail state.
A cO@gz/ratio/z is a vector C = (q,,..., q,,) where q, is the local state of P,;

denote state,(C) = q,. The initial configuration is the vector (qO, ~...., q,),.).

Processes communicate by sending messages (taken from some alphabet zH) to

each other. A send action send(j, m) represents the sending of message nz to

p,. Let S denote the set of all send actions send(j, m) for all nz E.ZZ?’and all

1 S j 5 n. Processes can receive i?zputs from some set Z of Lalues.

We model a computation of the algorithm as a sequence of configurations

alternated with elwtts. Each event is either a computation el~ent, representing a

computation step of a single process, a failure elent, representing the failure of

some process, a deliuery euent, representing the delivery of a message to a

process, or an input event, representing the arrival of a value at a process.

A computation euent is specified by comp(i, S) where i is the index of the

process taking the step and S is a finite subset of S. In the computation step

associated with event conzp(i, S), the process p,, based on its local state,

performs the send actions in S and possibly changes its local state. In all our
algorithms the set of send actions will be br-oadcmf(m), that is,

{send(l, m ),..., sendn, m)}. A broadcast includes a message to the sender
itself. A failure eueizt has the form fail( i, S ) and causes the send actions in S to

be performed; other properties of failure events are detailed below. Each

delivery event has the form del(i, m) for some nz G.%, and each input event

‘See Dolev et al. [1986]. Halpern et al. [1985]; Lamport and Melllar-Smith [1985]: Lundehus and
Lynch [1984]; Srikanth and Toueg [1987]; Welch and Lynch [1988], for e~amplc.
‘These definitions could be expressed in terms of the generaI tuned automaton model described in

[Attiya and Lynch, 19891 and [Merritt et al., 1991]; however, we choose here to present the
definitions directly. in order to avoid the intervemng layer of definitions.
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has the form input(i, v) for some t) ● 7“. In these events, the process p,, based

on m (or ~}) and its local state, may change its state.

Each process p, follows a deterministic protocol that determines its state

transitions and the messages it sends. In more detail, the protocol consists of

two transition functions, p, for delivery and input events, and y, for computa-

tion events. For each q = Q, and a E.Z u 7“, Pl(q, a) gives a state q’ ● Q,.
For each q c Q,, -y,(q) gives a state q‘ and a finite set S of send actions. We

assume in both cases that q = fail if and only if q‘ = fail, and we assume that

S is empty if q = fail. These conditions mean intuitively that (i) the protocol

cannot cause the process to leave the fail state, (ii) the protocol cannot cause a

process to enter the fail state from a non-fail state, and (iii) no messages are

sent from the fail state.

An execution is an infinite sequence of alternating configurations and events

a=c”, rl, c1 , . . .. T1. C1, ...,

satisfying the following conditions:

(1) Cc) is the initial configuration;

(2) If m, = del(i, a) or input (i, a), then stateZ(C,) is obtained by applying q, to

state, (C, _ ~) and a;

(3) If n-, = comp(i, S), then statel(CJ) and S are obtained by applying y, to

statel(Cj _ ~);

(4) If m, = fail(i, S), then sfatel(CJ - ~) # fail, statel(CJ) = fail, and S is a subset
of the send events obtained by applying Y, to state, (C, _ 1);

(5) If m, involves process i, then state~(c, _ ~) = state~(cj) for evew k # i;

(6) (Each send is matched to a later dehvery and each delive~ to an earlier
send.) For each m ● .4’ and each process p,, let S(i, m) be the set of j such

that ~, contains a send(i, m) and let D(i, m) be the set of j such that rr, is

a dehvery event del(i, m). Then there is a bijective mapping ~,, ~ from

S(i,rn) to D(i, rn) such that u,, ~(j) > j for all j ● S(i, m).

A timed event is a pair (rr, t),where n is an event and t,the “time”, is a

nonnegative real number. A timed sequence is an infinite sequence of alternat-

ing configurations and timed events

a=c(,, (rl, t,), cl>... >(~, >tj)> cl>...>

where the times are nondecreasing and unbounded.

Fix real numbers c1, Cz, andd, where O<c1<c2< ~ando<d<~.

Letting a be a timed sequence as above, we say that a is a timed execution

provided that the following all hold:

(1) Co, nl, Cl,..., fi,, CJ,... is an execution;

(2) There are computation or failure events for all processes with time O;

(3) There are infinitely many computation or failure events for each process;

(4) (Bounds on step time) Suppose j < k, the jth and kth timed events are
both either computation or failure events of the same process p,, and there

are no intervening computation or failure events of p,. Then c1 < tk– tJ

(5) (~~~er bound on message delivery time) If message m is sent to p, at the
jth timed event, then there exists k > j such that the kth timed event is the

matching delivery (del(i, m), f~) (i.e., u,,.,(j) = k) and t~ – t, < d.
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Note that for any timed execution a and any p,, there is at most one timed

event of the form (fail(i, S), t). If there is such an event, we call t the failure

time of p,.

We define a timed execution prefix to be any finite prefix of a timed execution

(ending with a configuration). For any timed execution prefix a, we define
t~,& a ) to be the time associated with the last event in a (O if a contains no

timed events).

We say that a process p, receives the message m by time t (in a timed

execution a ) if, by time t.p, has a computation or failure event that is

preceded in a by a delive~ event del(i, m). For the rest of the paper let D

denote d + Cz. Note that if m is sent to p, at time t, then p, receives m by

time t + D. Similarly, we say that a process p, receives the input L) by time t if,

by time t,p, has a computation or failure event that is preceded in a by an

input event input(i, v).

For any timed execution a, we define delay(a) to be the maximum delay of

any message delive~ in a. When a is clear from context, we often use the

notation 8 to denote delay(a), and will let A = 8 + Cz.

To simplify the expression of our time bounds in terms of the parameters 8,

d, cl, and C2, we sometimes approximate the bounds in the case that Cz z< 8.

For example, in this case we have D = d and A = 8.

2.2. THE AGREEMENT PROBLEM. We now specify the agreement problem.

The original definition of the problem in round-based systems (e.g., [Lamport

et al., 1982]) assumes that all processes begin executing simultaneously with

their initial values already in their states. This degree of initial synchronization

is not very realistic in a distributed network. Since we are interested in

capturing timing uncertainty, we have included input events in the definitions

to permit asynchronous starts of the protocol. Let % - be a set of values. We

assume that each set Q, of local states includes a subset of decision states for

each L1 G 7/”, such that fail is not a decision state, the sets of decision states for

different values are disjoint, and the transition functions q, and -yZ map each

decision state for LJ to a decision state for L). A process decides on 1) by

changing its state to a decision state for L) (so its state thereafter is always a

decision state for L’).

A timed execution a (or timed execution prefix) is f-admissible if a contains

at most f failure events and, for each p,, exactly one input event input(i, u,).

For each p,, define start,(a) to be the smallest time t such that p, receives an

input by time t.Define start(a) to be the maximum of start,(a) over all i. (It

follows from the definition of receiving an input by time t that every process

has had a computation or a failure event by start( a ).)
Let B be a mapping from the positive reals to the positive reals. An

algorithm solves the agreement problem for f faults within time B, provided that

each of its f-admissible timed executions a satisfies the following:

(1) (Agreement) No two different processes decide on different values;

(2) (Validity) If some process decides on z, then an event input(i, u) occurs

in CY;6

(3) (Termination and Time Bound) Every process either has a failure event or
makes a decision by time sta)t( a ) + B(delay( a )).

bNote that this condition is slightly stronger than the usual validity condition for distributed
agreement problems.
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We finish this definition section with a statement of a slightly weaker version

of the agreement problem. This may be interesting because our lower bound

results still apply for the weaker problem statement. (Our upper bound,

however, satisfies the stronger problem statement given above.) Namely, we

define the agreement problem with synchronized start to be the same as the

agreement problem, except that the three properties listed above need only

hold for ~-admissible timed executions a in which each process receives its

initial value at time O; formally, for each process p,, there is a timed event

(input(i, u,), O) in a that precedes every computation and failure event of P,.

Our default convention is that the synchronized start condition does not hold.

We carry out the main development using a Boolean version of the problem,

that is, ‘Z”= {O, 1}. Later we discuss extensions to the case of an arbitrary value

set.

3. A Timeout Strategy

In the algorithms, we describe below, it will be convenient to describe each p,

as a “parallel composition” of two tasks, a “timeout” task, and a “main” task.

