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Abstract. A system of parallel processes is said to be synchronous if all processes run using the same clock, 
and it is said to be asynchronous ff each process has its own independent clock. For any s, n, a particular 
distributed problem is defined mvolvmg system behawor at n "ports" This problem can be solved in time 
s by a synchronous system but requires tune at least (s - l)[logbnJ on any asynchronous system, where b 
is a constant reflecting the communication bound m the model. This appears to be the first example of a 
problem for which an asynchronous system is provably slower than a synchronous one, and it shows that 
a stratghtforward step-by-step and process-by-process simulaUon of an n-process synchronous system by 
an n-process asynchronous system necessarily loses a factor of logbn m speed 
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1. Introduction 

A sys t em o f  pa ra l l e l  p rocesses  is sa id  to  be  synchronous i f  a l l  p / 'ocesses  r u n  u s ing  the  

s a m e  c lock ,  so t h e  p rocesses  o p e r a t e  in  locks tep ,  a n d  it  is sa id  to  be  asynchronous i f  

e a c h  p rocess  has  its o w n  i n d e p e n d e n t  c lock.  E x a m p l e s  o f  s y n c h r o n o u s  sys tems  a re  

c e r t a i n  l a rge  c e n t r a h z e d  m u l t i p r o c e s s i n g  c o m p u t e r s  a n d  V L S I  ch ips  c o n t a i n i n g  m a n y  
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separate parallel processing elements. Examples of asynchronous systems are distrib- 
uted computer networks and I/O systems for conventional computers. 

In this paper we compare time efficiency of a simple model of a synchronous 
system with a similar asynchronous model. For s, n ~ gq, we define a particular 
distributed problem involving n "ports." This problem can be solved in time s on a 
synchronous system, but we show that it requires time at least (s - 1)[logbnJ on any 
asynchronous system. Here b is a constant reflecting the communication bound in 
the model, whose precise definition is given in the next section. Finally, we show that 
if the communication system is slightly strengthened by permitting a single designated 
process to broadcast to all others, or if we provide each process with access to a 
global clock, then the asynchronous model can solve the problem in time O(s). 

Note that our argument must do much more than just compare two particular 
systems. Rather, we must reason about all possible asynchronous systems (within a 
particular formal model) and prove that none could possibly solve the given problem 
efficiently. In general, obtaining lower bounds and impossibility results is a more 
difficult task than obtaining corresponding upper bounds. 

2. The Model 

The model used in this paper is similar to the model defmed in [1]. Briefly, it consists 
of collections P ofprocesses and X of shared variables. The global state of the system 
consists of the internal state of each process together with the value of each shared 
variable. A step is an atomic action which consists of simultaneous changes to the 
state of some process and the value of some shared variable. Formally, a step o is a 
pair of triples ((s, p, t), (u, x, v)), where s, t are possible internal states of process p, 
and u, v are possible values of variable x; we define process(o) = p  and variable(o) 
-- x and say that o involvesp and accesses x. 

Step o is applicable to any global state in which process p has internal state s and 
variable x contains value u. The effect of performing o is to change the state ofp  to 
t and simultaneously to change the value of x to v. 

A system is specified by describing P, X, an initial global state, and a set OKSTEPS 
of possible steps. A process p blocks in a global state g if there is no step o in 
OKSTEPS applicable to g with process(o) ~ p. In this paper we require our systems 
to be nonblocking for all processes and all global states. By requiring our systems to 
be nonblocking, we are saying that any process is able to take a step on its own at 
any time. We are not saying that all of these steps must perform useful work, 
however--some might be "busy-waiting" steps. 

Let x E X, and defme locality(x) = (process(o):o E OKSTEPS and variable(a) 
= x}. A system is b-bounded if I locality(x) I <- b for every x E X. 

A computation of a system is a finite or infinite sequence of steps in OKSTEPS 
such that the first step is applicable to the initial global state and each succeeding 
step is applicable to the state resulting from the application of the previous step. The 
result of a finite computation is the global state after applying the sequence. An 
infinite computation is admissible if every process appears in infinitely many steps of 
the sequence. 

A round is any sequence of steps such that every process appears at least once in 
the sequence. A minimal round is a round such that no proper prefix is a round. 
Every sequence of steps can be uniquely partitioned into segments such that every 
segment is a minimal round, except possibly for the last segment. We call this a 
partition into minimal rounds, even though the last segment is not necessarily a 
round. 
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A sequence of steps is synchronous if in the unique partition into minimal rounds: 

(1) No two steps in the same round involve the same process; 
(2) 1'qo two steps in the same round access the same variable. 

