
Efficiency of Synchronous Versus Asynchronous
Distributed Systems

E S H R A T A I L I O M A N D I

York Umverslty, Downswew, Ontarw, Canada

M I C H A E L J. F I S C H E R

Umverstty of Washington, Seattle, Washington

A N D

N A N C Y A. L Y N C H

Massachusetts Institute of Technology, Cambrtdge, Massachusetts

Abstract. A system of parallel processes is said to be synchronous if all processes run using the same clock,
and it is said to be asynchronous ff each process has its own independent clock. For any s, n, a particular
distributed problem is defined mvolvmg system behawor at n "ports" This problem can be solved in time
s by a synchronous system but requires tune at least (s - l)[logbnJ on any asynchronous system, where b
is a constant reflecting the communication bound m the model. This appears to be the first example of a
problem for which an asynchronous system is provably slower than a synchronous one, and it shows that
a stratghtforward step-by-step and process-by-process simulaUon of an n-process synchronous system by
an n-process asynchronous system necessarily loses a factor of logbn m speed

Categories and Subject Descriptors F. 1.2 [Computation by Abstract Devices]: Modes of ComputaUon--
parallelism, relatwns among modes; F.2 m [Analysis of Algorithms and Problem Complexity]: Miscellaneous

General Terms' Algorithms, Theory

Addiuonal Key Words and Phrases" Synchronous system, asynchronous system, clock, distributed system

1. Introduction

A sys t em o f pa ra l l e l p rocesses is sa id to be synchronous i f a l l p / 'ocesses r u n u s ing the

s a m e c lock , so t h e p rocesses o p e r a t e in locks tep , a n d it is sa id to be asynchronous i f

e a c h p rocess has its o w n i n d e p e n d e n t c lock. E x a m p l e s o f s y n c h r o n o u s sys tems a re

c e r t a i n l a rge c e n t r a h z e d m u l t i p r o c e s s i n g c o m p u t e r s a n d V L S I ch ips c o n t a i n i n g m a n y

This paper is based on research supported by the Office of Naval Research under Contracts N00014-80-
C-0221 and N00014-79-C-0873, by the U.S Army Research Office under Contract DAAG29-79-C-0155,
by the Nauonal Science FoundaUon under Grants MCS 77-15628 and MCS 79-24370, and by the National
Sciences and Engineering Research Councd of Canada

Authors' presem addresses E Arjomandi, Department of Computer Science, York University, Downsview,
Ontario, Canada M3J IP3, M J Ftscher, Department of Computer Science, Yale University, P.O. Box
2158, New Haven, CT 06520, N A Lynch, Laboratory for Computer Science, M.LT., Cambridge, MA
02139

Permission to copy without fee all or part of this materml ts granted provided that the copies are not made
or distributed for direct commercial advantage, the ACM copyright notice and the title of the pubhcanon
and its date appear, and notice is gwen that copying is by permission of the Association for Computing
Machinery To copy otherwise, or to repubhsh, reqmres a fee and/or specific permission.
© 1983 ACM 0004-5411/83/0700-0449 $00 75

Journal of the Associatmn for Computing Machinery, Vol 30, No 3, July 1983, pp 449-456

450 E. ARJOMANDI, M. J. FISCHER, AND N. A. LYNCH

separate parallel processing elements. Examples of asynchronous systems are distrib-
uted computer networks and I/O systems for conventional computers.

In this paper we compare time efficiency of a simple model of a synchronous
system with a similar asynchronous model. For s, n ~ gq, we define a particular
distributed problem involving n "ports." This problem can be solved in time s on a
synchronous system, but we show that it requires time at least (s - 1)[logbnJ on any
asynchronous system. Here b is a constant reflecting the communication bound in
the model, whose precise definition is given in the next section. Finally, we show that
if the communication system is slightly strengthened by permitting a single designated
process to broadcast to all others, or if we provide each process with access to a
global clock, then the asynchronous model can solve the problem in time O(s).

