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ABSTRACT An analysis is made of the shared memory requirements for implementing mutual excluslon 
of N asynchronous parallel processes m a model where the only primitive communication mechamsm is 
a general test-and-set operation on a single shared variable. While two variable values suffice to tmplement 
simple mutual exclusion without deadlock, it is shown that any solution whJch avoids possJble lockout of 
processes requires at least 2 ~  + ½ values A technical restnctmn on the model increases this requtrement 
to N/2 values, while achieving a fixed bound on wamng further increases the reqmrement to N + 1 
values. These bounds are shown to be nearly optimal, for algorithms are exhibited for the last two cases 
which use [N/2J + 9 and N + 3 values, respectively All of the lower bounds apply afortiori to the space 
requirements for weaker primitives, such as P and V, using busy waiting 
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1. Introduction 

C o n c u r r e n t  p rocess ing  by  severa l  a s y n c h r o n o u s  pa ra l l e l  p rocesses  d i f fe rs  f r o m  se- 

q u e n t i a l  p rocess ing  in  tha t  t he  o r d e r  in  w h i c h  the  e l e m e n t a r y  s teps  o f  t he  v a r i o u s  

processes  are  e x e c u t e d  is no t  p r e d e t e r m i n e d  bu t  m a y  d e p e n d  o n  d i f f i cu l t - t o -p red i c t  

va r i ab les  such  as the  re la t ive  speeds  o f  the  processes  a n d  e x t e r n a l  even t s  such  as 

in te r rup t s  a n d  o p e r a t o r  i n t e rven t ion .  T o  p r e v e n t  i n t e r f e r ence  a m o n g  the  v a r i o u s  
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processes, one often designates certain sensitive sections of code in the various 
processes as "critical sections" which are never to be executed simultaneously by two 
or more processes. Such mutual exclusion of access to critical sections is provided by 
means of entry protocols and exit protocols, sections of code which a process executes 
before entering and upon leaving a critical section, respectively. It is the job of the 
protocols to ensure that only one process at a time is in a critical section and that any 
other process trying to enter a critical section waits. In addition, the protocols play a 
scheduling role in determining which of several contending processes is allowed to 
proceed. 

In order to provide mutual exclusion at all, there must be some primitive operations 
for interprocess communication. Examples of communication mechanisms are shared 
memory with elementary read and write operations [5, 7, 10], shared memory with 
test-and-set operations [3], message channels [8], and P and V operations [6]. Given 
a set of primitive operations, the "critical section problem" is to find entry and exit 
protocols using those operations which ensure mutual exclusion and at the same time 
have various desirable scheduling and other properties. Thus there is not a single 
critical section problem but many, and an extensive literature has developed around 
this class of problems (see [3-5, 7, 10, 11, 18, 19] and others). 

Much work on the critical section problem has been concerned with finding 
protocols for a particular model and proving that they possess certain desired 
properties. More recently, there has been interest in finding out not only what can be 
done with a particular set of primitives but also what cannot [3, 12, 14, 15]. To prove 
a negative result of the sort "no protocol exists such that . . . .  " it becomes necessary 
to define carefully the model of computation so that it is clear what solutions are 
allowed. In Section 2 we present a formal model based on a general test-and-set 
communication primitive which borrows ideas from the models of [3, 15, 19]. 

Section 3 presents algorithms which define upper limits on the amount of shared 
memory (measured by counting the number of distinct values which it can assume) 
for three critical section problems. Deadlock-free mutual exclusion of N processes 
can be achieved with only two shared memory values. Lockout-free mutual exclusion 
requires at most I N / 2 / +  9 values. Finally, mutual exclusion with bounded waiting 
is solvable with N + 3 values. 

Lower bounds for the above problems are given in Section 4. Any algorithm 
solving deadlock-free mutual exclusion must use at least two shared memory values. 
Bounded waiting and lockout-free mutual exclusion must use at least N + 1 and 
2 ~  + ½ values, respectively. If lockout-free mutual exclusion is further constrained 
to be "memoryless" (i.e., each process always executes the same trying protocol 
whenever it attempts to enter a critical section), then at least N/2 states are required. 
(All of our upper bound algorithms are memoryless.) 

Section 5 contains technical open questions and directions for further investigation. 
This study is part of a larger effort to determine resource requirements for 

implementation of different kinds of "distributed computation" behavior using 
different process-variable configurations. The models studied consist generally of 
several processes communicating by means of test-and-set operations on several 
shared variables [13]. Behavior studied includes that of a simple arbiter system [13] 
and fair and maximally utilized access to multiple copies of a resource [9], as well as 
"failure-immune" mutual exclusion [9]. The problem of mutual exclusion using a 
simple shared variable is thus the simplest of many related problems; in fact, it seems 
to be closely related to the critical secuon which is inherent in the test-and-set 
operation itself. However, our lower bound results imply that the special-purpose 
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critical section inherent in the test-and-set operation does not automatically and 
easily solve the general critical section problem. 

2. A Formal Model for Exclusion Problems 

Our model is a hybrid of the models of [3] and [15]. It may also be regarded as a 
special case (with slight modification) of  the general model of  [13], tailored to the 
problems o f  this paper. 

2.1 SYSTEMS OF PROCESSES. We consider a set of  asynchronous parallel proc- 
esses with a single shared communication variable. Processes access the variable 
using a general test-and-set instruction which, in one indivisible step, fetches the 
contents of the variable and stores a new value which depends on the value fetched. 
Intuitively, a process consists of  a program, a program counter, and an internal 
memory, which together define the action of  the process. In considering lower 
bounds, the internal details of the process are unimportant, so in our model a process 
is simply a set of states with a transition function. For presenting the upper bounds, 
we specify the transition function using an ALGOL-like notation. 

The desired exclusion behavior of  a set of  processes is specified in terms of  sets of  
states comprising "regions." The critical region of  a process is a set of  states which 
that process can only occupy while no other process is in its own critical region. The 
remainder region encompasses the rest of  the process states. In order to solve 
synchronization problems, however, it appears necessary that new states other than 
those in the critical and remainder regions be introduced into each process. Thus we 
include two other sets of states in the basic definition as follows. 

Aproce,s is a triple P = (I1, X, 8), where V i sa  set of  values; Xis  a (not necessarily 
finite) set e f  states partitioned into disjoint subsets R, T, C and E, where R is 
nonempty; and the transition function 6 is a total function, 6: V x X with the following 
properties: 

(a) x ~ R, v ~ V imply ~(v, x) E V x (T U C); 
(b) x E T, v E V imply 6(v, x) E V x (T U C); 
(c) x E C, v ~ V imply 8(v, x) E V x (E U R); 
(d) x E E, v E V imply ~(v, x) E V x (E U R). 

The set V is referred to as the message variable, and X is the set of  local states of  
process P. R, T, C, and E are the remainder region, trying region, critical region, and 
exit region of P, respectively. A transition from (v, x) to 3(v, x) is a step of  process P. 
Transitions described in (a) and (b) are called trying transitions, while those described 
in (c) and (d) are called exit transitions. 

'The trying region describes a set of  states wherein a process is seeking admission 
to its critical region, as in [3, 15]. The exit region describes a set of  states wherein a 
process has just left its critical region but for purposes of  synchronization must 
execute a protocol before being permitted to return to its own computing task. 
Although the exit protocols in many algorithms are very simple (such as a single 
" V "  operation), we do not wish to exclude more sophisticated protocols from our 
model, for we wish our lower bounds to be as generally applicable as possible. To 
our knowledge, we are the first to include exit regions in a formal model, and our 
upper bound algorithms illustrate some ways in which exit regions can be used. 
Conditions (a) and (c) above indicate that the actual computing steps of  the original 
process being modeled are suppressed. All steps of  interest in the present paper 
involve attempts to enter the critical region or return to the remainder region. 
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Condition (b) indicates that the process, having once decided to attempt entry into 
its critical region, is thereafter committed to continue trying until it succeeds. 
Condition (d) indicates that the process, once in its exit region, must remain in its 
exit region until it reaches its remainder region. 

For N any natural number, let [N] denote { 1 . . . . .  N}. For N any natural number, 
a system of  Nprocesses is a (2N + 1)-tuple S = (V, X1 . . . . .  AN, 61 . . . . .  &v), where for 
each i C [N], P~ = (V, X, &) is a process. The remainder region, trying region, critical 
region, and exit region of  process P, are denoted by R,, T,, C,, and E,, respectively. 

