
Concurrent Timestamping Made SimpleRainer Gawlicky Nancy Lynchy Nir ShavityzMarch 3, 1995AbstractConcurrent Time-stamp Systems (ctss) allow processes to temporally order concurrentevents in an asynchronous shared memory system, a powerful tool for concurrency control, serv-ing as the basis for solutions to coordination problems such as mutual exclusion, `-exclusion,randomized consensus, and multi-writer multi-reader atomic registers. Solutions to these prob-lems all use an \unbounded number" based concurrent time-stamp system (uctss), a construc-tion which is as simple to use as it is to understand. A bounded \black-box" replacement ofuctss would imply equally simple bounded solutions to most of these extensively researchedproblems. Unfortunately, while all know applications use uctss, all existing solution algorithmsare only proven to implement the Dolev-Shavit ctss axioms, which have been widely criticizedas \hard-to-use." While it is easy to show that a uctss implements the ctss axioms, thereis no proof that a system meeting the ctss axioms implements uctss. Thus, the problem ofconstructing a bounded black-box replacement for uctss remains open.This paper presents the �rst such bounded black-box replacement of uctss. The key tothe solution is a simpli�ed variant of the Dolev-Shavit ctss algorithm based on the atomicsnapshot object proposed by Afek et. al. and Anderson, in a way that limits the number ofinterleavings that can occur, and whose behaviours can be readily mapped to those of uctss.Using the forward simulation techniques of the I/O Automata model, we are then able showthat our bounded algorithm behaves like uctss. The forward simulation allows us to present,what would otherwise be a complicated proof, as an extensive, yet at each step simple caseanalysis. In fact, we believe that large parts of the forward simulation proof can be checkedusing an automatic proof checker such as Larch.For read/write memory, our easy to use bounded uctss is only a logaritmic factor from themost e�cient known bounded ctss constructions. Moreover, unlike these e�cient algorithms,our modular use of an atomic snapshot object implies that our constructions are not limitedto read/write memory, and can be applied in any computation model whose basic operationssu�ce to provide a wait-free snapshot implementation. The complexity of our bounded uctsswill be the same as the complexity of the underlaying snapshot implementation used.�A preliminary version of this work appeared in the Proceedings of the Annual Israel Symposium on Theory andPractice of Computing, Haifa, May 1992, and as Technical Report MIT/LCS/TR-556.yLaboratory for Computer Science, MIT. This work was supported in part by the O�ce of Naval Research underContract N00014-91-J-1046, by the Defense Advanced Research Projects Agency under Contract N00014-89-J-1988,and by the National Science Foundation under Contract 89152206-CCR.zContact Author: MIT and Department of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel. E-mail:shanir@theory.lcs.mit.edu 0

1 IntroductionA timestamp system is somewhat like a ticket machine at an ice cream parlor. People's requeststo buy the ice cream are timestamped based on a numbered ticket (label) taken from the machine.Any person, in order to know in what order the requests will be served, need only scan throughall the numbers and observe the order among them. A concurrent timestamp system (ctss) is atimestamp system in which any process can either take a new ticket or scan the existing ticketssimultaneously with other processes. A ctss is required to be waitfree, which means that a processis guaranteed to �nish any of the two above mentioned label-taking or scanning tasks in a �nitenumber of steps, even if other processes experience stopping failures. Waitfree algorithms are highlysuited for fault tolerant and realtime applications (Herlihy, see [13]).The paradigm of concurrent timestamping is at the heart of solutions to some of the mostfundamental problems in multiprocessor concurrency control. Examples of such algorithms includeLamport's �rst come �rst served mutual exclusion [17], Vitanyi and Awerbuch's construction of amulti-reader multi-writer atomic register [25], Abrahamson's randomized consensus [1], and Afek,Dolev, Gafni, Merritt, and Shavit's �rst come �rst enabled `-exclusion [3]. Solutions to these prob-lems all use an \unbounded number" based concurrent timestamp system (uctss), a constructionwhich is as simple to use as it is to understand. A bounded \black-box" replacement of uctsswould imply equally simple bounded solutions to these extensively researched problems.1.1 Related ResearchIsraeli and Li, in [15], were the �rst to isolate the notion of bounded timestamping (timestampingusing bounded size memory) as an independent concept, developing an elegant theory of boundedsequential timestamp systems. Sequential timestamp systems prohibit concurrent operations. Thiswork was continued in several interesting papers on sequential systems with weaker ordering re-quirements by Li and Vitanyi [21], Cori and Sopena [8] and Saks and Zaharoglou [26]. Dolev andShavit [9] were the �rst to provide an axiomatic de�nition and a construction of a bounded con-current timestamp system using read/write registers. Because of the importance of the boundedconcurrent timestamping problem, the original solution by Dolev and Shavit has been followedby a series of papers directed at providing more e�cient and simple to understand bounded ctssalgorithms. Israeli and Pinchasov [16] have simpli�ed the [9] algorithm by modifying the labelingscheme of [9], introducing a new label scanning method, and replacing the ordering-of-events basedformal proof [18] of the ctss axioms. Concurrent with our work, Dwork and Waarts [10] presentedthe most e�cient read/write register based ctss construction to date, taking only O(n) time foreither a scan or update. They model their bounded construction after a new type of unboundedctss construction, where processes choose from \local pools" of label values instead of the simple\global pool" based uctss [1, 3, 17, 25]. In order to bound the number of possible label values inthe local pool of the bounded implementation, they introduce a form of amortized garbage collec-tion. They then prove that the linear time bounded implementation meets the ctss axioms of [9].In [11], Dwork, Herlihy, Plotkin, and Waarts introduce an alternative linear complexity boundedctss construction that combines a time-lapse snapshot with the bounded ctss algorithm of [9].The proof of their algorithm leverages the axiomatic proof in [9] by arguing that the executions of1

their algorithm are a subset of the executions of the algorithm in [11].We observe that all known applications use uctss, but all existing bounded solutions are onlyproven to implement the ctss axioms, which have been widely criticized as \hard-to-use." Itis easy to show that a uctss implements the ctss axioms, yet there is no proof that a systemmeeting the ctss axioms implements uctss. Thus, the problem of constructing a bounded black-box replacement for uctss remains open.1.2 Our ResultsThis paper presents the �rst bounded concurrent time-stamp system algorithm (bctss) that prov-ably implements uctss. The key to the solution is an algorithm whose behaviours can be readilymapped to those of uctss, and the use of a forward simulation proof technique. Our solutionconsists of the following steps.� Our algorithm is a variation on the Dolev-Shavit algorithm [9] based on the use of the atomicsnapshot primitive introduced by Afek et. al [2] and Anderson [6]. A snapshot primitiveallows a process Pi to update the ith memory location, or snap the memory, that is, collectan \instantaneous" view of all n shared memory locations. By using a snapshot primitive, welimit the number of interleavings that can occur, and are able to introduce a much simpli�edversion of the labeling algorithm of [9] that is tailored so as to allow a forward simulationproof [22]. Moreover, as we elaborate later, our algorithm is no longer limited to read/writememory, and holds in any computation model whose basic operations su�ce to provide await-free snapshot implementation.� Our proof that the bounded algorithm satis�es the uctss speci�cation requires a di�erenttechnique than any of the operational proofs of the ctss axioms as found in the literature. Webegin by introducing a uctss speci�cation that uses, instead of integers, label values takenfrom the unbounded positive reals. This system is broader than (i.e. strictly includes) theinteger based uctss used in actual applications, yet surprisingly allows for a simpler proof.We then use the forward simulation techniques of the I/O Automata model of Lynch andTuttle [22], to show that our bounded algorithm implements the real-number based uctssspeci�cation. (See [23] for references and a discussion of forward simulation techniques.) Theforward simulation techniques allow us to present, what would otherwise be a complicatedproof, as an extensive, yet at each step simple case analysis. In fact, we believe that largeparts of the forward simulation proof can be checked using an automatic proof checker suchas Larch [27, 12].As mentioned, our algorithm provides a wait-free solution in whatever computation model theatomic snapshot object [2] is implemented, be it single-writer multi-reader registers [4], multi-readermulti-writer registers [14], consensus objects [7], or memory with hardware supported compare-and-swap and fetch-and-add primitives.The time complexity of our uctss construction is simply the complexity of the underlying atomicsnapshot implementation. For single-writer multi-reader memory, this is the intricate Attiya andRachman algorithm [4], which takes O(n logn) operations for either a scan or an update of memory.2

Hence the complexity of our algorithm is O(n logn) for each operation, a logarithmic factor awayfrom the best know constructions [10, 11, 16].One can also use snapshot implementations in other computation models: the snapshot algo-rithm of Inoue, Chen, Masuzawa and Tokura [14] to get an O(n) per operation bounded uctssusing multi-reader multi-writer registers, the Chandra and Dwork [7] algorithm to get O(1) la-bel and O(n) scan operations using consensus or randomized consensus objects, or the Riany,Shavit and Touitou [24] algorithm to get O(1) label and O(n) scan operations using memory withhardware supported compare-and-swap and fetch-and-add primitives. Note that the most e�cientknown shared-memory ctss algorithms [10, 11, 16] do not readily imply e�cient algorithms inother computation models. Moreover, stronger computational models do not seem to immediatelyimply signi�cant simpli�cations of bounded ctss algorithms.The paper is organized as follows. Section 2 presents the I/O Automaton model. Our unboundedctss is introduced in Section 3, and the bounded ctss is introduced in Section 4. Section 5introduces several key invariants that are needed for the simulation proof of Section 6. Some of theinvariant proofs are postponed until Section 7.2 The I/O Automata ModelWe present our algorithm in the context of the I/O Automata model. This model, introduced byLynch and Tuttle [22], represents algorithms as I/O Automata which are characterized by states,initial states, a set of actions called an action signature, state transitions called steps and anequivalence relation on some of the actions of the action signature called a partition. For a I/OAutomaton A its �ve components are denoted by states(A), start(A), sig(A), steps(A), and part(A)respectively.A step that results from an action is denoted by (s; �; s0) where s is the original state, � is theaction, and s0 is the new state. If an action can be executed in a state s, it is said to be enabledin s. If an action is not enabled in state s, it is said to be disabled in s. Actions are classi�edinto external actions, ext(A), those visible to user of the algorithm, and internal actions, int(A),which are not visible to the user. External actions are further classi�ed into input actions, in(A),which are under the control of the user of the algorithm, and output actions, out(A), which areunder the control of the algorithm. By de�nition input actions are enabled in all states. For anI/O Automaton A the tuple consisting of in(A) and out(A) is called A's external action signature,exsig(A). We now give a more precise de�nition for some of the elements of an I/O Automaton.Speci�cally, for an I/O Automaton A, sig(A) = (in(A); out(A); int(A)). Furthermore, part(A)de�nes an equivalence relation on the set of internal actions and output actions of A. Finally, wede�ne acts(A) = in(A) [out(A) [int(A).An execution of an I/O Automaton is an alternating sequence of states and actions that couldbe produced if the algorithm is executed starting from an initial state. A state is called reachableis it is the �nal state of some execution. A fair execution, �, of in�nite length is one in which forall C 2 part(A), if some action from C (not necessarily always the same action) is continuouslyenabled, � contains in�nitely many actions from C. A fair execution of �nite length is one in whichfor all C 2 part(A) no actions of C are enabled in the �nal state. A schedule, sched(�), is the3