The basic idea of the timeout task is very simple. At each step, each process

broadcasts an alive message. If some process p, has run for sufficiently many

steps without receiving an alive message from the process p,, then p, con-

cludes that p, halted.

In more detail, the timeout task of p, has the following state components:

blocked, a Boolean, initially true (the purpose of blocked is to allow the main

task to stop the timeout task); a set halted G {1,..., n}, initially 0; for each

j= {l,..., n} a nonnegative integer counter(j), initially – 1. In addition, the

local state of each process contains a component bufi, to which messages are

added at each message delivery event. Figure 1 describes the steps of the

timeout task of process p, that are associated with comp(i, S) events, in

precondition-effect style. Recall that D = d + C2.

Assume that each local protocol includes the transitions indicated in Fig-

ure 1. Say that a process halts at time t if it either fails at time t or sets blocked

to true at time t.We assume that, if the main task of p, sets blocked to true at

some step, then the main task of p, sends no messages at later steps. Fix a

timed execution a; we prove the following properties for a.

T1. If any p, adds j to halted at time t,then p~ halts, and every message sent

from p, to p, is delivered strictly before time t.
T2. There is a constant T such that, if p, halts at time t,then every p, either

halts or adds j to halted by time t + T.

To verify Tl, let p, add j to halted at time t.We first show that p] halts. If

not, then p, sends an alive message to p, at each of its steps. The maximum

difference between the times of two such consecutive send events is Cz; the

time between the two corresponding delivery events is maximized by assuming

that the first message takes time O and the second takes time d. Thus, this

difference is at most D. However, since time at least c1 elapses between every

two steps of p,, time at least c 1(1D\cl j + 1) > D must elapse between the last
delivery of an alive message from p, before time t and time t (when j is added

to halted). This is a contradiction, so p, halts.

By a similar argument, we show that every message from p] to p, gets

delivered strictly before time t.Suppose that p, sends a message m to p, at

some step. Then, at p,’s previous step, p, sends an aliue message m‘ to p,. As



130 H. ATTIYA ET AL.

FIG. 1. The timeout task.

Precondition:

not blocked

Effect:

broadcast((alive, i))

forj:=l tondo

counter(j) := counter(j) + 1

if (alive, j’) c buff then

remove ( alwe, j) from bufl

counter(j) := O

elseif counter(j) z lD/clJ + 1 then

add j to halted

od

before, the maximum possible difference between the times of the deliveries of

m‘ and of m is at most ~, but time strictly greater than D must elapse

between the delivery of m’ and time t.It follows that nz is delivered strictly

before time t.

Now let 8 = delay(a), the maximum delay of any message delivery in a, and

recall that A = 8 + Cz. We verify T2, with a timeout bound T of approximately

Cd + 8. Suppose p, halts at time t, so that the last alile message from p, to p,

is sent no later than time t.Therefore, by time t‘ = t + A, p, will set pJ’s

counter to zero for the final time. So by time t‘+ c2([D/clJ + 1), p, adds j to

halted. Therefore, our algorithm has the timeout bound

In case Cz xc S, we have T = Cd + S.
In our algorithms that use the timeout task, we use only the fact that the

timeout task has properties T1 and T2, and we express the time bounds of

these algorithms in terms of the parameter T. Therefore, given a way to detect

process failures with a timeout bound T smaller than the one given above, this

detection method could be used to improve the time bounds. We do assume,

however, that T > A.

A technical point must be made concerning the parallel composition of the

timeout task with the main task. Whenever a process takes a step, we imagine

that a step of the timeout task is performed first, possibly adding new processes
to halted.Then a step of the main tash is performed, using the (possibly) new

set halted. Even though this appears to be two transitions taken in sequence, it

is easy to see that they can be combined into a single transition.

4. Simple Bounds

In this section, we briefly discuss some simple algorithms for the agreement

problem in the timing-based model and mention a simple lower bound.

We first give a method for transforming a round-based algorithm to an

algorithm that works in the timing-based model.
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Let A be a round-based algorithm involving processes p, for 1 < i < n. For

each round r > 1, the local protocol of p, determines the messages that p,

should send at round r, based on the messaged received by p, at rounds less

than r. Assume that A runs for exactly R rounds and that every nonfaulty

process sends a message to every process at every round 1 through R. (The

transformation can be easily modified to allow some processes to halt earlier

than the maximum round R.)

We describe an algorithm A’ for the timing-based model. In this algorithm,

each process includes a timeout task, as described in the previous section.

Initially, each process sends its round-1 messages. Each p, then waits, for each

p,, until it either receives the round-1 message of p, or adds j to its set halted.

Then p, uses A to compute its round-2 messages, and these messages are sent.
Subsequent rounds are handled similarly.

By Properties T1 and T2 of the timeout task, it should be clear that A‘

simulates A correctly. To bound the time of A‘, let a be an arbitrary

~-admissible timed execution, and define real numbers t, for O s r s R as

follows. (Each t, will be shown to be an upper bound on the time for all

nonhalted processes to complete the simulation of round r.) First, to= start(a).

Second, define tl = to+ T if some process has a failure event at some time

t < to;otherwise, define tl= to+ A. Finally, for 2< r < R, define t,= tr_,+ T

if some process has a failure event at a time t with tr_~ < t s t,_,;otherwise,

define t,= tr_~ + A. Since we assume T > A, we have t,> t,_~ + A for all

r > 1. It is also easy to see that, for every r such that a failure occurs at some

time t s fr_l,t,> u_l + T where ur_l is the maximum time t < tr_l such

that a failure occurs at time t.By Property T2 of the timeout task, it follows

easily by induction on r that every process either fails or completes round r no

later than time t, in the simulation of A by A’. If there are at most ~ faults,

there are at most ~ values of r such that t,= tr_,+ T. Therefore, A‘ takes

time at most

T“min{~, R} + A“max{R –~,0}.

Taking A to be an (~+ 1)-round agreement algorithm (such as the algorithm

of Dolev and Strong [1983] appropriately modified for fail-stop faults), this

transformation gives an upper bound of @ + A on the time to solve the

agreement problem with ~ faults. In the case that Cz << 8, this bound is

approximately ~Cd + (~+ 1)6.

In the case of synchronized start, there is another approach that does not

perform the timeout task at every round but runs a related timing task to

ensure that the entire algorithm runs long enough. The main agreement task in

this case uses a “flooding” strategy. If a process p, receives a 1 (at either an

input event or a delivery event) and if p, has not yet decided, p, broadcasts the

message 1 and decides 1. It is easy to see that, in any timed execution, if any

correct process receives a 1, then some correct process receives a 1 no later

than time @. Since this correct process broadcasts a 1, all correct processes

receive a 1 no later than time (~ + l)D. Therefore, any process that has run

for time strictly more than (~+ l)D can decide O. To ensure that this much
time has elapsed, each process counts k = l(f + l)D\cl 1 + 1 of its own steps.

This agreement algorithm takes time at most Czk. This upper bound is

approximately (~ + l) Cd. (This bound is better than the one for the simple
simulation above when Cd < (f+ 1)8.)
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Note that both upper bounds contain the term fCd. Intuitively, this means

that these algorithms can use f sequential “long” timeouts, where a long

timeout takes time at least Cd. In the next section, we give a more subtle

algorithm with a time bound that involves only one long timeout.

A lower bound of (f+ l)d is obtained fairly easily from the standard

(f+ 1)-round lower-bound proof in the round-based model [Coan and Dwork,

1991; Merritt, 1985]. The idea is to focus on executions in which processes take

steps at every time Cz, 2cz, ..., and for every k, messages sent in the interval

[(k – l)d, kd) are delivered at time kd. If, for the sake of contradiction, we

assume that some algorithm requires less than time (f + I)d, then since no

messages are delivered after time fd the processes must decide based on their

states at time fd. This corresponds to deciding after f rounds of communica-

tion in the round-based model. The rest of the proof requires a small extension

of the original proof to handle the fact that processes are taking multiple steps

between successive deliveries. (Since the original proof requires f s n – 2, our

lower bound has the same restriction.)

5. The Upper Bound

Now we present our main result, which shows how the upper bound can be

improved so that Cd is not multiplied by f but only by 1.

THEOREM 5.1. There is an algorithm to solue the agreement problem for f faults

within time (2f – l)A + max{T, 3A}.

Substituting the value of T obtained in Section 3, the following corollary is

immediate.

COROLLARY 5.2. There is an algorithm to solL’e the agreement problem for f

faults within time 2fA + max{CD -t c,, 2A).