An instantaneous description (i.d.) of  S is an (N + 1)-tuple q = (v, xl . . . . .  xs),  
where v ~ V and x, ~ X, for all i E [N]; in this case we define V(q) = v. The 
functions & of  the individual processes have natural extensions to the set of  i.d.'s of  
S, defined by &(v, xl . . . . .  xs)  m ( t ,  X l  . . . . .  X , - 1 ,  x', x,+l . . . .  , xN), where &(v, x,) = 
(v', x'). We also use (ambiguously) the notation R,, T,, C,, and E, for the natural 
extensions of  the denoted sets of states to corresponding sets of  i.d.'s. For example, 
(v, xl . . . . .  x2v) E R, if and only if x, ~ R,. 

If  S is a system of  N processes, then any finite or infinite sequence of  elements of  
[iV] is called a schedule for S. In a natural way, each schedule defines a "computation" 
of  system S when applied to any i.d. q of  S; namely, if h = ha . . . . .  hk is a finite 
schedule for S, then 

r( q ,  h )  = ~hk(*h~_l(- • • ~ h l ( q ) ' "  ")) 

is the result o f  applying schedule h to i.d.q. We say i.d. q' is reachable from i.d. q in 
S if for some schedule h, r( q, h) = q'. Process i E [N] halts in schedule h for S if 1 
appears only finitely often in h. If  i halts in h and q is an i.d., we define final(i, q, h) 
to be the internal state of  process i when it halts. Formally, final(i, q, h) = y if there 
exist an i.d. q' = (v, ya . . . . .  yN) and schedules ha, h2, with hi finite, and h = hah2 such 
t h a n  h2 contains no occurrence of  i, r( q, ha) -- q', and y~ = y. 

The correctness of  our algorithms depends on certain assumptions about the 
scheduling of  processes, namely, the assumption that no process halts anywhere 
except possibly in its remainder region. Schedules with this property are called 
admissible and are defined below. 

Let S be a system of  process and q an i.d. A schedule h is admissible from q if  for 
all i E [N], if i halts in h, then final (i, q, h) E R,. 

2.2 SYNCHRONIZATION PROBLEMS. We are now ready to provide careful defini- 
tions for synchronization problems. We list formal conditions that may be combined 
to make precise some of  the informal synchronization problems found in the 
literature. In the remainder of this section, S denotes a system of  N processes and q 
an i.d. 

C 1: Mutual Exclusion. q "violates mutual exclusion" if q ~ C, N Cj for some i # j, 
t,j ~ [N]. S satisfies mutual exclusion starting at q if  no i.d. reachable from q in 
S violates mutual exclusion. 

The next three properties refer to a process' progress through its protocols. P, is 
stuck for q and h if for all (finite) prefixes hi and h2 of  h, r( q, ha) and r( q, h2) a re  in 
the same region of  P,. 

C2: Deadlock-free. S is deadlock free starting from q if  for all reachable i.d.'s q' 
NN1R, and all schedules h admissible from q', there is some P, which is not 
stuck for q' and h. 

This property ensures that the introduction of  synchronization protocols does not 
cause the entire system to stop computing. In particular, the processes cannot all loop 
indefinitely in their trying or exit regions. 
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In Section 3.1 there is presented a description of  a system which satisfies mutual 
exclusion and no deadlock, having two values for its message variable. It is also 
shown, in Section 4.1, that two values are required for any system satisfying deadlock- 
free mutual exclusion. Both the algorithm and the lower bound are proved using the 
model as presented so far, and the reader may wish at this point to read those 
sections. 

Other properties of  interest involve fairness of the system from the point of  view 
of  each individual process. We consider two such properties. 

C3: Lockout-free. P, can be "locked out" starting from q if there exist q' f~ R, 
reachable from q and a schedule h admissible from q'  such that P, is stuck 
for q'  and h. S is lockout-free starting from q if no P~ can be locked out starting 
from q. 

C4: Bounded Waiting. Pj "goes from remainder to critical at least k times" for q 
and h = h l ' " h a  if there are indices 0 _</1 < J1 < i2 < . . .  < Jk -< m such that 
r( q, hlh2. . .h,~) E Rj and r( q, hlh2. . .h~,) E Cj, 1 <_ ! <_ k. P, "k-waits" starting 
from q if there exists q' ~ R, reachable from q and a schedule h such that P, is 
stuck for q '  and h and for some j  E [N] , j  # i, Pj goes from remainder to critical 
at least k times for q' and h. S satisfies k-bounded waiting starting from q If no 
P, (k + 1)-waits starting from q. S satisfies bounded waiting starting from q i f  S 
satisfies k-bounded waiting starting from q for some value of  k. 

In other words, in a system which satisfies bounded waiting, if a given process is 
not in its remainder region, there is a bound on the number of  times any other 
process is able to enter its critical region before the given process changes regions. 

Note that the schedule h is not required to be admissible. Given any schedule h 
which causes a violation of k-bounded waiting, we can find a new schedule h '  which 
is admissible and also causes a violation of  k-bounded waiting. This follows because 
a violation of k-bounded waiting (unlike a violation of lockout) occurs after a finite 
amount of time. 

Note also that if S and q satisfy C2 and C4, then they satisfy C3 as well. Also, C3 
implies C2. 

Finally, the following property does not represent a requirement one would 
necessarily care to impose on a system of  processes but is nevertheless a property 
shared by practically all known exclusion algorithms. Intuitively, a process does not 
use its past computation history to alter its synchronization protocols. 

C5: No Memory. S satisfies no memory if for all i ~ [N], [R~ [ = 1. 

3. Upper Bounds 

This section presents the upper bound results on the number of  states of  the shared 
variable required to solve the problems of  deadlock-free, bounded waiting, 
and lockout-free mutual exclusion. The correctness of  the algorithms is argued 
informally. 

3.1 DEADLOCK-FREE MUTUAL EXCLUSION. In order to illustrate the model, we 
give a detailed description of a very simple system satisfying CI, C2, and C5 and 
having two values for its message variable. (Here and in the corresponding lower 
bound In Section 4.1 we are merely formalizing well-known results.) 
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Algorithm 
s = (v, x ,  x,  . . . .  x ,8 ,  8, v " 9 '  

N N 
where X- -  R t3 T t9 C U E as above. Here, R = {Ro}, T = {To}, C = {Co}, E = 0 ,  and V = (0, 1}. q, the 
initml i.d., ts 

(0, e,o, v~, . . . .  v,0). 

N 
Transitions are 

8(0, Ro) -- (l, Co), 80, g0) = (l, To), 
8(0, To) ~, (l, C0), 80, To) " (l, To), 
8(0, Co) = (0, Co), 80, Co) -- (0, R0) 

Verification by induction is straightforward. Note that S and q do not satisfy C3, 
since the schedule (121) ~ locks the second process out. 

Thus, we have proved 

THEOREM 3.1. For each N >_ 1 there is a system S o f  N processes and an i.d. q such 
that S, q satisfy mutual exclusion (C1), are deadlock-free (C2), and use no memory 
(C5), and l VI = 2. 

3.2 HIGHER-LEVEL NOTATION FOR BOUNDED-WAITING AND LOCKOUT-FREE MU- 
TUAL EXCLUSION ALGORITHMS. The remaining upper bounds will be shown by 
giving algorithms in an ALGOL-like notation, for understandability. States can be 
thought of as having components corresponding to internal variables and program 
instruction counters. Some state transformations are expressible implicitly by the 
usual flow of control of  ALGOL programs; others (branching and alteration of 
values of internal variables) must be expressed explicitly. 

Access to the shared variable V is allowed only with the test-and-set primitive, 
which has the following syntax. 

(test-and-set) ::-- test (variable) until (set) (; ( set ) } endtest[ 
test (variable) while (set) {; (set) ) endtest 

(set) ::-- (value1) setto (value2) [: (statement)] 

The intended semantics of the first statement is to compare the (variable) to the 
(value1) values, all of which must be distinct. If  a match is found, the (variable) is 
set to the corresponding (value2) value, the corresponding statement (which repre- 
sents a state change) is executed, and control passes to the next test-and-set. If  no 
match is found, the test-and-set is reexecuted from the beginning (busy-waiting). 
Similarly, the semantics of the second statement is to compare the (variable) to the 
(disjoint) (value1) values. I f a  match is found, the (variable) is set to the correspond- 
ing (value2) value, the corresponding statement is executed, and control passes back 
to the beginning of the same test-and-set. If  no match is found, control passes to the 
next test-and-set. 