projection of an execution � onto the actions of the I/O Automaton. A fair schedule, fairsched(�),is the projection of a fair execution � on the actions of the I/O Automaton. A behavior, beh(�), isthe projection of an execution � onto the external actions of the I/O Automaton. A fair behavior,fairbeh(�), is the projection of a fair execution � on the external actions of the I/O Automaton.The set of all possible behaviors of an I/O Automaton A is called behs(A). The set of all possiblefair behaviors of an I/O Automaton A is called fairbehs(A).We say that an I/O Automaton A implements another I/O Automaton B if the fairbehs(A) �fairbehs(B). Our correctness proof uses the following theorem on simulation proofs which is arestricted version of a theorem in [22].Theorem 2.1 Let A and B be I/O Automata with sig(A) = sig(B), part(A) = part(B), and r arelation over the states of A and B. Suppose:1. If a is an initial state of A, then there exists an initial state b of B such that (a; b) 2 r.2. Suppose a is a reachable state of A and b is a reachable state of B such that (a; b) 2 r. If(a; �; a0) is a step of A then there exists a state b0 of B such that (b; �; b0) is a step of B and(a0; b0) 2 r.3. If action � is enabled in state b of B and (a; b) 2 r then action � is enabled in state a of A.Then fairbehs(A) � fairbehs(B).In the I/O Automaton model, actions provide the basic communications mechanism. ctssalgorithms, as described in the introduction communicate using shared registers. We can encoderegister based communication in the I/O Automatom model, with allowable operations rangingfrom single-writer multi-reader to powerful read-modify-write, by encoding the register values inthe state of the Automaton. Actions are then used to modify the state.3 An Unbounded Concurrent Timestamp SystemThis section introduces our unbounded implementation of a concurrent timestamp system, uctss.It is a generalization of the traditional unbounded number uctss. In particular, it uses timestampsfrom <+ instead of the natural numbers. The code for the operations of uctss is presented in twoforms. Figure 1 uses psuedocode. Figure 2 presents the code in the precondition-e�ect notationcommonly used to describe I/O Automata1. We use the precondition-e�ect notation as the basis forour de�nitions and correctness proof and include the compact and intuitive pseudocode for clarity.The system models n processes indexed by f1: : :ng. Each process pi in uctss can perform ascani and labeli operation. A labeli operation allows process pi to associate a label (timestamp)with a given value. A scani operation allows process pi to determine the order among values basedon their associated labels. The function newlabeli, which is used by labeli is de�ned in Figure 3.This function actually picks the new label. In particular, it non-deterministically picks any real1bctss is the name for our bounded implementation. The name is included in the caption since the code in the�gure is shared by bctss and uctss. bctss is introduced in Section 4.4

scanisnapi(�ti; �vi)�oi the sequence of indexes where j appears before k in oi i� (tj ; j)� (tk; k)return (�oi; �vi)labeli(vali)snapi(�ti; �vi)nti newlabeli(�ti)updatei((ti; vi); (nti; vali))Figure 1: Psuedocode for uctss and bctssnumber bigger than the largest current label. (Note that the traditional uctss implementationspick X = 1 or X as a non-zero natural number.) To determine the largest current label, we use thesnapi operation. The snapi operation, de�ned by Afek et al. [2] and Anderson [6], atomically readsan array of single writer multireader locations. Here we use it to atomically read the current labelsfor the newlabeli function. To write the new label determined by the newlabeli function we usethe updatei operation. A updatei operation, also de�ned by [2], writes a value to a single locationin the array of single writer multireader location read by snapi. snapi and updatei are waitfree,therefore their use does not compromise the waitfree properties of our timestamp algorithm. Arigorous theoretical foundation for this claim can be found in [?].The state of uctss is de�ned by the shared state and the local state of each of the n process.The shared and local state of each process, along with the initial values are de�ned in Figure 2.The state of uctss also has derived variables tmax and imax. tmax = max(t1: : : tn) and imax is thelargest process index i such that ti = tmax.In terms of the I/O Automatamodel, uctss has input actions beginlabeli(vali) and beginscanifor i 2 f1 : : :ng. The output actions are endlabeli and endscani(�oi; �vi). The internal actionsof pi are snapi(�ti; �vi) and updatei((ti; vi); (nti; vali)). The set steps(pi) is characterized by theprecondition clause in each action. The set part(pi) consists of a single equivalence classes Ci wherethe elements of Ci are the actions snapi(�ti; �vi), endscani(�oi; �vi), updatei((ti; vi); (nti; vali)), andendlabeli . The set states(pi) is the set of all possible states of pi where each state is de�ned bythe values of the variables of the shared and local state. The set start(pi) is the set consisting ofthe state de�ned by the initial values of the variables of the shared and local state.The shared state is accessed only using the atomic snapi and the updatei actions. Since snapiand updatei are atomic, each action of uctss is atomic. Notice that the snapi action makesreferences to the elements of the vector �ti indirectly through the use of imax and tmax and in orderto calculate �oi. Since snapi is atomic, the labels in �ti are the same as the corresponding labelsin the shared state. In other words, tij = tj during the action. Consequently, we refer directly tothe shared variables imax, tmax, and ti rather than their copies iimax , timax , and tii when analyzingthe snapi action. We note here that we are not concerned with the implementation details of theatomic snapi and updatei actions. We use them has a black box.5

Shared State:ti: The current label associated with process pi; initially 0.vi: The current value associated with process pi; initially vo.Local State:nti: The new label for pi determined by function makelabeli; initially 0.vali: The new value for pi passed to labeli; initially vo.�ti: An array of labels returned by snapi; initially (0 : : :0).�vi: An array of values returned by snapi; initially (vo : : :vo).�oi: An array of process indexes ordered based on the � order; initially (1 : : :n).pci: The non-input action currently enabled; initially nil.opi: The current operation; initially nil.scani:beginscani E�: opi scanipci snapi(�ti; �vi)snapi(�ti; �vi) Pre: pci = snapi(�ti; �vi)E�: If opi = scani then�oi the sequence of indexes wherej appears before k in oi i� (tj ; j)� (tk; k)pci endscani(�oi; �vi)If opi = labeli thennti newlabeli(�ti)pci updatei((ti; vi); (nti; vali))endscani(�oi; �vi) Pre: pci = endscani(�oi; �vi)E�: pci nillabeli:beginlabeli E�: opi labelipci snapi(�ti; �vi)updatei((ti; vi); (nti; vali)) Pre: pci = updatei((ti; vi); (nti; vali))E�: pci endlabeliendlabeli Pre: pci = endlabeliE�: pci nilFigure 2: Precondition-E�ect code for uctss and bctss6

newlabeli(�ti)if i 6= imaxthen return (tmax +X) where X is nondeterministically selected from <>0Figure 3: Code for newlabeli of uctssuctss uses labels that are non-negative real numbers. The ordering between labels is the usual< order of <+. The ordering � used in the orderi action is a lexicographical order between labeland process index pairs.De�nition 3.1 (� order) (`i, i)� (`j, j) i� `i < `j or `i = `j and i < j.4 A Bounded Concurrent Timestamp SystemIn this section we present our bounded implementation of a concurrent timestamp system, bctss.bctss di�ers from uctss in three ways: the structure of the labels, the order between labels, andthe manner in which newlabeli determines new labels. In all other aspects bctss and uctssare identical. Recall that a label in uctss is an element of <+. In bctss, labels are taken froma di�erent domain. In order to construct the new domain we introduce the set A = f1 : : :5g. Wede�ne the order �A and the function next on the elements of A.1 �A 2; 3; 4; 5; 2 �A 3; 4; 5; 3 �A 4; 4 �A 5; 5 �A 3.The graph in Figure 4 represents �A, where a �A b i� there is a directed edge from b to a.next(k) = (k + 1 if k 2 f1; 2; 3; 4g3 if k = 5A bctss label is an element of An�1, where n is the number of processes in the system. We referto elements of An�1 using array notation. Speci�cally, the hth digit of label ` will be denoted by`[h]. Since we have rede�ned the label type, we must specify the order that is to be used betweenelements of An�1 for the � order in the snapi action. The order between elements of An�1 isrepresented by the symbol � and will be a lexicographical order based on �A.De�nition 4.1 (� order) `i � `j i� there exists h 2 f1 : : :n � 1g such that `i[h0] = `j [h0] for allh0 < h and `i[h] �A `j[h].Example 4.1 4 : : :4:5:2 � 4 : : :4:3:1The intuition behind the label set An�1 and the order � can be best understood by examiningthe inadequacies of using a bounded set of natural numbers as the label set. Consider the naturalnumbers from 0 to n with the usual < ordering. As with uctss, ties between processes are brokenbased on process index. The obvious problem with this label set is deciding what happens when7

1 3

5

4

2Figure 4: A graphical illustration of the �A order between the elements of A = f1 : : :5gsome processes has the label n and another process needs a new, bigger label. The obvious solutionis to wrap around and use the number 0. Then the ordering among labels would be the usual <ordering with the additional feature that n < 0.Using a wrap around strategy provides a good solution for two processes. In particular considerthe processes p1 and p2 with the label set f0; 1; 2g. It is easy to see that this works since therewill always be an extra number between the labels of p1 and p2 to make sure that they are totallyordered. However, the wrap around strategy does not work for three processes. Consider thefollowing situation for three processes. Let each process pi have label i. Also assume that processp2 with label 2 wants a new label that is bigger than the label 3 of p3. Using our wrap aroundstrategy, that label would be 0. However, now process p2's label is ordered below that of p1 whichhas a label 1, which violates the ordering properties of a timestamp system since p1's current labelwas acquired before p2 acquired the label 0. One solution might be to extend the set of numbersfrom which the labels are chose so that the wrap around happens later. However, it is easy to seethat this will not help. In particular, processes p2 and p3 can ask for new labels alternately untilone of them reaches the highest label. The �rst process to wrap around will encounter the sameproblem we just identi�ed for n = 3. What is needed is the ability to create a cycle of numbers forprocesses p2 and p3 such that all numbers in that cycle are ordered above zero.Now consider how A2 would create such a cycle. First note that the label set A contains a sizethree cycle, (using the numbers 3, 4, 5). We saw above from the two processor example that a sizethree cycles can accommodate two processes. The labels in A2 that share the same �rst digit eachform a size three cycle, that can accommodate two processes. Now consider the situation wherep1 starts out with label 3:3, p2 starts out with label 3:4 and p3 starts out with 4:3. Using � theselabels are ordered in order of the process indexes. Now let p2 and p3 alternate picking new labels.They can use the size three cycles de�ned by the labels in A2 that start with the pre�x 4. Alllabels in that cycles are ordered above p1's label of 3:3. If p0 now becomes active, it can jump to5:3 which will be higher that the two labels used by p2 and p3.The label set An�1 with the order � is the generalization of these ideas to n processes. Inparticular, any set of label from An�1 which agree on the �rst h digits form a size 3n�1�h cycle,which consists of three ordered size 3n�1�h�1 cycles, each of which in turn consist of three ordered3n�1�h�2 cycles, etc. Such a set of labels can accommodate n � h processes in any sequentialexecution. The cycle system construction is due to Israeli and Li [15].8

