Concurrent Timestamping Made Simple

Rainer Gawlick' Nancy Lynchf Nir Shavit?

March 3, 1995

Abstract

Concurrent Time-stamp Systems (cTss) allow processes to temporally order concurrent
events in an asynchronous shared memory system, a powerful tool for concurrency control, serv-
ing as the basis for solutions to coordination problems such as mutual exclusion, f-exclusion,
randomized consensus, and multi-writer multi-reader atomic registers. Solutions to these prob-
lems all use an “unbounded number” based concurrent time-stamp system (UCTSSs), a construc-
tion which is as simple to use as it is to understand. A bounded “black-box” replacement of
ucTss would imply equally simple bounded solutions to most of these extensively researched
problems. Unfortunately, while all know applications use UCTSS, all existing solution algorithms
are only proven to implement the Dolev-Shavit ¢Tss axioms, which have been widely criticized
as “hard-to-use.” While it is easy to show that a UCTSS implements the ¢TSS axioms, there
is no proof that a system meeting the ¢Tss axioms implements UcTSS. Thus, the problem of
constructing a bounded black-box replacement for uciss remains open.

This paper presents the first such bounded black-box replacement of ucTss. The key to
the solution is a simplified variant of the Dolev-Shavit ¢Tss algorithm based on the atomic
snapshot object proposed by Afek et. al. and Anderson, in a way that limits the number of
interleavings that can occur, and whose behaviours can be readily mapped to those of UcTss.
Using the forward simulation techniques of the I/O Automata model, we are then able show
that our bounded algorithm behaves like ucTss. The forward simulation allows us to present,
what would otherwise be a complicated proof, as an extensive, yet at each step simple case
analysis. In fact, we believe that large parts of the forward simulation proof can be checked
using an automatic proof checker such as Larch.

For read/write memory, our easy to use bounded vcTss is only a logaritmic factor from the
most efficient known bounded ¢TSS constructions. Moreover, unlike these efficient algorithms,
our modular use of an atomic snapshot object implies that our constructions are not limited
to read/write memory, and can be applied in any computation model whose basic operations
suffice to provide a wait-free snapshot implementation. The complexity of our bounded ucTss
will be the same as the complexity of the underlaying snapshot implementation used.

*A preliminary version of this work appeared in the Proceedings of the Annual Israel Symposium on Theory and
Practice of Computing, Haifa, May 1992, and as Technical Report MIT/L.CS/TR-556.

tLaboratory for Computer Science, MIT. This work was supported in part by the Office of Naval Research under
Contract N00014-91-J-1046, by the Defense Advanced Research Projects Agency under Contract N00014-89-J-1988,
and by the National Science Foundation under Contract 89152206-CCR.

{Contact Author: MIT and Department of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel. E-mail:
shanir@theory.lcs.mit.edu

1 Introduction

A timestamp system is somewhat like a ticket machine at an ice cream parlor. People’s requests
to buy the ice cream are timestamped based on a numbered ticket (label) taken from the machine.
Any person, in order to know in what order the requests will be served, need only scan through
all the numbers and observe the order among them. A concurrent timestamp system (cTss) is a
timestamp system in which any process can either take a new ticket or scan the existing tickets
simultaneously with other processes. A CTSs is required to be waitfree, which means that a process
is guaranteed to finish any of the two above mentioned label-taking or scanning tasks in a finite
number of steps, even if other processes experience stopping failures. Waitfree algorithms are highly
suited for fault tolerant and realtime applications (Herlihy, see [13]).

The paradigm of concurrent timestamping is at the heart of solutions to some of the most
fundamental problems in multiprocessor concurrency control. Examples of such algorithms include
Lamport’s first come first served mutual exclusion [17], Vitanyi and Awerbuch’s construction of a
multi-reader multi-writer atomic register [25], Abrahamson’s randomized consensus [1], and Afek,
Dolev, Gafni, Merritt, and Shavit’s first come first enabled (-exclusion [3]. Solutions to these prob-
lems all use an “unbounded number” based concurrent timestamp system (UCTSS), a construction
which is as simple to use as it is to understand. A bounded “black-box” replacement of ucCTss
would imply equally simple bounded solutions to these extensively researched problems.

1.1 Related Research

Israeli and Li, in [15], were the first to isolate the notion of bounded timestamping (timestamping
using bounded size memory) as an independent concept, developing an elegant theory of bounded
sequential timestamp systems. Sequential timestamp systems prohibit concurrent operations. This
work was continued in several interesting papers on sequential systems with weaker ordering re-
quirements by Li and Vitanyi [21], Cori and Sopena [8] and Saks and Zaharoglou [26]. Dolev and
Shavit [9] were the first to provide an axiomatic definition and a construction of a bounded con-
current timestamp system using read/write registers. Because of the importance of the bounded
concurrent timestamping problem, the original solution by Dolev and Shavit has been followed
by a series of papers directed at providing more efficient and simple to understand bounded cTss
algorithms. Israeli and Pinchasov [16] have simplified the [9] algorithm by modifying the labeling
scheme of [9], introducing a new label scanning method, and replacing the ordering-of-events based
formal proof [18] of the cTss axioms. Concurrent with our work, Dwork and Waarts [10] presented
the most efficient read/write register based cTss construction to date, taking only O(n) time for
either a scan or update. They model their bounded construction after a new type of unbounded
CTSS construction, where processes choose from “local pools” of label values instead of the simple
“global pool” based vcTss [1, 3, 17, 25]. In order to bound the number of possible label values in
the local pool of the bounded implementation, they introduce a form of amortized garbage collec-
tion. They then prove that the linear time bounded implementation meets the cTss axioms of [9].
In [11], Dwork, Herlihy, Plotkin, and Waarts introduce an alternative linear complexity bounded
cTss construction that combines a time-lapse snapshot with the bounded ctTss algorithm of [9].
The proof of their algorithm leverages the axiomatic proof in [9] by arguing that the executions of

their algorithm are a subset of the executions of the algorithm in [11].

We observe that all known applications use UcTss, but all existing bounded solutions are only
proven to implement the ¢Tss axioms, which have been widely criticized as “hard-to-use.” It
is easy to show that a ucTss implements the cTss axioms, yet there is no proof that a system
meeting the cTss axioms implements vcTss. Thus, the problem of constructing a bounded black-
box replacement for uctss remains open.

1.2 Our Results

This paper presents the first bounded concurrent time-stamp system algorithm (BcTss) that prov-
ably implements vcTss. The key to the solution is an algorithm whose behaviours can be readily
mapped to those of ucTss, and the use of a forward simulation proof technique. Our solution
consists of the following steps.

e Our algorithm is a variation on the Dolev-Shavit algorithm [9] based on the use of the atomic
snapshot primitive introduced by Afek et. al [2] and Anderson [6]. A snapshot primitive
allows a process P; to UPDATE the ¢th memory location, or sSNAP the memory, that is, collect
an “instantaneous” view of all n shared memory locations. By using a snapshot primitive, we
limit the number of interleavings that can occur, and are able to introduce a much simplified
version of the labeling algorithm of [9] that is tailored so as to allow a forward simulation
proof [22]. Moreover, as we elaborate later, our algorithm is no longer limited to read/write
memory, and holds in any computation model whose basic operations suffice to provide a
wait-free snapshot implementation.

e Our proof that the bounded algorithm satisfies the vcTss specification requires a different
technique than any of the operational proofs of the cTss axioms as found in the literature. We
begin by introducing a UcTSS specification that uses, instead of integers, label values taken
from the unbounded positive reals. This system is broader than (i.e. strictly includes) the
integer based UcTss used in actual applications, yet surprisingly allows for a simpler proof.
We then use the forward simulation techniques of the I/O Automata model of Lynch and
Tuttle [22], to show that our bounded algorithm implements the real-number based vcTss
specification. (See [23] for references and a discussion of forward simulation techniques.) The
forward simulation techniques allow us to present, what would otherwise be a complicated
proof, as an extensive, yet at each step simple case analysis. In fact, we believe that large

parts of the forward simulation proof can be checked using an automatic proof checker such
as Larch [27, 12].

As mentioned, our algorithm provides a wait-free solution in whatever computation model the
atomic snapshot object [2] is implemented, be it single-writer multi-reader registers [4], multi-reader
multi-writer registers [14], consensus objects [7], or memory with hardware supported compare-and-
swap and fetch-and-add primitives.

The time complexity of our UCTSS construction is simply the complexity of the underlying atomic
snapshot implementation. For single-writer multi-reader memory, this is the intricate Attiya and
Rachman algorithm [4], which takes O(n log n) operations for either a scan or an update of memory.

Hence the complexity of our algorithm is O(nlogn) for each operation, a logarithmic factor away
from the best know constructions [10, 11, 16].

One can also use snapshot implementations in other computation models: the snapshot algo-
rithm of Inoue, Chen, Masuzawa and Tokura [14] to get an O(n) per operation bounded vcTss
using multi-reader multi-writer registers, the Chandra and Dwork [7] algorithm to get O(1) la-
bel and O(n) scan operations using consensus or randomized consensus objects, or the Riany,
Shavit and Touitou [24] algorithm to get O(1) label and O(n) scan operations using memory with
hardware supported compare-and-swap and fetch-and-add primitives. Note that the most efficient
known shared-memory cTss algorithms [10, 11, 16] do not readily imply efficient algorithms in
other computation models. Moreover, stronger computational models do not seem to immediately
imply significant simplifications of bounded cTss algorithms.

The paper is organized as follows. Section 2 presents the I/O Automaton model. Our unbounded
cTss is introduced in Section 3, and the bounded c¢Tss is introduced in Section 4. Section 5
introduces several key invariants that are needed for the simulation proof of Section 6. Some of the
invariant proofs are postponed until Section 7.

2 The I/O Automata Model

We present our algorithm in the context of the I/O Automata model. This model, introduced by
Lynch and Tuttle [22], represents algorithms as I/O Automata which are characterized by states,
initial states, a set of actions called an action signature, state transitions called steps and an
equivalence relation on some of the actions of the action signature called a partition. For a 1/0
Automaton A its five components are denoted by states(A), start(A), sig(A), steps(A), and part(A)
respectively.

A step that results from an action is denoted by (s,7,s’) where s is the original state, 7 is the
action, and s’ is the new state. If an action can be executed in a state s, it is said to be enabled
in s. If an action is not enabled in state s, it is said to be disabled in s. Actions are classified
into external actions, ext(A), those visible to user of the algorithm, and internal actions, int(A),
which are not visible to the user. External actions are further classified into input actions, in(A),
which are under the control of the user of the algorithm, and output actions, out(A), which are
under the control of the algorithm. By definition input actions are enabled in all states. For an
I/O Automaton A the tuple consisting of in(A) and out(A) is called A’s external action signature,
exsig(A). We now give a more precise definition for some of the elements of an I/O Automaton.
Specifically, for an I/O Automaton A, sig(A) = (in(A), out(A),int(A)). Furthermore, part(A)
defines an equivalence relation on the set of internal actions and output actions of A. Finally, we
define acts(A) = in(A) U out(A) U int(A).