Conditions (1) and (2) together imply that the steps in each round are independent 
and can be performed in any order, or simultaneously, with the same result. 

The run time for a t'mite sequence of steps is defined to be the number of  segments 
in the partition into minimal rounds. (This definition is equivalent to the one in [1], 
which says that the run time is the longest amount of elapsed real time that the 
system could take to execute the sequence, subject to the constraint that the time 
delay between two steps of the same process is at most unity.) Our requirement that 
the system be nonblocking, which enables processes to continue taking steps inde- 
pendently, makes our definition for "time" reasonable. I f  the system were permitted 
to block, then our definition would count the time until any process took a step as 
bounded, even if  that process had to wait for an arbitrary amount of  activity to occur 
before it could proceed. This seems quite unreasonable. 

We imagine an outside agent who restricts the set of  computations to be 
"allowable," as follows. An asynchronous system is a concurrent system whose 
allowable computations are all of its infinite admissible computations. A synchronous 
system is a concurrent system whose allowable computations are all of  its infinite 
synchronous computations. 

For synchronous systems, note that our definition for "time" is equivalent to the 
more usual one which simply counts the number of  synchronous steps of  the system, 
where one synchronous step consists of the simultaneous execution of  a step by each 
process. 

Although our results use a shared-variable model, they are intended to apply to 
models which use other communication primitives (such as messages) also. Other 
distributed computing models can generally be formalized within our model; for 
instance, a message system which accesses buffers can be modeled as a particular 
kind of  process, which accesses particular kinds of  shared variables. The measure of 
time for such systems which is derived from our basw time measure seems to be a 
reasonable one to consider. 

3. The Problem 

We now defme a particular problem for a concurrent system. Let Y _ X be a 
distinguished set of variables called ports. A port event is any step that accesses a 
port. A session is any sequence of  steps containing at least one port event for every 
port. A computation peoeorms s sessions if  it can be partitioned into s segments, each 
of  which is a session. An infinite computation is ultimately quiescent i f  it contains 
only a finite number of port events. The time to quiescence of an ultimately quiescent 
sequence is the run time of the shortest pref'Lx containing all port events. 

Let s, n E IN. The (s, n)-session problem is the problem of  finding a concurrent 
system with n ports such that every allowable computation performs (at least) s 
sessions and is ultimately quiescent. 

Note that the (s, n)-session problem, like the mutual exclusion and dining philos- 
ophers problems, concerns possible orderings of sequences of  events rather than the 
computation of  particular outputs. It is an abstraction of the synchronization needed 
in many natural problems. Consider, for example, a simple message distribution 
system in which a sending process writes a sequence of s messages one at a time on 
a board visible to all and waits after each message until all n other processes have 
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read the message. Let us regard each reading step by a process p as a "port event at 
port p." Any protocol which ensures that the sender has waited sufficiently long will 
also solve the (s, n)-session problem. 

4. Main Result 

We show that any asynchronous b-bounded system solving the (s, n)-session problem 
requires time at least (s - 1)[logbnJ to quiescence, whereas there is a trivial 
synchronous system which solves the problem in time exactly s. This is the first 
example we know of a problem for which an asynchronous system is provably slower 
than a synchronous one, and it shows that a straightforward step-by-step and process- 
by-process simulation of an n-process synchronous system by an n-process asynchro- 
nous system necessarily loses a factor of logbn in speed. 

The result is even more surprising when one realizes that the trivial asynchronous 
system with one process per port (and no communication among the processes) in 
which each process does nothing except access a port on each step in fact performs 
s sessions within time s. The difficulty is that no process knows when time s has 
elapsed (because of the lack of a global system "clock"), nor does it know when the 
s sessions have in fact been achieved, so none of the processes knows when to stop 
accessing its port. 

A procedure which works is for a process associated with each port to perform a 
port event, broadcast that fact, and then wait until it has heard that all other port 
processes have performed their port events and that the session has been completed. 
This is repeated s times. By making the port processes the leaves of a tree network, 
the necessary communication for one session can be accomplished in time O(log n); 
hence the total time to quiescence for the solution is O(slogn). It seems very 
inefficient to wait after each port event, and one might try to invent clever schemes 
to increase the concurrency in the system. Our lower bound shows, however, that 
this method is optimal to within a constant factor, so only a limited amount of 
improvement is possible. 

We now present the formal results. 

THEOREM 1. For all s, n E IN there is a 1-bounded synchronous system which solves 
the (s, n)-session problem such that the time to quiescence for  each allowable computation 
iss .  