This discussion has not identi�ed a need for the numbers 1 and 2 in the set A. These numbers arethe key to making An�1 work in concurrent executions. They are needed to deal with the fact thatwe use atomic snapshot objects as the underlying communications model. More powerful snapshotprimitives that can atomically (i.e. in a single atomic step) read all of the labels and write onelabel will eliminate the need for these numbers (note that constructing an e�cient implementationof such an object, even if one is given a compare-and-swap or other powerful operation, is not anobvious task). We will make our intuitive justi�cation of the An�1 label set with the order � moreconcete with some speci�c examples once we have introduced some additional notation.The following lemma shows that any two labels in A are always totally ordered by the � relation.Lemma 4.1 If `1 and `2 are elements of An�1 then exactly one of the following is true: `1 � `2,`2 � `1, or `1 = `2.Proof: If a; b 2 A, then by de�nition of �A exactly one of the following is true: a �A b, b �A aor a = b. The lemma now follows since � is a lexicographical order de�ned by �A.Next we de�ne some notation and functions for bctss labels. Before giving the formal de�nitionswe give intuitive de�nitions. Two labels are h-equivalent, h=, if their �rst h digits are the same. Thefunction nextlabel(`; h) picks the label that is the same as ` for the �rst h� 1 digits, changes thehth digit based on the next function, and sets the remaining digits to 1. The nextlabel functionis used to pick new labels during the label operation. Finally, the set cycle(`; h) consists of thelabels that are h� 1-equivalent to ` and have the hth digit equal to 3,4,5.De�nition 4.2 (h= equivalence relation) For any h 2 f0 : : :n� 1g, `1 h= `2 i� `1[h0] = `2[h0] forall h0 � h. Note that `1 n�1= `2 implies that `1 = `2.De�nition 4.3 (nextlabel) For any h 2 f1 : : :n� 1g, `0 = nextlabel(`; h) i� `0 h�1= `, `0[h] =next(`[h]) and `0[h0] = 1 for all h0 2 fh + 1 : : :n� 1g.De�nition 4.4 (cycle) For any h 2 f1 : : :n�1g, `0 2 cycle(`; h) i� `0 h�1= ` and `0[h] 2 f3; 4; 5g.The following Lemma gives a neccessary and su�cient condition for three label in An�1 to forma cycle under the � ordering.Lemma 4.2 A set L of labels is not totally ordered by � i� there exist `1; `2; `3 2 L and h 2f1 : : :n� 1g such that `1 h�1= `2 h�1= `3 and f`1[h]; `2[h]; `3[h]g = f3; 4; 5g.Proof:) The � ordering on L is irre
exive by de�nition and antisymmetric by Lemma 4.1.Therefore, it must be that transitivity does not hold. Speci�cally there exist `1; `2; `3 2 L suchthat `1 � `2 � `3, and `1 6� `3. By Lemma 4.1 it cannot be that `1 = `3, therefore `3 � `1. Since� is a lexicographical order, there must exist h 2 f1 : : :n � 1g such that `1 h�1= `2 h�1= `3 and`1[h] �A `2[h] �A `3[h] and `1[h] 6�A `3[h]. Now by de�nition of A, f`1[h]; `2[h]; `3[h]g = f3; 4; 5g.(By de�nition of A we can conclude without loss of generality that `1[h] �A `2[h] �A `3[h]and `1[h] 6�A `3[h]. Since `1 h�1= `2 h�1= `3 and � is a lexicographical order, `1 � `2 � `3, and `1 6� `3.Hence, `1; `2, and `3 are not totally ordered. 9

We now de�ne some functions on the states of bctss. In order to reason about the states ofthe system we introduce the notation b:x to refer to the variable x in state b. For a state b andany label ` in state b. The set agree(b:`; h) is the set of process indexes j such that the tj label instate b that is h-equivalent to the label b:`. num(b:`; h) is the cardinality of agree(b:`; h). Finally,numi(b:`; h) is the cardinality of agree(b:`; h) once process i is removed from agree(b:`; h). Weremind the reader that the following de�nitions are based on those in Figure 2.De�nition 4.5 (agree) For any h 2 f0 : : :n� 1g, agree(b:`; h) = fjj b:tj h= b:`g.De�nition 4.6 (num) For any h 2 f0 : : :n� 1g, num(b:`; h) = jagree(b:`; h)j.De�nition 4.7 (numi) For any h 2 f0 : : :n� 1g, numi(b:`; h) = jagree(b:`; h)� figj.De�nition 4.8 (choice vector) A choice vector for state b is any vector (b:`1 : : : b:`n) such thatb:`i 2 fb:ti; b:ntig for each i.De�nition 4.9 (tot) tot(b) = true i� the set of values in every choice vector is totally orderedby �; otherwise tot(b) = false.Recall that the second di�erence between uctss and bctss is the� order that is used in snapi.We de�ne � for bctss lexicographically.De�nition 4.10 (� order) (`i, i)� (`j, j) i� either `i � `j or `i = `j and i < j.In any state b in which tot(b) = true, � de�nes a total order.We now de�ne b:tmax and b:imax for a state, b, in which tot(b) = true. Consider the choicevector (b:t1 : : : b:tn). Since tot(b) = true, there must exist i 2 f1 : : :ng such that, for all j 6= i andj 2 f1 : : :ng, b:tj � b:ti. Let b:tmax = b:ti. Let b:imax be the largest index j such that b:tj = b:tmax.The �nal di�erence between bctss and uctss is in the code for newlabeli. Recall that inuctss, newlabeli nondeterministically picks a real number that is larger than tmax. In bctss,newlabeli also picks the new label based on tmax. In states in which tot(b) = true, b:tmax andb:imax are de�ned. We let newlabeli be a no{op for states in which tot(b) = false. In Section 5we will show that tot(b) = true for all reachable states. When imax is de�ned and i 6= imax,newlabeli �nds the minimum h such that at least n � h t-labels, excluding ti, agree with thepre�x of tmax up to and including the hth digit. Then the new label is the same as tmax for the�rst h� 1 digits, it di�ers from tmax at the hth digit based on the function next, and its remainingdigits are equal to 1. The code for newlabeli of bctss is given in Figure 5.newlabeli �nds the minimum integer h such that fulli(h) returns true. We now show thatsuch an h exists in f1 : : :n� 1g. The code that �nds h is executed only when i 6= imax. Notice thatnumi(tmax; n� 1) � 1 when i 6= imax, hence fulli(n� 1) = true.The initial values for the labels in bctss are: ti = nti = 1n�1, �oi = (1 : : :n), �vi = (vo : : :vo),�ti = (1n�1 : : :1n�1), vi = vali = vo, opi = nil, and pci = nil.We now return to our intuitive justi�cation of the An�1 label set with the order �. Speci�callywe will strengthen our intuition using some examples. The examples will show how the following\invariants" are maintained: 10

fulli(h), h 2 f1 : : :n � 1gif numi(tmax; h) � n � hthen return (true)else return (false)newlabeli(�ti)if i 6= imaxthen h0 minimum h 2 f1 : : :n� 1g such that fulli(h) = truereturn (nextlabel(tmax; h0))Figure 5: Code for newlabeli of bctss(1) For any reachable state b and any h 2 f1 : : :n� 1g consider any set of labels that agree on the�rst h � 1 digits. Then it will not be the case that hth digits of that set of labels includesthe numbers 3, 4 and 5. More formally, for any i 2 f1 : : :ng: fb:tj[h]jb:tj 2 cycle(b:ti; h)g 6=f3; 4; 5g.(2) For any reachable state b and any h 2 f1 : : :n � 1g consider any set of labels that agree onthe �rst h� 1 digits and have the hth digit in the set f3; 4; 5g. The cardinality of that set oflabels is at most n� h+ 1. More formally, for any i 2 f1 : : :ng: jcycle(b:ti; h)j � n� h+ 1.Maintaining the second invariant is the key to maintaining the �rst, and the �rst implies thattot(b) = true when the choice vector is restricted to the t{labels. While the invariants providegood intuiation about the correctness of the algorithm, it turns out that they are too general to beused the induction proof, and Theorem 5.1 must use a set of more re�ned inductive statments tocapture the details of the possible concurrent behaviors.The manner in which the invariants (1) and (2) are preserved, is explained via several examples.The �rst example considers a serial setting, while the second example considers a concurrent setting.The concurrent setting will illustrate the need for the numbers 1 and 2 in the A set.For simplicity, the examples consider the case where n = 3. Thus the labels will be taken fromA2. For both examples, processes p1, p2, p3 start out with labels t1 = 3:4, t2 = 3:5, and t3 = 4:1.It is easy to see that the labels are totally ordered by the � ordering.Example 4.2 Assume that the following sequence of labeling operation are executed sequentially.Process p1 performs a label operations that reads t1, t2 and t3, and picks the new label t01 = 4:2based on newlabel(t1). Process p3 performs a label operations that reads the new label t01. Itthus picks a label t03 with �rst digit 4, following the rule that the node chosen should be the \lowestnode dominating all other nodes with labels." This is actually the most basic rule implied by thede�nition of newlabel.Processes p1 and p2 can continue forever to choose t001 = 4:4, t003 = 4:5, t0001 = 4:3... (that is, picklabels �rst digit 4 and second digit taken from f3; 4; 5g), maintaining the above invariants, becausethe set of labels with �rst digit 4 and second digit taken from f3; 4; 5g represent a size three cyclethat can accomadate two processes. 11

If at some point p2 picks a new label, L02, it will read the labels of both p1 and p3 has having the�rst digit 4. Any set of labels in A2 that have the �rst digit in common can accomdate at most twoprocesses. In particular, p2's label operation will �nd that num2(tmax) = 2. Since full2(2) = truep2 will pick t02 = 5:1, and so on...From Example 4.2 the reader can see that given that the second \invariant" is maintained, onlytwo processes have labels from the cycle f4:3; 4:4; 4:5g, the �rst \invariant" is readily maintained.The basis for guaranteeing the second \invariant," is that the algorithm is structured so that node1 on an arbitrary level h has at least n� h+ 1 processes agree on it before any process can choosenode 2. This implies that processes move to cycle nodes only from nodes 1 and 2. If there were byway of contradiction an (n� h+2)-nd process pi moving to a cycle node, say to a node 3, it wouldhave had to see a maximal label on node 2, which in turn means node 1 would have had at leastn� h+ 1 labels when pi performed its snap, so pi would have detected n� h+ 2 labels that agreewith it on level h � 1 and would change its h � 1 level label and not choose a cycle label on levelh. The following is an example of the role of nodes 1 and 2.Example 4.3 Let processes p2 and p1 begin performing labeling operations concurrently, readingt2, t1 and t3 and computing newlabel, such that nt2 = nt1 = 4:2. If they then complete theiroperations by writing their labels (i.e., do the update operation), they will choose the same label.Their labels can be ordered using their processor ids. If either process performed a subsequent labeloperation it would choose the label 5:1 since num2(tmax; 1) = num1(tmax; 1) = 2. Thus, neitherprocess would choose a label in the cycle de�ned by the labels 4:3; 4:4; 4:5.Now change the above scenario so that both processes do lot complete their label operations.In particular, suppose that p2 is stalled just before writing nt2 = 4:2 to the shared variable t2(using the update operation), while p1 writes t01 = nt1 = 4:2. Now let process p3 perform a labeloperation that reads the new label t01 = 4:2 and the old label t2 = 3:5, thus picking t03 = 4:3. Ifprocesses p1 and p2 continue to pick new labels, they will pick them from the cycle de�ned by thelabels 4:3; 4:4; 4:5, since they continue to read p2's old label. At some point let p2 complete its labeloperation writing t02 = nt2 = 4:2. Now there are three labels 1= to 4 (two of them in cycle(t02; 2).However, if p2 now performs a subsequent labeling operation, it will read the labels of both p1 andp3 as being 1= to 4. Since num2(tmax; 1) = 2, full2(1) = true , so p2 will pick the new label t002 = 5:1,not picking a label represented by a node in the cycle de�ned by the labels 4:3; 4:4; 4:5.If the labels were not structured to include the values 1 and 2, which are not part of the cyclegenerated by the values 3; 4, and 5, then a process would always have a label that is representedby a node in a cycle. The reader can verify that the sequence of operations in this example, wouldcause the labels of p1,p2 and p3 to end up each on a di�erent nodes of the cycle de�ned by thelabels 4:3; 4:4; 4:5, contradicting invariant (1).5 InvariantsFor use in the simulation proof we de�ne the following invariants:Theorem 5.1 If b is a reachable state of bctss then, for all i 2 f1 : : :ng:12