An execution of an I/O Automaton is an alternating sequence of states and actions that could
be produced if the algorithm is executed starting from an initial state. A state is called reachable
is it is the final state of some execution. A fair execution, o, of infinite length is one in which for
all C' € part(A), if some action from C' (not necessarily always the same action) is continuously
enabled, a contains infinitely many actions from C'. A fair execution of finite length is one in which
for all C' € part(A) no actions of C' are enabled in the final state. A schedule, sched(a), is the

projection of an execution a onto the actions of the I/O Automaton. A fair schedule, fairsched(a),
is the projection of a fair execution « on the actions of the I/O Automaton. A behavior, beh(a), is
the projection of an execution a onto the external actions of the I/O Automaton. A fair behavior,
fairbeh(a), is the projection of a fair execution a on the external actions of the I/O Automaton.
The set of all possible behaviors of an I/O Automaton A is called behs(A). The set of all possible
fair behaviors of an I/O Automaton A is called fairbehs(A).

We say that an I/O Automaton A implements another I/O Automaton B if the fairbehs(A) C
fairbehs(B). Our correctness proof uses the following theorem on simulation proofs which is a
restricted version of a theorem in [22].

Theorem 2.1 Let A and B be I/0 Automata with sig(A) = sig(B), part(A) = part(B), and ® «a
relation over the states of A and B. Suppose:

1. If a is an initial state of A, then there exists an initial state b of B such that (a,b) € R.

2. Suppose a is a reachable state of A and b is a reachable state of B such that (a,b) € ®r. If
(a,m,a’) is a step of A then there exists a state b’ of B such that (b,7,V') is a step of B and
(a’,b') € R.

3. If action 7 is enabled in state b of B and (a,b) € R then action 7 is enabled in state a of A.

Then fairbehs(A) C fairbehs(B).

In the I/O Automaton model, actions provide the basic communications mechanism. cTss
algorithms, as described in the introduction communicate using shared registers. We can encode
register based communication in the I/O Automatom model, with allowable operations ranging
from single-writer multi-reader to powerful read-modify-write, by encoding the register values in
the state of the Automaton. Actions are then used to modify the state.

3 An Unbounded Concurrent Timestamp System

This section introduces our unbounded implementation of a concurrent timestamp system, UCTSS.
It is a generalization of the traditional unbounded number vcTss. In particular, it uses timestamps
from Rt instead of the natural numbers. The code for the operations of UcTss is presented in two
forms. Figure 1 uses psuedocode. Figure 2 presents the code in the precondition-effect notation
commonly used to describe I/O Automata'. We use the precondition-effect notation as the basis for
our definitions and correctness proof and include the compact and intuitive pseudocode for clarity.

The system models n processes indexed by {1...n}. Each process p; in ucTss can perform a
SCAN; and LABEL; operation. A LABEL; operation allows process p; to associate a label (timestamp)
with a given value. A SCAN; operation allows process p; to determine the order among values based
on their associated labels. The function NEWLABEL;, which is used by LABEL; is defined in Figure 3.
This function actually picks the new label. In particular, it non-deterministically picks any real

!BaTss is the name for our bounded implementation. The name is included in the caption since the code in the
figure is shared by BCTSs and UCTSs. BCTSS is introduced in Section 4.

SCAN;
SNAP;(1;, ;)
0; < the sequence of indexes where j appears before k in o; iff (¢;,j) < (¢, k)
return (0}, ?72»)

LABEL;(val;)
SNAP;(1;, ;)
nt; «— NEWLABEL;({;)
UPDATE;((%;, v;), (nt;, val;))

Figure 1: Psuedocode for ucTss and BCTSs

number bigger than the largest current label. (Note that the traditional vcTss implementations
pick X =1 or X as a non-zero natural number.) To determine the largest current label, we use the
SNAP; operation. The sNaP; operation, defined by Afek et al. [2] and Anderson [6], atomically reads
an array of single writer multireader locations. Here we use it to atomically read the current labels
for the NEWLABEL; function. To write the new label determined by the NEWLABEL; function we use
the UPDATE; operation. A UPDATE; operation, also defined by [2], writes a value to a single location
in the array of single writer multireader location read by SNAP;,. SNAP; and UPDATE; are waitfree,
therefore their use does not compromise the waitfree properties of our timestamp algorithm. A
rigorous theoretical foundation for this claim can be found in [?].

The state of ucTss is defined by the shared state and the local state of each of the n process.
The shared and local state of each process, along with the initial values are defined in Figure 2.
The state of ucTss also has derived variables #,,4, and tmae. tmee = MAX(f1...%,) and 4,4, is the
largest process index ¢ such that ¢; = ¢,,4..

In terms of the I/O Automata model, ucTss has input actions BEGINLABEL;(val;) and BEGINSCAN;
for i € {1...n}. The output actions are ENDLABEL; and ENDSCAN,(9;,v;). The internal actions
of p; are sSNAP;(t;,9;) and UPDATE;((t;,v;), (nt;,val;)). The set steps(p;) is characterized by the
precondition clause in each action. The set part(p;) consists of a single equivalence classes C; where
the elements of C; are the actions SNAP;({;, 0;), ENDSCAN;(0;, 9;), UPDATE; ((t;, v;), (nt;, val;)), and
ENDLABEL;. The set states(p;) is the set of all possible states of p; where each state is defined by
the values of the variables of the shared and local state. The set start(p;) is the set consisting of
the state defined by the initial values of the variables of the shared and local state.

The shared state is accessed only using the atomic SNAP; and the UPDATE; actions. Since SNAP;
and UPDATE; are atomic, each action of ucTss is atomic. Notice that the sNAP; action makes
references to the elements of the vector ¢; indirectly through the use of 7,,,, and ¢,,,, and in order
to calculate ¢;. Since SNAP; is atomic, the labels in #; are the same as the corresponding labels
in the shared state. In other words, ¢;, = t; during the action. Consequently, we refer directly to
the shared variables ¢4z, tmas, and ?; rather than their copies 4; ., t and t;, when analyzing
the sNAP; action. We note here that we are not concerned with the implementation details of the
atomic SNAP; and UPDATE,; actions. We use them has a black box.

tmax?

Shared State:

t;: The current label associated with process p;; initially 0.

v;: The current value associated with process p;; initially v,.

Local State:

nt;: The new label for p; determined by function MAKELABEL;; initially 0.

val;:

The new value for p; passed to LABEL;; initially v,.

t;: An array of labels returned by sNap;; initially (0...0).
o;: An array of values returned by sNAP;; initially (v,...v,).

0;: An array of process indexes ordered based on the < order; initially (1...n).
pe;: The non-input action currently enabled; initially NIL.
op;: The current operation; initially NIL.
SCAN;:
BEGINSCAN; Eff: op; < SCAN;
pe; — SNAP;(1;, ;)
SNAP;(t;, 0;) Pre: pe; = sNaP(;, 0;)
Eff: If op; = scaN; then
0; — the sequence of indexes where
J appears before k in o; iff (¢;,7) < (4, k)
pc; — ENDSCAN;(0;, 7;)
If op; = LABEL; then
nt; «— NEWLABEL;({;)
pe; — UPDATE;((#;, v;), (nt;, val;))
ENDSCAN;(0;, ;) Pre: pe; = ENDSCAN;(0;, v;)
Eff: pc; — NIL
LABEL;:
BEGINLABEL; Eff: op; — LABEL;
pe; — SNAP;(1;, ;)
UPDATE; ((#;, v;), (nt;,val;)) Pre: pe; = UPDATE;((;, v;), (nt;, val;))
Eff: pc; — ENDLABEL;
ENDLABEL; Pre: pc; = ENDLABEL;

Eff:

pc; < NIL

Figure 2: Precondition-Effect code for vcTss and BCTSS

NEWLABEL; (%;)
W04 e
then return ({,,,, + X) where X is nondeterministically selected from $~>°

Figure 3: Code for NEWLABEL; of UCTSS

UcTsS uses labels that are non-negative real numbers. The ordering between labels is the usual
< order of RT. The ordering < used in the ORDER; action is a lexicographical order between label
and process index pairs.

Definition 3.1 (< order) ({;, i) < ({;, j)iff {; < {; or {; = {; and ¢ < j.]

4 A Bounded Concurrent Timestamp System

In this section we present our bounded implementation of a concurrent timestamp system, BCTSS.
BCTsS differs from vcTss in three ways: the structure of the labels, the order between labels, and
the manner in which NEWLABEL; determines new labels. In all other aspects BCTSS and UCTSs
are identical. Recall that a label in UcTSs is an element of R*. In BcTss, labels are taken from
a different domain. In order to construct the new domain we introduce the set A = {1...5}. We
define the order <4 and the function NEXT on the elements of A.

1<42,3,4,5; 2<43,4,5; 3<44; 4<45 5=<43.
The graph in Figure 4 represents <4, where a <4 b iff there is a directed edge from b to a.

k+1 ifke {1,2,3,4
NEXT(’“):{ 3 ifk:5{ :

A BcTss label is an element of A"~', where n is the number of processes in the system. We refer
to elements of A”~! using array notation. Specifically, the k" digit of label ¢ will be denoted by
([h]. Since we have redefined the label type, we must specify the order that is to be used between
elements of A"~! for the <« order in the sNAP; action. The order between elements of A”~! is
represented by the symbol < and will be a lexicographical order based on < 4.

Definition 4.1 (< order) (; < (; iff there exists h € {1...n — 1} such that (;[r'] = {;[}/] for all
I < h and (;[h] <4 (;[h]. |

Example 4.1 4...4.5.2 <4...4.3.1

The intuition behind the label set A"~! and the order < can be best understood by examining
the inadequacies of using a bounded set of natural numbers as the label set. Consider the natural
numbers from 0 to n with the usual < ordering. As with vcTss, ties between processes are broken
based on process index. The obvious problem with this label set is deciding what happens when

Figure 4: A graphical illustration of the <4 order between the elements of A = {1...5}

some processes has the label n and another process needs a new, bigger label. The obvious solution
is to wrap around and use the number 0. Then the ordering among labels would be the usual <
ordering with the additional feature that » < 0.

Using a wrap around strategy provides a good solution for two processes. In particular consider
the processes p; and p, with the label set {0,1,2}. It is easy to see that this works since there
will always be an extra number between the labels of p; and p, to make sure that they are totally
ordered. However, the wrap around strategy does not work for three processes. Consider the
following situation for three processes. Let each process p; have label ¢. Also assume that process
pe with label 2 wants a new label that is bigger than the label 3 of p;. Using our wrap around
strategy, that label would be 0. However, now process p,’s label is ordered below that of p; which
has a label 1, which violates the ordering properties of a timestamp system since p;’s current label
was acquired before p, acquired the label 0. One solution might be to extend the set of numbers
from which the labels are chose so that the wrap around happens later. However, it is easy to see
that this will not help. In particular, processes p» and ps; can ask for new labels alternately until
one of them reaches the highest label. The first process to wrap around will encounter the same
problem we just identified for n = 3. What is needed is the ability to create a cycle of numbers for
processes p, and ps such that all numbers in that cycle are ordered above zero.

Now consider how A% would create such a cycle. First note that the label set A contains a size
three cycle, (using the numbers 3, 4, 5). We saw above from the two processor example that a size
three cycles can accommodate two processes. The labels in A% that share the same first digit each
form a size three cycle, that can accommodate two processes. Now consider the situation where
py starts out with label 3.3, py starts out with label 3.4 and p3 starts out with 4.3. Using < these
labels are ordered in order of the process indexes. Now let p; and ps alternate picking new labels.
They can use the size three cycles defined by the labels in A? that start with the prefix 4. All
labels in that cycles are ordered above p;’s label of 3.3. If py now becomes active, it can jump to
5.3 which will be higher that the two labels used by ps and ps.