There are other features in the algorithm that are not present in standard ALGOL, 
but these should be transparent to the reader. For example, the symbols "[ ]" are 
used for the floor function. The "exit" statement is used to escape from the closest 
enclosing "while" loop. 

It should now be straightforward to translate the next two algorithms into the basic 
model. Statements and tests not involving V will be absorbed into internal state 
changes in the basic test-and-sets in the translated algorithm. 

3.3 MUTUAL EXCLUSION WITH BOUNDED WAITING. In this section we prove the 
following theorem by exhibiting Algorithm B. We first present Algorithm A which 
is somewhat simpler but uses a few more states. 
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FIGURE 1 

THEOREM 3.2. For each N >_ 1 there is a system S of  N processes and an i.d. q such 
that S, q sausfy mutual excluston (CI), are deadlock-free (C2), have bounded waiting 
(C4), and no memory (C5), and I vI = N + 3. Moreover, k = 1 in the bound of  C4. 

Algorithm A below satisfies the conditions of  the theorem except that there are 
N + 6 values of the shared variable. We later indicate how to reduce this to N + 3. 

The basic structure of  the algorithm is the same as that in [4]. A process desiring 
to enter its critical region goes in immediately if there are no other active processes; 
otherwise it waits in the "buffer." Eventually, all processes waiting in the buffer are 
moved into the "main area." Processes are chosen one at a time from the main area 
to go to their critical regions (see Figure 1). Since no process may enter the main area 
until the main area is emptied, this procedure gives l-bounded waiting. 

The above procedure requires a mechanism for controlling the movement of  
processes through the buffer and main area. As each process leaves its critical region 
(i.e., whde it is in its exit region), it is temporarily designated the "controller." The 
controller has the responsibility of  keeping track of  the number of  processes in the 
buffer and main area, sending messages to cause processes to move, and passing on 
the necessary control information to the next designated controller. All this is done 
through the single shared variable V which takes on the values {SO, S1 . . . . .  
SN - 1, FREE, ENTER, ELECT, COUNT, ACK, BYE}. The last five values are 
called "messages." 

A process desiring to enter its critical region examines V. If  V-- FREE (indicating 
that the system is empty), then the process sets V to SO and enters its critical region. 
If V = Sj, the process sets V to Sj + 1. The S-values of  V are thus used by the 
controller to keep track of  the count of  the number of  processes in the buffer. (This 
count is kept in the controller's local variable, BUFF.) 
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The controller loads the main area, when empty, by sending one ENTER message 
through V for each process in the buffer. If additional processes come into the buffer 
during this time, they too are moved into the main area. The controller selects the 
process to become the next controller by sending a single ELECT message, which 
will be picked up by some process in the main area. The controller then sends the 
current counts of the number of processes in the buffer and main area to the 
controller-to-be before signing off with the BYE message. (Note: In the special case 
in which there are no processes in the buffer or mare area and the process leaving its 
critical region sees V = SO, the process simply sets V to FREE and leaves; the system 
has been returned to the empty state.) 

An apparent problem with the above scheme is possible interference between 
processes entering their trying regions and processes attempting to communicate 
using messages. A process entering its trying region should alter V; otherwise, since 
the other processes would be unaware of it, they could execute any number of critical 
regions before the first process could get in. Thus, processes entering their trying 
regions might hinder communication between the controller and the other processes. 
In [4], about 2N values of V are used to allow message communication to go on 
concurrently with the counting function. We solve the problem in the following way. 
Every message requires a response (usually ACK). While awaiting the response, the 
controller "normalizes" V. That is, it continually examines V, resetting it to SO 
whenever Sj is detected (and keeping track of the number of new processes in the 
buffer by setting BUFF to BUFF + j). If an entering process sees a message in V, it 
holds this value and sets V to S1, thus announcing its presence to the controller. It 
then waits until V takes on the value SO, at which point it resets V to the held 
message. V will eventually "settle down" at SO since the controller continues to 
normalize V to this value, and the value can only be changed a finite number of 
times by entering processes. 

The key to the correctness of the algorithm is the ability to communicate infor- 
mation among the processes reliably. All communication (except sending the buffer 
count) is initiated by a message sent by the controller, which then waits for an ACK 
response. Only a process of the appropriate type will respond, and the controller 
knows of the existence of such a process by the controller's local state. The existence 
of a normalizing process (a process which continues to normalize V) ensures that 
messages always get through. Note that the controller itself is always a normalizing 
process unless it is in its last test-and-set loop. But at this point, a process has already 
been elected and moved to RECEIVECOUNTS, where it becomes a normalizing 
process. 

For simplicity, the counts of the number of processes in the buffer and main area 
are sent to the new controller in unary. The main area count is sent with the COUNT 
message, while the buffer count is sent by incrementing the SO value of V. It should 
be clear that more "time efficient" methods could be used for passing this information. 
We are primarily interested in presenting a clear algorithm which is compatible with 
the more complex algorithm given in Section 3.4. 

A lgorithm A 

Shared varzable msgvar V mmal FREE, 

A lgorzthm for each process 

begin integer MAIN, BUFF mmal 0; 
msgvar M mmal SO; 



I m p l e m e n t a t i o n  o f  N - P r o c e s s  M u t u a l  E x c l u s i o n  

R E M A I N D E R  v r ema inde r  region t 

t ry ing protocol  follows v 

test V unt i l  

Free setto SO goto C R I T I C A L ,  
Sj s e t t o S j +  1 g o t o B U F F E R ,  ~ j < N -  1; 
other  setto SI  M = other  

endtest ,  

H O L D I N G  
test V unt i l  SO setto M M '= SO endtest ,  

B U F F E R '  
test V unt i l  E N T E R  setto A C K  endtest ,  

M A I N A R E A  
test V unt i l  E L E C T  setto A C K  endtest ,  

R E C E I V E C O U N T S  

whi le  true do  

test V un t i l  
Sj setto SO B U F F  = B U F F  + j ;  

C O U N T  setto A C K  M A I N  = M A I N  + 1, 
BYE setto SO exit  

endtest ,  

C R I T I C A L  ; cri t ical  region v 

v exit  protocol  follows ! 

i f  ( M A I N  = 0 and  B U F F  = 0) then  

test V un td  
SO setto F R E E  goto R E M A I N D E R ,  
Sj setto SO B U F F  = B U F F + j  t l ~ j <_ N - 1! 

endtest ,  

S E L E C T  N E W  C O N T R O L L E R  
if  M A I N  = 0 then  ! move  processes f rom buffer  to m a i n  area v 

whi le  B U F F  > 0 do begin  
test V unt i l  

Sj setto E N T E R '  ( B U F F  = B U F F  + j  - 1, M A I N  = M A I N  + 1) 

endtest ,  
whi le  true do  

test V unt i l  
Sj setto SO. B U F F  = B U F F  +j,  
A C K  setto SO exit  

endtest  

end,  
test V unt i l  

Sj setto E L E C T  ( B U F F  = B U F F  + j ,  M A I N  = M A I N  - 1) 

endtest ,  
whi le  true do 

test V un td  
Sj setto SO" B U F F  = B U F F  + j ,  
A C K  setto SO exit  

endtest ,  

S E N D C O U N T S  
whi le  M A I N  > 0 do begin  

test V unt i l  SO setto C O U N T  M A I N  = M A I N  - I endtest ,  
test V unt i l  A C K  setto SO endtest  

end, 
whi le  B U F F  > 0 do 

test V u n t d  SO setto SI  B U F F  = B U F F  - I endtest ,  
test V unt i l  SO setto BYE endtest ,  
go to R E M A I N D E R  

end 

191 
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We now sketch how to modify Algorithm A to use only N + 3 shared values. One 
value is saved by equating FREE with S N  - 1. These two values can never be 
confused, since S N  - 1 can only occur with no process in its remainder region, while 
FREE can only occur when all processes are in their remainder regions. The values 
COUNT and BYE can be eliminated by modifying the sections of code labeled 
"RECEIVECOUNTS" and "SENDCOUNTS," as shown below. Both counts are 
sent as a single coded Integer by using the S-values. Note that the first waiting loop 
in the section "RECEIVECOUNTS" is required in Algorithm B to be certain that 
the ACK response to the ELECT message has been seen by the controller. Otherwise 
the receiving process might mistake this ACK for the final ACK sent by the 
controller. 