I: tot(b) = true.II: If i = b:imax then b:ti = b:nti.III: If b:tmax � b:nti then there exists h 2 f1 : : :n� 1g such that b:nti = nextlabel(b:tmax; h).IV: If b:nti � b:tmax then for any h 2 f1 : : :n� 1g, if b:ti h= b:tmax then b:nti h= b:tmax.V: For any h 2 f1: : :n� 1g, if b:nti 2 cycle(b:tmax; h) then b:ti h�1= b:tmax.VI: For any h 2 f1: : :n� 1g,a: if b:nti = nextlabel(b:tmax; h) then numi(b:tmax; h� 1) � n � h.b: if b:tmax[h] 6= 1 then num(b:tmax; h� 1) � n� h+ 1.The following is an intuitive explanation of the inductive claims of Theorem 5.1 that hold forany system state.I: The set of labels that for each process includes either its current label or its newly chosen label(yet unwritten) is totally ordered. This implies the �rst \invariant," but is slightly strongerin the sense that it tracks the behavior of yet unwritten labels.II: The process with the maximal label does not choose a new one.III: The nextlabel function de�nes a label's successor for a given digit. This invariant statesthat a process' new (not yet updated) label must be a successor of the maximum at some digitlevel h, even though the state (including the maximum) may have changed since the new labelwas picked.IV: Consider a process pi that has chosen a new label which is no longer the maximum (due tosubsequent new labels chosen by others) but has not yet updated the shared state. Then, forall processes whose new labels were chosen based on pi's current label, their choice would havebeen the same had they used pi's new label. This is due to the fact that updating the sharedstate does not a�ect the num count.V: If a process chooses a new label in the cycle at digit h, (i.e., 2 f3; 4; 5g), then it must be thatits new label is the same as its current label for the �rst h � 1 digits. This implies that aprocess must choose either 1 or 2 before it can choose digits f3; 4; 5g.VI: For any new label,a: if it is a successor of the max at digit h, then the number of labels that agree with max onthe �rst h digits is the maximum that can be accomodated by that h-digit pre�x. In termsof the algorithm this means that a process uses a new pre�x only when necessary.13

b: Once some process has chosen an h-th level digit that is greater than 1 (i.e., f2; 3; 4; 5g),then the number of labels that agree with it on the h � 1 pre�x must be at least themaximum that can be accomodated by that pre�x.Invariants I, II, and III are used in the simulation proof. We use an induction argument toshow that all reachable states of bctss satisfy these invariants. The purpose of invariants IV - VIis to strengthen the induction hypothesis enough so that I can be proven. The only action thatcan cause invariant I to be violated is snapi when opi = labeli. Speci�cally, we must show thatthe new nti picked by newlabeli does not introduce any cycles in the � order of the t-labels andnt-labels. Since the newlabeli code can examine the all of the t-labels, the code can be written toavoid any cycles involving nti and the t-labels. However, the newlabeli code cannot examine thelocal nt-labels of the other processes. In order to show that cycles that include nti and nt-labelsare avoided, invariants IV and V are used to limit the possible values of the nt-labels based on thecorresponding t-labels.For example invariant IV implies that nti h= ti when ti h= tmax for all nti � tmax. If nti is inthe cycle at level h, in other words nti[h] 2 f3; 4; 5g, then invariant V states that nti h�1= ti. Nowassume that newlabeli picks nti = nextlabel(tmax; h). Then the code for newlabeli , usingthe function fulli, limits the number number of t-labels that are h�1= tmax and consequently thenumber of t-labels that are h�1= nti. Now invariant V can be used to limit the number of nt-labelsthat could, by being in the cycle at level h, cause a cycle to occur with the new nti.Invariant III gives information about the structure of nt-labels that are � tmax. This infor-mation is used to determine how the new nti is ordered with respect to any nt-labels that are� tmax. Finally invariant VIb is used to prove invariant V, and invariant VIa is used to proveVIb. If a new label nti is picked in the cycle at level h then it must be that tmax[h] 6= 1; henceVIb applies. VIb says that num(tmax; h � 1) � n � h+ 1. The code for newlabeli insures thatnumi(tmax; h� 1) < n� h+ 1. Thus it must be the case that ti h�1= tmax. This is precisely what isrequired to prove invariant V.The proof of Theorem 5.1 uses induction. It depends on a series of claims, one for the initialstate and one for each action in the inductive step. Most of these claims appear in the �nal sectionsince they use a fairly straightforward, if tedious, case analysis. This section presents the key claimsassociated with invariant I. In the following claims assume that state b transitions to b0 using thesnapk(�tk; �vk) action.Claim 5.1.1 If k = b:imax then b0 satis�es I - VI.Proof: The de�nition of snapk(�tk; �vk) for bctss shows that no labels change. This su�ces toshow that b0 satis�es I - VI.So assume that k 6= b:imax for the remainder of the proof of the lemma. By de�nition ofnewlabelk , b0:ntk = nextlabel(b:tmax; h0) for some h0 2 f1 : : :n� 1g. Fix h0. Note, by de�nitionof nextlabel, b:tmax � b0:ntk.Claim 5.1.2 If k 6= b:imax then numk(b:tmax; h0) = numk(b:tmax; h0 � 1) = n� h0.14

Proof: By de�nition of newlabelk , fullk(h0) returns true in state b, so numk(b:tmax; h0) � n�h0.Moreover, fullk(h0 � 1) returns false in state b, therefore numk(b:tmax; h0� 1) < n� (h0� 1). Butby de�nition, numk(b:tmax; h0� 1) � numk(b:tmax; h0) so numk(b:tmax; h0� 1) = numk(b:tmax; h0) =n� h0.Claim 5.1.3 If k 6= b:imax then I is true in b0.Proof: For a contradiction assume that tot(b0) = false. Then there must exist a choice vectorC whose values are not totally ordered. By Lemma 4.2, there exists b0:`i; b0:`j; b0:`z 2 C such thatb0:`i h�1= b0:`j h�1= b0:`z and fb0:`i[h]; b0:`j[h]; b0:`z[h]g = f3; 4; 5g for some h 2 f1 : : :n � 1g. Sinceb0:`i; b0:`j and b0:`z are elements of a choice vector, b0:`i 2 fb0:ti, b0:ntig, b0:`j 2 fb0:tj , b0:ntjg,b0:`z 2 fb0:tz, b0:ntzg and i 6= z, j 6= z, j 6= i. By I for state b, tot(b) = true. Therefore the valuesof C for state b must be totally ordered. The only label that changes as a result of the action is ntk.Consequently, we can assume without loss of generality that b0:`z = b0:ntk and z = k. Furthermore,since i 6= k and j 6= k, `i and `j do not change as a result of the action. Thus, b:`i = b0:`i andb:`j = b0:`j. Now we can conclude that:b:`i h�1= b:`j h�1= b0:ntk and fb:`i[h]; b:`j[h]; b0:ntk[h]g = f3; 4; 5g: (1)Recall that b0:ntk = nextlabel(b:tmax; h0). We will now show that h = h0. Let z = b:imax, thenb:tz = b:tmax. Since k 6= b:imax, k 6= z. The de�nition of nextlabel implies that b:tz h0�1= b0:ntk.For a contradiction assume that h < h0. Now substitute b:tz for b0:ntk in Equation 1 to concludethat b:`i h�1= b:`j h�1= b:tz and fb:`i[h]; b:`j[h]; b:tz[h]g = f3; 4; 5g. By Lemma 4.2 any set of labelscontaining b:`i; b:`j, and b:tz is not totally ordered. We now show that i 6= z and j 6= z since thiswill allow us to conclude that there exists a choice vector that includes b:`i; b:`j, and b:tz. Sincefb:`i[h]; b:`j[h]; b:tz[h]g = f3; 4; 5g, and b:`i 2 fb:ti; b:ntig either b:ti[h] 6= b:tz[h] or b:nti[h] 6= b:tz[h].If i = z the former is clearly impossible and the later is impossible since b:ntz = b:tz by invariantII. Thus i 6= z. The same argument shows that j 6= z. Now we have a choice vector for state bwhose values are not totally ordered. The existence of such a choice vector contradicts invariant Ifor state b. Thus h 6< h0. The de�nition of nextlabel implies that b0:ntk[h00] = 1 for all h00 > h0.Since b0:ntk[h] 2 f3; 4; 5g, h 6> h0. Now h 6< h0 and h 6> h0 so h = h0.We now construct a set of labels which is not totally ordered and which includes b:tmax andb0:ntk. First show that b:tmax[h0] 2 f3; 4; 5g. Since b0:ntk[h0] 2 f3; 4; 5g, the de�nition of nextlabelimplies that b:tmax[h0] 2 f2; 3; 4; 5g. We proceed by showing that b:tmax[h0] 6= 2. In order toreach a contradiction we assume that b:tmax[h0] = 2. Since b:tmax h0�1= b0:ntk and b0:ntk h0�1= b:`i,b:tmax h0�1= b:`i. Furthermore, b:tmax[h0] = 2 and b:`i[h0] 2 f3; 4; 5g thus b:tmax[h0] �A b:`i[h0].Consequently, b:tmax � b:`i. We consider the cases b:`i = b:ti and b:`i = b:nti separately. Whenb:`i = b:ti, b:tmax � b:ti, which contradicts the de�nition of b:tmax. Thus, this case cannot arise.When b:`i = b:nti, b:tmax � b:nti. Now invariant III and the de�nition of nextlabel imply thatb:nti[h0] = b:tmax[h0] or b:nti[h0] = next(b:tmax[h0]) or b:nti[h0] = 1. Thus, when b:tmax[h0] = 2,b:nti[h0] 62 f4; 5g. Therefore we can conclude that b:`i[h0] 62 f4; 5g when b:tmax[h0] = 2. Usingthe same argument we can show that b:`j[h0] 62 f4; 5g when b:tmax[h0] = 2. This contradicts15