The label set A"~! with the order < is the generalization of these ideas to n processes. In
particular, any set of label from A"~! which agree on the first A digits form a size 3"~!~" cycle,
which consists of three ordered size 3"~*="~1 cycles, each of which in turn consist of three ordered
3n=1-h=2 cycles, etc. Such a set of labels can accommodate n — h processes in any sequential
execution. The cycle system construction is due to Israeli and Li [15].

This discussion has not identified a need for the numbers 1 and 2 in the set A. These numbers are
the key to making A"~! work in concurrent executions. They are needed to deal with the fact that
we use atomic snapshot objects as the underlying communications model. More powerful snapshot
primitives that can atomically (i.e. in a single atomic step) read all of the labels and write one
label will eliminate the need for these numbers (note that constructing an efficient implementation
of such an object, even if one is given a compare-and-swap or other powerful operation, is not an
obvious task). We will make our intuitive justification of the A"~! label set with the order < more
concete with some specific examples once we have introduced some additional notation.

The following lemma shows that any two labels in A are always totally ordered by the < relation.

Lemma 4.1 If {, and {, are elements of A"~ then evactly one of the following is true: £, < (),
Kz < Kl; or Kl = Kz.

Proof: 1If a,b € A, then by definition of <4 exactly one of the following is true: a <4 b, b <4 @
or ¢ = b. The lemma now follows since < is a lexicographical order defined by < 4. [|

Next we define some notation and functions for BcTss labels. Before giving the formal definitions
we give intuitive definitions. Two labels are h-equivalent, é, if their first h digits are the same. The
function NEXTLABEL((, h) picks the label that is the same as ¢ for the first h — 1 digits, changes the
ht" digit based on the NEXT function, and sets the remaining digits to 1. The NEXTLABEL function
is used to pick new labels during the LABEL operation. Finally, the set cycLE({, h) consists of the
labels that are h — l-equivalent to £ and have the h'" digit equal to 3,4,5.

Definition 4.2 (£ equivalence relation) For any h € {0...n — 1}, {1 £ {5 iff (,[h'] = (5[] for
all b’ < h. Note that ¢, "=" ¢, implies that ¢, = {,. n

Definition 4.3 (NEXTLABEL) For any h € {1...n — 1}, ! = NEXTLABEL((, h) iff ¢/ "=, el =
NEXT(L[h]) and '[K'] =1 for all ¥ e {h+1...n — 1}.]

Definition 4.4 (cyciLe) Forany h € {1...n—1}, ¢’ € cycLE((, h)iff ¢/ "=" ¢ and ('[h] € {3,4,5}.
|

The following Lemma gives a neccessary and sufficient condition for three label in A™~! to form
a cycle under the < ordering.

Lemma 4.2 A set L of labels is not totally ordered by < iff there exist (1,05, 03 € L and h €
{1...n =1} such that £, "=" £, "=" {5 and {€,[R], (:[h], (s[h]} = {3.4,5}.

Proof: = The < ordering on £ is irreflexive by definition and antisymmetric by Lemma 4.1.
Therefore, it must be that transitivity does not hold. Specifically there exist {;,0,, {3 € L such
that ¢, < €y < {3, and {; £ (3. By Lemma 4.1 it cannot be that {; = {3, therefore {3 < {;. Since
< is a lexicographical order, there must exist h € {l...n — 1} such that ¢, = 4, = {5 and
0 [h] <4 €o[h] <4 €3[h] and €1[h] A4 (3[h]. Now by definition of A, {{,[h], (5[h], (5[h]} = {3,4,5}.
< By definition of A we can conclude without loss of generality that (;[h] <4 (2[h] <4 (3]R]
and (,[h] £ (3[h]. Since (; = £y = {3 and < is a lexicographical order, {; < {5 < {3, and {; £ (3.
Hence, ¢, (5, and {3 are not totally ordered. [|

We now define some functions on the states of BcTss. In order to reason about the states of
the system we introduce the notation b.z to refer to the variable = in state b. For a state b and
any label (in state b. The set AGREE(D.(, h) is the set of process indexes j such that the ¢; label in
state b that is h-equivalent to the label b.. NUM(b.(, h) is the cardinality of AGREE(b.(, k). Finally,
NUM;(b.0, h) is the cardinality of AGREE(b.(, h) once process ¢ is removed from AGREE(b.(,h). We
remind the reader that the following definitions are based on those in Figure 2.

Definition 4.5 (AGREE) For any h € {0...n — 1}, AGREE(b.L,h) = {j] b.; L b0y,]
Definition 4.6 (Num) For any h € {0...n— 1}, NuM(b.(, h) = |AGREE(b.L,). |
Definition 4.7 (NuM;) For any h € {0...n — 1}, NuM;(b.0,h) = |AGREE(b.(, h) — {i}].]

Definition 4.8 (choice vector) A choice vector for state b is any vector (b.0;...b.(,) such that
b.l; € {b.t;,b.nt;} for each 1.]

Definition 4.9 (ToT) TOT(b) = true iff the set of values in every choice vector is totally ordered
by <; otherwise TOT(b) = false. [

Recall that the second difference between vcTss and BcTss is the < order that is used in sSNAP;.
We define <« for BcTss lexicographically.

Definition 4.10 (< order) ({;, 1) < ({;, j) iff either {; < {; or {; = {; and 7 < j. |

In any state b in which ToT(b) = true, < defines a total order.

We now define b.t,,,, and b.0p,4, for a state, b, in which ToT(b) = true. Consider the choice
vector (b.t;...b.t,). Since TOT(b) = true, there must exist ¢ € {1...n} such that, for all j # ¢ and
JeA{l...n}, bt; < bt;. Let bt = b.t;. Let b.ty,q, be the largest index j such that b.t; = b.t,,4,.

The final difference between BcTss and vcTss is in the code for NEWLABEL;. Recall that in
UCTSS, NEWLABEL; nondeterministically picks a real number that is larger than ¢,,,,. In BCTSS,
NEWLABEL; also picks the new label based on ¢,,,.. In states in which ToT(b) = true, b.t,,,, and
b.tmae are defined. We let NEWLABEL; be a no-op for states in which ToT(b) = false. In Section 5
we will show that ToT(b) = true for all reachable states. When i,,,, is defined and i # im0,
NEWLABEL; finds the minimum A such that at least n — h t-labels, excluding t;, agree with the
prefix of t,,,, up to and including the A" digit. Then the new label is the same as t,,,, for the
first h — 1 digits, it differs from ¢,,,, at the h** digit based on the function NEXT, and its remaining
digits are equal to 1. The code for NEWLABEL; of BCTSS is given in Figure 5.

NEWLABEL; finds the minimum integer h such that ruLL;(h) returns true. We now show that
such an h exists in {1...n—1}. The code that finds h is executed only when ¢ # i,,,,. Notice that
NUM;(tmae, — 1) > 1 when @ # 4,,4,, hence FULL;(n — 1) = true.

The initial values for the labels in BcTss are: ¢; = nt; = 171 0; = (1...n), 0; = (vy...0,),
t; = (1" 1.1 Y, v = val; = v, op; = NIL, and pe; = NIL.

We now return to our intuitive justification of the A"~ label set with the order <. Specifically
we will strengthen our intuition using some examples. The examples will show how the following
“Invariants” are maintained:

10

FULL;(R), h e {1...n —1}
if NUM;(fnaes) > —h
then return ({rue)
else return (false)

NEWLABEL; (1;)
i1 # imae
then 7/ < minimum A € {1...n — 1} such that rFuLL;(h) = true
return (NEXTLABEL(?pas, P'))

Figure 5: Code for NEWLABEL; of BCTSS

(1) For any reachable state b and any h € {1...n — 1} consider any set of labels that agree on the
first h — 1 digits. Then it will not be the case that h'" digits of that set of labels includes
the numbers 3, 4 and 5. More formally, for any ¢ € {1...n}: {b.t;[h]|b.t; € cYCLE(b.t;, h)} #
(3,4,5).

(2) For any reachable state b and any h € {1...n — 1} consider any set of labels that agree on
the first & — 1 digits and have the A" digit in the set {3,4,5}. The cardinality of that set of
labels is at most n — h + 1. More formally, for any 7 € {1...n}: |[cYcLE(b.t;, h)] <n —h+ 1.

Maintaining the second invariant is the key to maintaining the first, and the first implies that
TOT(b) = true when the choice vector is restricted to the ¢t-labels. While the invariants provide
good intuiation about the correctness of the algorithm, it turns out that they are too general to be
used the induction proof, and Theorem 5.1 must use a set of more refined inductive statments to
capture the details of the possible concurrent behaviors.

The manner in which the invariants (1) and (2) are preserved, is explained via several examples.
The first example considers a serial setting, while the second example considers a concurrent setting.
The concurrent setting will illustrate the need for the numbers 1 and 2 in the A set.

For simplicity, the examples consider the case where n = 3. Thus the labels will be taken from
A?. For both examples, processes pi, ps, ps start out with labels ¢, = 3.4, ¢, = 3.5, and t; = 4.1.
It is easy to see that the labels are totally ordered by the < ordering.

Example 4.2 Assume that the following sequence of labeling operation are executed sequentially.
Process p, performs a label operations that reads ¢y, ¢; and ¢, and picks the new label ¢} = 4.2
based on NEWLABEL(?;). Process ps performs a label operations that reads the new label ¢]. It
thus picks a label ¢} with first digit 4, following the rule that the node chosen should be the “lowest
node dominating all other nodes with labels.” This is actually the most basic rule implied by the
definition of NEWLABEL.

Processes p; and p, can continue forever to choose t/ = 4.4, t§ = 4.5, ¢} = 4.3... (that is, pick
labels first digit 4 and second digit taken from {3,4,5}), maintaining the above invariants, because
the set of labels with first digit 4 and second digit taken from {3,4,5} represent a size three cycle
that can accomadate two processes.

11

If at some point p, picks a new label, L}, it will read the labels of both p; and p3 has having the
first digit 4. Any set of labels in A” that have the first digit in common can accomdate at most two
processes. In particular, ps’s label operation will find that NUMs (%4) = 2. Since FULLy(2) = true
ps will pick ¢, = 5.1, and so on... [

From Example 4.2 the reader can see that given that the second “invariant” is maintained, only
two processes have labels from the cycle {4.3,4.4,4.5}, the first “invariant” is readily maintained.
The basis for guaranteeing the second “invariant,” is that the algorithm is structured so that node
1 on an arbitrary level h has at least n — h + 1 processes agree on it before any process can choose
node 2. This implies that processes move to cycle nodes only from nodes 1 and 2. If there were by
way of contradiction an (n — h 4 2)-nd process p; moving to a cycle node, say to a node 3, it would
have had to see a maximal label on node 2, which in turn means node 1 would have had at least
n — h + 1 labels when p; performed its SNAP, so p; would have detected n — h + 2 labels that agree
with it on level h — 1 and would change its h — 1 level label and not choose a cycle label on level
h. The following is an example of the role of nodes 1 and 2.

Example 4.3 Let processes p, and p; begin performing labeling operations concurrently, reading
to, t; and t3 and computing NEWLABEL, such that nty = nt; = 4.2. If they then complete their
operations by writing their labels (i.e., do the UPDATE operation), they will choose the same label.
Their labels can be ordered using their processor ids. If either process performed a subsequent label
operation it would choose the label 5.1 since NUMs(tmaw, 1) = NUM1(¢mae, 1) = 2. Thus, neither
process would choose a label in the cycle defined by the labels 4.3,4.4,4.5.