PROOF. The system has n processes, one corresponding to each port. Each process 
accesses its port on each of its first s steps and then ceases performing port events. In 
every infinite synchronous computation, each of the first s minimal rounds constitutes 
a session, and the system becomes quiescent after s rounds. Hence the system solves 
the (s, n)-session problem in time s. [] 

THEOREM 2 (MAIN RESULT). Assume b, s, n E IN, b >_ 2. For every b-bounded 
asynchronous system which solves the (s, n)-session problem, the time to quiescence is 
at least (s - 1)[logbn l for some allowable computation. 

PROOf. Assume an asynchronous system which solves the (s, n)-session problem. 
Enumerate the processes arbitrarily. Construct an infinite admissible computation a 
by running the processes in round-robin order (one step of process 1, one step of 
process 2 . . . . .  one step of process N, one step of process 1 . . . .  ). Each round-robin 
round is minimal; hence the time to perform the first r rounds is exactly r. Because 
we asssume a correct solution, this computation is ultimately quiescent. Let t be the 
time to quiescence. Then round t is the last round at which any port event occurs. 
We show t > (s - 1)[logbnJ. 
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Let ~ = fly, where fl contains the first t rounds of  ot and y is the remaining tail. Our 
strategy is to construct a new infinite admissible computation o~' -- fl'y, where 13' is a 
reordering of  fl that results in the same global state as r ,  but fl' performs at most 
t/[logbnJ + 1 sessions. Since no port evems occur in -/, it follows that od performs at 
most t/[lOgbnJ + 1 sessions. Since a '  is an infinite admissible computation for the 
system, t/[lOgbnJ + 1 >-- S, and the result follows. 

To construct fl', we first construct a partial order of  the steps in r ,  representing 
"dependency." (Formally, the domain of the partial order consists of ordered pairs 
(i, ~,), where ~, is the ith step of  ft.) For every pair of  steps o, "r in r ,  we let o _<~ ~- ff 
o = ~- or if o precedes ~- in fl and either process(o) = process0" ) or variable(o) -- 
variable(~-). Close _<p under transitivity. _<~ is a partial order, and every total order of  
steps of fl consistent with <_~ is a computation which leaves the system in the same 
global state as ft. (Clearly fl itself defines such a total ordering.) 

Now let m = [t/[lOgbnJ], and write fl ff i  f l l  , ' '  tim, where each flk (1 _< k < m) 
consists of  [IOgbnJ minimal rounds. Lety0 be an arbitrary port. For k = 1 . . . . .  m, we 
claim that there exists a port yk and two sequences of steps 4~k and ~k, such that the 
following properties hold. 

(i) ~k% is a total ordering of the steps in ilk, consistent with _<~. 
(ii) % does not contain any step which accesses yk-~. 

(iii) ~k does not contain any step which accesses yk. 

Then if/3' = (~11/)11~21~2 . ° .  ~rn~,lm, it follows that/3' is consistent with -<t~. However, 
/3' contains at most m <_ t/[logbnJ + 1 sessions, since each session must contain steps 
on both sides of  some '~k--~k boundary. (If a sequence of  steps were completely 
contained in ~k-~ffk, for example, then it would fail to contain a step accessing port 
yk-1.) 

It remains to show the existence of the required yk, 0?k, and ~k, 1 _< k _< m. We 
proceed by induction on k. Assume that yk-1 has been defined, and det'meyk, ~/,k, and 
ffk as follows. There are two cases. First, if there is some port which is not accessed 
by any step of/3k, then let yk be that port, ffk the null sequence, and % ffi /3k. 
Properties (i)-(iii) are easily seen to be true in this case. Otherwise, let "rk be the first 
step in/3k which accesses yk-1. We claim that there exists a port yk such that 

(iv) if o is a step in/3k which accesses yk, then it is false that ~'k -<a o. 

Let ok be the last step in/3k which accesses yk. Assuming (iv) and then adding the 
pair (Ok, zk) to <~ and closing under transitivity results in another partial order -<k. 
Choose any total order ing/~  of the steps in/3k consistent with <-k. ~'k is the first step 
in/3~ which accesses yk-~, since all steps accessing the same variable are totally 
ordered in --<k. Let 0k be the prefix of/3~ up to but not including ~'k, and let *k be the 
remainder, ok occurs in ffk since ok -----k ~'k. (This is all illustrated in Figure 1.) Then 
properties (i)-(iii) are easily seen to be true. 