Equation 1 according to which fb:`i[h0]; b:`j[h0]; b0:ntk[h0]g = f3; 4; 5g. Thus b:tmax[h0] 6= 2 andb:tmax[h0] 2 f3; 4; 5g.Since fb:`i[h0]; b:`j[h0]; b0:ntk[h0]g = f3; 4; 5g, using the de�nition of �A, we can assume withoutloss of generality that:b:`i[h0] �A b:`j[h0] �A b0:ntk[h0] and b:`i[h0] 6�A b0:ntk[h0]: (2)Recall that z = b:imax, b:tz = b:tmax, b:tz h0�1= b0:ntk, and b:tz[h0] �A b0:ntk[h0]. Hence, we canreplace b:`j by b:tmax in Equation 1 and Equation 2 which yields the following:b:`i h0= b:tmax h0= b0:ntk and fb:`i[h]; b:tmax[h]; b0:ntk[h]g = f3; 4; 5g; (3)b:`i[h0] �A b:tmax[h0] �A b0:ntk[h0] and b:`i[h0] 6�A b0:ntk[h0]: (4)Consequently,b:`i � b:tmax � b0:ntk and b:`i 6� b0:ntk; (5)fb:`i; b:tmax; b0:ntkg � cycle(b:tmax; h0): (6)Consider the cases b:`i = b:nti and b:`i = b:ti separately:b:nti: Since b:nti 2 cycle(b:tmax; h0), V for state b shows that b:ti h0�1= b:tmax. By Claim 5.1.2numk(b:tmax; h0 � 1) = numk(b:tmax; h0). Therefore, since i 6= k, b:ti h0�1= b:tmax implies thatb:ti h0= b:tmax. Now, from IV for state b and the fact that b:nti � b:tmax, it follows thatb:nti h0= b:tmax, a contradiction to Equation 4 according to which b:nti[h0] �A b:tmax[h0].b:ti: By Claim 5.1.2, numk(b:tmax; h0�1) = numk(b:tmax; h0). Therefore, since i 6= k, b:ti h0�1= b:tmaximplies that b:ti h0= b:tmax. Now, b:ti h0= b:tmax contradicts Equation 4 according to whichb:ti[h0] �A b:tmax[h0].We have reached a contradiction in each case. Consequently, there exists no choice vector such thatits values are not totally ordered. Hence, tot(b0) = true.Proof: (For Theorem 5.1) We proceed by induction on the length of the execution ending inthe reachable state b. The base case is established by Lemma 7.1. The induction step is a caseanalysis based on the action �, where (b0; �; b00) is a step in the execution. If � 2 fbeginscank;endscank(�ok; �vk), beginlabelk(valk), endlabelkg, the induction step follows from Lemma 7.2. If� = updatek((tk; vk); (ntk; valk)), the induction step follows from Lemma 7.3. If � = snapk(�tk; �vk),the induction step follows from Lemma 7.4. 16

6 The Simulation ProofIn this section we use Theorem 2.1 to show that fairbehs(bctss) � fairbehs(uctss). This impliesthat bctss implements uctss. In order to use Theorem 2.1, we de�ne the relation r between thestates of bctss and the states of uctss as follows:De�nition 6.1 (relation r) If b is a state of bctss and u is a state of uctss then (b; u) 2 r i�for all i; j 2 f1 : : :ng, i 6= j:1. b: �oi = u: �oi.2. b:tj � b:ti i� u:tj < u:ti,b:ntj � b:ti i� u:ntj < u:ti,b:tj � b:nti i� u:tj < u:nti,b:ntj � b:nti i� u:ntj < u:nti.3. b:vi = u:vi.4. b:vali = u:vali.5. b: �vi = u: �vi.6. b:opi = u:opi.7. b:pci = u:pci.Parts 1 and 5 ensure that a process pi returns the same response to a scani request in bctssand in uctss. Recall that �oi contains the order of the labels that was last observed by pi. Part2 states that the � ordering of any choice vector from bctss is the same as the < ordering ofthe corresponding labels from uctss. Notice that part 2 gives no information about the relationbetween ti and nti. Parts 3 and 5 ensure that bctss and uctss associate values with labels in thesame manner. Part 6 ensures that uctss and bctss will execute the same part of the snapi actioncode. Finally, part 7 ensures that uctss and bctss will be able to execute the corresponding actionduring each state transition.The following lemma proves that the �rst of the three assumptions required by Theorem 2.1 istrue.Lemma 6.1 For the initial state b of bctss, there exists an initial state u of uctss such that(b; u) 2 r.Proof: In the initial states b of bctss and u of uctss, �oi = (1: : :n) for all i 2 f1 : : :ng. Hencepart 1 of r is satis�ed. Part 2 is satis�ed since ti = ntj for all i; j 2 f1 : : :ng in both bctss anductss. Parts 3 � 5 are satis�ed since �vi = (0 : : :0) and vi = vali = 0 for all i 2 f1 : : :ng in bothbctss and uctss. Parts 6 and 7 of r is satis�ed for the initial states since opi = pci = nil in bothsystems. 17

The following lemma shows that the mapping r is preserved by all of the actions of bctss. Thislemma proves that the second of the three assumptions required by Theorem 2.1 is true.Lemma 6.2 Let b be a reachable state of bctss and u be a reachable state of uctss such that(b; u) 2 r. If (b; �; b0) is a step of bctss then, there exists u0 such that (u; �; u0) is a step of uctssand (b0; u0) 2 r.Proof: We proceed by case analysis on �.Case � 2 fbeginscank; endscank(�ok; �vk); endlabelkg:Since (b; u) 2 r, we can conclude that b:pck = u:pck, b: �ok = u: �ok, and b: �vk = u: �vk. Hence, � isenabled in u. Let u0 be the unique state of uctss such that (u; �; u0) is a step of uctss. In bothbctss and uctss only opk and pck change as a result of �. Inspection of the code in Figure 2 showsthat b0:opk = u0:opk and b0:pck = u0:pck. This su�ces to shows that (b0; u0) 2 r.Case: � = beginlabelk(valk):Since beginlabelk(valk) is an input action, it is clearly enabled in state u. Let u0 be the uniquestate of uctss such that (u; �; u0) is a step of uctss. Only valk, opk, and pck change as a resultof the action. By de�nition of the action b0:valk = u0:valk. Furthermore b0:opk = u0:opk = labelkand b0:pck = u0:pck = snapk(�tk; �vk). This su�ces to shows that (b0; u0) 2 r.Case � = snapk(�tk; �vk) when b:opk = scank:Since (b; u) 2 r, b:pck = u:pck. Hence, � is enabled in u. Furthermore u:opk = b:opk = scank.Let u0 be the unique state such that (u; �; u0) is a step of uctss.snapk(�tk; �vk), when opk = scank, determines �ok based on the � ordering. Recall that � is alexicographical order de�ned by the order between the t-labels, using � for bctss and < for uctss,and the order between the process indices. By assumption (b; u) 2 r. This implies that b:ti � b:tji� u:ti < u:tj for all i; j 2 f1 : : :ng; thus snapk(�tk; �vk) will produce the same ordering for bctssand uctss. Hence b0: �ok = u0: �ok. Furthermore, part 3 of r implies that b0: �vk = u0: �vk. Figure 2 showsb0:pck = u0:pck = endscank(�ok; �vk). Only �ok, �vk, and pck change as a result of the action and thuswe can conclude that (b0; u0) 2 r.Case � = snapk(�tk; �vk) when b:opk = labelk:Since (b; u) 2 r, b:pck = u:pck. Hence, � is enabled in u. Furthermore u:opk = b:opk = labelk.There are two case: k = b:imax and k 6= b:imax.We �rst consider the case k = b:imax. Since (b; u) 2 r, part 2 of r implies that b:imax = u:imax.Hence, k = u:imax. Let u0 be the unique state such that (u; �; u0) is a step of uctss. Now thede�nition of newlabelk for bctss and uctss shows that only pck changes for both bctss anductss. Figure 2 shows b0:pck = u0:pck = updatek((tk; vk); (ntk; valk)). This su�ces to show that(b0; u0) 2 r.So assume that k 6= b:imax for the remainder of the proof of this case. Since (b; u) 2 r, part 2of r implies that b:imax = u:imax. Hence, k 6= u:imax. In this case there are many states u0 suchthat (u; �; u0) is a step of uctss; these states di�er only by the value of u0:ntk. We now de�ne aparticular value u0:ntk and hence a particular state u0.18

De�ne S = fij i 6= k and b:tmax � b:ntig. Let z = b:imax, then b:tz = b:tmax. Invariant IIshows that b:ntz = b:tz. Hence, b:ntz = b:tmax. This implies that z 62 S. Thus, b:imax 62 S. Forall i 2 S, III for state b shows that b:nti = nextlabel(b:tmax; hi) for some hi 2 f1 : : :n � 1g.Furthermore, the de�nition of newlabelk implies that b0:ntk = nextlabel(b:tmax; hk) for somehk 2 f1 : : :n� 1g. De�ne:S1 = fij i 2 S; hi > hkg; S2 = fij i 2 S; hi = hkg and S3 = fij i 2 S; hi < hkg: (7)Note that:S1 \ S2 = S2 \ S3 = S1 \ S3 = ; and S1 [S2 [S3 = S: (8)Since � is a lexicographical order, the order between any two labels in bctss is determined by the�rst digit at which they di�er. Therefore, for any i1 2 S1, i2 2 S2, and i3 2 S3, it is the case that:b:tmax � b:nti1 � b:nti2 = b0:ntk � b:nti3: (9)Recall z = b:imax. Thus, b:tz � b:nti1 � b:nti2 = b0:ntk � b:nti3 . Since z 62 S and (b; u) 2 r, part2 of r now shows that u:tz < u:nti1 < u:nti2 < u:nti3 . Since b:imax = u:imax, z = u:imax andu:tz = u:tmax. This shows that:u:tmax < u:nti1 < u:nti2 < u:nti3 : (10)We use the following rules for picking u0:ntk. If S2 6= ;, then u0:ntk = u:nti for any i 2 S2. Ifon the other hand S2 = ;, de�ne u:ntmax and u:ntmin as follows: u:ntmax = max(u:ntij i 2 S1) ifS1 6= ;, otherwise u:ntmax = u:tmax. u:ntmin = min(u:ntij i 2 S3) if S3 6= ;, otherwise u:ntmin =1.Choose any u0:ntk such that u:ntmax < u0:ntk < u:ntmin. For any i1 2 S1; i2 2 S2, and i3 2 S3, thetwo rules and Equation 10 imply that:u:tmax < u:nti1 < u:nti2 = u0:ntk < u:nti3 : (11)With both rules for choosing u0:ntk, u:tmax < u0:ntk. Hence, there exists an X 2 <>0 such thatu0:ntk = u:tmax +X .We now show that (b0; u0) 2 r. Only ntk and pck change as a result of the action. Figure 2shows b0:pck = u0:pck = updatek((tk; vk); (ntk; valk)). Consequently, (b0; u0) 2 r if we can showthat part 2 of r holds for states b0 and u0. For part 2 of the relation there are four cases to consider.All other cases do not involve b0:ntk. Let i 2 f1 : : :ng and i 6= k:1. b0:ntk � b0:ti i� u0:ntk < u0:ti,b0:ti � b0:ntk i� u0:ti < u0:ntk:Since no t-labels change, b0:tmax = b:tmax and b0:imax = b:imax. Recall that k 6= b:imax,hence b0:ntk = nextlabel(b:tmax; hk) and b0:tmax = b:tmax � b0:ntk as a result of the action.Furthermore, b0:ti = b:ti. Therefore, b0:ti � b0:tmax � b0:ntk. Let z = b0:imax. In this casez 6= k and b0:tz = b0:tmax. Since i 6= k, z 6= k and b0:tz = b0:tmax, there exists a choice vectorthat includes b0:ti; b0:tmax, and b0:ntk. By invariant I the values of this choice vector are totallyordered by �. Therefore, b0:ti � b0:tmax � b0:ntk implies that b0:ti � b0:ntk.Similarly, since k 6= u:imax, u0:tmax = u:tmax < u0:ntk as a result of the action. Furthermore,u0:ti = u:ti. Therefore u0:ti � u0:tmax < u0:ntk. This implies that u0:ti < u0:ntk.19