Now change the above scenario so that both processes do lot complete their label operations.
In particular, suppose that p, is stalled just before writing nt; = 4.2 to the shared variable ¢,
(using the UPDATE operation), while p, writes ¢ = nt; = 4.2. Now let process ps perform a label
operation that reads the new label ¢} = 4.2 and the old label ¢, = 3.5, thus picking t; = 4.3. If
processes p; and p, continue to pick new labels, they will pick them from the cycle defined by the
labels 4.3,4.4,4.5, since they continue to read py’s old label. At some point let p, complete its label
operation writing t, = nt, = 4.2. Now there are three labels = to 4 (two of them in cYCLE(t),2).
However, if p, now performs a subsequent labeling operation, it will read the labels of both p; and
p3 as being < to 4. Since NUMs(tmaz, 1) = 2, FULLy(1) = true, so ps will pick the new label ¢J = 5.1,
not picking a label represented by a node in the cycle defined by the labels 4.3,4.4,4.5.

If the labels were not structured to include the values 1 and 2, which are not part of the cycle
generated by the values 3,4, and 5, then a process would always have a label that is represented
by a node in a cycle. The reader can verify that the sequence of operations in this example, would
cause the labels of p;,p, and ps to end up each on a different nodes of the cycle defined by the
labels 4.3,4.4,4.5, contradicting invariant (1). [

5 Invariants
For use in the simulation proof we define the following invariants:

Theorem 5.1 If b is a reachable state of BCTSS then, for alli € {1...n}:

12

II:

I

IvV:

VI:

TOT(b) = true.

If i = b, then b.t; = b.nt;.

If b.tiae < bont; then there exists h € {1...n — 1} such that b.nt; = NEXTLABEL(b.tas,).
If bnt; = bitpay then for any h € {1...n— 1}, if bt; Z btyee then bont; = b.tee.

Forany h e {1...n—1}, if b.nt; € cYCLE(b.tpmar, h) then b.t; =

Forany he {l...n—1},

a: if b.nt; = NEXTLABEL(b.t a0, h) then NUM;(b.ty0e, h — 1) > n — h.
b: if btpmash] # 1 then NUM(b.tyge,h — 1) > n—h+ 1.

The following is an intuitive explanation of the inductive claims of Theorem 5.1 that hold for

any system state.

I:

II:
I1I:

1V:

VI:

The set of labels that for each process includes either its current label or its newly chosen label
(vet unwritten) is totally ordered. This implies the first “invariant,” but is slightly stronger
in the sense that it tracks the behavior of yet unwritten labels.

The process with the maximal label does not choose a new one.

The NEXTLABEL function defines a label’s successor for a given digit. This invariant states
that a process’ new (not yet updated) label must be a successor of the maximum at some digit
level h, even though the state (including the maximum) may have changed since the new label
was picked.

Consider a process p; that has chosen a new label which is no longer the maximum (due to
subsequent new labels chosen by others) but has not yet updated the shared state. Then, for
all processes whose new labels were chosen based on p;’s current label, their choice would have
been the same had they used p;’s new label. This is due to the fact that updating the shared
state does not affect the NUM count.

If a process chooses a new label in the cycle at digit h, (i.e., € {3,4,5}), then it must be that
its new label is the same as its current label for the first & — 1 digits. This implies that a
process must choose either 1 or 2 before it can choose digits {3,4,5}.

For any new label,

a: if it is a successor of the max at digit h, then the number of labels that agree with max on
the first i digits is the maximum that can be accomodated by that h-digit prefix. In terms
of the algorithm this means that a process uses a new prefix only when necessary.

13

b: Once some process has chosen an h-th level digit that is greater than 1 (i.e., {2,3,4,5}),
then the number of labels that agree with it on the A — 1 prefix must be at least the
maximum that can be accomodated by that prefix.

Invariants I, 11, and IIT are used in the simulation proof. We use an induction argument to
show that all reachable states of BCTSS satisfy these invariants. The purpose of invariants IV - VI
is to strengthen the induction hypothesis enough so that I can be proven. The only action that
can cause invariant I to be violated is sSNAP; when op; = LABEL;. Specifically, we must show that
the new nt; picked by NEWLABEL; does not introduce any cycles in the < order of the t-labels and
nt-labels. Since the NEWLABEL; code can examine the all of the ¢-labels, the code can be written to
avoid any cycles involving nt; and the t-labels. However, the NEWLABEL; code cannot examine the
local nt-labels of the other processes. In order to show that cycles that include nt; and nt-labels
are avoided, invariants IV and V are used to limit the possible values of the nt-labels based on the
corresponding t-labels.

For example invariant IV implies that nt; L t, when t, L tmae Tor all nt; < t,,,,. If nt; is in
the cycle at level h, in other words nt;[h] € {3,4,5}, then invariant V states that nt; "='{;. Now
assume that NEWLABEL; picks nt; = NEXTLABEL(?mas,). Then the code for NEWLABEL;, using
the function ruLL;, limits the number number of ¢-labels that are = tmaer and consequently the
number of t-labels that are "=' nt;. Now invariant V can be used to limit the number of nt-labels
that could, by being in the cycle at level h, cause a cycle to occur with the new nt;.

Invariant IIT gives information about the structure of nt-labels that are > t,,,,. This infor-
mation is used to determine how the new nt; is ordered with respect to any nt-labels that are
> lmee. Finally invariant VIb is used to prove invariant V, and invariant Vla is used to prove
VIb. If a new label nt; is picked in the cycle at level h then it must be that ¢,,,.[h] # 1; hence
VIb applies. VIb says that NUM (¢4, 2 — 1) > n — h 4 1. The code for NEWLABEL; insures that
NUM;(fmae, b — 1) < m — h + 1. Thus it must be the case that ¢, = tmaz. Lhis is precisely what is
required to prove invariant V.

The proof of Theorem 5.1 uses induction. It depends on a series of claims, one for the initial
state and one for each action in the inductive step. Most of these claims appear in the final section
since they use a fairly straightforward, if tedious, case analysis. This section presents the key claims
associated with invariant I. In the following claims assume that state b transitions to b’ using the
SNAP.({x, 0) action.

Claim 5.1.1 If k = b.i,,4, then b’ satisfies I - VI

Proof: The definition of sNAP(ty, ;) for BcTss shows that no labels change. This suffices to
show that & satisfies I - VI. [|

So assume that k& # b.i,4, for the remainder of the proof of the lemma. By definition of
NEWLABELy, 0'.nt;, = NEXTLABEL(b.t4., k') for some b’ € {1...n—1}. Fix h'. Note, by definition
of NEXTLABEL, b.t,,., < b'.nt;.

Claim 5.1.2 If k # b.iyee then NUMg(b.tpae, M) = NUMg (bt e, B — 1) = n — R,

14

Proof: By definition of NEWLABEL,, FULL,(h') returns true in state b, so NUMg(b.t a0, 1) > n—H'.
Moreover, FULL, (R’ — 1) returns false in state b, therefore NUMy(b.t a0, B — 1) < n — (K —1). But
by definition, NUMg(b.tpmae, B — 1) > NUMg(b.taw, h') 50 NUMg(b.trae, B — 1) = NUMp(b.tpae, ') =
n—h. [|

Claim 5.1.3 If k # b.i,a, then I is true inb'.

Proof: For a contradiction assume that TOT(d’') = false. Then there must exist a choice vector
C' whose values are not totally ordered. By Lemma 4.2, there exists o'.(;,0'.{;,b' L, € C' such that
b=y "2, and {6 G[R), 6 TR), B[R]} = {3,4,5) for some h € {1...n —1}. Since
b'.0;, b .0; and b'.0, are elements of a choice vector, b'.(; € {b'.t;, b'.nt;}, b'.; € {b.t;, b'.nt;},
b, e{b.t, bt} and i # 2, j # 2z, j # i. By I for state b, ToT(b) = true. Therefore the values
of (' for state b must be totally ordered. The only label that changes as a result of the action is nt;.
Consequently, we can assume without loss of generality that ¥.(, = ¥'.nt;, and z = k. Furthermore,
since ¢« # k and j # k, {; and {; do not change as a result of the action. Thus, b.{; = b'.{; and
b.l; =b'.l;. Now we can conclude that:

bl "= 0. "= 0 oty and {b.4[R], b.4[R), B ity [R]} = {3,4,5). (1)

Recall that ¥'.nt; = NEXTLABEL(b.t,140, 2'). We will now show that h = b/, Let z = b.4,,4,, then

b.t, = b.tyae. Since k # by, k # z. The definition of NEXTLABEL implies that b.t, M=t b .nty.
For a contradiction assume that A < h’. Now substitute b.t, for b'.nt, in Equation 1 to conclude
that b.6; "= b.0; "=" b.t. and {b.6;[h],b.0,[k], b.t.[h]} = {3,4,5}. By Lemma 4.2 any set of labels
containing b0.(;,b.0;, and b.t, is not totally ordered. We now show that 7 # z and j # 2 since this
will allow us to conclude that there exists a choice vector that includes 0.(;,b.(;, and b.t,. Since

{b.G;[h],b.0;[h],b.t,[R]} = {3,4,5}, and b.l; € {b.t;,b.nt;} either b.t;[h] # b.t.[h] or b.nt,[h] # b.t.[h].
If + = 2z the former is clearly impossible and the later is impossible since b.nt, = b.t, by invariant
II. Thus 7 # z. The same argument shows that j # z. Now we have a choice vector for state b
whose values are not totally ordered. The existence of such a choice vector contradicts invariant I
for state b. Thus h £ h'. The definition of NEXTLABEL implies that ¥’ .nt;[h”] = 1 for all A” > A/
Since b'.ntp[h] € {3,4,5},h # h'. Now h £ b/ and h # ' so h = }/.

We now construct a set of labels which is not totally ordered and which includes b.t,,,, and
b'.nty. First show that b.t,,..[1'] € {3,4,5}. Since b'.nt,[h'] € {3,4,5}, the definition of NEXTLABEL
implies that b.4,..[h'] € {2,3,4,5}. We proceed by showing that b.t,,..[h'] # 2. In order to

reach a contradiction we assume that b.t,,,,[h'] = 2. Since b.t,,.. hot b .nt, and b .nt, hot b.t;,

btmas = b.l;. Furthermore, b.t,,.,[Ph'] = 2 and b.0;[R'] € {3,4,5} thus b.i,..[h'] <4 b.G;[R].
Consequently, b.t,,.. < b.f;. We consider the cases b.0; = b.t; and b.{; = b.nt; separately. When
b.l; = b.t;, b, < b.t;, which contradicts the definition of b.t,,,,. Thus, this case cannot arise.
When b.0; = b.nt;, b.t,,.» < b.nt;. Now invariant III and the definition of NEXTLABEL imply that
b.nt;[W] = b.tmee] or bont;[h'] = NEXT(b.t;mas[h]) or b.nt;[R'] = 1. Thus, when b.t,,..[F] = 2,
b.nt;[h'] ¢ {4,5}. Therefore we can conclude that b.0;[h'] ¢ {4,5} when b.t,,..[h'] = 2. Using
the same argument we can show that b.0;[h/] ¢ {4,5} when b.t,,,.[h'] = 2. This contradicts

15

Equation 1 according to which {b.(;[A'], b.0;[A'],b'.nt,[h']} = {3,4,5}. Thus b.t,,..[R'] # 2 and
btmar[h] € {3,4,5}.