Assuming that c1 << S and Cd >28, this upper bound is approximately

2f8 + Cd. If 8 = d, the bound is approximately 2fd + Cd.

5.1. THE ALGORITHM. In addition to the local state components of the

timeout process and halted and blocked (as described in Section 3), we assume

that the local state of p, contains components u, and r, plus a component buff

to hold incoming messages, plus a component to record decisions. The compo-

nent ~~1is the “input value component”, initially 1 ; an input event input(i, u)

sets u, to VI. As in the timeout task, incoming messages are added to bufl at

each message delivery event. The component r holds a nonnegative integer

phase number, initially O. A decide(u) operation causes p, to enter a decision
state for value l] (by recording the decision in the appropriate state compo-
nent) and set blocked to true (to stop all nontrivial transitions, including those

of the timeout task).
Now we give an informal description of the algorithm, or, more specifically,

of the steps of process p, that are associated with comp(i, S) events. The

algorithm is given in more detail in Figure 2. This description and the

associated code omit the timeout task behavior, as well as the handling of

inputs and delivered messages.

The algorithm proceeds in a sequence of phases, numbered consecutively

starting with O. Each process attempts to reach a decision at each phase;

however, at even-numbered phases, processes are only permitted to decide
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Precondition:
T=O

vi=l

Effect:

broadcast((O, i))
T:=l

Precondition:
r=o
Vi=o

Effect:

broadcast ((1, i))
decide(0)

133

initial next-phase transition

initial decision transition

Precondition: next-phase transition
7->1

there exists a j such that (r, j) c buff
Effect:

broadcast ((r, i))

r:=r+l

Precondition:

7-21

for all j @’halted, (r – I,j) E buff

there is no j such that (r, j) c bufl
Effect:

broadeast((r + 1, i))

decide(r mod 2)

decision transition

FIG. 2. The main agreement algorithm for process p,.

on O, whereas at odd-numbered phases they can only decide on 1. Further-

more, a process is only permitted to decide at a phase r provided it knows that

no process has decided at phase r – 1. Thus, if any process decides at phase r,

the algorithm ensures that no process can decide at phase r + 1.

More strongly, the algorithm ensures in this case that every nonfailed,

undecided process learns in phase r + 2 that no process has decided at phase

r + 1, and then decides at phase r + 2. Since r + 2 and r have the same parity,

it follows that all decisions agree.

Validity is ensured by forcing all nonfailed processes to decide at phase O in

case they all have input O, and at phase 1 in case they all have input 1. To

ensure termination, if a phase r occurs during which no process fails and such

that no process has decided up through (and including) phase r, then the

algorithm ensures that every nonfaulty process will decide no later than phase

r + 1. (Such a phase must occur among the first ~ + 1 phases.)
The mechanism used by the algorithm to guarantee all of these properties is

the following. If a process fails to decide at any phase r, it broadcasts the

number r before going on to the following phase r + 1. On the other hand, if a

process decides at phase r, it“skips” broadcasting r and instead broadcasts
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r + 1, before deciding and terminating. In order for a process to decide at

phase r >1, it ensures that it has received the message r – 1 from all

nonhalted processes, and no message r from any process. This ensures that if a

process decides at phase r then no process has decided at phase r – 1.

Also, if some process p decides at phase r, then every undecided process

receives the message r + 1 from p at phase r + 1,but no message r from p

(since p skips sending r). This ensures that each undecided and nonfailed

process broadcasts r + 1 and goes on to phase r + 2. Then every undecided,

nonfailed process will receive the message r + 1 from all nonfailed processes,

and no message r + 2 from any process. It follows that each undecided,

nonfailed process decides at phase r + 2.

The algorithm allows any process having input O to decide at phase O. If all

processes have input 1, then no process decides at phase O. In this case, every

nonfailed process broadcasts O and no process sends 1, so that every process

has its precondition for decision satisfied at phase 1. Validity is thus guaran-

teed.

For termination, suppose that a phase r occurs during which no process fails

and such that no process decides up to and including phase r. Then no process

sends the message r + 1, all nonfailed processes send the message r, and so

the preconditions for every process to decide at phase r + 1 are satisfied.

The transitions corresponding to comp(i, S) events of p, are shown in more

detail in Figure 2. The code contains preconditions for the various cases; note

that, in every state of p,, at most one of the four cases has its precondition

satisfied. Since cornp( i, S) events are required to be enabled in all states, we

use the convention that any state in which none of the four preconditions is

satisfied has a “dummy” transition enabled, which causes no changes to the

state and no messages to be sent.

A formal proof of correctness appears in Section 5.2.

We indicate why the time required for this algorithm to terminate only

involves a single occu rence of the timeout bound T = Cd + 8, not multiplied

by ~. Note that the mly transition that occurs because of a timeout is the

(noninitial) decision transition. Suppose this transition is ever begun by a

process p, at a phase r and no (r, j) message ever arrives at p,. Then the
timeout can take time T, but then all nonfailed processes will decide very

quickly and terminate the computation. (In fact, all such processes must decide
by the same phase r, since otherwise they would send (r, j) messages to pt.) On

the other hand, suppose that, at all phases r prior to some particular phase h,

whenever a process p, begins the decision transition, some (r, j) message does

arrive at p,. Then all (r, j ) messages must arrive at p, after the transition (or

the transition would not be enabled). Then we claim that each such phase r
takes only time depending on ~, 8, but not on T. Here, ~. is the number of

failures that occur during a transition where the associated set of se~zd actions

is broadcast(( r, j)) for some j. This is because each (r, j) message originates

(either directly or via a chain of rebroadcasts) when some process performs a
decision transition at phase r – 1.The length of a shortest such chain can be

at most f, + 1.This is because a nonfailed process succeeds in communicating

its message to everyone. Therefore, the time for phase r is bounded by

(~ + 1)8, the length of the chain multiplied by the time to deliver each
message in the chain.

A careful analysis appears in Section 5.3.
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5.2. CORRECTNESS PROOF. When we say that a process begins a transition,
we mean that the precondition for the transition is satisfied and either the

associated cornp(i, S) step or an associated fail(i, S) step is performed. Thus,

this does not necessarily mean that the transition described in the code is

completed, that is, that the associated comp(i, S) step is performed. Note that,

for each r z O, p, begins at most one of the next-phase or decision transitions;

we call this the rth phase of p,. Note also that, if p, decides at phase r, then p,

completes the decision transition at phase r and thus sends the message

(r + l,i) to all processes.
An r-message is any message of the form (r, i) for some i. It follows from the

code that an r-message is sent either at a decision transition at phase r – 1 or

at a next-phase transition at phase r.

We first prove progress, that is, that nonfaulty processes do not get “stuck” in

a phase: They either decide or advance to the next phase.

LEMMA 5.3. Let r >0, and let p, be a nonfaulp process. Then p, either

decides at a phase strictly less than r or begins a transition at phase r.

PROOF. Suppose not. Let r be the first phase at which a nonfaulty process

gets stuck, and let p, be a nonfaulty process that does not increase its phase to

r + 1. Since it is not possible for any process to get stuck at phase O, it must be

that r > 1. Process p, eventually times out every process p, that fails or

decides, by Property T2 of the timeout task.

So consider any process p, that does not fail or decide. By choice of r, p,

eventually reaches phase r. Since p, does not decide at phase r – 1, it must

have set its phase to r using a next-phase transition. This implies that p] sends

an (r – I )-message to p,. Hence, p, eventually receives an (r – 1)-message

from p~ and uses it to satisfy its waiting condition for p].

Thus, p, eventually satisfies its waiting conditions for all pj and is able to

begin a transition at phase r, a contradiction to the choice of r and p,. ❑

We next give some prelimina~ lemmas. Some of these lemmas will also be

used later in the timing analysis.

LEMMA 5.4. If p, begins a decision transition at phase r >0, then p, sends no

r-messages.

PROOF. If r = O, then by the initial decision transition, p, sends no O-mes-

sages. Assume r > 1. If p, sends r at phase r – 1, p, begins a decision

transition at phase r – 1 and does not execute phase r. Since p, begins a

decision transition at phase r, it does not begin a next-phase transition at phase

r and thus does not send an r-message at phase r. ❑

LEMMA 5.5. If p, decides at phase r >0, then no process begins a decision

transition at phase r + 1.