Note that our argument must do much more than just compare two particular
systems. Rather, we must reason about all possible asynchronous systems (within a
particular formal model) and prove that none could possibly solve the given problem
efficiently. In general, obtaining lower bounds and impossibility results is a more
difficult task than obtaining corresponding upper bounds.

2. The Model

The model used in this paper is similar to the model defmed in [1]. Briefly, it consists
of collections P ofprocesses and X of shared variables. The global state of the system
consists of the internal state of each process together with the value of each shared
variable. A step is an atomic action which consists of simultaneous changes to the
state of some process and the value of some shared variable. Formally, a step o is a
pair of triples ((s, p, t), (u, x, v)), where s, t are possible internal states of process p,
and u, v are possible values of variable x; we define process(o) = p and variable(o)
-- x and say that o involvesp and accesses x.

Step o is applicable to any global state in which process p has internal state s and
variable x contains value u. The effect of performing o is to change the state ofp to
t and simultaneously to change the value of x to v.

A system is specified by describing P, X, an initial global state, and a set OKSTEPS
of possible steps. A process p blocks in a global state g if there is no step o in
OKSTEPS applicable to g with process(o) ~ p. In this paper we require our systems
to be nonblocking for all processes and all global states. By requiring our systems to
be nonblocking, we are saying that any process is able to take a step on its own at
any time. We are not saying that all of these steps must perform useful work,
however--some might be "busy-waiting" steps.

Let x E X, and defme locality(x) = (process(o):o E OKSTEPS and variable(a)
= x}. A system is b-bounded if I locality(x) I <- b for every x E X.

A computation of a system is a finite or infinite sequence of steps in OKSTEPS
such that the first step is applicable to the initial global state and each succeeding
step is applicable to the state resulting from the application of the previous step. The
result of a finite computation is the global state after applying the sequence. An
infinite computation is admissible if every process appears in infinitely many steps of
the sequence.

A round is any sequence of steps such that every process appears at least once in
the sequence. A minimal round is a round such that no proper prefix is a round.
Every sequence of steps can be uniquely partitioned into segments such that every
segment is a minimal round, except possibly for the last segment. We call this a
partition into minimal rounds, even though the last segment is not necessarily a
round.

Efficiency of Distributed Systems 451

A sequence of steps is synchronous if in the unique partition into minimal rounds:

(1) No two steps in the same round involve the same process;
(2) 1'qo two steps in the same round access the same variable.

Conditions (1) and (2) together imply that the steps in each round are independent
and can be performed in any order, or simultaneously, with the same result.

The run time for a t'mite sequence of steps is defined to be the number of segments
in the partition into minimal rounds. (This definition is equivalent to the one in [1],
which says that the run time is the longest amount of elapsed real time that the
system could take to execute the sequence, subject to the constraint that the time
delay between two steps of the same process is at most unity.) Our requirement that
the system be nonblocking, which enables processes to continue taking steps inde-
pendently, makes our definition for "time" reasonable. I f the system were permitted
to block, then our definition would count the time until any process took a step as
bounded, even if that process had to wait for an arbitrary amount of activity to occur
before it could proceed. This seems quite unreasonable.

We imagine an outside agent who restricts the set of computations to be
"allowable," as follows. An asynchronous system is a concurrent system whose
allowable computations are all of its infinite admissible computations. A synchronous
system is a concurrent system whose allowable computations are all of its infinite
synchronous computations.

For synchronous systems, note that our definition for "time" is equivalent to the
more usual one which simply counts the number of synchronous steps of the system,
where one synchronous step consists of the simultaneous execution of a step by each
process.

Although our results use a shared-variable model, they are intended to apply to
models which use other communication primitives (such as messages) also. Other
distributed computing models can generally be formalized within our model; for
instance, a message system which accesses buffers can be modeled as a particular
kind of process, which accesses particular kinds of shared variables. The measure of
time for such systems which is derived from our basw time measure seems to be a
reasonable one to consider.

3. The Problem

We now defme a particular problem for a concurrent system. Let Y _ X be a
distinguished set of variables called ports. A port event is any step that accesses a
port. A session is any sequence of steps containing at least one port event for every
port. A computation peoeorms s sessions if it can be partitioned into s segments, each
of which is a session. An infinite computation is ultimately quiescent i f it contains
only a finite number of port events. The time to quiescence of an ultimately quiescent
sequence is the run time of the shortest pref'Lx containing all port events.