Since {b.G;[A'], b.0;[A'], b .nt,[A']} = {3,4,5}, using the definition of <4, we can assume without
loss of generality that:

b.l;[h'] <4 b.U;[R] <4 b .ntp[R'] and b.4;[A] £a b .nti[R]. (2)
Recall that z = by, 0L, = bidpae, b1, = b .nty,, and b.t,[h'] <4 U .nty[h']. Hence, we can
replace b.0; by b.t,,q, in Equation 1 and Equation 2 which yields the following:

bl Ebtrae Z 0ty and {b.6[R], bt aslB], Ut [B]} = {3,4,5}, (3)

b.li[h'] <4 Ditmmao[h'] <4 U'ntp[h'] and b.A4[R'] £a b nty[R]. (4)
Consequently,

by < by < .nty, and b.l; £ .nty, (5)

{bliybtae, bt} C CYCLE(D.tpar, B'). (6)

Consider the cases b.0; = b.nt; and b.; = b.t; separately:

b.nt;: Since b.nt; € CYCLE(b.tpas, h'), V for state b shows that b.¢; h=t b.tyae. By Claim 5.1.2
NUM(b.tmae, B — 1) = NUMg(b.t1ae, B'). Therefore, since i # k, b.t; M=t b.tae implies that
b.t; . b.tyar. Now, from IV for state b and the fact that b.nt; < 0b.t,,.., it follows that
b.nt; LS b.tmax, a contradiction to Equation 4 according to which b.nt;[h'] <4 b.tpa[R]-

b.t;: By Claim 5.1.2, NUM(b.tyae, B — 1) = NUMg(b.t 040, B'). Therefore, since ¢ # k, b.t; = b

implies that b.t; ® b.trar. Now, b.t; ® b.t,4e contradicts Equation 4 according to which

boti[B] <4 btacl).

We have reached a contradiction in each case. Consequently, there exists no choice vector such that
its values are not totally ordered. Hence, TOT(b') = true. []

Proof: (For Theorem 5.1) We proceed by induction on the length of the execution ending in
the reachable state b. The base case is established by Lemma 7.1. The induction step is a case
analysis based on the action 7, where (b, 7,0") is a step in the execution. If 7 € {BEGINSCAN,,
ENDSCAN(0, Ut), BEGINLABEL (valy,), ENDLABELy }, the induction step follows from Lemma 7.2. If
T = UPDATE.((t, vg), (nty, valy)), the induction step follows from Lemma 7.3. If 7 = sNAP,(#;, vy),
the induction step follows from Lemma 7.4. [|

16

6 The Simulation Proof

In this section we use Theorem 2.1 to show that fairbehs(BcTss) C fairbehs(uctss). This implies
that BcTss implements UcTsS. In order to use Theorem 2.1, we define the relation R between the
states of BCTss and the states of ucTss as follows:

Definition 6.1 (relation Rr) If b is a state of BcTss and u is a state of ucTss then (b, u) € r iff
foralli,j € {1...n}, 1 # j:

1. b.0; = u.0;.

2. bty < bty iff uty; < ut,
b.nt; < b.t; iff u.nt; < u.t,
b.t; < b.nt; iff u.t; < wu.nt,
b.nt; < b.nt; iff u.nt; < u.nt;.

3. by, = w.;.
4. bval, = w.val;.
5. b.o; = u.v;.
6. b.op; = u.op;.
7. b.pe; = w.pc;.
|

Parts 1 and 5 ensure that a process p; returns the same response to a SCAN; request in BCTSS
and in uvcTss. Recall that o; contains the order of the labels that was last observed by p;. Part
2 states that the < ordering of any choice vector from BCTSS is the same as the < ordering of
the corresponding labels from vcTss. Notice that part 2 gives no information about the relation
between t; and nt;. Parts 3 and 5 ensure that BcTss and ucTss associate values with labels in the
same manner. Part 6 ensures that vcTss and BcTss will execute the same part of the SNAP; action
code. Finally, part 7 ensures that vcTss and BCTss will be able to execute the corresponding action
during each state transition.

The following lemma proves that the first of the three assumptions required by Theorem 2.1 is
true.

Lemma 6.1 For the initial state b of BCTSS, there exists an initial state v of UCTSS such that
(b,u) € R.

Proof: In the initial states b of BcTss and u of vcTss, o; = (1...n) for all ¢ € {1...n}. Hence
part 1 of R is satisfied. Part 2 is satisfied since t; = nt; for all 7,j € {1...n} in both BcTss and
vcTss. Parts 3 — 5 are satisfied since v; = (0...0) and v; = val; = 0 for all ¢ € {1...n} in both
BcTss and vcTss. Parts 6 and 7 of R is satisfied for the initial states since op; = pe; = NIL in both
systems.]

17

The following lemma shows that the mapping R is preserved by all of the actions of BcTss. This
lemma proves that the second of the three assumptions required by Theorem 2.1 is true.

Lemma 6.2 Let b be a reachable state of BCTss and u be a reachable state of vCTSs such that
(b,u) € R. If (b,m,V) is a step of BCTSS then, there exists u' such that (u,m,u’) is a step of UCTSS
and (b',u') € R.

Proof: We proceed by case analysis on 7.

Case T € {BEGINSCAN},, ENDSCAN (0, V%), ENDLABELy }:

Since (b,u) € R, we can conclude that b.pc;, = w.pey, b.op = u.0;, and b.vy = u.v;. Hence, 7 is
enabled in u. Let u' be the unique state of ucTss such that (u,7,u') is a step of vcTss. In both
BcTss and UcTss only op,, and pec, change as a result of 7. Inspection of the code in Figure 2 shows
that o'.opy = u'.opy and V' .pcy, = w'.peg. This suffices to shows that (0, ') € R.

Case: ™ = BEGINLABEL(valy):

Since BEGINLABEL(valy) is an input action, it is clearly enabled in state u. Let w’ be the unique
state of ucTss such that (u, 7, ') is a step of vcTss. Only valy, opy, and pcj, change as a result
of the action. By definition of the action b’ .val, = u'.val,. Furthermore b'.0p, = u'.op, = LABEL;
and V' .pey = w'.pcy, = SNAP(y, v3). This suffices to shows that (b, u’) € R.

Case T = SNAP.({z, 0;) when b.op, = SCANy:

Since (b,u) € R, b.pc;, = u.pcy. Hence, 7 is enabled in u. Furthermore w.op, = b.opy = SCAN.
Let w’ be the unique state such that (u,,u’) is a step of ucTss.

SNAP(ty, 01), when opy = SCAN;, determines 0; based on the < ordering. Recall that < is a
lexicographical order defined by the order between the t-labels, using < for BcTss and < for ucTss,
and the order between the process indices. By assumption (b,u) € r. This implies that b.t; < b.;
iff w.t; < w.t; for all 4,5 € {1...n}; thus sNAP(?y, v;) will produce the same ordering for BCTss
and vcTss. Hence ¥'.6;, = v'.6;,. Furthermore, part 3 of R implies that b'.v;, = «'.7v;,. Figure 2 shows
b'.pcy = W .pci, = ENDSCAN(0g, v;). Only o, v;, and pe, change as a result of the action and thus
we can conclude that (b, u’) € R.

Case ™ = SNAP(1y, v;) when b.opy = LABEL:

Since (b, u) € R, b.pc;, = u.pcy,. Hence, 7 is enabled in u. Furthermore uw.op, = b.op, = LABEL.
There are two case: k = b.i,4, and k # b.iyq,-

We first consider the case k = b.7,,,,. Since (b,u) € R, part 2 of R implies that b.iy4 = U dmae-
Hence, k = u.ipmq,. Let u' be the unique state such that (u,7,u') is a step of vcTss. Now the
definition of NEWLABEL, for BCTss and ucTss shows that only pe;, changes for both BcTss and
vcTss. Figure 2 shows b.pc, = v/ .pey, = UPDATEL((tx, vr), (ntg, valy)). This suffices to show that
(b',u’) € R.

So assume that k # b.i,,,, for the remainder of the proof of this case. Since (b, u) € r, part 2
of R implies that b.t,4p = U.Ty4.. Hence, k # u.ip,,. In this case there are many states u’ such
that (u,7,u) is a step of vcTss; these states differ only by the value of u'.nt;,. We now define a
particular value u’.nt; and hence a particular state u’.

18

Define S = {i|i # k and b.t,0 < b.nt;}. Let z = b.ig, then bit, = b.i,.,. Invariant 11
shows that b.nt, = b.t,. Hence, b.nt, = b.t,,,,. This implies that z ¢ S. Thus, b.t;y., € 5. For
all ¢ € 5, III for state b shows that b.nt; = NEXTLABEL(b.t;4., hi) for some h; € {1...n — 1}.
Furthermore, the definition of NEWLABEL, implies that 0'.nt;, = NEXTLABEL(b.t,44, by) for some
hi € {1...n—1}. Define:

Note that:
SlmSQISQQSQ,:SlmSg:@ and 51U52U53:S (8)

Since < is a lexicographical order, the order between any two labels in BCTSS is determined by the
first digit at which they differ. Therefore, for any ¢; € 51, 15 € 55, and i3 € 53, it is the case that:

btpmae < bty < bont;, = .nt), < b.nt;,. (9)

Recall z = b.iae. Thus, b.t, < b.nt;, < b.nt;, = b'.nty < b.nt;,. Since z ¢ S and (b, u) € R, part
2 of R now shows that u.t, < w.nt;, < wu.nt, < unt,. Since b.ipmew = Udmes, 2 = Udmee and
w.t, = U.dpgs. LThis shows that:

Udpmar < Ui, < wnt;, < u.nt,. (10)

We use the following rules for picking u'.nt;. If S5 # 0, then u'.nty = u.nt; for any i € S,. If
on the other hand S, = 0, define u.nt,, . and w.nt,,;, as follows: w.nt,,., = max(u.nt;|7 € 9y) if
Sy # 0, otherwise u.ntyar = Udpmar. WNpi, = min(u.nt;| i € S3) if S5 # 0, otherwise u.nt,,;, = .
Choose any u'.nt; such that u.nt,,,, < v'.nt, < w.nt,,;,. For any 7, € 5,15 € 95, and i35 € 53, the
two rules and Equation 10 imply that:

Udpar < w.nt;, < w.nt;, = u'.nty < u.nt;,. (11)

With both rules for choosing u'.nty, u.t,.. < u'.nt,. Hence, there exists an X € R>° such that
w .ty = Ut + X.

We now show that (b',u') € r. Only nt; and pcj, change as a result of the action. Figure 2
shows b'.pc, = u'.pcr, = UPDATE.((g, vi), (nty, valy)). Consequently, (b',u') € R if we can show
that part 2 of R holds for states b’ and «'. For part 2 of the relation there are four cases to consider.
All other cases do not involve b’ .nt;. Let ¢ € {1...n} and ¢ # k:

1. bonty, < bt iff w'.nt, < ',
b'.t; < b .nty, iff .8 < o .nty:
Since no t-labels change, V'.t,40 = b.tpmar and b.ipe = bdpae. Recall that B # b4,
hence b'.nt;, = NEXTLABEL(b.tmae, hi) and 0 a0 = btpae < 0.0ty as a result of the action.
Furthermore, b'.t; = b.t;. Therefore, b'.t; < V.., < b'.nty. Let z = b .4,,,,. In this case
z# kand b'.t, = b .. Since t #k, z # k and b'.t, = V1,4, there exists a choice vector
that includes &'.t;, 0" .1,,45, and b'.nt;. By invariant I the values of this choice vector are totally
ordered by <. Therefore, b'.t; < 0'.t,,., < b'.nt; implies that b'.t; < b’ .nt.

