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1. Introduction 

The problem of ‘assuring interactive con- 
sistency’ is defined in [7]. It is assumed that there 
are n isolated processors, of which at most m are 
faulty. The processors can communicate by means 
of two-party messages, using a medium which is 
reliable and of negligible delay. The sender of a 
message is always identifiable by the receiver. Each 
processor p has a private value u(p). The problem 
is to devise an algorithm that will allow each 
processor p to compute a value for each processor 
r, such that (a) if p and r are nonfaulty, then p 
computes r’s private value u(r), and (b) all the 
nonfaulty processors compute the same value for 
each processor r. 

It is shown in [7] that if n c 3m + 1, then there 
is no algorithm which assures interactive con- 
sistency. On the other hand, if n 2 3m + 1, then an 
algorithm does exist. The algorithm presented in 
[7] uses m + 1 rounds of communication, and thus 
can be said to require ‘time’ m + 1. An obvious 
question is whether fewer rounds of communica- 
tion suffice to solve the problem. 

In this paper, we answer this question in the 
negative. That is, we sh.ow that any algorithm 
which assures interactive consistency in the pres- 
ence of m faulty processors requires at least m + 1 
rounds of communication. 

The remainder of the paper is organized as 
follows. Section 2 contains motivation for our 
formal model and problem statement. Section 3 
contains the notation and definitions. Section 4 
contains a reduction of our set of allowable ~&TO- 
rithms to a more restrictib’e set of ‘uniform’ algo- 

rithms. Section 5 contains a restatement of the 
relevant results of [7]. Section 6 contains our main 
lower bound result. Section 7 contains an im- 
portant open question. 

The reader is urged to read [4] and [5] for 
discussion of the practical importance of assuring 
intei*active consistency, and [7] for additional re- 
sults not immediately relevant to this paper. Other 
related papers are [2] and [3]. 

2. Motivation for the definitions 

A general model for solving the interactive con- 
sistency problem might consist of n processors 
(automata) communicating by means of n2 one-way 
‘communication channels’. Each channel can be 
formalized as a shared variable which can be mod- 
ified by exactly one processor and read by exactly 
one processor. (Such a formalization can be car- 
ried out, for example, within the model of 161.) The 
variables which each processor can modify are 
called its ‘out-channels’, while the variables it can 
read are called its ‘in-channels’. 

Each processor p starts with an arbitrary private 
value a(p). Execution of the system proceeds in 
synchronous ‘rounds*; at each round, the followin 
two steps occur: 

Step 1. Each nonfaulty processor writes values 
(‘sends messages’) derived from its state into all of 
its out-channels, while each faulty processor writes 

. arbitrary values into all of its out-channels. 
Step 2. Each processor reads the values from al 

of its in-channels. 

0020-O 190/82/0000-0000/$02.75 0 1982 North-Holland 183 



Volume 14, Number 4 INFORMATION PROCESSING LETTERS 13 June 1982 

After some specified number, k. of rounds, each 
processor p outputs a vector of values, one for 
each processor r. These outputs are required to 
satisfy conditions (a) and (b) stated in Section 1. 

If the only complexity measure of interest is the 
number of rounds, then we can assume without 
loss of generality that the messages sent by each 
nonfaulty processor p on the first round are all 
exactly equal to its private value u(p), and that the 
messages sent by each nonfaulty procesor on sub- 
sequent rounds are all exactly the set of messages 
received from all processors on the previous round. 
That is, if there is any correct k-round algorithm, 
then there is a correct k-round algorithm in which 
exactly the messages described above are sent. 
This is so because (i) it is clear that the given 
information is the maximum nontrivial informa- 
tion which could be sent, (ii) it does not hurt to 
send nonfaulty processors the maximum informa- 
tion, since they can derive any needed information 
from the given maximum information, and (iii) it 
does not hurt to send faulty processors the maxi- 
mum information, since it is assumed that the 
faulty processors can send arbitrary messages in 
any case, i.e., they could ‘guess’ any missing infor- 
mation. 