Algorithm B 

Replace the indicated secuons o f  Algorsthm A by the following code Note that C O U N T  and B Y E  are no 
longer used so that the number o f  shared values is reduced to N + 3 (FREE Is equated wtth S N  - 1) 

RECEIVECOUNTS 

whde BUFF < N do 

test V untd Sj setto SO. BUFF .= BUFF + j endtest, 
whde true do 

test V until 

Sj setto SO BUFF = BUFF + j, 
ACK setto SO exit 

endtest, 

MAIN '-- tBUFF/lV] - l, 
BUFF = BUFF - (MAIN + 1)*N, 

SENDCOUNTS 
BUFF = BUFF + (MAIN + 1)*N, 

whde BUFF > 0 do 
test Vuntfl  SO setto SI BUFF = BUFF - 1 endtest; 

MAIN := 0; 
test V untd SO setto ACK endtest; 

goto R E M A I N D E R  

3.4 LOCKOUT-FREE MUTUAL EXCLUSION. If  we drop the requirement of 
bounded waiting and ask only for a lockout-free solution, the number of states 
needed to achieve mutual exclusion can be cut roughly in half, as shown by Algorithm 
C. We thus obtain 

THEOREM 3.3. For each N >_ 1 there is a system S o f  N processes and an i.d. q such 
that S, q satisfy mutual exclusion (C1), are lockout-free (C3), and have no memory 
(C5), and[ V[ = IN/2] + 9. 

In Algorithm C the shared variable V takes on the LN/2J + 9 values SO, S1 . . . . .  
Sk, FREE, ENTER, ELECT, COUNT, ACK, BYE, STOP, GO, where k = LN/2J. 
Since there are fewer values of V than processes (for sufficiently large N), the count 
of entering processes cannot be kept unambiguously in V. In particular, more than 
k processes entering their trying regions closely together will cause the transition of 
V from Sk  to SO. We call this transition "wraparound." The process causing this 
transition is called the "executive." Since only the executive knows that wraparound 
has occurred, it has the responsibility to see that those processes which were not able 
to announce their presence unambiguously will eventually get to their critical regions. 

Note that the occurrence of wraparound is what causes the loss of the l-bounded 
waiting property. For example, suppose one process goes critical from an i.d. at 
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which all processes are in remainder, setting V to SO. Next, exactly k other processes 
take one step each, entering their trying regions and returning the value of V to SO. 
Now the first process may leave the critical region and, since It cannot detect that 
any process is waiting, cycle from remainder to critical any number of times. Thus 
the algorithm can violate bounded waiting for any bound. 

The executive knows that there are k processes in the buffer which are unknown 
to the controller. These processes (and possibly some others which are incidentally 
detected by the executive) are suspended by sending STOP signals to each. If the 
executive sees a controller message during this process, it merely holds the message 
value until the stopping procedure is complete and then restores the held value. The 
executive then announces its presence to the controller in the normal way (incre- 
menting the Si value) and enters the buffer. (If there is no controller, the executwe 
goes directly to its critical region.) 

Note that the sending of STOP signals by the executive does not interfere with the 
operation of the controller, since the controller ignores these signals. The only 
possible interference occurs when the executive "picks up" a controller message. 
However, by holding onto this message the executive effectively suspends the 
operation of the controller until the executive fimshes its task. The executive thus 
never needs to hold more than one controller message. 

Once at least k processes have been suspended by the executive, Algorithm C 
behaves identically to Algorithm A. Thus the executive eventually reaches its critical 
region. When leaving its critical region, the former executive (now a controller) sends 
a GO message to each process which was suspended, causing it to go to the main 
area. Assuming that no additional wraparounds (and hence no additional executives) 
can have occurred at this time, all the processes in the main area must get to their 
critical regions before any other processes can enter the main area. This guarantees 
that lockout is prevented. 

Difficulties could arise if two executives were present at the same time, because 
their messages would be indistinguishable, which could lead to lockout for one of the 
executives. This problem cannot arise in our algorithm because there are insufficient 
processes to cause another wraparound until the current executive finishes its task, 
goes critical, and reawakens the idling processes with GO messages. 

There is an apparent danger of lockout for processes which are already in 
MAINAREA when the executive begins moving idling processes to MAINAREA. 
However, since a new executive must go through BUFFER, and since all the 
processes in the MAINAREA must reach their critical regions before any process 
moves from BUFFER to MAINAREA, no process can be stuck in MAINAREA. 

Algortthm C 

Replace the first sections of Algortthm A, (up to MAINAREA ) wzth the following code. 
begin  integer  M A I N ,  BUFF,  I D L E R S  ini t ia l  0, 

msgvar  M m m a l  SO, 

R E M A I N D E R  v r ema inde r  region t 

v t ry ing protocol  follows T 

test V un td  
F R E E  settoS0 goto C R I T I C A L ,  

Sj setto Sj + 1 goto B U F F E R ,  v 0 <_j < [N/2J  v 
Sk setto SO " goto E X E C U T I V E ,  ~ k = I N / 2 J  P 
STOP setto S I  goto IDLE,  
o ther  setto SI  (M = other,  goto H O L D I N G )  

endtest ,  
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EXECUTIVE" 
BUFF := [N/2]; 
while BUFF > 0 do 

test V until 
Sj setto STOP. (BUFF := BUFF + j  - !; IDLERS := IDLERS + 1); 
STOP setto STOP, 
FREE setto SO: goto CRITICAL; 
other setto SO M .= other 

endtest, 
test V while STOP setto STOP endtest, 
If M # SO then 

test V untd SO setto M" M = SO endtest, 
test V unttl 

FREE setto SO goto CRITICAL, 
Sj setto Sj + 1 goto BUFFER, 
other setto S! . M := other 

endtest, 

HOLDING'  
test V until 

SO setto M (M "= SO, goto BUFFER), 
STOP setto M (M = SO, goto IDLE) 

endtest, 
BUFFER 

test V until 
ENTER setto ACK' goto MAINAREA, 
STOP setto SO goto IDLE 

endtest, 

IDLE" 
test V untd GO setto ACK goto MAINAREA endtest, 

Insert the following code after ,,v exit protocol follows v,, 

whde IDLERS > 0 do begin 
test V untd Sj setto GO: BUFF .= BUFF + j endtest; 
IDLERS = IDLERS - 1, 
MAIN .= MAIN + !, 
whde true do 

test V until 
Sj setto SO BUFF .= BUFF + j ,  
ACK setto SO' exit 

endtest 
end; 

4. Lower Bounds 

We present five lower bound theorems, using a series of  lemmas along the way. 
Dependence on properties C 1-C5 is described explicitly for each result. Proofs are 
usually by contradiction; assuming there are too few values of  V, a schedule is 
constructed which violates one of the needed condiuons. 

4.1 DEADLOCK-FREE MUTUAL EXCLUSION. We give three lemmas leading to a 
lower bound which complements Theorem 3.1. First we show that it is always 
possible, from any i.d., to "drive" all processes into their remainder regions. 

LEMMA 4.1. Let S be a system of  N processes, N >_ 1, and q any i.d. Assume that 
S, q are deadlock-free (C2). Let L = {i ~ [N]:q ~ R,}. Then there emsts a schedule 
h ~ L* such that r(q, h) ~ N~=I R,. 

PROOF. By induction on ILl. If ILl -- 0, there is nothing to prove. If  ILl = 
k + 1, let ll . . . . .  lk+l be some enumeration of  L. hi = (ll . . .  lk÷~) ~ is admissible from 
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q, so by C2 there is some prefix h2 of  h~ with q'  = r(q, hz) ~ Rt for some l ~ L. Then 
let M = L - {1}. By the inductive hypothesis there exists schedule hz ~ M* such that 
r(q', h3) ~ NN-1 R,. Then h = h2h3 suffices. [] 

Next, we show that if all processes are in their remainder regions and a single 
process acts alone, then that process will eventually reach its critical region. 

LEMMA 4.2. Let S be a system of  N processes, N >__ 1, q ~ N~,_1 R,. Assume that S, 
q are deadlock-free (C2). Let i E [N]. Then for  some k >_ 1, r(q, i k) E C,. 

PROOF. q'  = r(q, i) ~ T, tO C,. If  q'  ~ C,, we are done. Otherwise, i ~ is admissible 
from q'. The conclusion follows by C2. [] 

The next lemma says that if a process can, on its own, enter both its remainder and 
its critical region, then it must indicate the distinction to the other processes by means 
of distincfvalues of  V. We say that i.d. q looks like i.d. q' to process i if  and only if 
V(q) = V(q') and the state of  process i is identical in q and q'. 