PROOF. Assume, by way of contradiction, that some process p, begins a

decision transition at phase r + 1. Then prior to this decision transition, either

an r-message from p, is delivered to p,, or p, adds i to its set of halted
processes. By Lemma 5.4, p, does not send any r-messages, so the only

possibility is that pj adds i to halted. By the decision transition rule, p,

succeeds in broadcasting r + 1.But, by Property T1 of the timeout task, all

messages sent by p, to p~ are delivered to p, before it adds i to halted. Thus,
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an (r + I)-message must be delivered to p, before it begins the decision

transition. But this contradicts the precondition for the decision transition. ❑

We next give a definition that will be central to both the correctness proof

and the timing analysis. A phase r is quiet if there exists a process p, such that

no process p] sends an r-message to pi.

LEMMA 5.6. Suppose r > 1. If no process begins a decision transition at phase

r – 1, then phase r is quiet.

PROOF. This is true because an earliest sending of an r-message must occur

at a decision transition at phase r – 1. ❑

LEMMA 5.7. If phase r is quiet, then all processes either fail or decide by the

end of phase r.

PROOF. Suppose not; let p, be a process that does not fail or decide by the

end of phase r. By Lemma 5.3, p, must exit phase r, so itmust perform a

next-phase transition at phase r. Since p, does not fail, it broadcasts r. This

contradicts the assumption that phase r is quiet. ❑

LEMMA 5.8. Assume that some process decides at phase r. Then phase r + 2 is

quiet and all processes either fail or decide no later than phase r + 2.

PROOF. By Lemma 5.5, no process begins a decision transition at phase

r + 1. By Lemma 5.6, this implies that phase r + 2 is quiet. So by Lemma 5.7,

all either fail or decide no later than phase r + 2. ❑

Now we can prove the agreement property.

LEMMA 5.9. No two processes decide on diflerent Lalues.

PROOF. Let r be the minimal phase at which any process decides, and let p,

be a process that decides at phase r. By Lemma 5.5, no process begins a

decision transition in phase r + 1. By Lemma 5.8, all processes either fail or

decide no later than phase r + 2. Since r is minimal, it follows that all

nonfaulty processes decide at phase r or at phase r + 2. Since r mod 2 =

(r + 2) mod 2, they decide on the same value. ❑

We next prove the validity property.

LEMMA 5.10. If p, decides L), then there exists some p] that starts with VI = v.

PROOF. Assume by way of contradiction that all processes start with L‘ # L.

If L)’ = O, then all nonfaulty processes decide on O at phase O. If L‘ = 1, then

no process begins a decision transition at phase O, so Lemma 5.6 implies that
phase 1 is quiet, and so by Lemma 5.7 all nonfaulty processes decide on 1 at

phase 1. Either case yields a contradiction. ❑

We next argue termination.

LEMMA 5.11. Any f-admissible timed execution contains a quiet phase, num-

bered no la~er than f + 2.

PROOF. If some process decides at phase r <f, then Lemma 5.8 implies

that phase r + 2 s f + 2 is quiet. So suppose that no process decides at any

phase r with r s f. Since there are at most f failures, there must be some

phase r, O < r <f, at which no process fails; let h be some such phase. Since
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h <f, no process decides at phase h. In fact, no process p, begins a decision

transition at phase h, because otherwise p, would complete this transition

without failing. Therefore, by Lemma 5.6, phase h + 1 s f + 1 is quiet. ❑

LEMMA 5.12. In any f-admissible timed execution of the algorithm, all pro-

cesses either fail or decide no later than phase f + 2.

PROOF. By Lemma 5.11, any f-admissible timed execution contains a quiet

phase, numbered no larger than f + 2. Then, Lemma 5.7 implies that all

processes either fail or decide by phase f + 2. ❑

Remark 1. Our algorithm does not require an a priori upper bound on the

number of faults. All nonfaulty processes decide no later than phase f + 2,

where f is the number of faults that actually occur in the execution. In

consequence, the algorithm is an “early stopping” algorithm (cf. [Dolev et al.,

1990]). If an upper bound f is known a priori, the algorithm can be modified so

that, if p, has not yet decided when it makes a next-phase transition from

phase f + 1 to phase f + 2, then p, can immediately decide on (f+ 2) mod 2.

Since p, decides no later than the end of phase f + 2, there is no need to

actually execute phase f + 2.

5.3. TIMING ANALYSIS. Some notation to describe the number of failures is

useful.

For each r z 1, denote by f, the number of processes whose failure step is a

transition during which an r-message should be broadcast; more precisely, if

applying the transition function to the state from which the failure occurs

results in sending an r-message. (This is either a decision transition at phase

r – 1 or a next-phase transition at phase r.) Note that a process has at most

one failure step and thus, in all f-admissible executions, Z, ~ ~f, <f.

The key idea behind the upper bound is that, if a phase r is not quiet, then

the time of the phase can be bounded above by a quantity that depends on f,

but not on C. Moreover, the time for any phase (in particular, the first quiet

phase) is at most T = Cd + 8. By Lemma 5.7, all nonfaulty processes decide

no later than the end of the first quiet phase. Since a quiet phase must occur

before too many phases have elapsed, the bound follows.

In more detail, fix an arbitra~ f-admissible timed execution a. We intro-

duce some notation; all definitions are with respect to a. For r z O, define tr

to be the minimum time t such that all processes either fail, decide, or perform

a phase r transition no later than time t.Note that t,< t,+, for all r, and

tO s s, where s = start(a). (Recall that, by definition, every process p, has had

a computation or failure event by time start(a), which is preceded in a by the

input event at p,.) Let tdecbe the minimum time t such that all processes

either fail or decide no later than time t.Let h be the smallest r such that

phase r is quiet. It follows from Lemma 5.11 that h exists and h < f + 2.

It is convenient to handle the cases h = O and f = O separately. If h = O,

then Lemma 5.7 implies that the algorithm takes time zero. If f = O, then since
there are no failures it is easy to see that all processes decide no later than the

end of phase 2, and that phases 1 and 2 take time at most A each. The time

bound claimed in Theorem 5.1 is at least 2A when f = O. Henceforth, we

assume that h k 1 and f > 1.
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We begin with a simple lemma stating that every phase takes at most time T.

LEMMA 5.13. For any phase r > 1.t,< t,.,+ T.

PROOF. Consider any process p, that does not fail or decide by time

tr—1 + T. If any process p, decides at phase r – 1, then within time A after p,’s

decision transition, (and so by time tr_,+ A s t,_~ + T), p, receives an

r-message and performs a phase r next-phase transition.

Now assume that no process decides at phase r – 1.For any process p~ that

fails or decides at or before its phase r – 1 transition, p, puts j into its halted

set and takes a subsequent computation or failure step by time t,_~ + T. Also,

every process that does not fail or decide at or before its phase r – 1 transition

completes a phase r – 1 next-phase transition, in which it sends an (r – l)-

message; this message is received by p, by time t,., + A s t,., + T. Since no

process decides at phase r – 1, p, receives no r-messages. It follows that p,

performs a phase r decision transition by time tr_,+ T.

Applying the preceding argument to all p,, we conclude that t,< t,_,

+T. ❑

The next lemma is the key to the upper bound. It says that the time required

by a nonquiet phase is short (in particular, independent of C). The reason is

that the length of such a phase is bounded by the time to deliver a chain of

messages of length one more than the number of failures at that phase. The

details follow.

LEMMA 5.14. For any r with 1 s r s h – 1,t,s t,_l+ A(~, + 1).

PROOF. Let p, be an arbitrary process. Assume that p, does not fail or

decide by time t,.,+ A(~, + 1). Since phase r is not quiet, some process sends

an r-message to p,. By inspection of the algorithm, there must be a sequence

iO, ..., i~ of distinct process indices with ik = i, such that p,,] sends an r-mes-

sage to p,] while performing a decision transition at phase r – 1 and, for

1 s j s k – 1,p,, sends an r-message to p,,+, while performing a next-phase

transition at phase r. Choosing the sequence of process indices so that k is

minimized, it follows that, for O < j s k – 2, ~1, fails during the broadcast of

the r-message. For if p,, does not fail, then It sends an r-message to pi, so

i[), ..., ij, i would give a path of length less than k from p,,, to p,.

By definition of f,, we have k – 1 < f,. Since p,,, sends the r-message no

later than time t,_,,and pi,, . . . ,Plh enter phase r no later than time tr_~,it

follows that p, receives the r-message and satisfies the precondition for a

next-phase transition no later than time tr_,+ kA s tr_,+ (f, + l)A. Since,

by assumption, p, does not fail or decide by time t,_, + (~ + l)A, pi performs
a phase r next-phase transition by this time. tl

Now by induction, we have:

COROLLARY 5.15. For e[ery r with 1 s r s h – 1, t, s A . ~;.l(~ + 1) + s.