Similarly, since k # U.ipmaz, U dmar = Wtbmar < @ .0ty as a result of the action. Furthermore,
uw'.t; = w.t;. Therefore v'.t; < u .t < ' .nty. This implies that u'.t; < u'.nty.

19

2. 0 .nt; < b .nty, iff o .nt; < o onty,,
O .nty, < b .nt; ff o .nt, < u'.nt;:

We can divide the nt-labels of vcTss into two disjoint sets: Recall that S = {j|j # k and
btpar < bont;}. Define T' = {j|j # k and b.t,,4, > b.nt;}. Similarly, define 5, = {j|j # k
and w.ty,q,, < u.nt;}. Define T, = {j|j # k and w.t;,0p > w.nt;}. By part 2 of ®r and the fact
that (b,u) € R, S =5, and T =T,. Consider i € T and ¢ € S separately.

Suppose ¢ € T. Since i # k, b'.nt; = b.nt;. Therefore V'.nt; < V'.tp0e < U .nty. Let 2 =0 440
In this case z # k and b'.t, = V' .t,,4,. Since i # k, 2 # k and V'.t, = V' .t,,4., there exists a
choice vector that includes b'.nt;, b .t,,.., and &'.nt,. By invariant I the values of this choice
vector are totally ordered by <. Therefore, b'.nt; < 0'.t,,., < b'.nt;, implies that b'.nt; < b’ .nt;.
Similarly, u'.nt; = u.nt;, since ¢ # k. Therefore, v'.nt; < w14, < ' .nt;. This implies that
u'.nt; < u'.nty.

Now suppose ¢ € 5. Consider any i1 € 51, 15 € 55, and 13 € 53 where 57,55, 93 are defined
by Equation 7. Since k ¢ 5, b'.nt; = b.nt; and w'.nt; = u.nt; for all j € 5. Consequently
Equation 9 and Equation 11 show that b.t,,.. < b'.nt;, < b .nt;, = b.nt, < b.nt;, and
Udpmae < w'.nt;, < u'nt, = u'.nt;, < u'.nt,. Using these facts we now consider the following
cases: 1 € S, 1€ 55, and i € §5. If 1 € 51, then bV'.nt; < b .nt;, and u'.nt; < u'.nty. If ¢ € 55,
then b'.nt; = b'.nt;, and o'.nt; = v'.nty. If 1 € 93, then b'.nt;, < b .nt; and v'.nt;, < u'.nt;.

Case m = UPDATE((ty, vg), (nty, valy)):

Since (b,u) € R, b.pc;, = u.pc,. Hence, 7 is enabled in u. Let u’ be the unique state such that
(u,m,u') is a step of vCTsSs.

Only vy, t; and pcj, change as a result of the action. Since (b,u) € r, part 4 of R shows that
b.valy = w.wal,. Thus, b0, = v'.vp. Figure 2 shows b.pc;, = u'.pe;, = ENDLABELy. Consequently,
(b',u’) € R if we can show that part 2 of R holds for states b" and u'. For part 2 of r there are four
cases to consider. All other cases are immediate since they do not involve t;, and since t; is the
only label that changes as a result of the action. Let i € {1...n} and i # k:

1.6, < b iff w4y, < w4

Since (b,u) € R and t; is the only label that changes, b.nt, < 0'.¢; iff u.nt, < w'.¢;. As a result
of the action, b'.t; = b.nt, and «'.t; = u.nt;,. Hence b'.t;, < b'.¢t; iff v'.t; < w'.1;.

2. bt < bty iff ul ity < ulty,
O.nt; < b .t iff w.ont; < 'y,
O, <0 .nt; w4, < u.nt;:

For all three statements, the reasoning is similar to that of case 1.

We can now conclude that BcTss correctly implements UCTSs.

Theorem 6.3 BCTss implements UCTSS.

20

Proof: By definition of BcTss and ucTss, sig(BCTss) = sig(ucTss) and part(BCTSs) = part(UCTSS).
Lemma 6.1, and Lemma 6.2 show that BcTss and vcTss satisfy the first two conditions of Theo-
rem 2.1. For the third condition note that action # is enabled in vcTss if and only if 7 is enabled
in BcTss. Consequently, Theorem 2.1 shows that fairbehs(BcTss) C fairbehs(ucTss). Thus BCTss
implements UCTSS. [|

7 Claims for Proof of Theorem 5.1

This section contains the bulk of the claims needed for Theorem 5.1.

Lemma 7.1 The initial state b of BCTSS, satisfies invariants I - VI

Proof: This follows from the fact that b.t; = b.nt; = 1"~ for all 7,5 € {1...n}.]

Lemma 7.2 Let b be a state of BCTss that satisfies I - VI If (b,7,b') is a step of BCTSS where
T € {BEGINSCANj, ENDSCAN(0y, U)), BEGINLABEL(valy), ENDLABEL, } for any k, then b’ satisfies
I1-VL

Proof: None of the t-labels or nt-labels change as a result of #. This suffices to show that '
satisfies I - VL. |

Lemma 7.3 Let b be a state of BcTss satisfying I - VI. If (b, UPDATE((tx, vk), (nty, valy)),b’) is
a step of BCTSS for any k, then b satisfies I - V1.

Proof: The proof is divided into a series of claims. By invariant I for state b, b.t,,,, and b.7,,4,
are defined. We split the argument into two cases: k = b.ty4, and k # b.tpq,. Consider k = b.i,,4,
first.

Claim 7.3.4 If k = b.iga,, then b satisfies [- VI.

Proof: By invariant II for state b, b.t;, = b.nty. Thus, none of the ¢-labels or nt-labels change for
BcTss. This suffices to show that b’ satisfies I - V1. [|

So assume that k # b.7,,4, for the remainder of the proof.
Claim 7.3.5 If k # b.iya, then I is true inb'.

Proof: Assume for a contradiction that ToT(V') = false. Since TOT(b) = true and ¢; is the only
label that changes, the choice vector whose values are not totally ordered must include &'.%;. Now
consider the same choice vector except that we substitute o’.nt; for b'.t;. Since b'.t; = b'.nt;, this
new choice vector’s values are also not totally ordered. Since none of the labels in this new choice
vector change as a result of the action, the same choice vector must not have had its values totally
ordered in state b. However this contradicts the assumption that ToT(b) = true. []

21

Having proved invariant I we now know that &'.i,,., and b'.7,,,, are defined. The proof for II -
V1is subdivided into the following two cases: b.nty < b.,,., and b.t,,4, < b.nt,. Assume first that
bntk j b-tmax-

Claim 7.3.6 If k # b.iyee and bty = bty then Vitpee = bty and b iy = by, or
O dpas = k.

Proof: Let z = b.iy4,, then bit, = bt and z # k. We show first that b'.¢; < b.t, for all i.
First consider ¢ # k. Since t; is the only label that changes, b'.t; = b.t;. Therefore, the fact that
b.t; = b.t, implies that 0'.t; < b.t,. Now let ¢ = k. As a result of the action, b'.t; = b.nt;. By
assumption b.nt; < b.t,, so b'.t; < b.t,. Since z # k, t, does not change, so we can conclude that
b'.nt; < V'.t, for all +. This implies that ¥'.t, = b'.{,,,,. The following identity now establishes the
first part of the claim: b.t,,,, = b.t, = b'.t, = b'.t)00.

Let S = {i|b.t; = b.tyae} and S = {i|V/.t; = V' tpaw) Then, bipae = MAX(S) and bipee =
MAX(S"). Since t; is the only ¢-label that changes and V.40 = b.tiae, 5" = S or 5" = 5 — {k}
or 8 = SU{k}. When 5" = 5 then MaX(S') = MAX(S). Let z = b.iyy4.. Since k # b.ipae, the
definition of b.i,,,, shows that z € S and k& < z when k£ € 5. Consequently, when 5" = 5 — {k}
then MaAX(S") = MaX(5). Finally, when S = S U {k} then MAX(S") = MAX(S5) or MAX(S') = k.
This shows that b'.9,,40 = 0.29mas O U tpar = k. []

Claim 7.3.7 Ifk # b.iymae and bnty < bt then NUM(g, 1) > NUM(b.tnar, B) and NUM;(V 2ppae, h) >
NUM;(b.tpmae, h) for all i and h.

Proof: The Claim follows immediately if we show that AGREE(V .t,4:,h) 2 AGREE(b.ty40, h).
Suppose ¢ € AGREE(b.ty40,1). If © # k, then since ¢; does not change and, by Claim 7.3.6, ¢4
does not change, ¢ € AGREE(V .tpae,). Now consider ¢ = k. By definition of AGREE, b.1; 2
b.tyar. Since b.nt; = b.t,.., IV for state b implies that b.nt; L b.tmas. As a result of the action

b'.t; = b.nt;, so b1, L b.t; 4. This fact along with the fact that ¢,,., does not change implies that
i € AGREE(V tpap, h).]

Claim 7.3.8 If k # b.iyae and b.nty =< bty then b satisfies IT - VI

Proof: We proceed with a case analysis. Consider any ¢ € {1...n} and h € {1...n —1}.

II: Suppose i = b'.4,,4.. By Lemma 7.3.6, 7 = &k or i = b.i,,4,. First consider ¢ = k. As a direct
consequence of the action, b'.t; = b'.nt;. Now consider ¢ = b'.¢,,,, where ¢ # k. In this case II
holds for &’ since t; and nt; do not change, and II holds for b.

III: IIT holds for b’ since t,,,, and nt; do not change, and III holds for b.

IV: First consider ¢ = k. As a consequence of the action ¥'.t; = &' .nt;. Hence, 0'.1; L b 4 implies
that b'.nt; L b 1par for all h. Now consider ¢ # k. Since IV holds in state b, and ?,,,,, t; and
nt; do not change, IV holds for state b'.

22

V: First consider i = k. V'.nt; € CYCLE(V t14, 1) and the definition of cycLE imply that 0'.nt; =

b tae. As a consequence of the action, o'.t; = b’'.nt;. Hence, b'.1; = b tae. Now consider
¢ # k. In this case V is true in b’ since t;, nt; , and t,,,, do not change and V is true in b.

VI: Since nt; and t,,,, do not change, b’.nt; = NEXTLABEL(} {4, 1) implies that b.nt; = NEXTLABEL (D640, h),
and 0’ .24, [h] # 1implies that b.t,,,.[h] # 1. By Claim 7.3.7, NUM(V' tpae,) > NUM(b.t00, 1)
and NUM; (0 tpmae,) > NUM;(b.t1ae, h). Hence, VI holds for state b’ since it holds for state b.

Claim 7.3.8 shows that II - VI hold when b.nt; < b.t,,4-. For the remainder of the proof assume
that b.1,,,, < b.nty.

Claim 7.3.9 If k # b.iyae and bty < bonty then Ut = 04, and Vi = k.