2. b0:nti � b0:ntk i� u0:nti < u0:ntk,b0:ntk � b0:nti i� u0:ntk < u0:nti:We can divide the nt-labels of uctss into two disjoint sets: Recall that S = fjj j 6= k andb:tmax � b:ntjg. De�ne T = fjj j 6= k and b:tmax � b:ntjg. Similarly, de�ne Su = fjj j 6= kand u:tmax < u:ntjg. De�ne Tu = fjj j 6= k and u:tmax � u:ntjg. By part 2 of r and the factthat (b; u) 2 r, S = Su and T = Tu. Consider i 2 T and i 2 S separately.Suppose i 2 T . Since i 6= k, b0:nti = b:nti. Therefore b0:nti � b0:tmax � b0:ntk. Let z = b0:imax.In this case z 6= k and b0:tz = b0:tmax. Since i 6= k, z 6= k and b0:tz = b0:tmax, there exists achoice vector that includes b0:nti; b0:tmax, and b0:ntk. By invariant I the values of this choicevector are totally ordered by�. Therefore, b0:nti � b0:tmax � b0:ntk implies that b0:nti � b0:ntk.Similarly, u0:nti = u:nti, since i 6= k. Therefore, u0:nti � u0:tmax < u0:ntk. This implies thatu0:nti < u0:ntk.Now suppose i 2 S. Consider any i1 2 S1, i2 2 S2, and i3 2 S3 where S1; S2; S3 are de�nedby Equation 7. Since k 62 S, b0:ntj = b:ntj and u0:ntj = u:ntj for all j 2 S. ConsequentlyEquation 9 and Equation 11 show that b:tmax � b0:nti1 � b0:nti2 = b0:ntk � b0:nti3 andu:tmax < u0:nti1 < u0:nti2 = u0:ntk < u0:nti3 . Using these facts we now consider the followingcases: i 2 S1, i 2 S2, and i 2 S3. If i 2 S1, then b0:nti � b0:ntk and u0:nti < u0:ntk. If i 2 S2,then b0:nti = b0:ntk and u0:nti = u0:ntk. If i 2 S3, then b0:ntk � b0:nti and u0:ntk < u0:nti.Case � = updatek((tk; vk); (ntk; valk)):Since (b; u) 2 r, b:pck = u:pck. Hence, � is enabled in u. Let u0 be the unique state such that(u; �; u0) is a step of uctss.Only vk, tk and pck change as a result of the action. Since (b; u) 2 r, part 4 of r shows thatb:valk = u:valk. Thus, b0:vk = u0:vk. Figure 2 shows b0:pck = u0:pck = endlabelk. Consequently,(b0; u0) 2 r if we can show that part 2 of r holds for states b0 and u0. For part 2 of r there are fourcases to consider. All other cases are immediate since they do not involve tk, and since tk is theonly label that changes as a result of the action. Let i 2 f1 : : :ng and i 6= k:1. b0:tk � b0:ti i� u0:tk < u0:ti:Since (b; u) 2 r and tk is the only label that changes, b:ntk � b0:ti i� u:ntk < u0:ti. As a resultof the action, b0:tk = b:ntk and u0:tk = u:ntk. Hence b0:tk � b0:ti i� u0:tk < u0:ti.2. b0:ti � b0:tk i� u0:ti < u0:tk,b0:nti � b0:tk i� u0:nti < u0:tk,b0:tk � b0:nti i� u0:tk < u0:nti:For all three statements, the reasoning is similar to that of case 1.We can now conclude that bctss correctly implements uctss.Theorem 6.3 bctss implements uctss. 20

Proof: By de�nition of bctss and uctss, sig(bctss) = sig(uctss) and part(bctss) = part(uctss).Lemma 6.1, and Lemma 6.2 show that bctss and uctss satisfy the �rst two conditions of Theo-rem 2.1. For the third condition note that action � is enabled in uctss if and only if � is enabledin bctss. Consequently, Theorem 2.1 shows that fairbehs(bctss) � fairbehs(uctss). Thus bctssimplements uctss.7 Claims for Proof of Theorem 5.1This section contains the bulk of the claims needed for Theorem 5.1.Lemma 7.1 The initial state b of bctss, satis�es invariants I - VI.Proof: This follows from the fact that b:ti = b:ntj = 1n�1 for all i; j 2 f1 : : :ng.Lemma 7.2 Let b be a state of bctss that satis�es I - VI. If (b; �; b0) is a step of bctss where� 2 fbeginscank; endscank(�ok; �vk); beginlabelk(valk); endlabelkg for any k, then b0 satis�esI - VI.Proof: None of the t-labels or nt-labels change as a result of �. This su�ces to show that b0satis�es I - VI.Lemma 7.3 Let b be a state of bctss satisfying I - VI. If (b;updatek((tk; vk); (ntk; valk)); b0) isa step of bctss for any k, then b0 satis�es I - VI.Proof: The proof is divided into a series of claims. By invariant I for state b, b:tmax and b:imaxare de�ned. We split the argument into two cases: k = b:imax and k 6= b:imax. Consider k = b:imax�rst.Claim 7.3.4 If k = b:imax, then b0 satis�es I - VI.Proof: By invariant II for state b, b:tk = b:ntk. Thus, none of the t-labels or nt-labels change forbctss. This su�ces to show that b0 satis�es I - VI.So assume that k 6= b:imax for the remainder of the proof.Claim 7.3.5 If k 6= b:imax then I is true in b0.Proof: Assume for a contradiction that tot(b0) = false. Since tot(b) = true and tk is the onlylabel that changes, the choice vector whose values are not totally ordered must include b0:tk. Nowconsider the same choice vector except that we substitute b0:ntk for b0:tk. Since b0:tk = b0:ntk, thisnew choice vector's values are also not totally ordered. Since none of the labels in this new choicevector change as a result of the action, the same choice vector must not have had its values totallyordered in state b. However this contradicts the assumption that tot(b) = true.21

Having proved invariant I we now know that b0:imax and b0:tmax are de�ned. The proof for II -VI is subdivided into the following two cases: b:ntk � b:tmax and b:tmax � b:ntk. Assume �rst thatb:ntk � b:tmax.Claim 7.3.6 If k 6= b:imax and b:ntk � b:tmax then b0:tmax = b:tmax and b0:imax = b:imax orb0:imax = k.Proof: Let z = b:imax, then b:tz = b:tmax and z 6= k. We show �rst that b0:ti � b:tz for all i.First consider i 6= k. Since tk is the only label that changes, b0:ti = b:ti. Therefore, the fact thatb:ti � b:tz implies that b0:ti � b:tz. Now let i = k. As a result of the action, b0:ti = b:nti. Byassumption b:nti � b:tz, so b0:ti � b:tz. Since z 6= k, tz does not change, so we can conclude thatb0:nti � b0:tz for all i. This implies that b0:tz = b0:tmax. The following identity now establishes the�rst part of the claim: b:tmax = b:tz = b0:tz = b0:tmax.Let S = fijb:ti = b:tmaxg and S0 = fijb0:ti = b0:tmaxg Then, b:imax = max(S) and b0:imax =max(S 0). Since tk is the only t-label that changes and b0:tmax = b:tmax, S 0 = S or S0 = S � fkgor S 0 = S [fkg. When S0 = S then max(S0) = max(S). Let z = b:imax. Since k 6= b:imax, thede�nition of b:imax shows that z 2 S and k < z when k 2 S. Consequently, when S 0 = S � fkgthen max(S 0) = max(S). Finally, when S 0 = S [fkg then max(S 0) = max(S) or max(S 0) = k.This shows that b0:imax = b:imax or b0:imax = k.Claim 7.3.7 If k 6= b:imax and b:ntk � b:tmax then num(b0:tmax; h) � num(b:tmax; h) and numi(b0:tmax; h) �numi(b:tmax; h) for all i and h.Proof: The Claim follows immediately if we show that agree(b0:tmax; h) � agree(b:tmax; h).Suppose i 2 agree(b:tmax; h). If i 6= k, then since ti does not change and, by Claim 7.3.6, tmaxdoes not change, i 2 agree(b0:tmax; h). Now consider i = k. By de�nition of agree, b:ti h=b:tmax. Since b:nti � b:tmax, IV for state b implies that b:nti h= b:tmax. As a result of the actionb0:ti = b:nti, so b0:ti h= b:tmax. This fact along with the fact that tmax does not change implies thati 2 agree(b0:tmax; h).Claim 7.3.8 If k 6= b:imax and b:ntk � b:tmax then b0 satis�es II - VI.Proof: We proceed with a case analysis. Consider any i 2 f1 : : :ng and h 2 f1 : : :n � 1g.II: Suppose i = b0:imax. By Lemma 7.3.6, i = k or i = b:imax. First consider i = k. As a directconsequence of the action, b0:ti = b0:nti. Now consider i = b0:imax where i 6= k. In this case IIholds for b0 since ti and nti do not change, and II holds for b.III: III holds for b0 since tmax and nti do not change, and III holds for b.IV: First consider i = k. As a consequence of the action b0:ti = b0:nti. Hence, b0:ti h= b0:tmax impliesthat b0:nti h= b0:tmax for all h. Now consider i 6= k. Since IV holds in state b, and tmax, ti andnti do not change, IV holds for state b0. 22