In such a maximum-information algorithm, the 
output vector of each processor p is simply a’ 
function of the set of all values received by p at all 
rounds of’the computation. (So far, this reduction 
is as in [7].) In addition, if p is nonfaulty, then the 
set of messages received by p at all rounds of the 
computation is determined by the set of messages 
received by p at the last round (since p sends 
messages to itself at each round containing the 
information p received at earlier rounds). Since the 
correctness conditions only involve the outputs of 
nonfaulty pr80cessors, if suffices to formalize the 
output of p as a function of the set of messages 
received by p at the last round of communication 
only. 

If A is any alphat tt, i, j E N L {OJ, i a j, we use 
A”j to denote the set of strings of symbols in A, of 
length at least i arid at most j. 
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Let P be the set of processors, ]PI = n, and let m 
be an upper bound on the pumber of faulty 
processors. Fix V to be the domain of values on 
which the processors wish to reach agreement. 
Assume (0, 1. } c V. 

For any 1; E N U (0}, let ak denote the set of 
mappings from Pk into V. (An element of qk is 
intended to represent a set of messages which a 
processor could receive at the last round of a 
computation.) 

A k-round algorithm A (for P) is a set {F,: 
p E P} of functions, where Fp: ‘?Lk X P + V. A is 
uniform if FF = Fs for all p, q E P. 

A k-round scenario (for P with m faults) is a 
mapping u: Plzk+’ +V, such that ITo] an-m, 
where T, (the set of truthtellers) = {q E P: a(wqp) 
= a(wq) for all p E P and all w E Pozk-‘}. Intui- 
tively, a(p 1 pr . . . pi) is intended to represent the 
value in V which pi _ 1 told pi that pi-2 told pi_ I 

that . . . that p, told pz was pi’s private value; as a 
special case, u(p) represents p’s private value. (Note 
that this definition reverses the direction of the 
string arguments in the [7] definition.) Let L, (the 
set of liars) denote P-T,. If u:P”~+’ --, V and 
p E P, then p’s view of u is the map or, E GZLk given 
by o,(w) = u(wp). Let vpk = {a: u is a k-round 
sccilario (for P with m faults) and p E T,}. That is, 
vpk is the set of possible views for p when p is a 
truthteller in a k-round scenario. 

Let A = (F,: p E P} be a k-round algorithm. 
Then A assures interactive consistency (for P with 
m faults) provided that for each k-round scenario 
u (for P with m fau!ts) the following two condi- 
tions hold: 

(a) Validity. F&ur,, r) = u(r) for all p, r E T,, 
(b) Agreement. F,,(QP, r) = F,( us, r) for all p, q 

E T, and all r E P. 

4. Reduction to uniform algorithms 

In this section, we show that it suffices to 
restrict attention to uniform algorithms. 

Lemma 1. Assume n ) 2m + 1. Let A = (F,: p E P} 
be a k-round algorithm which ussures interactive 
consistency. Then F$( a, r) = F,( QI, r) for all p, q, 
r E P and all (Y E VP n ‘vg”. 
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Proof. Let p, q, r E P, (Y E ?Lk n ?$ Then there 
are k-round scenarios u and r such that p E Td, 
qET,andar=cr, = rq. Let s E T@ n T,. (Such an s 
is guaranteed to exist because n 3 2m + 1.) 

Modify only the last round of u and T to obtain 
new k-round scenarios u’ and T’, as follows. Let 
u’(ws) = u(wp) for all w E Pk. and let u’(x) = u(x) 
otherwise. Similarly, let ~‘(wI ) = r(wq) for all w E 
Pk, and let T’(X) = T(X) otherwise. It is easy to 
check that u’ and 7’ are scenarios (since Td. > T, 
and T,* 2 T,), that {p, s} c T,,, {q, s} c T+ and 
that (Y = ui = us’ = 7q’ = 7:. Thus, F&x, r) 
= F,( (Y, r) = F,( (Y, r), by the agreement property. 
El 

Theorem 2. Assume n 2 2m + 1. If there is a k-round 
algorithm which assures interactive consistency, then 
there is a k-round uniform algorithm which assures 
interactive consistency. 