At this point, we can give a simple proof of an upper bound result that is

slightly weaker than the one claimed in Theorem 5.1. We include this result

here in order to give the reader an intuition why the bound takes the general

form it does (with the timeout bound T appearing only once).

THEOREM 5.16. There is an algoiithm to soke the agreement problem for f

faults within time (2f + l)A + T.
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Again assuming Cz <<8, this bound is approximately (2~ + 2)8 + Cd.

PROOF. By Lemma 5.7, we have tdec _< tl,.Lemma 5.13 implies that trs tr_~

+ T for any phase r. Therefore, tdec< tll_~ + T. Now

t~,C<th_l+T

/1–1
<A. ~(f+l)+T+,s by Corollary 5.15,

~=1

<( f+(h–l))A+T+,s

<(2 f+l)A+T+s since h<~+2. ❑

Now we carry out the finer analysis needed to get the smaller bound given in

Theorem 5.1. In the case that 8 is at least (approximately) d/2, the smaller

bound is close (within O(cz(C + j’))) to the actual worst-case running time of

the algorithm; see Remark 2 below. The better bound is obtained by consider-

ing the latest time at which a failure occurs. If this time is not too large, then a

better bound can be obtained since the time T taken by the timeout task can

then be measured starting from the time of the latest failure. Let tl,,t be the

maximum time SUCh that tlast ~ ~h– I and SUCh that SOme Process has a failure
event at time tla~t.If no process has a failure event at a time s tll _,, then take

tlast = – T (so that the following lemma will be valid in this case). We begin

with an upper bound on tdccthat may be smaller than the bound t),_, + T

used in the proof of Theorem 5.16.

LEMMA 5.17. tdec< rnax{tk _ ~ + A, tla,r+ T}.

PROOF. By Lemma 5.7, t~CCs t~l so it is sufficient to bound th.Let p, be a

process that does not fail or decide before time tmax= max{tll _, + A, tl,,t + T}.

Let p, be an arbitrary process. We show that, by time tmax,either j is in pi’s

halted set or p, receives an (h – 1)-message or an h-message from p].

Therefore, by time t~.,,p, performs a phase h transition.
If p] fails at time t where t s th_,,then t s t ,.,t, so p, adds j to its halted

set no later than time t,a,t+ T (by Property T2 of the timeout task). In the

remaining cases, assume that p, does not fail at a time t < t,,_~.

Suppose that pj performs a transition at phase lZ – 1. Since p, does not fail

at this transition, pJ sends either an (h – 1)-message or an h-message to p,.
Since the sending is done no later than time t,,_,,p, receives the message no

later than time t,,_, + A.

The only other possibility is that pj decides at some phase r s h – 2. Since

p, does not fail or decide by the end of phase h – 1,itfollows from Lemma 5.8

that pj does not decide at any phase r s h – 3. Therefore, pj decides at phase

h – 2 and broadcasts an (h – 1)-message. As in the previous case, this mes-

sage is received by p, no later than time t),_~ + A < th_1 + A. ❑

We now use Lemma 5.17 to bound tdec.

LEMMA 5.18. tdecs max{(2f + 2)A, (2f – l)A + T} + s.

PROOF. We consider three cases.
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Case 1. h s f.

Since t~,, S tll _ ~ + T, Corollary 5.15 gives

tdec<th_L + T

h–1

<A. ~(~l+l)+T+.s
~=1

<(~+ (h–l))A+T+s

<(2 f–l)A+T+s since h 5 f.

Case2. f+l<h<f +2andt[J,t<tf-1.

First, since f – 1 < h – 1 we have

f-1

t[ast=ff-lsA” z(f, +l)+s<(2f–l)A+ S.
~=1

Since h–l<f+l we have

}1–1

t /,_l <A. ~(f, +l)+s<(2f+l)A+s.

Substituting these bounds for t,a,,and t;,_~ into Lemma 5.17 gives

t~eC s max{(2f + l)A + s + A,(2f – l)A + s + T}

= max{(2f + 2) A,(2f – l)A + T} + s.

Case 3. f+l<h<f+ 2andtla,, >t~_l.

CLAIM 5.19. f, >0 for 1 s r < f – 1.

PROOF. Suppose that f, = O for some r s f – 1. Since phase r is not quiet,

some process sends an r-message, and the earliest sending of an r-message

must be at a decision transition at phase r – 1. Since f, = O means that there

are no failures during a broadcast of an r-message, it follows that some process

decides at phase r – 1. By Lemma 5.8, phase r + 1 is quiet. Since r + 1 s f,

this contradicts the assumption that phase h z f + 1 is the first quiet

phase. ❑

Since phase f is not quiet, an f-message is sent by some process. Let p be a

process that sends an f-message at the earliest time. Therefore, p sends the

f-message while performing a decision transition at phase f – 1, and this

occurs no later than time tf_ ~.

We first argue that p decides at phase f – 1. If not, then p fails no later

than ~irne tj- ~ while broadcasting an f-message. Since f, >0 for r s f – 1,the
remammg f – 1 failures occur while some process is broadcasting an r-mes-

sage for each r with 1 s r s f – 1. Since these remaining failures occur at

phases numbered at most f – 1, it follows that all failures occur no later than

time tf_,.This contradicts the assumption that t,J$t> tf_~.
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Since p decides at phase f – 1, h = f + 1 by Lemma 5.8, and p broadcasts
an f-message no later than time tf.~.Therefore

tk_l=tf<tf_l +A. (1)

The final ingredient for this case is the observation that

Otherwise, all failures occur during the broadcast of r-messages for 1< r <

f – 1; as argued above, this contradicts the assumption that tl~,, > tf _ ~.

Finally, we have

‘dec ‘th–l + T

<t~_l+A+T by (1)

f-1

<A”~(~+l)+s+A+T
~=1

<(( f–l)+(f–l))A+,s+A +T by (2)

=(2f–l)A+T+.s. ❑

Since the upper bound of Lemma 5.18 can be written as (2f – l)A +

max{T, 3A} + s, the proof of Theorem 5.1 is complete.

Remark 2. It is possible to construct an execution of the algorithm that

takes time approximately 2ft$ + Cd, assuming 1 < f < n – 2, C >2, and that

8 is at least d/2 plus a small multiple of Cz. Some hints toward the construc-

tion follow. To simplify the description, all times are approximate (to within

O(cz f )). Process p ~ has initial value O and the others have initial value 1. For

O < r < f – 2, process p,+, performs a phase-r decision transition at time 2r8.

This transition is a failure transition during which an (r + 1)-message is sent
only to p,,, and p. receives this message and rebroadcasts it at time 2r8 + 8.

Now during phase r + 1, process p,+ ~ times-out p,+ ~ at time 2(r + 1)8 before

receiving the ( r + 1)-message from p,, and it performs a decision transition,

whereas p,+ ~,. . ., p. - ~ receive the (r + I)-message from p,, at time 2(r + 1)8
before timing-out p~+, so they perform a next-phase transition, so the pattern

can continue. Then p~ completes a phase-(f – 1) decision transition at time

2( f – 1)8 and broadcasts an f-message. Then p,: fails at time 2( f – 1)8 + 8

and does not rebroadcast the f-message. An additional timeout time of Cd + 8

then elapses between the time of this last failure and the time 2f8 + Cd when

P,, -1 can decide.

Remark 3. The agreement algorithm has high-message complexity. This is

due mainly to the timeout task where every process broadcasts a message at
every step—the main task sends a total of O(n2f) messages, since each process

broadcasts a message at each phase transition. (Each message has length

O(logn) bits.) An obvious approach for decreasing the message complexity of

the timeout task is to broadcast the alil~e message once every k steps for some
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k >2. Of course, the maximum value of the counters must then be adjusted

upward, and the timeout bound T increases accordingly.

For the case of synchronized start, another approach is to dispense with the

timeout task completely and build special timeout mechanisms into the main

algorithm. Specifically, whenever p, makes a next-phase transition from phase

r – 1 to phase r, it initializes a counter counter(j) for each p,. Each counter

counter(j) is incremented at each step until either (i) p, receives an r-message

(causing it to perform a next-phase transition), (ii) the message (r – 1, j) is
found in buff, or (iii) counter(j) reaches [2D/cl ] + 1. In case (iii), p, adds j to

halted. The modified algorithm is correct since, whenever p, broadcasts an

(r – 1)-message during a next-phase transition at phase r – 1, it should receive

either an (r – 1)-message or an r-message from every nonfaulty nondecided

process within time 2D. The modified algorithm sends a total of 0( nz~)

messages. Again, each message has length O(log n) bits. By a timing analysis

similar to that of Theorem 5.16, an upper bound of (2~ + l)A + 2CD + Cz =

(2~ + 1)6 + 2Cd can be shown.