LEMMA 4.3. Let S be a system of  N processes, N >_ 2, and q any i.d. Assume that 
S, q satisfy mutual exclusion (C 1) and are deadlock-free (C2). Let i E [N]. Assume 
q' -- r(q, i s) E R~ and q" = r(q, i t) ~ C, for  some k, l >_ O. Then V(q') ~ V(q"). 

PROOF. Assume that V(q') = V(q"). h = (1 2 . . .  ( i -  1)(i + 1) . . .  N)  = is 
admissible from q', so by C2 there is some prefix h~ o f h  with r(q', h 0 E Cj for some 
j # i. But q"  looks like q' to processes in [N] - {i}, so r(q", ha) ~ Cj also. But then 
r(q", h 0 ~ C, f) Cj, contradicting CI. [] 

We combine the preceding lemmas to obtain the lower bound result corresponding 
to Theorem 3.1. 

THEOREM 4.4. Let S be a system of  N processes, N >_ 2, and q any i.d. Assume that 
S, q satisfy mutual exclusion (CI) and are deadlock-free (C2). Then I V I >- 2. 

PROOF. Obtain q'  = r(q, h) ~ NN=I R,. Obtain k with q" = r(q', 1 s) ~ Ca. Then 
V(q") ~ V(q') (by Lemma 4.3 applied to S, q'). [] 

Later we will require explicit names for the schedules whose existence is asserted 
in Lemmas 4.1 and 4.2. In the apphcations the system S will generally be considered 
fixed. Thus we define the following. Let S be a system of  N processes, N >_ 1. Let q 
be any i.d. such that S, q are deadlock-free. Let L = {i E [ N ] : q  ~ R,}. Then exit(q) 
denotes a schedule h E L* such that r(q, h) E f-)N=I R,. Also, if S is a system 
of N processes, N _ 1, q ~ NN=a R, with S, q deadlock-free, and if i E [N], then 
enter(q, i) denotes a schedule i s, k _> 1, such that r(q, i k) ~ C,. 

4.2 MUTUAL EXCLUSION WITH BOUNDED WAITING. Next we turn to the proof 
of a lower bound to complement Theorem 3.2. Although our best lower bound is 
N + 1 values (Theorem 4.9), we first give a much simpler proof for a lower bound of  
N values. The small strengthening to N + 1 is then carried out, partly because the 
remaining gap between upper and lower bounds is extremely small, but principally 
because the proofs use interesting ideas which recur in proofs of  later results in 
Section 4.3. 

THEOREM 4.5. Let S be a system of  N processes, N >_ 1, and q any i.d. Assume that 
S, q satisfy mutual excluston (CI), are deadlock-free (C2), and satisfy bounded waiting 
(C4). Then I V[ >- N. 
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PROOF. Construct (q,}~-0 a sequence of  i.d.'s as follows. Let qo = r(q, exit(q)). 
(That is, let all processes exit.) Let q~ = r(qo, enter(qo, 1)). (That is, run P1 until it 
enters its critical region.) For  each i, 2 _ i _< N, let q, = r(q,-~, i) E I',. (That is, let 
each process/'2 . . . . .  PN in turn enter its trying region.) We show that V(q,) # V(qj) 
for all O < i < j <_ N. 

Assume the contrary, so 0 < i < j _< N and V(q,) = V(qj). Then qj looks like q, to 
processes P1 . . . . .  P,. Since there is an admissible schedule h from q, which involves 
P~ . . . . .  P, only and which causes some process to enter its critical region an infinite 
number of  times, it follows that h (although not admissible from qj) causes the same 
effect when applied from qj. But this violates C4, since P7 remains in its trying region 
during the application of h from qj. [] 

Next we develop the new ideas needed to raise the lower bound to N + 1 values. 
We require a nontrivial lemma giving a lower bound of  3 on the number of  values 
needed for synchronization of  two processes. The needed lemma is a slight strengthen- 
ing of  a similar result in [3] and is proved by a very similar case analysis argument. 
We break the lemma into two parts. The first part says that a bound of  2 on the 
number of  values taken on by V when some process is not in its remainder region 
imposes some strong restrictions on the behavior of  the two processes. Namely, if 
one process is unable, on its own, to reach its remainder region and is unable to 
signal reliably to the other process, then the other process is similarly unable, on its 
own, to reach its remainder region. 

We say that a process P, is blocked for q if for all k _> 0, r(q, i k) ~ R,. That is, a 
blocked process cannot reach its remainder region on its own. 

LEMMA 4.6 (CREMERS AND HIBBARD). Let S be a system of  two processes and q 
any i.d. Assume that S, q satisfy mutual exclusion (CI) and no lockout ((73). Assume 
there exist •1, 1~2 ~ V such that V(q') ~ {vl, v2} for  all q' ~ R1 fl R2 reachable from q. 
Assume P1 is blocked for  q and for infinitely many k it is the case that V(r(q, lk)) = 
V(q). Then P2 is blocked for  q. 

PROOF. Assume the contrary, that q '  = r(q, 2 k) E R2 for some fixed k _> 0. Then 
V(q') ~ (vl, v2} since q'  ¢~ R~. Assume without loss of  generality that V(q) = Vl. 

Case 1. V(q') = Vl. Since F ° is admissible from q', C2 implies that r(q', 1 z) E R~ 
for some l _> 0. But then since q'  looks like q to P1, it follows that r(q, 1 z) ~ R1, a 
contradiction. 

Case 2. V(q') = v2. 

Case 2.1. There are infinitely many I for which V(r(q', 2•)) ---- Vl. Then an 
admissible schedule from q' can be constructed by alternating groups of  steps of  P1 
and P2 which leave V at vl; this schedule locks out P1, contradicting C3. 

Case 2.2. V(r(q', 2~)) = v2 for all but finitely many l. Choose l* so that P2 is 
blocked for q"  = r(q', 2 l ) and V(r(q", 2~)) = v2 for all l _> 0. (/'2 must become 
blocked at some point, by Lemma 4.3, once the value of  V stops changing.) Since q"  
looks like q '  to P~, it is the case that V(r(q", lm)) = V(r(q', lm)) for all m > 0 and 
thus V(r(q', Ira)) ~ (v~, v2} for all m _> 0. Since P1 can cycle through its critical 
section infinitely many times on its own from q'  (by C2), there must be infinitely 
many m such that V(r(q', lm)) = V2, by Lemma 4.3. But then we can construct an 
admissible schedule from q" composed of  alternating groups of  steps of  P~ and P2 
which leave V at v2 and locks out P2, thus contradicting C3. [] 
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In two cases in the preceding proof (2.1 and 2.2) a technique of  "piecing together" 
infinite schedules of several processes was introduced. This technique will be useful 
in later proofs (in Section 4.3) as well for construction of  admissible schedules 
exhibiting lockout. 

Using the preceding lemma repeatedly, we show the needed lower bound on the 
number of  values needed for synchronization of  two processes. 

LEMMA 4.7 (CREMERS AND HIBBARD). Let S be a system of  two processes and q 
any i.d. Assume that S, q satisfy mutual exclusion (C1) and are lockout-free (C3). Then 
there do not exist va, v2 with V(q') ~ {v~, v2} for  all q' f~ R1 n R2 reachable f rom q. 

PROOF. Assume the contrary. Obtain q '  E Cz with r(q', I k) ~ T1 for all k >_ 0 and 
with V(r(q', lk)) = V(q') for infinitely many k. By Lemma 4.6, it is the case that Pz 
is blocked for q'. Fix k _> 1 with q"  = r(q', 2 k) satisfying V(r(q", 2z)) -- V(q")  for 
infinitely many 1. (That is, move/ '2  at least one step, until it sets V to a value which 
Pz can reproduce infmitely often.) Then by Lemma 4.6 (applied with Px and Pz 
interchanged), it is the case that Px is blocked for q". Alternately applying Lemma 
4.6 to the two processes in th~s way, we construct an admissible schedule which 
contradicts C2. [] 

COROLLARY 4.8 (CREMERS AND HIBBARD). Let S be a system of  two processes 
and q any i.d. Assume that S, q sattsfy C1 and C3. Then t V I >- 3. 

PROOF. Immediate. [] 

We can now prove the lower bound of  N + 1. 

THEOREM 4.9. Let S be a system of  N processes, N >_ 2, and q any i.d. Assume that 
S, q satisfy mutual excluszon (CI), are deadlock-free (C2), and satisfy bounded wattmg 
(C4). Then I V] >- N + 1. 