Let s, n E IN. The (s, n)-session problem is the problem of finding a concurrent
system with n ports such that every allowable computation performs (at least) s
sessions and is ultimately quiescent.

Note that the (s, n)-session problem, like the mutual exclusion and dining philos-
ophers problems, concerns possible orderings of sequences of events rather than the
computation of particular outputs. It is an abstraction of the synchronization needed
in many natural problems. Consider, for example, a simple message distribution
system in which a sending process writes a sequence of s messages one at a time on
a board visible to all and waits after each message until all n other processes have

452 E. ARJOMANDI, M. J. FISCHER, AND N. A. LYNCH

read the message. Let us regard each reading step by a process p as a "port event at
port p." Any protocol which ensures that the sender has waited sufficiently long will
also solve the (s, n)-session problem.

4. Main Result

We show that any asynchronous b-bounded system solving the (s, n)-session problem
requires time at least (s - 1)[logbnJ to quiescence, whereas there is a trivial
synchronous system which solves the problem in time exactly s. This is the first
example we know of a problem for which an asynchronous system is provably slower
than a synchronous one, and it shows that a straightforward step-by-step and process-
by-process simulation of an n-process synchronous system by an n-process asynchro-
nous system necessarily loses a factor of logbn in speed.

The result is even more surprising when one realizes that the trivial asynchronous
system with one process per port (and no communication among the processes) in
which each process does nothing except access a port on each step in fact performs
s sessions within time s. The difficulty is that no process knows when time s has
elapsed (because of the lack of a global system "clock"), nor does it know when the
s sessions have in fact been achieved, so none of the processes knows when to stop
accessing its port.

A procedure which works is for a process associated with each port to perform a
port event, broadcast that fact, and then wait until it has heard that all other port
processes have performed their port events and that the session has been completed.
This is repeated s times. By making the port processes the leaves of a tree network,
the necessary communication for one session can be accomplished in time O(log n);
hence the total time to quiescence for the solution is O(slogn). It seems very
inefficient to wait after each port event, and one might try to invent clever schemes
to increase the concurrency in the system. Our lower bound shows, however, that
this method is optimal to within a constant factor, so only a limited amount of
improvement is possible.

We now present the formal results.

THEOREM 1. For all s, n E IN there is a 1-bounded synchronous system which solves
the (s, n)-session problem such that the time to quiescence for each allowable computation
iss .

PROOF. The system has n processes, one corresponding to each port. Each process
accesses its port on each of its first s steps and then ceases performing port events. In
every infinite synchronous computation, each of the first s minimal rounds constitutes
a session, and the system becomes quiescent after s rounds. Hence the system solves
the (s, n)-session problem in time s. []

THEOREM 2 (MAIN RESULT). Assume b, s, n E IN, b >_ 2. For every b-bounded
asynchronous system which solves the (s, n)-session problem, the time to quiescence is
at least (s - 1)[logbn l for some allowable computation.

PROOf. Assume an asynchronous system which solves the (s, n)-session problem.
Enumerate the processes arbitrarily. Construct an infinite admissible computation a
by running the processes in round-robin order (one step of process 1, one step of
process 2 one step of process N, one step of process 1). Each round-robin
round is minimal; hence the time to perform the first r rounds is exactly r. Because
we asssume a correct solution, this computation is ultimately quiescent. Let t be the
time to quiescence. Then round t is the last round at which any port event occurs.
We show t > (s - 1)[logbnJ.

Efficiency o f Distributed Systems 453

Let ~ = fly, where fl contains the first t rounds of ot and y is the remaining tail. Our
strategy is to construct a new infinite admissible computation o~' -- fl'y, where 13' is a
reordering of fl that results in the same global state as r , but fl' performs at most
t/[logbnJ + 1 sessions. Since no port evems occur in -/, it follows that od performs at
most t/[lOgbnJ + 1 sessions. Since a ' is an infinite admissible computation for the
system, t/[lOgbnJ + 1 >-- S, and the result follows.