5.4. EXTENSION TO MULTIPLE VALUES. In this section, we discuss how to

modify the algorithm to handle an arbitrary value set ‘Z”. This is done by

running n single-source algorithms in parallel. In the single-source ugreernent

problem, a single process p,, the source, starts with an initial value from 7’.

Shortly, we will describe an algorithm for the single-source problem with the

following properties. Let 1 be a distinguished default lalue in V-. Suppose

that the source has initial value ~). Then all nonfaulty processes decide on

either u or L , and all decide the same: moreover, if the source is nonfaulty,

then all nonfaulty processes decide on u. To solve the general agreement

problem, run n single-source algorithms, A ~,..., A., in parallel with p, being

the source in A,. When some process p, has reached a decision w, in A, for all

i, it decides on w~ where k is the least integer such that w~ # 1 . (Such a k

must exist, since w, + 1 .)

To describe a solution to the single-source problem, we refer to the algo-

rithm of Figure 2 as the birza~ algon”thm. Let p, be the source, and let U, c YX

be the initial value of p,. Initially, p, begins the binary algorithm as though it

has initial value O, and the other processes begin with value 1. During phase O,

p, broadcasts the message (~,, ( 1, i)); that is, it sends the message (1, i) that the

binary algorithm would send, with the value ~t, piggybacked. After this broad-

cast, p, decides L’,. Any process that receives this message during phase 1
remembers u,, broadcasts (L’,, (1, i)), and otherwise acts in the bina~ algorithm

as though the message (1, i) had been received, The binary algorithm is then
run to completion. If a process decides O (respectively, 1) in the binary
algorithm, it decides t~l (respectively, L ) in the single-source algorithm. (The

analysis below shows that, if p] decides O in the binary algorithm, then p]

receives t], during phase 1.)

To argue correctness, first consider the case that the source p, is nonfaulty.

It is easy to see in this case that all nonfaulty processes (except the source)

decide O at phase 2 in the binary algorithm, so all decide Z, in the single-source

algorithm. If p, is faulty, let R be the set of processes that receive (u,, (1, i))

during phase 1. Any process not in R either fails or performs a decision

transition at phase 1. If any such process decides, then all nonfaulty processes



The Time to Reach Agreement 143

decide 1. If all processes that are not in R fail before deciding, then any

process p] that does decide is in R, so p] receives L, during phase 1.

6. The Lower Bound

In this section, we prove our lower bound of (~ – l)d + Cd on the time to

reach agreement in the timing-based model. The proof requires four steps and

employs techniques used elsewhere in proving lower bounds and impossibility

results in the rounds model, the completely asynchronous model, and the

timing-based model.

The first step is an adaptation of the proof showing that ~ + 1 rounds are

necessary for Byzantine agreement in the rounds model.7 As we shall see, this

adaptation yields the existence of two “long” (i.e., taking time at least (~ – l)d)

timed execution prefixes, aO and al, each having only ~ – 1 faults, distinguish-

able only to one process, and each extendible to a timed execution with a

different decision value. (This is done in Lemma 6.1.)

The second step mimics a key lemma in the proof that agreement is

impossible in asynchronous systems [Dolev et al., 1987; Fischer et al., 1985]. In

this step, it is shown that at least one of aO and a ~ is “bivalent,” in that it has

two possible extensions with no additional failures, each yielding a different

decision value and in each of which processes take steps as quickly as possible.

In showing bivalence, we also use an “execution retiming” technique [Attiya
and Lynch, 1989]. (This is done in Corollary 6.3.)

The third step extends the bivalent timed execution prefix to a bivalent

prefix, having at most ~ – 1 faults, which is “maximal,” that is, all its exten-

sions are univalent. (This is done in Lemma 6.4.) The fourth and last step

exploits the one remaining fault, via another retiming argument, to show that,

after this maximal bivalent timed execution prefix, at least one “long timeout”

(taking time at least Cd) is necessary. (This is done in Theorem 6.5.)
We assume throughout this section that c1 s d, 6 = d, and ~ z 1.

6.1. SYNCHRONOUS TIMED EXECUTIONS. Our lower bound arguments for

algorithms in the timing-based model will be based on a subset of the timed

executions that we call “synchronous.” We define these in this subsection.

We think of a synchronous timed execution as a sequence of “blocks”; each

block is composed of a sequence of message deliveries followed by a sequence

of process steps; all the process steps in one block occur at the same time, and

each block contains exactly one (computation or failure) step by each process.

More precisely, we say that a timed execution is synchronous, provided that

there is a monotone increasing sequence of times, tO, tl, . . . . such that to = O

and the following conditions are satisfied.

(1) Exactly one input event occurs at each process, and it occurs at time O.

(2) Each computation and failure event occurs at time t,,for some i. At each

time t,, there is exactly one computation or failure event for each process,
and these events occur in order of process indices.

‘See Com and Dwork [1991]; DeMillo et al. [1982]; Dolev and Strong [1983]; Dwork and Moses
[1990]; Fischer and Lynch [1982]; Hadzilacos [1984]; Lamport and Fischer [1982]; Merritt [1985].
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(3) All input events precede all computation and failure events that occur at
time O.

(4) All message delivery events that occur at a time t, precede all computation

and failure events that occur at the same time.

A block in a synchronous timed execution can then be identified with the

portion of the execution occurring at times in the interval (t,, t,, ~] for any

particular i. A (finite) timed execution prefix is said to be synchronous,

provided that it is a prefix of a synchronous timed execution and it ends with a

computation or failure step of process p,,.

Now suppose that a is a synchronous timed execution prefix. If y = a ~ is a

synchronous timed execution or a synchronous timed execution prefix, we say

that y is a faihwe-flee extension (or simply jfexterzsion) of a if no failures occur

in ~. We say that y is a fast extension of a if the times for computation and

failure steps in y that are greater than t,~~( a ) are exactly all the times that are

of the form tcn~( a ) plus a positive multiple of c ~. Similarly, y is a slow

extension of a if the computation and failure step times are all those of the

form ten~( a ) plus a positive multiple of CL.

Intuitively, in a fast extension, processes take steps as fast as possible, while

in a slow extension, processes take steps as slow as possible. Fast extensions are

important since they can be retimed to become slow (and take more time); this

fact is crucial for the proof of Lemma 6.2 below, which is the key to the lower

bound result,

6.2. EXISTENCE OF LONG PREFIXES. For the first step, we show the exis-

tence of the two long timed execution prefixes mentioned above. Since we do

this by adapting a proof from the rounds model, it is useful for us to restrict

attention to a subclass of the synchronous timed executions that look more like

executions of the rounds model. In particular, we consider timed executions in

which messages are delivered in batches at times that are positive multiples of

d. Also, although step time is irrelevant here, we say (to be specific) that

processes take steps at every multiple of c1, starting with O. Formally, we define

the uniform timed executions to be those synchronous timed executions in

which

(1) for every integer r >1, any message that is sent at time t, with (r – l)d <
t < rd. is delivered at time d, and

(2) each step time t, is equal to icl.

Also, the uniform timed execution prefwes are defined to be the timed

execution prefixes that are prefixes of uniform timed executions and end with a
computation or failure event of p,,.

Uniform timed executions are similar to executions in the rounds model. For

example, if c1 = d, then there is a direct correspondence between the two. In

general uniform executions, however, a process may take several steps (and

send at several different times) within each round of message exchange.

The basic lower bound result for agreement in the rounds model asserts that,

for f < n – 2, agreement in the presence of stopping failures requires f + 1
rounds [Coan and Dwork, 1991; Dwork and Moses, 1990; Hadzilacos, 1984;

Lamport and Fischer, 1982; Merritt, 1985]. The proof of this result contains a

key lemma that shows, loosely speaking, that, for any agreement algorithm, all
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execution prefixes with at most ~ rounds in which at most one process fails in

each round are similar. Two execution prefixes are directly similar if some

nonfaulty process cannot “distinguish between” them. The similarity relation is

the transitive closure of the direct similarity relation.