V: First consider i = k. b0:nti 2 cycle(b0:tmax; h) and the de�nition of cycle imply that b0:nti h�1=b0:tmax. As a consequence of the action, b0:ti = b0:nti. Hence, b0:ti h�1= b0:tmax. Now consideri 6= k. In this case V is true in b0 since ti, nti , and tmax do not change and V is true in b.VI: Since nti and tmax do not change, b0:nti = nextlabel(b0:tmax; h) implies that b:nti = nextlabel(b:tmax; h),and b0:tmax[h] 6= 1 implies that b:tmax[h] 6= 1. By Claim 7.3.7, num(b0:tmax; h) � num(b:tmax; h)and numi(b0:tmax; h) � numi(b:tmax; h). Hence, VI holds for state b0 since it holds for state b.Claim 7.3.8 shows that II - VI hold when b:ntk � b:tmax. For the remainder of the proof assumethat b:tmax � b:ntk.Claim 7.3.9 If k 6= b:imax and b:tmax � b:ntk then b0:tmax = b0:tk and b0:imax = k.Proof: We proceed by showing that b0:ti � b0:tk for all i 6= k. From the de�nition of tmax andthe assumption that b:tmax � b:ntk, we know that b:ti � b:tmax � b:ntk. Let z = b:imax thenb:tz = b:tmax and z 6= k. Since k 6= z, k 6= i, and b:tz = b:tmax, there exists a choice vector thatincludes the values b:ti; b:tmax, and b:ntk. Since tot(b) = true, the values in this choice vectorare totally ordered. Hence, b:ti � b:tmax � b:ntk implies that b:ti � b:ntk. As a result of theaction b:ntk = b0:tk and ti does not change. Therefore, b:ti � b:ntk implies that b0:ti � b0:tk. Henceb0:tmax = b0:tk. Since k is the only process index for which b0:tmax = b0:tk, b0:imax = k.The following Claim lists some of the properties of b0:tmax.Claim 7.3.10 If k 6= b:imax and b:tmax � b:ntk then there exists h0 2 f1 : : :n � 1g such that:1. b0:tmax = b0:tk = b0:ntk = b:ntk = nextlabel(b:tmax; h0).2. b0:tmax[h] = 1 for all h > h0.3. For all i, b0:nti h0= b0:tmax implies that b0:nti = b0:tmax.4. There exists no i 6= k such that b0:ti h0= b0:tmax.5. num(b0:tmax; h) � num(b:tmax; h) and numi(b0:tmax; h) � numi(b:tmax; h) for all i and allh < h0.Proof: By invariant III for state b and the assumption that b:tmax � b:ntk, we conclude thatb:ntk = nextlabel(b:tmax; h0) for h0 2 f1 : : :n � 1g. Fix h0.1: By Claim 7.3.9 b0:tmax = b0:tk. The fact that b0:tk = b0:ntk = b:ntk is a direct conse-quence of the action updatek((tk; vk); (ntk; valk)). Finally, we have already shown that b:ntk =nextlabel(b:tmax; h0).2: This follows directly from the de�nition of nextlabel.3: Suppose that b0:nti h0= b0:tmax. First consider i 6= k. The fact that nti does not change andpart 1 of the claim show that b:nti = b0:nti h0= b0:tmax = nextlabel(b:tmax; h0). Consequently,23

b:nti h0= nextlabel(b:tmax; h0). Now the de�nition of nextlabel implies that b:nti h0�1= b:tmaxand b:nti[h0] = next(b:tmax[h0]). Thus b:tmax � b:nti. Now III for state b implies that b:nti =nextlabel(b:tmax; h) for some h 2 f1 : : :n� 1g. Since b:nti[h0] = next(b:tmax[h0]), h = h0. Hence,b0:nti = b:nti = nextlabel(b:tmax; h0) = b0:tmax. Now consider i = k. In this case b0:tmax = b0:ntkby part 1 of the claim.4: We proceed by contradiction. Assume that there exists i 6= k such that b0:ti h0= b0:tmax.Since ti does not change as a result of the action, b:ti = b0:ti h0= b0:tmax = nextlabel(b:tmax; h0).Consequently, b:ti h0= nextlabel(b:tmax; h0). Now the de�nition of nextlabel implies that b:ti h0�1=b:tmax and b:ti[h0] = next(b:tmax[h0]). Thus b:tmax � b:ti. This contradicts the de�nition of b:tmax.5: Let h < h0. Part 5 of the Claim follows immediately if we show that agree(b0:tmax; h) �agree(b:tmax; h). Suppose i 2 agree(b:tmax; h). If i 6= k, then ti does not change. By part 1 ofclaim and the de�nition of nextlabel, b0:tmax h= b:tmax. Now the de�nition of agree implies thati 2 agree(b0:tmax; h). Now consider i = k. Part 1 of the claim shows that b0:ti = b0:tmax. Hencei 2 agree(b0:tmax; h).The remainder of the proof is structured as a series of claims, one for each of the �ve remaininginvariants. Fix h0 to be the h0 de�ned by Claim 7.3.10. Parts 1-5 of Claim 7.3.10 will be usedthroughout the remaining claims.Claim 7.3.11 If k 6= b:imax and b:tmax � b:ntk then II is true in b0.Proof: By Claim 7.3.9 b0:imax = k. Part 1 of Claim 7.3.10 shows that b0:tk = b0:ntk.Claim 7.3.12 If k 6= b:imax and b:tmax � b:ntk then III is true in b0.Proof: Consider any i such that b0:tmax � b0:nti. By part 1 of Claim 7.3.10, b0:tmax = b0:ntk sob0:tmax � b0:nti implies that i 6= k. Furthermore, nti does not change as a result of the action andpart 1 of Claim 7.3.10 shows that b0:tmax = b:ntk. Hence b0:tmax � b0:nti implies that b:ntk � b:nti.By assumption b:tmax � b:ntk, so b:tmax � b:ntk � b:nti. Now consider two cases, i = b:imaxand i 6= b:imax. When i = b:imax, invariant II shows that b:tmax = b:nti. This implies thatb:nti � b:ntk � b:nti which is impossible by Lemma 4.1. Therefore, it must be that i 6= b:imax. Sinceb:imax 6= i and b:imax 6= k there must exist a choice vector that includes the values b:tmax; b:ntk,and b:nti. Since tot(b) = true, the values in this choice vector are totally ordered. Hence,b:tmax � b:ntk � b:nti implies that b:tmax � b:nti. Now III for state b and the fact that ntidoes not change show that b0:nti = nextlabel(b:tmax; h) for some h 2 f1 : : :n� 1g. Since b0:nti =nextlabel(b:tmax; h), b0:tmax = nextlabel(b:tmax; h0), and b0:tmax � b0:nti, it must be that h < h0.Hence b0:nti = nextlabel(b0:tmax; h), which directly implies that I holds for state b0.Claim 7.3.13 If k 6= b:imax and b:tmax � b:ntk then IV is true in b0.Proof: Let b:0nti � b0:tmax. First consider i = k. By part 1 of Lemma 7.3.10, b0:ntk = b0:tmax,which directly implies IV. Now consider i 6= k and any h:24

h < h0: Part 1 of Claim 7.3.10 and the de�nition of nextlabel show that b0:tmax h= b:tmax whenh < h0. Now consider two cases: b:nti � b:tmax and b:nti 6� b:tmax. When b:nti � b:tmax, IVfor state b shows that b:ti h= b:tmax implies that b:nti h= b:tmax. Now IV is true in b0 sinceti and nti do not change and b0:tmax h= b:tmax. Now consider the case b:nti 6� b:tmax. ByLemma 4.1, b:tmax � b:nti. Now III for state b shows that b:nti = nextlabel(b:tmax; hi)for some hi 2 f1 : : :n � 1g. Furthermore, Since nti does not change, the assumption thatb0:nti � b0:tmax implies that b:nti � b0:tmax. Finally, part 1 of Claim 7.3.10 shows thatb0:tmax = nextlabel(b:tmax; h0). Using these facts and the de�nition of nextlabel we canconclude that hi > h0. Therefore, b:nti h= b0:tmax. Since nti does not change, this implies thatb0:nti h= b0:tmax. This su�ces to show that IV is true in b0.h � h0: Part 4 of Claim 7.3.10 shows that b0:ti 6 h= b0:tmax. Hence, IV is vacuously true in b0.Claim 7.3.14 If k 6= b:imax and b:tmax � b:ntk then V is true in b0.Proof: Suppose b0:nti 2 cycle(b0:tmax; h) for some i and h. The de�nition of cycle implies thatb0:nti h�1= b0:tmax. We consider two cases:h � h0: First consider i 6= k. Part 1 of Claim 7.3.10 and the de�nition of nextlabel show thatb0:tmax h�1= b:tmax. Thus, V is true in b0 since ti and nti do not change, cycle(b0:tmax; h)depends only on b0:tmax[1 : : :h� 1], and V is true in b. Now let i = k. In this case, part 1 ofClaim 7.3.10 shows that b0:ti = b0:tmax. This su�ces to show V.h > h0: Since b0:nti h�1= b0:tmax and h > h0, it follows that b0:nti h0= b0:tmax. Thus part 3 ofClaim 7.3.10 implies that b0:nti = b0:tmax. By part 2 of Claim 7.3.10, b0:tmax[h] = 1. Thusb0:nti[h] = 1, which implies that b0:nti 62 cycle(b0:tmax; h). This contradicts our originalassumption that b0:nti 2 cycle(b0:tmax; h). Therefore this case cannot arise.Claim 7.3.15 If k 6= b:imax and b:tmax � b:ntk then VIb is true in b0.Proof: Assume that b0:tmax[h] 6= 1. We proceed with a case analysis:h < h0: Part 1 of Claim 7.3.10 and the de�nition of nextlabel show that b0:tmax h= b:tmax.Thus b0:tmax[h] 6= 1 implies that b:tmax[h] 6= 1. Since b:tmax[h] 6= 1 and VIb is true forb, num(b:tmax; h � 1) � n � h + 1. By part 5 of Claim 7.3.10 num(b0:tmax; h � 1) �num(b:tmax; h� 1). Thus, num(b0:tmax; h� 1) � n� h + 1 which implies that VIb is true forb0.h = h0 and b:tmax[h] 6= 1: Since b:tmax[h] 6= 1 and VIb is true for b, num(b:tmax; h� 1) � n� h+ 1.By part 5 of Claim 7.3.10 num(b0:tmax; h�1) � num(b:tmax; h�1). Thus, num(b0:tmax; h�1) �n� h + 1 which implies that VIb is true for b0.25