PROOF. Since C2 and C4 together imply C3, Corollary 4.8 gives the result for 
N = 2. Assume N _> 3. Construct {q,} N=0 as in the proof of  Theorem 4.5. Assuming 
I V I -< N, one of  the following cases must hold. 

Case 1. V(q,) = V(qj) for some 0 < 1 < j _< N. Then the proof of  Theorem 4.5 
provides the needed contradiction. 

Case 2. V(qo) = V(q,) for some 0 < i <  N. Since r(qo, N m) ~ C2v for some 
m _> 1 (by C2), it follows that r(q,, N m) ~ CN. But r(q,, N m) ~ C1, violating C1. 

Case 3. V(qo) = V(qs) and cases 1 and 2 do not hold. By Lemma 4.7 there is 
some schedule h involving P1 and P2 only with q' = r(qo, h) ~ R1 A R2 and V(q') ~i 
{ V(ql), V(q2)}. There are two possibilities. 

Case 3.1. V(q') = V(qo). Then q' looks like q0 to P3. Since the schedule 3 ~ 
causes Pa to enter its critical region infinitely often when applied from qo (by C2), it 
does the same when applied from q'. This violates C4, since one of  (P1,/2) remains 
meanwhile in some region other than its remainder region. 

Case 3.2. V(q') = V(q,) for some i, 3 _< ~ _< N. Then q' looks like q, to processes 
P,+I . . . . .  Pn. Let q" = r(q', (t + 1)(i + 2) . . .  (N)). (That is, allow each of  P,+l . . . . .  
PN m turn to enter its trying region.) Then q" looks like q0 to/'3, since V(q") = V(qN) 
= V(qo). Thus the schedule 3 ° causes /'3 to enter its critical region infinitely often 
when applied from q' ,  violating C4 since q" q~ Rt N R2. [] 
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Note that although this section of the paper was aimed at a lower bound for 
mutual exclusion with bounded waiting, the two main lemmas, 4.6 and 4.7, make 
statements involving mutual exclusion with no lockout. 

4.3 LOCKOUT-FREE MUTUAL EXCLUSION. We have two lower bound results 
corresponding to Theorem 3.3. The first does not depend on any extra assumptions 
but leaves a gap open. The second depends on the introduction of  the technical 
assumption C5 but essentially closes the gap. 

THEOREM 4.10. Let  S be a system o f  N processes, N >_ 2, and q any i.d. 
Assume that S, q satisfy mutual  exclusion (CI) and are lockout-free (C3). Then I VI >- 

+ ½. 

PROOF. We show by induction on k that for k _> 3, if S is any system of 
(k 2 - k ) / 2  - 1 or more processes and q any i.d. such that S, q satisfy C I and C3, 
then [ V[ _> k. The theorem then follows immediately. 

For k -- 3, Corollary 4.8 gives the result. For the induction step, let 

( k +  1) 2 - ( k +  1) 
N>_ - l ,  

2 

let S be a system of  N processes, and let q be an i.d. such that S, q satisfy C 1 and C3, 
and assume contrary to the induction hypothesis for k + 1 that [ V[ < k + I. We 
proceed to derive a contradiction. 

Construct (qz)~0 as follows. Let q0 ffi r(q, exit(q)). Let ql = r(qo, enter(q0, l)). 
(These are as for Theorem 4.5.) For each i, 2 _< i_< N, let q, = r(q~-~,i t' ) ~ T,, l, >_ l, 
and assume (without loss of  generality) that each q, is such that there are infinitely 
many m with V(r(q,, ira)) = V(q,). (That is, let each process P2 . . . . .  PN in turn enter 
its trying region to a point where it could, on its own, cause the current value of  V to 
recur infinitely many times. This is possible since V is finite and C 1 holds.) 

Since [ V[ _< k, there exist i, j with N - k _ i < j _< N and V(q,) = V(q~). The 
processes P~ . . . . .  P,, starting at q,, comprise a system of  at least N - k >_ (k  2 - k ) / 2  
- 1 processes satisfying C I and C3, so by the inductive hypothesis, I VI -> k. Hence 
IV[ = k. It follows that for every v ~ V and every q '  reachable from q~ using only 
processes P~ . . . . .  P,, there is a q" reachable from q' using only processes P~, . . . ,  P, 
with V(q")  = v. (If  not, then P~ . . . . .  P, starting from q' would be a system of  
processes satisfying C1 and C3 and using only values in V -  (v}, contradicting the 
induction hypothesis.) In other words, P~ . . . . .  P, can be run in an admissible fashion, 
starting from q ,  so that V assumes every possible value infinitely often. Since 
V(q,) = V(qj), the same is true starting from q~. 

We now construct a schedule admissible from qj which locks out P,+t . . . . .  Pj. We 
do this by running P1 . . . . .  P, to set Vperiodically to each V(qm), i + 1 <_ m < j .  Each 
time the value is set to some V(q,~), Pm is run enough steps to return the value to 
V(qm). (Recall that by the choice of  lm this can be done infinitely often.) Repeating 
this process forever yields an infinite schedule admissible from qj in which none of  
P,÷1, . . . ,  Pj ever leaves its trying region. This violates C3, a contradiction. We 
conclude that l V[ >_ k + 1. [] 

In the preceding proof, processes P1 . . . . .  PN were made to enter the system in a 
fixed order, and a counting argument was used to show repetition of  values of V. We 
can do much better if we allow ourselves the freedom to select the order in which the 
processes initially enter. In order to obtain this improvement, we seem to be forced 
to mtroduce the technical assumption of  "no memory" (C5), a property which Is 
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possessed by all mutual exclusion algorithms we know of  except for the 3-value 2- 
process algorithm of [4]; C5 allows guaranteed reproducibility of  process entrance 
behavior. 

Since the proof is more comphcated than the others in this paper, it is helpful to 
decompose it by defining a digraph with vertices representing certain values of  V, 
and with edges labeled by processes which cause the indicated changes in V when 
they make certain transitions upon entering the system. A purely graph-theoretic 
lemma can be used to show the existence of  certain types of loops in such a labeled 
digraph, provided that the number of  vertices is small. When this lemma is applied 
to the labeled digraph representing values and transitions, the resulting loops 
(representing sequences of  transitions which begin and end with the same value of  
V) can be used to construct admissible lockout sequences. 

We first present the needed graph-theoretic definitions and lemma. I f  L is a finite 
set, an L-graph is an edge-labeled finite digraph with labels in L. vert(G) denotes the 
set of vertices of G. If  e is an edge, label(e) denotes the label of e, and orig(e) and 
term(e) denote the vertices at which e originates and terminates, respectively. (We 
permit multiple edges with the same originating and terminating vertices, provided 
they are distinctly labeled.) An L-graph is ful l  provided for each x E vert(G) and 
each l ~ L, there is at least one edge e with orig(e) = x and label(e) = 1. 

A path m an L-graph G is a sequence ~r = (Xo, el, xl  . . . . .  ek, x~) where k >_ 0, the 
x, are vertices, and the e, edges of  G, with orig(e,) = x,-1 and term(e,) -- x, for all i, 
1 _< i _< k. If  k = 0, ~r is null. vert(~r) denotes {x, :0 <_ i <_ k},  labels(~r) denotes 
(label(e,): 1 <_ i <_ k}, orig(cr) = Xo, and term(~r) = xk. ~r is a loop if  Xo -- xk. ~r is a 
htghway provided no two of its edges have the same label. If  ~rl = (x0, el, Xl . . . . .  ek, 
xk) and ~r2 = (Xk, ek+a, x,+~, . . . ,  et, xz) are paths, then ~rl. ~rz denotes the path (Xo, el, 

xl, . . . ,  ek, Xk, ek+l, Xk+l, • • • , e l ,  x l ) .  

If x E vert(G) and ~r~, ~r2 are highways, then the pair (~rl, ~r2) is a loop trail f rom x 
provided (a)-(c) hold: 

(a) ~r2 is a nonnull loop. 
(b) orig(~rl) = x. 
(c) vert(~'2) ___ vert(rrl). 

An L-graph G is loop), provided L can be partitioned into two sets, L~ and L2, and 
for every x ~ vert(G), there are two highways ~rl(x) and ~r2(x) such that (d) and (e) 
hold: 

(d) (~rl(X), ~z2(x)) is a loop trail from x. 
(e) labels(~rx(x)) ___ L~ and labels(~r2(x)) _C_ L2. 

LEMMA 4.11. Let G be a fu l l  L-graph, ] L I >- O. Assume ] vert(G) ] <_ [ L ]/2. Then 
G is loop),. 