To construct fl', we first construct a partial order of the steps in r , representing
"dependency." (Formally, the domain of the partial order consists of ordered pairs
(i, ~,), where ~, is the ith step of ft.) For every pair of steps o, "r in r , we let o _<~ ~- ff
o = ~- or if o precedes ~- in fl and either process(o) = process0") or variable(o) --
variable(~-). Close _<p under transitivity. _<~ is a partial order, and every total order of
steps of fl consistent with <_~ is a computation which leaves the system in the same
global state as ft. (Clearly fl itself defines such a total ordering.)

Now let m = [t/[lOgbnJ], and write fl ff i f l l , ' ' tim, where each flk (1 _< k < m)
consists of [IOgbnJ minimal rounds. Lety0 be an arbitrary port. For k = 1 m, we
claim that there exists a port yk and two sequences of steps 4~k and ~k, such that the
following properties hold.

(i) ~k% is a total ordering of the steps in ilk, consistent with _<~.
(ii) % does not contain any step which accesses yk-~.

(iii) ~k does not contain any step which accesses yk.

Then if/3' = (~11/)11~21~2 . ° . ~rn~,lm, it follows that/3' is consistent with -<t~. However,
/3' contains at most m <_ t/[logbnJ + 1 sessions, since each session must contain steps
on both sides of some '~k--~k boundary. (If a sequence of steps were completely
contained in ~k-~ffk, for example, then it would fail to contain a step accessing port
yk-1.)

It remains to show the existence of the required yk, 0?k, and ~k, 1 _< k _< m. We
proceed by induction on k. Assume that yk-1 has been defined, and det'meyk, ~/,k, and
ffk as follows. There are two cases. First, if there is some port which is not accessed
by any step of/3k, then let yk be that port, ffk the null sequence, and % ffi /3k.
Properties (i)-(iii) are easily seen to be true in this case. Otherwise, let "rk be the first
step in/3k which accesses yk-1. We claim that there exists a port yk such that

(iv) if o is a step in/3k which accesses yk, then it is false that ~'k -<a o.

Let ok be the last step in/3k which accesses yk. Assuming (iv) and then adding the
pair (Ok, zk) to <~ and closing under transitivity results in another partial order -<k.
Choose any total order ing/~ of the steps in/3k consistent with <-k. ~'k is the first step
in/3~ which accesses yk-~, since all steps accessing the same variable are totally
ordered in --<k. Let 0k be the prefix of/3~ up to but not including ~'k, and let *k be the
remainder, ok occurs in ffk since ok -----k ~'k. (This is all illustrated in Figure 1.) Then
properties (i)-(iii) are easily seen to be true.

It remains to verify the claimed existence ofyk. We do this by proving a series of
three lemmas about the restriction of -<t~ to/3k. These lemmas and their proofs rely
on only a few properties of the resulting partial order. We state the required properties
explicitly and thereby make the lemmas and their proofs entirely self-contained.

Let R be a totally ordered set {1 I R I} (of "round" numbers), P a/'mite set (of
"processes"), and X a set (of "variables"). Let D (the "steps") be a f'mite set having
mappings round: D ---> R, proc: D ---> P, and var: D ---> X. Assume that for every pair
(r, p) E R x P there is exactly one o ~ D having round(o) --- r and proc(o) *ffi p. Let
loc(x) =-- {proc(o):o ~ D and var(o) = x}. Let b __ 2 and assume I loc(x)l - b
for all x E X.

454 E. A R J O M A N D I , M. J. F ISCHER, A N D N.

!

t
/

*---no accesses to yh-~ I ~t

1
~. I10 accesses toflk ' •

o - - - o - - - o - - - o o - - - o - / - o , - - o - ÷ - o - - - o - - o - - - o - - - o ° - - o

ok 'rk

FIG. 1 A to ta l o rder ing o f steps in Bk cons is ten t w t t h --<k.