By redefining “directly similar” so that two execution prefixes are directly

similar if at most one process can distinguish between them, and redefining

“similar” accordingly, it is easy to modify this standard proof to apply to our

uniform timed executions and to yield a slightly stronger conclusion. In this

way, we obtain Lemma 6.1.

We define two timed execution prefixes, aO and al, with tend= tend(a(,) =

tend(al),to be indistinguishable to process p, provided that (a) the sequence of
timed events occurring at p, and the sequence of intervening local states of p,

are identical in aO and a ~, with the exception that corresponding fail events of

p, in the two event sequences can send different sets of messages, and (b) the

messages that are sent to p, strictly before time tend,together with their

senders and sending times, are identical in aO and a ~. The sequences aO and

a ~ are said to be distinguishable to p, if they are not indistinguishable to p,.

LEMMA 6.1. Let A be an n-process algorithm in the timing-based model that

sok’es the agreement problem for f < n – 1 faults. Let k be a nonnegative integer,

k < f – 1. Then lhere are two uniform timed execution pref~es, ac) and a,,

satisfying the following conditions:

(1) t,,,~(~~) = [kd/cllcl, forj = 0,1,8
(2) There is a fast ff-extension of al in which some process decides j, for j = 0,1,

(3) If ~ is the set of processes that are faulty in al, j = 0,1, then IF, u F, I s k,
and

(4) There is at most one process to whiclz a. and a, are distinguishable.

Note that Lemma 6.1 is stated so as to produce fast failure--ee extensions

because this property is needed in the proof of Corollary 6.3.

PttooF. (SKETCH). For those who are familiar with the earlier proofs (e.g.,

[Coan, 1987; Coan and Dwork, 1991]: The proof involves constructing a

“chain” of timed execution prefixes. Each pair of consecutive prefixes either

(a) have identical sets of failed processes and differ only in the presence or

absence of one particular message m sent by a faulty process p, to a process

p,; moreover, pJ does not send any messages (in either prefix) at or after the

delivery time of m and strictly prior to tend,or (b) differ only in that one

process that, in both prefixes, sends all its messages at some time t,but none

thereafter does a failure transition at time t, in one case and at t,+~ in the

other case, or (c] differ only in that one process that sends all its messages at

time t,.~ does a failure transition at time tendin one prefix and does not fail in

the other prefix, or (d) differ only in the initial value of one process that fails at

time O and sends no messages. ❑

6.3. EXISTENCE OF A LONG BIVALENT PREFIX, For the second step, we show

that, under the assumption that agreement can be reached in time strictly less

than (f – l)d + Cd, both decisions are still possible after at least one of

8Note that the time [kd/cl ICI is the least multiple of c1 greater than or equal to /cd,
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a., a,, where ao, a, are the uniform timed executions given by Lemma 6.1. In

order to do this, we need to formalize the notion that “both decisions are still

possible” after a prefix. Let a be a synchronous timed execution prefix.

We say that a value 11● {O, 1} is @st faihwe-free-reachable (or just fast

jf-reachable) from a if there is a synchronous fast failure-free extension y of a

such that some process decides u in y. We say that a is O-lalent if only O is

fast ff-reachable from a, and l-talent if only 1 is fast ff-reachable. We say that

a is uniLalent if it is either O-valent or I-valent, and that a is bilalent if both O

and 1 are fast ff-reachable from a.9

The next lemma is the key for completing the proof of the lower bound. It

shows that there cannot be two “long” execution prefixes (i.e., prefixes that end

at a “late” time) that have opposite valence, that do not contain many faults,

and that are distinguishable to at most one process.

LEMMA 6.2. Let A be an algorithm in the timing-based model that sokes the

agreement problem for f < n – 1 jiudts within time strictly less than t + Cd, for

some t. Then there do not exist two synchronous timed execution prefties, aO and
~,, satisjjing the following properties:

(1) tenc[(ao) = te,ld( al) 2 t,

(2) a, is j-z’alent, j = 0,1,

(3) if ~ is the set of processes that are faul(y in al, j = O, 1, then I F,, U Fl I <
f -1, and

(4) there is at most one process to which a,, and al are distinguishable.

PROOF. The intuition behind the proof is that, if the process, say p, which

can distinguish the two execution prefixes fails, then any two similar extensions

of a. and al lead to the same decision, which contradicts the assumption that

aO and a, have different valence. The contradiction is resolved if the failure of

p is detected, but this can take an additional time Cd after time t.Very

informally, the proof proceeds by assuming that aO and al exist. We have p

fail at time t.Then two similar slow extensions of the two execution prefixes,

with no additional failures, must lead to the same decision value. By retiming

the slow extensions to be fast, reviving p, but delaying certain messages of p as

much as possible, we obtain two fast ff-extensions that lead to the same

decision. This contradicts the assumption that a“ and a ~ have different

valence. An important fact is that, if a slow extension taking time less than Cd

is retimed to be fast, the fast extension takes time less than d. The details

follow.

Suppose, by way of contradiction, that such prefixes a,, and al exist. Let F
be the union of F,l, F,, and the set (of size at most 1) of processes to which aO

and a ~ are distinguishable; note that I F I s f. For j = O, 1, let a; be a
synchronous timed execution prefix that is identical to al except that each

P, ● F does a failure step in which it sends no messages at time tendif it has
not failed previously in a,. Let yO be a slow ff-extension of a{]. Let yl be

constructed in a similar way from ~j, subject to the additional condition that

‘~The terminology is derived from that of Fischer et al. [1985], although the definitions are not

exactly equwalent.
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the portion of yl after time t,~~ is identical to the portion of yO after time te.~.

This is possible since a: and a; are indistinguishable to all processes other

than those in F’, and moreover all messages in transit to these processes at

time t~~~ are the same in aj and aj.

Since I F I <f, it follows that each of yO and y, is ~-admissible. Since

t end > t and the algorithm decides before time t + Cd, all the nonfaulty

processes, that is, those processes not in F, decide in each of yO and -yI strictly

before time tend+ Cd. Since yO and y, are indistinguishable to all processes

other than those in F, they have the same decision value L’. Fix j = 1 – u.

(This makes sense because LJ G {O, l}.)
Let yj’ be a retiming of y, that keeps the times of all events up to and

including tc.~ the same, and that causes every event that occurs at time

tend + u in -y,, for u >0, to occur at time tend+ u/C in y]’. Then all processes

not in F decide u in y;, strictly before time tend+ d.

Now let y; be a fast ff-extension of a, in which any messages sent by

processes in F at times greater than or equal to tendtake time exactly d to be

delivered, and such that y; looks exactly like y; to all processes except those in

F at times before tc”d+ d. Since the processes not in F cannot tell the

difference between y; and y; strictly before time t,.d + d, all processes not in
F must decide L) in y;.

But since y: is a fast ff-extension of aj and a, is j-valent, the processes that

are nonfaulty in ~~ must decide j in y;. Since the processes not in F are

nonfaulty in y;, this is a contradiction. ❑

COROLLARY 6.3. Let A be an algorithm in the timing-based model that solues

the agreement problem for fs n – 1 faults within time strictly less than (f – l)d

+ Cd. Then there is an (f – 1)-admissible synchronous timed execution prefti a

such that the following conditions hold:

(1) tend(a) = [(f– l)d/cll~l, and
(2) a is billalent.

PROOF. Let at) and CYl be obtained by setting /c = f – 1 in Lemma 6.1. We

show that at least one of CZoand a I has the required properties. All properties

except the bivalence are immediate, so we must show that at least one of a.

and a ~ is bivalent. We proceed by contradiction. Assume that neither of a.

and a, is bivalent. Then, for j = O, 1, since a decision of j is possible in a fast

ff-extension of a, (by Lemma 6.1), it must be that a, is j-valent. But then a.

and al satisfy all the conditions described in the statement of Lemma 6.2,

where t = (f – l)d. Lemma 6.2 then yields a contradiction. ❑

6.4. EXISTENCE OF A LONG MAXIMAL BIVALENT PREFIX. For the third step,

we construct a “maximal” finite bivalent extension a‘ of the bivalent timed

execution prefix obtained in the previous corollary. Roughly speaking, the end

of a‘ is a branch point from which both decisions are still fast ff-reachable and

such that at the next step time in any fast ff-extension of a‘ the decision must
be determined.