Proof: We proceed by showing that b'.t; < 0'.t; for all ¢« # k. From the definition of ¢,,,, and
the assumption that b.t,,., < b.nt;, we know that b.t; < b.t,,.. < b.nty. Let z = b.,,,, then
b.t, = bitpas and z # k. Since k # z, k # 4, and b.t, = b.,,,,, there exists a choice vector that
includes the values b.t;,b.t,,4., and b.nt;. Since TOT(b) = true, the values in this choice vector
are totally ordered. Hence, b.t; < b.t,,4» < b.nt; implies that b.t; < b.nty. As a result of the
action b.nt, = U'.t; and t; does not change. Therefore, b.t; < b.nt; implies that &'.t; < b'.t;. Hence
b tae = b1y, Since k is the only process index for which b'.t,,., = 0 .41, V' dee = k. []

The following Claim lists some of the properties of .1,
Claim 7.3.10 If k # b.i,e and b.t,,.,. < b.nty then there exists h' € {1...n — 1} such that:
1.V tpae =0t = b .nty = bonty = NEXTLABEL (b0, 1).
2.V tparlh] = 1 for all h > K.
3. For all 1, b .nt; L O e tmplies that b'.nt; = V.t,,40.
4. There exists no i # k such that b'.1; L O o

5. NUM(V tpmaw, B) > NUM(b.tmae, h) and NUM;(V tpae, B) > NUM;(b.tnae, h) for all ¢ and all
h <h.

Proof: By invariant III for state b and the assumption that b.t,,.., < b.nt;, we conclude that
b.nt;, = NEXTLABEL(b.lpas, h') for A € {1...n —1}. Fix A’

1: By Claim 7.3.9 V'.t,,4. = 0'.t;. The fact that b'.t, = b'.nt;, = b.nt; is a direct conse-
quence of the action UPDATE.((tf, v), (nty,val;)). Finally, we have already shown that b.nt, =
NEXTLABEL(b.t a0, A').

2: This follows directly from the definition of NEXTLABEL.

3: Suppose that b'.nt; . b tpar- First consider ¢ # k. The fact that nt; does not change and

part 1 of the claim show that b.nt; = ¥'.nt; b b'timar = NEXTLABEL(b.t4.,R'). Consequently,

23

i

b.nt; L NEXTLABEL(b.t40, h'). Now the definition of NEXTLABEL implies that b.nt; M=t b
and b.nt;[h'] = NEXT(b.tyae[R']). Thus b.t.. < b.nt;. Now III for state b implies that b.nt; =
NEXTLABEL(b.t 40,) for some h € {1...n—1}. Since b.nt;[h'] = NEXT(b.t;ma:[P]), h = I/. Hence,
b'.nt; = b.nt; = NEXTLABEL(b.ty40, B') = b tyae. Now consider ¢ = k. In this case b'.t,,,, = 0 .nty
by part 1 of the claim.

4: We proceed by contradiction. Assume that there exists ¢ # k such that .t L [/
Since t; does not change as a result of the action, b.t; = b'.t; s b'tyaw = NEXTLABEL(b.tpas, B').

Consequently, b.t; n NEXTLABEL(b.t 40, h'). Now the definition of NEXTLABEL implies that b.¢; hot
b.tmae and b.4;[h'] = NEXT(b.t;mae[R']). Thus b.t,,4, < b.t;. This contradicts the definition of b.t,,,,.

5: Let h < h/. Part 5 of the Claim follows immediately if we show that AGREE(V {40, 1) 2
AGREE(b.tpas, h). Suppose @ € AGREE(b.tpas, h). If ¢ # k, then ¢; does not change. By part 1 of
claim and the definition of NEXTLABEL, 0’ .t,,40 L 0.t ar- Now the definition of AGREE implies that
i € AGREE(V .t140, h). Now consider ¢ = k. Part 1 of the claim shows that 0'.4; = 0/.t,,,.. Hence
i € AGREE(V tpap, h).]

The remainder of the proof is structured as a series of claims, one for each of the five remaining
invariants. Fix A’ to be the A’ defined by Claim 7.3.10. Parts 1-5 of Claim 7.3.10 will be used
throughout the remaining claims.

Claim 7.3.11 If k # b.iyae and bty < b.nty then I is true in b'.
Proof: By Claim 7.3.9 0'.¢,,,, = k. Part 1 of Claim 7.3.10 shows that &'.t, = b'.nt,. [|
Claim 7.3.12 If k # b.iyae and bty < b.nty then I is true in b'.

Proof: Consider any 7 such that b'.1,,,, < b'.nt;. By part 1 of Claim 7.3.10, b'.1,,., = &' .nt;, so
b tar < b .nt; implies that ¢ # k. Furthermore, nt; does not change as a result of the action and
part 1 of Claim 7.3.10 shows that ¥'.t,,,, = b.nty. Hence ¥ .t,,,, < b'.nt; implies that b.nt;, < b.nt;.
By assumption b.t,,., < b.nty, so b.t,.. < b.nt, < b.nt;. Now consider two cases, ¢t = b.i,,40
and @ # b.yer. When ¢ = by, invariant II shows that b.t,,,, = b.nt;. This implies that
b.nt; < b.nty < b.nt; which is impossible by Lemma 4.1. Therefore, it must be that ¢ # b.7,,4,. Since
b.imar # t and b.i,., # k there must exist a choice vector that includes the values b.t,,4,, b.nty,
and b.nt;. Since TOT(b) = true, the values in this choice vector are totally ordered. Hence,
b.tar < b.nt, < b.nt; implies that b.t,,,, < b.nt;. Now III for state b and the fact that nt;
does not change show that ¥'.nt; = NEXTLABEL(b.tp4, h) for some h € {1...n— 1}. Since b'.nt; =
NEXTLABEL(b.tpaey £), 0 tae = NEXTLABEL (.20, 1)), and b .t,00 < U'.nt;, it must be that b < /.
Hence b'.nt; = NEXTLABEL(V {140,), which directly implies that I holds for state ¥'. [

Claim 7.3.13 If k # b.iyae and bty < b.nty then IV is true in b'.
Proof: Let b./nt; < b .t,,4,. First consider i = k. By part 1 of Lemma 7.3.10, V'.nt;, = b'.1,,40,

which directly implies IV. Now consider ¢ # k and any h:

24

h < h': Part 1 of Claim 7.3.10 and the definition of NEXTLABEL show that b'.1,,,, L b.tee When
h < I'. Now consider two cases: b.nt; < b.t,,4, and b.nt; X btye.. When bont; < bt pae, IV
for state b shows that b.¢; L b.t,ar implies that b.nt; L b.tyee. Now IV is true in b’ since
t; and nt; do not change and V'.t,,4, L b.tyaz. Now consider the case b.nt; £ b.tya:. By
Lemma 4.1, b.t;0 < b.nt;. Now III for state b shows that b.nt; = NEXTLABEL(b.tas, M)
for some h; € {1...n — 1}. Furthermore, Since nt; does not change, the assumption that
b'nt; = U.t,., implies that b.nt; < b .t,... Finally, part 1 of Claim 7.3.10 shows that
b’ tymae = NEXTLABEL(b.tp40, 1'). Using these facts and the definition of NEXTLABEL we can
conclude that h; > h'. Therefore, b.nt; L b tpae- Since nt; does not change, this implies that
b'.nt; L b 1,4 This suffices to show that IV is true in &'.

h > h': Part 4 of Claim 7.3.10 shows that &'.¢; % b e Hence, 1V is vacuously true in b’

Claim 7.3.14 If k # b.iyae and bty < bonty then Vois true in b'.

Proof: Suppose b'.nt; € CYCLE(V .t,,4., k) for some ¢ and h. The definition of cYCLE implies that

A1 .
V.nt; "= b 1,,.,. We consider two cases:

h < h': First consider ¢ # k. Part 1 of Claim 7.3.10 and the definition of NEXTLABEL show that
bt ae = b.tmas. Thus, V is true in & since ¢; and nt; do not change, CYCLE(V .tpas, h)

depends only on b'.t,,,[1...h — 1], and V is true in b. Now let ¢ = k. In this case, part 1 of
Claim 7.3.10 shows that ¥.t; = b .{,,,,. This suffices to show V.

h > h': Since ¥ .nt; = O tper and A > h', it follows that b'.nt; . O tpan. Thus part 3 of

Claim 7.3.10 implies that o'.nt; = b'.t,,... By part 2 of Claim 7.3.10, b'.t,,.,[h] = 1. Thus
b'.nt;[h] = 1, which implies that b'.nt; ¢ CYCLE(V .14z, h). This contradicts our original
assumption that 0'.nt; € CYCLE(V .fy40, h). Therefore this case cannot arise.

Claim 7.3.15 If k # b.iyae and bty < b.nty then VIb is true in b'.

Proof: Assume that b'.4,,,.[h] # 1. We proceed with a case analysis:

h < h’: Part 1 of Claim 7.3.10 and the definition of NEXTLABEL show that &'.¢,,,, L b.tas-

Thus b'.t,4:[h] # 1 implies that b.t,..[h] # 1. Since b.t,..[h] # 1 and VIb is true for
b, NUM(b.t;pae,h — 1) > n — h + 1. By part 5 of Claim 7.3.10 NuM(.40, h — 1) >
NUM(b.tmae, b — 1). Thus, NUM(V .0, h — 1) > n— h 4+ 1 which implies that VIb is true for
b

h =h and b.t,..[h] # 12 Since b.t,4.[h] # 1 and VIb is true for b, NUM(b.tpae, h— 1) > n—h+ 1.
By part 5 of Claim 7.3.10 NUM(¥' .00, h—1) > NUM(b.tpae, h—1). Thus, NUM(V 00, h—1) >
n — h + 1 which implies that VIb is true for ¥'.

25

h =h" and b.t,,,,[h] = 1: Part 1 of Claim 7.3.10 and the fact that A’ = h imply that b.nt;, =
NEXTLABEL(b.tpas, 1). Since b.nty = NEXTLABEL(D.f4.,0) and Vla is true for state b,
NUMg(b.tmae, h—1) > n—h. By part 5 of Claim 7.3.10 NUM (0" .ta0, h—1) > NUMg(b.tnae, h—
1). Thus, NUMg (b -trae, h—1) > n—h. Since b .t,,0 = b'.tg, k € AGREE(V {140, h). Therefore
NUM(V tpmae, h — 1) > NUMg (0 tae, b — 1) > n— h. Thus, NUM(V' tpae, h — 1) > n—h 4 1,
which implies that VIb is true for &'.

h > h': Part 2 of Claim 7.3.10 and the fact that A > A’ imply that b'.1,,,,[h] = 1. This contradicts
the assumption that b'.t,,..[h] # 1. Therefore, this case cannot arise.

Claim 7.3.16 If k # b.iyq and bt < b.nty then Via is true in .
Proof: Let b'.nt; = NEXTLABEL(Y .t4., h) for some h and 7. We proceed with a case analysis:

h < h’: Part 1 of Claim 7.3.10 and the definition of NEXTLABEL show that o'.{,, ., L b.tes. Now
the fact that nt; does not change and the fact that b'.nt; = NEXTLABEL(V {40, h) imply that
b.nt; = NEXTLABEL(b.tpmae, h). Since b.nt; = NEXTLABEL(b.t,40, 1) and Vla is true in state
b, NUM;(b.tyae,h — 1) > mn — h. Part 5 of Claim 7.3.10 shows that NUM;(V .t h — 1) >
NUM;(b.tpas, b — 1). Therefore, NUM;(0'.t40, B — 1) > n — h which implies that VIa is true
for v'.

h = h'*: Using part 1 of Claim 7.3.10 and the definition of NEXTLABEL we can conclude that
b tmac[h] = NEXT(b.tpmas[h]). There exists no z € A such that NEXT(z) = 1. Hence
b tmae[P] # 1. Claim 7.3.16 implies that VIb holds for state b'. Since V'.t,,q.[h] # 1, VIb for
state b’ implies that NUM(b .tae, b — 1) > n— h 4+ 1. Thus NUM; (V' tpae, h — 1) > n — h and
Vla is true in state b’.

h > h': The fact that ’'.nt; = NEXTLABEL(V {540, 1) and the definition of NEXTLABEL imply that
b .nt; = O tan. Now part 3 of Claim 7.3.10 and the fact that A > A’ imply that &' .nt; =
b timae- Thus b'.nt; # NEXTLABEL(Y .t,,40, h) wWhich contradicts our assumption that o'.nt; =
NEXTLABEL(Y .t;4., h). Therefore, this case cannot arise.