A. L Y N C H

Let <_ be a partial order on D, and write o <1 ~" to indicate that o < ~" and there is
no p with o < p < ~'. Assume that <_ has the following properties:

(i) I f o <1 ¢, then either var(o) -- vat(e) or proc(o) -- proc(¢).
(ii) I f either var(o) = var0-) or proc(o) = proc(¢), then o and ~" are <_-comparable.

(iii) I f o <_ ,r, then round(v) _< round(e).

Finally, let dep(o) = {var(¢) :o <_ T}.

LEMMA 1 (ANTIMONOTONICITY). I f01 <_ 02, then dep(o2) C_ dep(oa).

PROOF. Obvious from the definition of dep. [:]

LEMMA 2. Let o ~ D, r = round(o), and x = mr(o) . Le t C = {~ E D: round(e) =
r + 1 andproc(¢) E loc(x)}. Then dep(o) C. Ll~ec dep(¢) 0 {x}.

PROOF. Proof is by induction on <_, beginning with maximal elements. Let
o ~ D , and assume the lemma holds for all ,r > o. A s s u m e r, x , a n d C are def'med
from o as in the statement of the lemma. I f there exists o' E D with var(o') - x and
o' > o, then fix o ' as the smallest such member of D. (Property (ii) ensures that
o', i f it exists, is defined uniquely.) Similarly, if there exists o" ~ D with proc(o") =
proc(o) and o" > o, then fix o" as the smallest such member of D. Define B' =
dep(o') if o' exists, ~ otherwise, and B" = dep(o") if o" exists, ~ otherwise. Then
properties (i) and (ii) and antimonotonicity show that dep(o) C_C_ B' O B" O {x}. It
suffices to show that B' O B" _C 1,3~ec dep(¢) t3 (x}.

We first consider B' and assume o/exists. (If o' does not exist, then there is nothing
to prove.) By induction, B' C_ k),,~c, dep(¥) t3 (x}, where C' = {,r' E D: round0")
= round(C) + 1 and proc0") E loc(x)}. For every ¢' ~ C' there exists ¢ E C with
proc0") = proc(¢'), since every process takes a step in every round. Property (ii) shows
that ¢ and ¢' are <_-comparable. But

round(Y) -- round(d) + 1
>_ round(v) + 1 by (iii)
= round(~).

I f ¢ # ¥ , then round(¢') > round(e), since each process takes exactly one step in each
round; in this case, 0ii) implies that ¥ > ¢. Thus in any case it is true that ¢ <_ ¥.
Antimonotonicity implies that dep(¢') _C dep(¢). Thus B' _ kJ~ec dep(¢) O (x}, as
needed.

Finally, we consider B" and assume o" exists. Then round(v") -- r + 1, so that
o" ~ C. Thus B " C_ Ll~ec dep(¢), as needed. []

LEMMA 3. For each o E D with round(o) = r it is the case that

b IRI-r+x - 1
I dep(o) l <_

b - I

Efficiency of Distributed Systems 455

PROOF. We proceed by induction on r, starting with r ffi I RI and working
backward.

Basis: r ffi IRI. By Lemma 2, dep(o) _ {var(o)}, so Idep(a)l -< 1, as needed.

Induction: 1 ___ r < I R 1. By Lemma 2 we have [dep(o) [___ ~ , e c [dep(z) [+ 1, where
C is defined as in Lemma 2. Each ~- E C has round(z) ffi r + 1, so by induction,
I dep(~')I-< (b In l -r - 1)/(b - 1). Also, ICI - b. Hence,

_ F b I R I - r - 1] b IRI-r+l- 1
Idep(o)l -< b. L ~ - r J + 1 = b - 1 '

as needed. []

We now return to the main proof and use Lemma 3 to show the existence of the
needed yk. We apply Lemma 3 to the subordering of ---a defined by restriction to
ilk. The set R of "round numbers" required for Lemma 3 is {1 [IOgbnJ}. The
required mapping "rounds" is obtained by renumbering the round-robin rounds of
ilk, preserving their previous order. Mappings "prod' and "vat" are obtained from
the mappings "process" and "variable," respectively. It is straightforward to see that
the necessary properties of D and <_ are satisfied. Then by Lemma 3, we see that
I dep(rk) I _ (b 0°g~'l-~+~ - 1)/(b - 1) __ n - 1. Since there are n ports, this means that
there must exist a port yk satisfying the required property (iv). []

5. Results for More General Models

If the model is generalized by removing the bound on the number of processes which
can access a shared variable, then a single communication variable shared by n port
processes can be used to construct an O(s) solution.