PROOf. See the appendix. [] 

Now we obtain the lower bound. 

THEOREM 4.12. Let S be a system of  N processes, N >_ 1, and q any i.d. Assume 
that S, q sattsfy mutual exclusion (C1), are lockout-free (C3), and have no memory 
(C5). Then I VI -> [ (V(q ' ) :q '  E Ct is reachable f rom q}l -> N/2 .  

PROOF. Assume the contrary, so A = (V(q'):  q" E C~ is reachable from q} satisfies 
IA I --< (N - 1)/2. Define an L-graph G, L = {2 . . . . .  N}, with vert(G) = A, in order 
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to apply Lemma 4.11. The loops thereby obtained will be used to help construct a 
schedule locking out some processes. 

Let r, denote the (unique) remainder state of  process i, 1 _< i _< N. There will be 
two types of  edges in G, called normal edges and dummy edges. 

Normal  Edges. For i E L, v, w E A, an edge e with orig(e) = v, term(e) = w and 
label(e) ffi i is included as a normal edge if  and only if 6,k(v, r,) E w × X, for infinitely 
many values of  k. (That is, if  process i enters the system and sees value v, it can, on 
its own, cause value w to recur infinitely often. Note that a given v, i may give rise to 
more than one normal edge.) In this case, let (reset(e, j))7xl denote a sequence of  

6 2~-~ reset(ej )d" numbers, each _>1, such that , ~v, r,) ~ w x X, for all l > 1. Also, if a ffi 
(x0, el, Xl . . . . .  era, Xm) is any highway in G all of  whose edges are normal, then define 
sched(a) = (label(el)) ~sette~'l) . . .  (label(e,,)) reset~e~''l). (That is, sched(a) is a schedule 
which causes the variable changes described by highway a.) 

Dummy Edges. For i E L, v E A having no normal edges e with ong(e) = v and 
label(e) = i, an edge e with orig(e) = term(e) ffi v and label(e) = i is included as a 
dummy edge. 

(Note that there might be no normal edge with label i from vertex v, because v 
might never occur when process i is in its remainderstate r,. Then the application of  
6, to v and r, might not represent an event that could occur during the course of  an 
actual computation from q. Thus all values w which are reached infimtely often by 
such application might fail to be in A.) 

Clearly G is full, so by Lemma 4.11, G is loopy. Let {(*rl(x), ~r2(x)):x ~ A } 
be a set of  loop trails from the vertices of  G and L~ t.J L2 a partition of  L with 
labels(~rl(x)) ~ L1 and labels(Tr2(x)) __ L2 for all x in A. 

CLAIM 1. I f  a is a highway all o f  whose edges are normal, and i f  q' ~ f'),eZab,ls(~) R, 
is an i.d. reachable f rom q with V(q') = orig(a), then V(r(q', sched(a))) = term(a). 

PROOE. Straightforward. [] 

CLAIM 2. l f  i E L, q' E C1 tq R,  is reachable f rom q, and V(q') -- v, then there is 
a normal edge e with orig(e) = v and label(e) = i. 

PROOF. By the finiteness of  A. []  

Let B _C A denote { V(q') : q' ~ C~ f') N~-2 R, is reachable from q}. 

CLAIM 3. I f  V ~ B and a is any highway with orig(a) = v, then a contains no 
dummy edges. 

PROOF. Let q' ~ C~ tq f')N,.2 R, be reachable from q and such that V(q') = v. Let 
a ffi (v ffi Xo, e~, x~ . . . . .  era, xm), m _ 0, and assume e~ . . . . .  e,-~ are normal edges. 
We show e, is a normal edge. Consider fl = (Xo, el, x l  . . . . .  e , ,  x,-O. If  q" = 
r(q', sched(fl)), then clearly q" is reachable from q and q" E C~ N R~,be~te,). Moreover, 
V(q")  = x , ,  by Claim 1. By Claim 2, there is a normal edge e with orig(e) = x,_~ 
and label(e) -- label(e,). Thus there is no dummy edge e' with orig(e') ffi x,-~ and 
label(e') = label(e,). It follows that e, is a normal edge. 

CLAIM 4. For v E B, it is the case that neither ~r~(v) nor *re(v) contains a dummy 
edge. 

PROOF. Let e be any edge of  ~r~(v) or ~r2(v). In either case it is easy to see that 
there is a highway a with orig(a) ffi v, containing e. Claim 3 then suffices. [] 
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Let qo = r(q,  exit(q)). Starting f rom qo, we define a schedule h in (L,  t3 {1}) ~°. This 
schedule will later have steps o f  L2 processes inserted, thereby yielding a new schedule 
which locks out the new L2 processes. 

The  definition o f  h involves simultaneous definition o f  three sequences o f  i.d.'s, 
t oo (q,)~-~ (s,),-o,°° and ( ,),=o. Each q, is in nT-, Rj and each s, in C, n n,g.2 R~, i -> 0. qo 

has already been defined. For  each i _> 0, let s, = r(q,,  enter(q,, 1)). (That  is, let P,  
enter and go to its critical region.) Then  let t, = r(s, ,  sched(~n(V(s,)))). (That  is, 
consider the er, highway corresponding to V(s,)  and allow processes to enter  the 
system in order  to make  the indicated changes. Claim 4 shows that this schedule is 
defined.) Finally, let q,+l = r(t,, exit(t,)). (That  is, let all processes re turn to their 
remainder  regions.) Schedule h is then defined to be 

enter(qo, 1)sched(~rx(V(so)))exi t ( to)enter(ql ,  1) 

• . .  enter(q,, l ) sched(~r l (V(s , ) ) )ex i t ( t , )  . . . .  

Since IA I is finite, there is some fixed v E V such that  v = V(s,)  for infinitely many  
i. (That  is, the same value o f  V will be reproduced at infinitely many  o f  the steps 
when P, enters its critical region.) Let (s,,)°f.o be a subsequence o f  (s,)~°.o for which 
v = l/(s,,) for all j .  Write h = hoahxohnh2oh21h3oh3, . . . ,  where the substrings are 
defined as follows: 

(a) h01 = enter(qo, 1)sched(~r,(V(so)))exi t ( to)enter(q~,  1) . . .  enter~/~, 1). 
(b) For  each j >_ 1, hj0 = sched(¢a(v)). 
(c) For  e a c h j  ___ 1, hj1 = exi t( t , ,_Oenter(q, ,_ , , 1) . . .  enter(q,,, 1). 

Now we modify  h to obtain a new schedule h '  exhibiting lockout. Let  h '  -- 
t t ? t ! t t ho, h l o h n  h2oh2,hzohz,  • • • ,  where the substrings are defined as follows: 

(a) For  each j _> 0, h~l = hj1. 
(b) h]o = sched(xo, el, x ,  . . . . .  ek, xk ) sched( I r2 (v ) ) sched(xk ,  ek+l, xk+l . . . . .  era, X,n), 

where ~r,(v) = (Xo, e,, x,  . . . . .  era, Xm) and orig(er2(v)) -- xk. 
(c) Assume ~r,(v) -- (Xo, el, xl  . . . . .  em, Xm) and *r2(v) = (x6, el, x ]  . . . . .  e ' , ,  x~,).  Since 

vert(~r2(v)) C vert(rr,(v)), we can define a function f :  [m']  ~ [m] such that x~ = 
xt~k) for all k ~ [m'].  Now consider a n y j  >__ 2, and recall that 

hjo = sched(Tr,(v)) = (label(e0) ~t(~'a) . . .  ( labe l (e , , ) )  "e~et(~'''). 

Define 

h'jo = ( label(e l ) )r~t(e" l )  a l ( label (e2))~t (e2 ' l )  a2 . . .  (label(e,~))~e~et(e"l) am, 

where each as, 1 <_ k _< m, is defined as follows. Let  

a~ = (label(e]))"~P'(label(e~)) ~p2 . . .  ( label(e ' . ) )  ~xp" , 

where expt = reset(e~, j )  i f f ( l )  = k and 0 otherwise. Recall  that the existence o f  
edge e~ from x~_, to x~ means that process label(el) can reset V to value x~ an 
infinite number  o f  times. For  each I the appropriate  number  o f  steps o f  process 
label(e~) is spliced into hi0 at the place corresponding to the occurrence o f  
V = x ' t .  