h = h0 and b:tmax[h] = 1: Part 1 of Claim 7.3.10 and the fact that h0 = h imply that b:ntk =nextlabel(b:tmax; h). Since b:ntk = nextlabel(b:tmax; h) and VIa is true for state b,numk(b:tmax; h�1) � n�h. By part 5 of Claim 7.3.10 numk(b0:tmax; h�1) � numk(b:tmax; h�1). Thus, numk(b0:tmax; h�1) � n�h. Since b0:tmax = b0:tk, k 2 agree(b0:tmax; h). Thereforenum(b0:tmax; h� 1) > numk(b0:tmax; h� 1) � n � h. Thus, num(b0:tmax; h � 1) � n � h + 1,which implies that VIb is true for b0.h > h0: Part 2 of Claim 7.3.10 and the fact that h > h0 imply that b0:tmax[h] = 1. This contradictsthe assumption that b0:tmax[h] 6= 1. Therefore, this case cannot arise.Claim 7.3.16 If k 6= b:imax and b:tmax � b:ntk then VIa is true in b0.Proof: Let b0:nti = nextlabel(b0:tmax; h) for some h and i. We proceed with a case analysis:h < h0: Part 1 of Claim 7.3.10 and the de�nition of nextlabel show that b0:tmax h= b:tmax. Nowthe fact that nti does not change and the fact that b0:nti = nextlabel(b0:tmax; h) imply thatb:nti = nextlabel(b:tmax; h). Since b:nti = nextlabel(b:tmax; h) and VIa is true in stateb, numi(b:tmax; h � 1) � n � h. Part 5 of Claim 7.3.10 shows that numi(b0:tmax; h � 1) �numi(b:tmax; h� 1). Therefore, numi(b0:tmax; h� 1) � n � h which implies that VIa is truefor b0.h = h02: Using part 1 of Claim 7.3.10 and the de�nition of nextlabel we can conclude thatb0:tmax[h] = next(b:tmax[h]). There exists no z 2 A such that next(z) = 1. Henceb0:tmax[h] 6= 1. Claim 7.3.16 implies that VIb holds for state b0. Since b0:tmax[h] 6= 1, VIb forstate b0 implies that num(b0:tmax; h� 1) � n� h+ 1. Thus numi(b0:tmax; h� 1) � n � h andVIa is true in state b0.h > h0: The fact that b0:nti = nextlabel(b0:tmax; h) and the de�nition of nextlabel imply thatb0:nti h�1= b0:tmax. Now part 3 of Claim 7.3.10 and the fact that h > h0 imply that b0:nti =b0:tmax. Thus b0:nti 6= nextlabel(b0:tmax; h) which contradicts our assumption that b0:nti =nextlabel(b0:tmax; h). Therefore, this case cannot arise.We now complete the proof of the lemma. To show that b0 satis�es I - VI we consider twocases: k = b:imax and k 6= b:imax. Claim 7.3.4 shows that b0 satis�es I - VI when k = b:imax. Whenk 6= b:imax Claim 7.3.5 shows that invariant I holds in state b0. The proof for invariants II - VIis subdivided into two cases: b:ntk � b:tmax and b:tmax � b:ntk. Claim 7.3.8 shows that II - VIhold when b:ntk � b:tmax. Claim 7.3.11, Claim 7.3.12, Claim 7.3.13, Claim 7.3.14, Claim 7.3.15 andClaim 7.3.16 each consider one of the invariants to show that II - VI hold when b:tmax � b:ntk.2Actually, this case cannot arise. However, the argument that proves that the case cannot arise is more complicatedthat the argument that proves that VIa is satis�ed if the case does arise.26

Lemma 7.4 Let b be a state of bctss that satis�es I - VI. If (b; snapk(�tk; �vk); b0) is a step of bctssfor any k, then b0 satis�es I - VI.Proof: Note that none of the t-labels or nt-labels change when opk = scank. Therefore, assumethat opk = labelk. The proof is divided into s series of claims. First consider the case wherek = b:imax.Claim 7.4.17 If k 6= b:imax then II - VI are true in b0.Proof: VIb holds in state b0 since it holds in state b and no t-labels change. Now consider II -VIa. If i 6= k, then the de�nition of snapk(�tk; �vk) shows that neither ti, nti, tmax, nor numi(tmax; h)change. Therefore, II - VIa are true in state b0 since II - VIa are true in state b. So assume thati = k. In this case b0:nti = nextlabel(b:tmax; h0) and b0:tmax � b0:nti. Consider II - VIa separately:II: Since k 6= b:imax, i 6= b:imax. Furthermore, b:imax = b0:imax thus i 6= b0:imax. Now II is vacuouslytrue in state b0.III: Since b0:tmax = b:tmax, and b0:nti = nextlabel(b:tmax; h0), b0:nti = nextlabel(b0:tmax; h0).IV: Since b0:tmax = b:tmax � b0:nti IV is vacuously true in b0.V: Suppose that b0:nti 2 cycle(b0:tmax; h) where h 2 f1 : : :n � 1g. The de�nition of cycle nowimplies that b0:nti[h] 2 f3; 4; 5g. Recall that b0:nti = nextlabel(b:tmax; h0). The de�nitionof nextlabel implies that b0:nti[h00] = 1 for all h00 > h0. Since b0:nti[h] 2 f3; 4; 5g, we canconclude that h � h0. We consider the two cases h = h0 and h < h0 separately.First consider the case h = h0. Since next(1) 62 f3; 4; 5g, and next(b:tmax[h]) = b0:nti[h] 2f3; 4; 5g, b:tmax[h] 6= 1. Now VIb for state b shows that num(b:tmax; h � 1) � n � h + 1.Furthermore, Claim 5.1.2 and the fact that i = k show that numi(b:tmax; h� 1) < n� h+ 1.Since num(b:tmax; h�1) � n�h+1 and numi(b:tmax; h�1) < n�h+1, k 2agree(b:tmax; h�1).Thus b:ti h�1= b:tmax. Since ti and tmax do not change, b0:ti h�1= b0:tmax.Now consider the case h < h0. The fact that b0:nti = nextlabel(b:tmax; h0) and the de�nitionof nextlabel imply that b:tmax[h] = b0:nti[h]. Therefore, b:tmax[h] 6= 1 since b:tmax[h] =b0:nti[h] 2 f3; 4; 5g. Now VIb for state b shows that num(b:tmax; h � 1) � n � h + 1. Thede�nition of newlabeli and the fact that i = k show that fulli(h� 1) returns false, whichimplies that numi(b:tmax; h � 1) < n � h + 1. Since num(b:tmax; h � 1) � n � h + 1 andnumi(b:tmax; h� 1) < n � h+ 1, i 2 agree(b:tmax; h� 1). Thus b:ti h�1= b:tmax. Since ti andtmax do not change, b0:ti h�1= b0:tmax.VIa: Since b0:tmax = b:tmax and b0:nti = nextlabel(b:tmax; h0), we conclude thatb0:nti = nextlabel(b0:tmax; h0). Now, Claim 5.1.2 implies that numi(b0:tmax; h0 � 1) = n � h0.27

We can now complete the proof of the lemma. Claim 5.1.1 shows that I - VI hold for b0 whenk = b:imax. When k 6= b:imax, Claim 5.1.3 shows that I holds in b0 and Claim 7.4.17 shows that II- VI hold for b0.8 Discussion and Future WorkAll know applications of timestamp systems use uctss. This paper provides a bounded implemen-tation of uctss, so the correctness proofs of the applications using timestamp systems can assumethat they are using a uctss even though the actual implementation would make use of our boundedbctss. The time complexity of our bctss construction is simply the complexity of the underlyingatomic snapshot implementation.In recent years, much progress has been made in the area of automatic theorem provers. Largeparts of our correctness proof, especially the proof for the invariants in Section 5 use an extensive,well structured case analysis. Each case is proved by a simple but tedious argument. Consequently,we view the correctness proof of our bounded timestamp algorithms as an ideal candidate withwhich to test the e�ectiveness of automatic theorem provers [27]. In testing a theorem prover onour algorithm we hope to determine whether or not I/O Automata proofs might in the future utilizetheorem provers on a regular basis.References[1] K. Abrahamson. On achieving consensus using a shared memory. In Proceedings of7th ACM Symposium on the Principles of Distributed Computing, Toronto, Ontario,Canada, August 1988.[2] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic snapshotsof shared memory. In Proc. 9th ACM Symp. on Principles of Distributed Computing,1990, pp. 1{14.[3] Y. Afek, D. Dolev, E. Gafni, M. Merritt and N. Shavit. A Bounded �rst-in, �rst-enabledsolution to the `-exclusion problem. ACM TOPLAS, (16)3, pages 939{953, May 1994.[4] Attiya, H., and Rachman, O. Atomic snapshots in O(nlogn) operations. Proceedings ofthe 12th ACM Symposium on Principles of Distributed Computing, (Aug. 1993) 29{40.[5] H. Attiya, D. Dolev, and N. Shavit. Bounded polynomial randomized consensus. InProceedings of the 8th Annual ACM Symposium on Principles of Distributed Computing,pages, ACM SIGACT and SIGOPS, ACM, 1989.[6] J. H. Anderson. Multiple-writer composite registers. Distributed Computing, Vol. 7,No. 4, pages 175{, 1994.[7] Chandra T. D. and Dwork, C. Using Consensus to solve Atomic Snapshots. Manuscript,1993. 28

[8] R. Cori and E. Sopena. Some combinatorial aspects of timestamp systems. UnpublishedManuscript, 1991.[9] D. Dolev and N. Shavit. Bounded concurrent time-stamps are constructible. SIAMJournal on Computing, to appear. Also in Proceedings of the 21st Annual ACM Sym-posium on Theory of Computing, Seattle, Washington, pages 454{465, 1989.[10] C. Dwork and O. Waarts. Simple and e�cient bounded concurrent timestamping orbounded concurrent timestamp systems are comprehensible!, ACM Symposium on The-ory of Computing, 1992.[11] C. Dwork, M. Herlihy, S. Plotkin, and O. Waarts. Time lapse snapshots. Proceedingsof the Israel Symposium on the Theory of Computing and Systems. Haifa, Israel, May1992(Dolev D., Galil Z., and Rodeh M. eds.) 154{170.[12] J. Guttag and J. Horning. Larch: Languages and tools for formal speci�cation. SpringerVerlag, 1993.[13] M. P. Herlihy. Wait-free synchronization. In ACM TOPLAS, 13(1), pages 124{149,January 1991.[14] M. Inoue, W. Chen, T. Masuzawa and N. Tokura. Linear-time Snapshot using Multi-writer Multi-reader registers. Workshop on Distributed Algorithms, pages 130-140, Sp-inger Verlag, 1994.[15] A. Israeli and M. Li. Bounded time stamps. In 28th Annual Symposium on Foundationsof Computer Science, White Plains, New York, pages 371{382, 1987.[16] A. Israeli and M. Pinchasov. A linear time bounded concurrent timestamp scheme.Technical Report, Technion, Haifa, Israel, March 1991.[17] L. Lamport A new solution of Dijkstra's concurrent programming problem. Communi-cations of the ACM, 78(8):453{455, 1974.[18] L. Lamport On interprocess communication. parts I and II. Distributed Computing, 1,1 (1986) 77{101.[19] M. Li and P. Vitanyi. A very simple construction for atomic multiwriter registers.Report, Aiken Computation Laboratory, Harvard University, 1987.[20] M. Li and P. Vitanyi. Uniform construction for wait-free variables. 1988. Unpublishedmanuscript.[21] M. Li and P. Vitanyi. How to share concurrent asynchronous wait-free variables. InProceedings of the 16th International Colloquium on Automata, Languages and Pro-gramming, pages 488{505, 1989. Unpublished manuscript.29

[22] N. Lynch and M. Tuttle. Hierarchical correcntess proofs for distributed algorithms.Tecnical Report MIT/LCS/TR-387, Laboratory for Computer Science, MIT, 1987.[23] N. Lynch and F. Vaandrager. Forward and backward simulations for timing basedsystems. To appear in Proceedings of REX Workshop on Real-time: theory in practice,Mook, 1991.[24] Y. Riany, N. Shavit, and D. Touito. Towards a practical snapshot algorithm. Proceedingsof the Third Israel Symposium on Theory and Computing Systems (ISTCS), Tel-Aviv,January 1995.[25] P. Vitanyi and B. Awerbuch. Shared register access by asynchronous hardware. In 27thSymposium on the Foundations of Computer Science, 1986.[26] M. Saks and F. Zaharoglou. Optimal space distributed move-to-front lists. In Proceed-ings of the 10th Symposium on the Principals of Distributed Computing, pages 65-73,Montreal, 1991.[27] J. S�ogard-Andersen, J. Guttag, J. Garland, A. Pogosyants Encoding automata andsimulation proofs in LP. Unpublished manuscript, MIT, 1992.

30