In fact, if the original model is only generalized slightly by allowing one of the
shared variables to be read by an arbitrary number of processes (but only to be
changed by one process), then an O(s + log n) solution is possible. In more detail, we
use a shared variable, the message board, which every process can read but only one
fixed process, the supervisor, can change. Each port has a corresponding port process,
and there are additional communication processes whose job it is to pass messages
through a tree network from the port processes back to the supervisor. The message
board contains an integer which we call a "clock" value. The supervisor alternately
increments the clock and reads the messages being sent back. Each port process
repeatedly performs a cycle of reading the clock, performing a port event, and
sending a message back to the supervisor, through the network, which contains the
clock value just read and the port identifier.

I f cl and Cz are two successive clock values sent by port process i, then a port event
must occur at port i sometime after the clock assumes value ca and before the clock
assumes value c2 + 1. By naturally combining this information about all ports, the
supervisor can construct a sequence 0 = bo < bl < b2 < . - . < b~ such that for each
j, a session is guaranteed to occur between the times when the clock first assumes
values bj and bj+~. (Specifically, let c,a, c~2 denote the successive eloek values sent
by port process i, 1 _< i _< n. Then define bj -- max{c, tk+~> + 1 : 1 5 i _< n and k is the
smallest index such that c,k >- bj-1}, for each j, 1 _< j _< s.) After the supervisor
constructs this entire sequence, it knows that at least s sessions have in fact occurred,
at which time it puts a STOP message on its message board. When the port processes
read the STOP message, they stop performing port events.

It is easy to see that this construction solves the (s, n)-session ~roblem. We argue
that it satisfies the required O(s + logn) time bound.

456 E. ARJOMANDI, M. J. FISCHER, AND N. A. LYNCH

First, we consider message transmission time. Since we are not assuming any upper
bound on size of variables, the tree network can guarantee (by concatenating
messages) that any message can be sent as soon as a process is ready to send it, and
also that any message sent by time t is received by the supervisor by time t + O(logn).

Next, we claim that for each j, 1 _< j_< s, the time that elapses from when the clock
first assumes values bj-1 until it first assumes bj is bounded above by a constant. For,
from the time when the clock first assumes value bj-1, it is at most a fixed constant
amount of time before all port processes have read the clock, performed port events,
sent messages containing clock values > bj-1, and read the clock once again.
Thereafter, it is at most one time unit before the clock is incremented again, thereby
assuming value bj.

Thus, the total elapsed time until the clock assumes value bs is O(s). Thereafter,
within time O(logn), the supervisor has received all the needed messages and can
deduce that s sessions have occurred and display the STOP message. Three time
units later, all port processes will have read the STOP message and will have stopped
performing port events.

6. Conclusion

We have demonstrated a particular situation in which asynchronous systems are
provably less efficient than synchronous systems for solving a natural distributed
problem. We expect that there are many other such situations.

It is quite pleasing to try to design distributed algorithms so that their logical
correctness is timing-independent (i.e., so they are "completely asynchronous"),
whereas their performance might depend on timing considerations. This paper
suggest that this goal will not always be achievable: for some tasks, the only practical
distributed solutions might be timing-dependent.

R E F E R E N C E S

1. LYNCH, N.A., AND FISCHER, M.J. On describing the behavior and unplementat ion o f d l smbuted
systems In Theoretical Computer $ctence 13, North-Holland, Amsterdam, 1981, pp. 17-43.

RECEIVED SEPTEMB~ 1981; REVISED SEPTEMBER 1982; ACCEPTED SEPTEMBER 1982

Journal of the Assooauoa for Computing Machinery, Vol 30, No. 3, July 1983.