Now consider execution o f  schedule h'  starting from i.d. q0. Claim 1 and the fact 
that ~r2(v) is a loop can be used to show that the insertion o f  sched(~2(v)) into hlo 
affects nothing except for the internal states o f  L2 processes. For  each point  o f  
subsequent insertion o f  L2 process steps, Claim 1 is again used, this t ime to show that  
the value of  V immediately preceding the insertion is one which that process can 
reset; the number  o f  steps spliced in is some number  known to reset that  value. Thus  
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all insertions of L2 process steps affect nothing except for the internal state of L2 
processes. 

Now it is easy to see that schedule h' executed from q0 locks out the processes in 
labels(~r2(v)). This is because every step that is executed by those processes occurs 
while process P1 is in its critical region. Remaining details are left to the reader. [] 

5. Open Questions and Directions for Further Investigation 

The principal interesting technical question left open by the present paper is the 
order-of-magnitude growth of the space bound for lockout-free mutual exclusion. 
That is, can Theorem 4.10 be strengthened to yield a lower bound linear in N, can 
Theorem 4.12 be strengthened to remove the assumption of  "no memory," or is the 
true situation somewhere in between? 

It would be interesting to consider the questions treated here using variations on 
the given general test-and-set primitive. In particular, what bounds are obtainable 
for a model in which only reading or writing of a variable, but not a combination of 
the two operations, is indivisible? What bounds are obtainable for a model having 
several shared 2-valued variables instead of one shared multivalued variable, assum- 
ing that the only indivisible access is a test-and-set on a single variable? 

Various ways can be developed for measuring the "time" required for execution 
by systems of  processes. Intuitively, some of our space-efficient system designs seem 
to extract a cost in additional computation time. Such trade-offs should be formahzed 
and quantified. 

Synchronization problems other than simple mutual exclusion should also be 
studied in the same framework. Some additional work in several of these directions 
appears in [1, 2, 9, 13, 16-18]. 

Appendix. Proof of Lemma 4.11 
We construct the needed highways in a series of stages. At the beginning of each 
stage there is a set X _  vert(G) of vertices which have been processed, and sets M, 
/141, M2 _ L, [ M [ _< 2 [ X [, MILI M2 a partition of M, of labels which have been used. 
For each x E X, highways ~r1(x) and ~r2(x) have been defined, with (a) and (b) 
holding: 

(a) (~rl(x), ~r2(x)) is a loop trail from x. 
(b) labels(crffx)) _ M1 and labels(~r2(x)) C_ M2. 

During each stage, X will have at least one new element added, and definitions of 
~rl(x) and ~r2(x) will be provided for all new elements of X. Several new elements will 
also be added to M. The given conditions are preserved by these changes. At the end 
of the final stage, X--  vert(G), thus satisfying the requirements of the lemma. 

At the start of the first stage, X = M = O. 

Stage of Construction. (Two auxdiary highways, ~bl and $2, are constructed in a 
series of steps. Then $~ and $2 are used to help define the required highways.) Choose 
x ~ vert(G) - X, and initialize $~ = ¢~2 = (x). 

(l) Path Extenswn. See if there exist edges el and e2 satisfying (la)-(ld): 

(la) orig(el) = orig(e2) = term(Ol). 
(lb) term(el) = term(e2) ~ vert(G) - X -  vert((hl). 
(lc) label(eQ # label(e2). 
(ld) (label(e0, label(e2)) C_ L - M - labels(Ol) - labels(g,2). 
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If  not, then proceed to (2) below. I f  so, then let 6, = 6~" (orig(e,), e,, term(e,)), i = 
1, 2, and return to (1) above. (That  is, extend 61 and 62 as many  times as possible to 
common previously unprocessed vertices, using pairs of  edges with distinct previously 
unused labels.) 

(2) Loop Trail Construction. See if there exist edges ei and e2 satisfying (2a)-(2d): 

(2a) orig(el) = orig(ez) = term(6I). 
(2b) (term(el), term(ez)} ___ vert(61). 
(2c) label(el) # label(e2). 
(2d) {label(el), label(e2)} _ L - M - labels(6z) - labels(62). 

If not, then proceed to (3) below. I f  so, then assume without loss of  generality that 
61 = (xo, f i l ,  x l  . . . .  , i l k ,  Xk), 62 = (Xo, J~l, xl . . . .  , j ~ ,  xk), term(el) = Xp, term(e2) = Xq, 
a n d p  _ q. Define ¢rl(X,) and ¢r2(x 0 for all L 0 _ i _< k, as follows. For  0 _< i < k, let 
~2(Xt) = (Xq, f2(q+l), Xq+l . . . . .  f2k, Xk, e2, Xq). For  0 _< i -----p, let ¢rl(x,) = (x.fi.+l), x,+l ,  
. . . .  flp, xp, fltp+l), Xp+l . . . . .  f lk,  Xk, el, Xp). F o r p  + 1 _< i _ k, le t  t2Tl(Xt) ~- (xt ,  fl(t+l), 
x,+l . . . . .  fxk, xk, e~, xp, fiCp+l~, xp+l . . . . .  f i ,  x,). For  0 _< t _ k, add x, to X, and add 
labels(~rl(x,)) to M1 and labels(cr2(x,)) to M2. The  stage is complete.  (Figure 2 should 
be helpful. Here 6~ represents the upper  and 62 the lower path. Two edges, el and e2, 
branch back to prior vertices o f  61 (and 62), thereby creating two loops. For  each i, 
¢r2(x,) represents the " inner  loop" (from xq to xk and back by e2 to xq), while ~rx(x~) 
represents a path from x, to a vertex of  the "outer  loop"  (from xp to xk and back by 
el to xp) followed by a complete circuit of  the outer  loop.) 

(3) Loop Trail Access. See if  there exists an edge e satisfying (3a)-(3c): 

(3a) orig(e) = term(60.  
(3b) term(e) U X. 
(3c) label(e) U L - M - labels(f1) - labels(62). 

I f  not, then the stage halts with an error. If  so, then let 61 = (xo, f i l ,  Xl . . . .  ,flk, xD. 
Define Tra(x,) and ~r2(x,) for all h 0 _ i <_ k, as follows. ¢;l(X,) = (x,f i ,+l~,  X,+l . . . . .  ilk, 
xh, e, term(e)) .  (¢rl(term(e))). ¢r2(x,) = ~r2(term(e)). For  0 <_ i <__ k, add x, to X and 
labels(~rl(x,)) to M1. The  stage is complete. (Intuitively, previously constructed loop 
trails are being re-used, with the newly-defined path 61 used to provide initial access.) 

End of  Stage. 

It is easily seen that the complete execution o f  a stage preserves the needed 
conditions. Stages continue to be initiated as long as X # vert(G). Since vert(G) is 
finite and at least one element is added to X at each stage, we eventual ly obtain 
X = vert(G), provided no stage ends in an infinite loop at step (1) or terminates with 
an error. An infinite loop is impossible, because at each execution o f  step (1) an 
element is added to vert(6~); thus ( lb)  must eventually fail. 

We argue that no stage A having I xI < [vert(G)[ at its start terminates with an 
error. We know that I M I --- 2 [ X I at the start o f  stage A, and also that 2 [ vert(G) I -< 
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ILl. Thus IL - MI -> 21vert(G) - XI at the start of  stage A. Immediately after 
initialization of  ~1 and ~2 we have 

[L - M - labels(~) - labels(~2) [ >_ 21vert(G) - X - vert(¢,l) + 1 I, 

and this inequality is preserved by any number of  executions of  step (1). Thus, after 
any number of  executions of  step (1) we have 

IL - M -  labels(g~x) - labels(g,2)l ___ I vert(G) - X -  vert(<h~) + 11 + 1. 

We now apply the Pigeonhole Principle. Intuiuvely, the term on the left-hand side 
of  the last inequality represents the number of  unused labels, while the term on the 
right-hand side is one more than the number of  "pigeonholes," where one pigeonhole 
is allotted to each unprocessed vertex and a single pigeonhole is allotted to all the 
previously processed vertices. By the Pigeonhole Principle and the fact that G is full, 
there exist two edges el and e2 satisfying (c)-(f): 

(c) orig(el) -- orig(e2) -- term(,h). 
(d) Either (dl) or (d2) holds; 

(dl) term(el) = term(e2) ~ vert(G) - X -  vert(g,l). 
(d2) {term(el), term(e2)) _ X U vert(g,~). 

(e) label(el) ~ label(e2). 
(f) (label(el), label(e2)) _ L - M - labels(,h) - labels(~). 

If (d 1) holds, then step (1) is executed, while if (d2) holds, then either step (2) or step 
(3) will be executed. Thus no error will result. []  
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