We now complete the proof of the lemma. To show that &' satisfies I - VI we consider two
cases: k = b.iyqp and k # b.tpq,. Claim 7.3.4 shows that o’ satisfies I - VI when k = b.7,,,,. When
k # b Claim 7.3.5 shows that invariant I holds in state &’. The proof for invariants II - VI
is subdivided into two cases: b.nt; < b.t,,., and b.t,,.,, < b.nt;. Claim 7.3.8 shows that II - VI
hold when b.nt;, < b.t,,4». Claim 7.3.11, Claim 7.3.12, Claim 7.3.13, Claim 7.3.14, Claim 7.3.15 and
Claim 7.3.16 each consider one of the invariants to show that II - VI hold when b.t,,,, < b.nt;,. W

2 Actually, this case cannot arise. However, the argument that proves that the case cannot arise is more complicated
that the argument that proves that Vla is satisfied if the case does arise.

26

Lemma 7.4 Letb be a state of BCTsS that satisfies [- VI If (b,SNAP, ({3, 01), ') is a step of BCTSS
for any k, then b’ satisfies I - VI

Proof: Note that none of the t-labels or nt-labels change when op, = scaN,. Therefore, assume
that op, = LABELj. The proof is divided into s series of claims. First consider the case where

k= b.pgp-
Claim 7.4.17 If k # b.iya, then IT - VI are true in b'.

Proof: VIb holds in state b’ since it holds in state b and no t-labels change. Now consider II -
VIa. If i # k, then the definition of SNAP (1, v;) shows that neither t;, nt;, {40, nOT NUM;(ta0, 1)
change. Therefore, IT - VIa are true in state b’ since Il - VIa are true in state b. So assume that
i = k. In this case b'.nt; = NEXTLABEL(b.t;40, ') and O’ .20, < 0'.nt;. Consider II - VIa separately:

IT: Since k # b.iyawy @ # boipas. Furthermore, b.7,,00 = ' tpqp thus ¢ # V' .0,4,.. Now I is vacuously
true in state &'.

III: Since b .ty40 = b.tmas, and b'.nt; = NEXTLABEL(b.tpae, B'), b'.nt; = NEXTLABEL(V .00,).
IV: Since b'.1,,00 = bt pae < U'.nt; 1V is vacuously true in b'.

V: Suppose that b'.nt; € CYCLE(V .40, h) where b € {1...n — 1}. The definition of CYCLE now
implies that 0'.nt;[h] € {3,4,5}. Recall that b'.nt; = NEXTLABEL(b.t,4.,). The definition
of NEXTLABEL implies that 0'.nt;[h”] = 1 for all A” > h’. Since ¥'.nt;[h] € {3,4,5}, we can
conclude that h < h'. We consider the two cases h = b/ and h < I’ separately.

First consider the case h = h'. Since NEXT(1) & {3,4,5}, and NEXT(b.tna:[h]) = b'.nt;[h] €
{3,4,5}, b.timae[h] # 1. Now VIb for state b shows that NUM(b.tee, h — 1) > n — h + 1.
Furthermore, Claim 5.1.2 and the fact that i = k£ show that NuM;(b.t,nee, h — 1) <n —h + 1.
Since NUM(b.tq0, h—1) > n—h+1 and NUM;(b.t 0, h—1) < n—h+1, k EAGREE(b.t140, h—1).
Thus b.1; = b.tar- Since t; and t,,,, do not change, b'.t; = bV an-

Now consider the case h < h'. The fact that b’.nt; = NEXTLABEL(b.t,4., h') and the definition
of NEXTLABEL imply that b.t,,..[h] = U .nt;[h]. Therefore, b.t,,..[h] # 1 since b.t,q4.[h] =
b'.nt;[h] € {3,4,5}. Now VIb for state b shows that NUM(b.t,p40,h — 1) > n — h + 1. The
definition of NEWLABEL; and the fact that ¢ = k£ show that FuLL;(h — 1) returns false, which
implies that NUM;(b.t4e,h — 1) < n— h + 1. Since NUM(b.tyge,h — 1) > n—h + 1 and
NUM;(botmagsh — 1) < n — h 41, i € AGREE(b.bpap, h — 1). Thus b.t; "=! b.tyg,. Since t; and

tmae do not change, ¥ .t; = [
Vla: Since V'.t,00 = b.tpae and b'.nt; = NEXTLABEL(b.t 4., 2'), we conclude that
b'.nt; = NEXTLABEL(D 40, B')

. Now, Claim 5.1.2 implies that NUM; (V' tpae, B — 1) =n — 1.

27

We can now complete the proof of the lemma. Claim 5.1.1 shows that I - VI hold for & when
k =b.ames. When k # b.i,,4., Claim 5.1.3 shows that I holds in & and Claim 7.4.17 shows that II
- VI hold for ¥'. [|

8 Discussion and Future Work

All know applications of timestamp systems use vcTss. This paper provides a bounded implemen-
tation of UCTSS, so the correctness proofs of the applications using timestamp systems can assume
that they are using a UcTss even though the actual implementation would make use of our bounded
BcTss. The time complexity of our BCTSS construction is simply the complexity of the underlying
atomic snapshot implementation.

In recent years, much progress has been made in the area of automatic theorem provers. Large
parts of our correctness proof, especially the proof for the invariants in Section 5 use an extensive,
well structured case analysis. Each case is proved by a simple but tedious argument. Consequently,
we view the correctness proof of our bounded timestamp algorithms as an ideal candidate with
which to test the effectiveness of automatic theorem provers [27]. In testing a theorem prover on
our algorithm we hope to determine whether or not I/O Automata proofs might in the future utilize
theorem provers on a regular basis.

References

[1] K. Abrahamson. On achieving consensus using a shared memory. In Proceedings of
Tth ACM Symposium on the Principles of Distributed Computing, Toronto, Ontario,
Canada, August 1988.

[2] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic snapshots
of shared memory. In Proc. 9th ACM Symp. on Principles of Distributed Computing,
1990, pp. 1-14.

[3] Y. Afek, D. Dolev, E. Gafni, M. Merritt and N. Shavit. A Bounded first-in, first-enabled
solution to the (-exclusion problem. ACM TOPLAS, (16)3, pages 939-953, May 1994.

[4] Attiya, H., and Rachman, O. Atomic snapshots in O(nlogn) operations. Proceedings of
the 12th ACM Symposium on Principles of Distributed Computing, (Aug. 1993) 29-40.

[5] H. Attiya, D. Dolev, and N. Shavit. Bounded polynomial randomized consensus. In
Proceedings of the 8" Annual ACM Symposium on Principles of Distributed Computing,
pages, ACM SIGACT and SIGOPS, ACM, 1989.

[6] J. H. Anderson. Multiple-writer composite registers. Distributed Computing, Vol. 7,
No. 4, pages 175—, 1994.

[7] Chandra T. D. and Dwork, C. Using Consensus to solve Atomic Snapshots. Manuscript,
1993.

28

[8] R. Cori and E. Sopena. Some combinatorial aspects of timestamp systems. Unpublished
Manuscript, 1991.

[9] D. Dolev and N. Shavit. Bounded concurrent time-stamps are constructible. SIAM
Journal on Computing, to appear. Also in Proceedings of the 21" Annual ACM Sym-
posium on Theory of Computing, Seattle, Washington, pages 454-465, 1989.

[10] C. Dwork and O. Waarts. Simple and efficient bounded concurrent timestamping or
bounded concurrent timestamp systems are comprehensible!, ACM Symposium on The-
ory of Computing, 1992.

[11] C. Dwork, M. Herlihy, S. Plotkin, and O. Waarts. Time lapse snapshots. Proceedings

of the Israel Symposium on the Theory of Computing and Systems. Haifa, Israel, May
1992(Dolev D., Galil Z., and Rodeh M. eds.) 154-170.

[12] J. Guttag and J. Horning. Larch: Languages and tools for formal specification. Springer
Verlag, 1993.

[13] M. P. Herlihy. Wait-free synchronization. In ACM TOPLAS, 13(1), pages 124-149,
January 1991.

[14] M. Inoue, W. Chen, T. Masuzawa and N. Tokura. Linear-time Snapshot using Multi-
writer Multi-reader registers. Workshop on Distributed Algorithms, pages 130-140, Sp-
inger Verlag, 1994.

[15] A. Israeli and M. Li. Bounded time stamps. In 28" Annual Symposium on Foundations
of Computer Science, White Plains, New York, pages 371-382, 1987.

[16] A. Israeli and M. Pinchasov. A linear time bounded concurrent timestamp scheme.
Technical Report, Technion, Haifa, Israel, March 1991.

[17] L. Lamport A new solution of Dijkstra’s concurrent programming problem. Communi-
cations of the ACM, 78(8):453-455, 1974.

[18] L. Lamport On interprocess communication. parts I and II. Distributed Computing, 1,
1 (1986) 77-101.

[19] M. Li and P. Vitanyi. A very simple construction for atomic multiwriter registers.
Report, Aiken Computation Laboratory, Harvard University, 1987.

[20] M. Li and P. Vitanyi. Uniform construction for wait-free variables. 1988. Unpublished
manuscript.

[21] M. Li and P. Vitanyi. How to share concurrent asynchronous wait-free variables. In
Proceedings of the 16" International Colloquium on Automata, Languages and Pro-
gramming, pages 488-505, 1989. Unpublished manuscript.

29

[22] N. Lynch and M. Tuttle. Hierarchical correcntess proofs for distributed algorithms.
Tecnical Report MIT/LCS/TR-387, Laboratory for Computer Science, MIT, 1987.

[23] N. Lynch and F. Vaandrager. Forward and backward simulations for timing based
systems. To appear in Proceedings of REX Workshop on Real-time: theory in practice,
Mook, 1991.

[24] Y. Riany, N. Shavit, and D. Touito. Towards a practical snapshot algorithm. Proceedings
of the Third Israel Symposium on Theory and Computing Systems (ISTCS), Tel-Aviv,
January 1995.

[25] P. Vitanyi and B. Awerbuch. Shared register access by asynchronous hardware. In 27"
Symposium on the Foundations of Computer Science, 1986.

[26] M. Saks and F. Zaharoglou. Optimal space distributed move-to-front lists. In Proceed-
ings of the 10" Symposium on the Principals of Distributed Computing, pages 65-73,
Montreal, 1991.

[27] J. Sgogard-Andersen, J. Guttag, J. Garland, A. Pogosyants Encoding automata and
simulation proofs in LP. Unpublished manuscript, MIT, 1992.

30