LEMMA 6.4. Let A be an algorithm in the timing-based model that solves the

agreement problem for fs n – 1 faults within time strictly less than (f – l)d +



148 H. ATTIYA ET AL.

Cd. Then A has an (.f – 1)-admissible synchronous timed execution prefti a‘ such

that

(1) t,,,d(a’) > (f – l)d,
(2) a‘ is bi[wlent, and

(3) there are two fast ff-extensions of a‘, namely, PI forj = O, 1,such that

(a) D, is an extension of CY’ by exactly one block, j = 0,1,

(b) P, is j-lalent, j = 0,1, and

(c) PO and fll are indistinguishable to all but at most one process.

PROOF. By Corollary 6.3, A has a (f – I)-admissible synchronous timed

execution prefix a satisfying the following properties:

(1) t.,,~(a) = [(f – l)d\cllcl, and

(2) a is bivalent.

Let r be the set of finite bivalent fast ff-extensions of a. Each such

extension must have its final time strictly less than (f – l)d + Cd, since A is

assumed to decide within that time. Since each block takes time c-,, there must

exist a maximal element of r, that is, one that has no proper extensions in r:

let a‘ be such a maximal element.

Let @ be the set of all finite fast ff-extensions of a‘ consisting of a‘

followed by a single block. In other words, every ~ ● @ consists of a‘ followed

by a sequence of message deliveries and a single step by each process. Since

fast ff-extensions are synchronous, t,~~( /3 ) = t,,~( a‘) + c1 for each ~ G @. By

maximality of a‘, every timed execution prefix in @ is univalent. Since a‘ is

bivalent, there must be at least one such extension that is O-valent and at least

one that is l-valent. (This uses the fact that bivalence is by definition with

respect to fast ff-extensions.) Let ~~ = @ be j-valent, for j = O, 1.

Now we construct a sequence, ~~, O < i < n, of elements of @ such that

P; = ~~, B1 = ~~. and for all i, 1< i < n, ~~., and ~~ are indistinguishable
to all processes other than p,. The construction is inductive. First, define

11’~= l% Then, for each i, 1 s i s ~z, define p: ~ @ to be the same as L?:- ~
except that the message deliveries to p, in /3~ are as in ~{. (Since all the

messages delivered to p, in /3j are sent by time tend(a ‘),such a ~~ exists. )

Since each ~~ = @, it is univalent. Since (?( is O-valent and ~~ is I-valent.

there must exist i, 1 s i < n, such that ~~_, is O-valent and ~~ is l-valent.

Then defining DO = /?~_, and /31 = /?~ suffices to prove the lemma. ❑

6.5. THE FINAL STEP. For the final step of our proof, we now use Lemma

6.2 once again to yield our main lower-bound theorem.

THEOREM 6.5. Assume 1 < f < n – 1. There is no algotithm in the timing-

based model that VOILW the agreement p~oblem fo~ f faults ~vithin time strict~ le~>

than (f – l)d + Cd. Moreoler, this lower bound holds in the case of synchronized

start.

PROOF. Suppose, by way of contradiction, that such an algorithm A exists.

Then Lemma 6.4 yields an (f – 1)-admissible synchronous timed execution

prefix a‘ such that t,.nd(a‘) > (f – l)d, a‘ is bivalent, and there are two fast

ff-extensions of a‘, namely, ~, for j = O, 1, satisfying the following properties:

(1) PJ is an extension of a‘ by exactly one block, j = 0,1,

(2) P, is j-valent, j = 0,1, and

(3) DO and 61 are indistinguishable to all but at most one process.
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But then ~. and PI satisfy all the conditions in Lemma 6.2, with t = (f – l)d.

This immediately yields a contradiction. ❑

Remark 4. The lower bound obtained in this proof is not always the best

possible. If d = kcz + ~ for some integer k and ● >0, then we can actually

obtain a bound of (~ – l)(d + Cz – e) + Cd. Since in theory E can be arbitrar-

ily small, we get essentially (~ – l)D + Cd in the worst case.

7. Implications for Synchronous Processes with Message Delilery Uncertain~

In the Introduction, we indicated that our results could be applied to the model

used in [Herzberg and Kutten, 1989], in which process steps are completely
synchronous, that is, c1 = Cz, so C = 1, and in which 8, the actual message

delivery bound in a particular execution, can be much smaller than the

worst-case message delivery time d. In this section, we say more about these

applications.

First, we consider the cost of implementing the timeout task in the C = 1

model. The timeout strategy of Section 3 yields a timeout bound T of at most

d + 8 + 3CI. However, since processes are synchronous, the timeout bound can

be improved slightly, using a different strategy. Process p~ broadcasts the
message (aliue, j, k) at its kth step for all k. If process p, has not received the

message (aliue, j, k) by its (k + [d/c I ] + 1)-th step, then p, adds p, to its set of

halted processes. This strategy gives a timeout bound of T = d + 2CI.
We consider the simple upper and lower bounds for agreement. The simple

upper bound of approximately (f + l)Cd of Section 4 specializes to yield an

upper bound of approximately (f + l)d, even for executions in which 8 <z d.

On the other hand, a simple lower bound, obtained by adapting the (f+ l)-

round lower bound for the rounds model, is (f + 1)8. This leaves a gap of a

multiplicative factor of d/8.

The main algorithm of this paper helps to close this gap. Since we carried

out the analysis of our main algorithm in terms of 8 and T, it is easy to

translate the result to the C = 1 model. Using the improved timeout bound

above, we conclude that the algorithm runs in time

(2f – l)A + max{d,38} + 3CI,

or approximately (2 f – 1)8 + max{d,38 } if c ~ << 6. Therefore, the number of

faults multiplies the actual message delay 8 rather than the worst-case delay d.

As shown in [Dwork and Stockmeyer, 1991], the methods of Dwork et al.

[1988] give a completely different agreement algorithm in the C = 1 model

with time complexity 0( fa ), provided that n z 2f + 1. (These methods do not

work when n < 2f.)

We now consider lower bounds in the C = 1 model. The lower bound

techniques of this paper can be modified to give a lower bound of time

(2f - n)~ + d provided that f + 1< n s 2f [Dwork and Stockmeyer, 1991].
More specifically, since n s 2f, a “partitioning” argument, similar to ones
used in [Bracha and Toueg, 1985] and [Dwork et al., 1988], easily gives a lower

bound of d, even in certain executions in which the actual message delay 8 is
c,, so messages are being delivered essentially as fast as possible. By combining

the partitioning argument with the argument used to prove the (f+ I)-round
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lower bound (see the discussion preceding Lemma 6.1), a lower bound of

(2~ – n) 8 + d can be shown if ~ + 1< n s 2~. This bound can be compared
to the upper bound of roughly (2~ – 1)8 + d described above. In the case

n > 2 f, the upper bound 0( fd ) shows that the time need not depend on d at

all.

8. Conclusions and Open Questions

Although there is a gap between our lower bound of (f – l)d + Cd and our

upper bound of approximately 2fd + Cd, we feel we have substantially an-

swered the question of how the time requirement depends on the timing

uncertainty, as measured by C = cz/c ~. In particular, we have shown that only

a single “long timeout” (i.e., a timeout requiring time Cd) is required and this

long timeout cannot be avoided. Similarly, for the case in which C = 1, we

have shown that the time depends on the worst-case message delivery time d

only once.

An obvious open problem is to close the gap between the lower and upper

bounds. Another question is whether these results can be extended to other

types of failures such as Byzantine or omission failures. Some results on this

last question have been obtained by Ponzio [1991a; 1991 b].

A more general direction for future research is to try to extend the tech-

niques described in this paper to permit simulation of arbitrary round-based

fault-tolerant algorithms in the model with timing uncertainty. The hope is that

such a simulation will not incur the multiplicative overhead of T of the simple

transformation described in Section 4.

Our algorithms assume that each message is delivered within at most time d

under all circumstances, in particular, even if the message delivery system is

overloaded with messages. A more reasonable assumption is that all messages

get delivered within at most time d, provided that the number of messages in

transit is bounded. The algorithms we present in this paper send only a

bounded number of messages and so would work under such a restriction. Our

lower bound does not rely on this restriction and carries over a fortiori for the

restricted case. Some results relating the time complexity of a timeout task to

the capacity of the channels appear in [Ponzio, 1991 b].

As mentioned earlier, the work presented in this paper is part of an ongoing

effort to obtain a precise understanding of the role played by time, and timing

uncertainty in particular, in distributed systems. The upper bound presented in

this paper is based on an approach that departs from known algorithms for

agreement in the synchronous model. We believe that there are many other

fundamental tasks in distributed systems whose study might lead to the
discove~ of new approaches for coping with timing uncertainties.
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