It remains to verify the claimed existence ofyk. We do this by proving a series of  
three lemmas about the restriction of -<t~ to/3k. These lemmas and their proofs rely 
on only a few properties of the resulting partial order. We state the required properties 
explicitly and thereby make the lemmas and their proofs entirely self-contained. 

Let R be a totally ordered set {1 . . . . .  I R I} (of "round" numbers), P a/'mite set (of 
"processes"), and X a set (of "variables"). Let D (the "steps") be a f'mite set having 
mappings round: D ---> R, proc: D ---> P, and var: D ---> X. Assume that for every pair 
(r, p) E R x P there is exactly one o ~ D having round(o) --- r and proc(o) *ffi p. Let 
loc(x) =-- {proc(o):o ~ D and var(o) = x}. Let b __ 2 and assume I loc(x)l - b 
for all x E X. 
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FIG. 1 A to ta l  o rder ing  o f  steps in  Bk cons is ten t  w t t h  --<k. 

A. L Y N C H  

Let <_ be a partial order on D, and write o <1 ~" to indicate that o < ~" and there is 
no p with o < p < ~'. Assume that <_ has the following properties: 

(i) I f  o <1 ¢, then either var(o) -- vat(e) or proc(o) -- proc(¢). 
(ii) I f  either var(o) = var0- ) or proc(o) = proc(¢), then o and ~" are <_-comparable. 

(iii) I f  o <_ ,r, then round(v) _< round(e). 

Finally, let dep(o) = {var(¢) :o <_ T}. 

LEMMA 1 (ANTIMONOTONICITY). I f01  <_ 02, then dep(o2) C_ dep(oa). 

PROOF. Obvious from the definition of  dep. [:] 

LEMMA 2. Let  o ~ D, r = round(o), and x = mr(o) .  Le t  C = {~ E D: round(e) = 
r + 1 andproc(¢)  E loc(x)}.  Then dep(o) C. Ll~ec dep(¢) 0 {x}. 

PROOF. Proof  is by induction on <_, beginning with maximal elements. Let 
o ~ D ,  and assume the lemma holds for all ,r > o. A s s u m e  r, x ,  a n d  C are def'med 
from o as in the statement of  the lemma. I f  there exists o' E D with var(o') - x and 
o' > o, then fix o '  as the smallest such member  of  D. (Property (ii) ensures that 
o', i f  it exists, is defined uniquely.) Similarly, if there exists o" ~ D with proc(o") = 
proc(o) and o" > o, then fix o" as the smallest such member of  D. Define B' = 
dep(o') if  o' exists, ~ otherwise, and B" = dep(o") if o" exists, ~ otherwise. Then 
properties (i) and (ii) and antimonotonicity show that dep(o) C_C_ B' O B" O {x}. It 
suffices to show that B'  O B" _C 1,3~ec dep(¢) t3 (x}. 

We first consider B' and assume o/exists. (If  o' does not exist, then there is nothing 
to prove.) By induction, B' C_ k),,~c, dep(¥)  t3 (x}, where C' = {,r' E D: round0")  
= round(C) + 1 and proc0" ) E loc(x)}. For  every ¢' ~ C'  there exists ¢ E C with 
proc0") = proc(¢'), since every process takes a step in every round. Property (ii) shows 
that ¢ and ¢' are <_-comparable. But 

round(Y) -- round(d)  + 1 
>_ round(v) + 1 by (iii) 
= round(~). 

I f  ¢ # ¥ ,  then round(¢') > round(e), since each process takes exactly one step in each 
round; in this case, 0ii) implies that ¥ > ¢. Thus in any case it is true that ¢ <_ ¥. 
Antimonotonicity implies that dep(¢') _C dep(¢). Thus B'  _ kJ~ec dep(¢) O (x}, as 
needed. 

Finally, we consider B"  and assume o" exists. Then round(v") -- r + 1, so that 
o" ~ C. Thus B "  C_ Ll~ec dep(¢), as needed. []  

LEMMA 3. For each o E D with round(o) = r it is the case that 

b IRI-r+x - 1 
I dep(o) l <_ 

b - I  
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PROOF. We proceed by induction on r, starting with r ffi I RI and working 
backward. 

Basis: r ffi IRI. By Lemma 2, dep(o) _ {var(o)}, so Idep(a)l -< 1, as needed. 

Induction: 1 ___ r < I R 1. By Lemma 2 we have [ dep(o) [ ___ ~ , e c  [ dep(z) [ + 1, where 
C is defined as in Lemma 2. Each ~- E C has round(z) ffi r + 1, so by induction, 
I dep(~')I-< (b In l -r -  1)/(b - 1). Also, ICI -  b. Hence, 

_ F b  I R I - r -  1] b IRI-r+l- 1 
Idep(o)l -< b. L ~ -  r J + 1 = b - 1 ' 

as needed. [] 

We now return to the main proof and use Lemma 3 to show the existence of  the 
needed yk. We apply Lemma 3 to the subordering of ---a defined by restriction to 
ilk. The set R of  "round numbers" required for Lemma 3 is {1 . . . . .  [IOgbnJ}. The 
required mapping "rounds" is obtained by renumbering the round-robin rounds of  
ilk, preserving their previous order. Mappings "prod'  and "vat" are obtained from 
the mappings "process" and "variable," respectively. It is straightforward to see that 
the necessary properties of D and <_ are satisfied. Then by Lemma 3, we see that 
I dep(rk) I _ (b 0°g~'l-~+~ - 1)/(b - 1) __ n - 1. Since there are n ports, this means that 
there must exist a port yk satisfying the required property (iv). [] 

5. Results for More General Models 

If  the model is generalized by removing the bound on the number of  processes which 
can access a shared variable, then a single communication variable shared by n port 
processes can be used to construct an O(s) solution. 

In fact, if the original model is only generalized slightly by allowing one of the 
shared variables to be read by an arbitrary number of  processes (but only to be 
changed by one process), then an O(s + log n) solution is possible. In more detail, we 
use a shared variable, the message board, which every process can read but only one 
fixed process, the supervisor, can change. Each port has a corresponding port process, 
and there are additional communication processes whose job it is to pass messages 
through a tree network from the port processes back to the supervisor. The message 
board contains an integer which we call a "clock" value. The supervisor alternately 
increments the clock and reads the messages being sent back. Each port process 
repeatedly performs a cycle of  reading the clock, performing a port event, and 
sending a message back to the supervisor, through the network, which contains the 
clock value just read and the port identifier. 

I f  cl and Cz are two successive clock values sent by port process i, then a port event 
must occur at port i sometime after the clock assumes value ca and before the clock 
assumes value c2 + 1. By naturally combining this information about all ports, the 
supervisor can construct a sequence 0 = bo < bl < b2 < . - .  < b~ such that for each 
j,  a session is guaranteed to occur between the times when the clock first assumes 
values bj and bj+~. (Specifically, let c,a, c~2 . . . .  denote the successive eloek values sent 
by port process i, 1 _< i _< n. Then define bj -- max{c, tk+~> + 1 : 1 5 i _< n and k is the 
smallest index such that c,k >- bj-1}, for each j,  1 _< j _< s.) After the supervisor 
constructs this entire sequence, it knows that at least s sessions have in fact occurred, 
at which time it puts a STOP message on its message board. When the port processes 
read the STOP message, they stop performing port events. 

It is easy to see that this construction solves the (s, n)-session ~roblem. We argue 
that it satisfies the required O(s + logn) time bound. 
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First, we consider message transmission time. Since we are not assuming any upper 
bound on size of variables, the tree network can guarantee (by concatenating 
messages) that any message can be sent as soon as a process is ready to send it, and 
also that any message sent by time t is received by the supervisor by time t + O(logn). 

Next, we claim that for each j, 1 _< j_< s, the time that elapses from when the clock 
first assumes values bj-1 until it first assumes bj is bounded above by a constant. For, 
from the time when the clock first assumes value bj-1, it is at most a fixed constant 
amount of time before all port processes have read the clock, performed port events, 
sent messages containing clock values > bj-1, and read the clock once again. 
Thereafter, it is at most one time unit before the clock is incremented again, thereby 
assuming value bj. 

Thus, the total elapsed time until the clock assumes value bs is O(s). Thereafter, 
within time O(logn), the supervisor has received all the needed messages and can 
deduce that s sessions have occurred and display the STOP message. Three time 
units later, all port processes will have read the STOP message and will have stopped 
performing port events. 

6. Conclusion 

We have demonstrated a particular situation in which asynchronous systems are 
provably less efficient than synchronous systems for solving a natural distributed 
problem. We expect that there are many other such situations. 

It is quite pleasing to try to design distributed algorithms so that their logical 
correctness is timing-independent (i.e., so they are "completely asynchronous"), 
whereas their performance might depend on timing considerations. This paper 
suggest that this goal will not always be achievable: for some tasks, the only practical 
distributed solutions might be timing-dependent. 
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