Proof. Let A = { Fr: p E P} be a k-round algorithm 
which assures interactive consistency. Define 
F: %!Lk X P + V as follows. Let 

F(a, r) = 
F&x, r) if a E?ibk, 

0 otherwise. 

Lemma 1 shows that this definition is consistent. 
Then the algorithm which uses F for all processors 
is a k-round algorithm which assures interactive 
consistency. Cl 

5. Earlier results 

In this section, we state the two relevant results 
from [7]. 

Theorem 3. Assume n c 3m + 1. Then there is no 
algorithm which assures interactive consistency. 

Proof. The proof can be found in [7]. Cl 

Theorem 4. Assume n 3 3m + 1. Then there is an 
(m + l)-round uniform algorithm which assures in- 
teractive consistency. 

Proof. The proof can be found in [7]. Cl 

6. Lower twund 

In this section, ‘we present our main result. 

Theorem 5. If k m, then there is no k-rowd 
algorithm which assures interactive consistency. 

Proof. The theorem is seen to be true if 
m = 0, so assume tha . Assume that the 
theorem is false: that k d therr: is a k-round 
algorithm A = { Fp: p E P) which assures interac- 
tive consistency. By Theorem 3 we know that 
n > 3m + 1. By Theorem 2 we can assume that A 
is uniform, i.e., that Fp = F for all p 

Define a relation - on GZLk as follows: Let 
Q - /3 provided there exists a k-round scenario u 
andp,qET,forwhichu=ur,and/3=a,. Let zs 
be the smallest equivalence relation containing - . 
By the agreement property, we have the following. 

Fact 1. F( a, r) = F( 19, r) for aN a, /3 E ,Bk with 
cr~&andaNrEP. 

For each v E V, w E PL, let y,(w) = v. By the 
validity property, we have the following. 

Fact 2. F( y,, r) = v for all r E P and all v E V. 

Define an arbitrary total order on P, let N =: nk, 
and let f:P”-, (l,...,N) be a bijection corre- 
sponding to lexicographic order on the strings in 
Pk. That is, if v, w E P’, 0 G i Sk - 1, p, q E P, 
v=r l...ripX, W=r ,... riqy and p < q, then I?(V) ( 

RW)* 
For 16 * N+l,definea,:Pk+{O,l} by 

a,(w) = 
( 

0 if f(w) <a, 

1 otherwise. 

Note that ai =y, and ~+,=y~. 
We claim that (Y, - a,+, for all a, 1 fd. If 

so, then ~,=a,-(Ye- *sn -~+,=y~, so that 

YI =yo- Fix any r E P. By Fact 1, F( yI. r) z 
F(y,, r). However, by Fact 2, F( y,, r) = 1 and 
F( yo, r) = 0. This provides the needed contradic- 

tion. 
It remains to prove the claim. Fix a, 1 N, 

and choose rl,...%rk so that &,...r,)=a. By as- 

sumption, n -k~n-m~3mfl-m=2m+l 
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> 2, so that there exist two distinct participants, 
rk+, and rk+2, in P- {rI,;..,rk}. Assume without 
loss of generality that rk + ,> r1(+2 in the total 
order on 1’. We construct a k-round scenario u 
with L, c (rl,...,rk}, in which ark+, = (Y, and urlr+2 
= cy,, ,. Let 

I 

0 if w = r, . ..riPX. 

u(w) = 
whereO<i<k,pEP,xEPozk-’ 

and peri+,, 
1 otherwise. 

We show that u is a k-round scenario, with L, c 
(r t,...,rk}. Let q E P- {rl,..&}, p E P and w E 
Pozk-‘. We must show that a(wq) = u(wqp). Now, 
lwql e k, SO that wq is of the-form r, . . . risx, where 
iek- 1, sEP, and s+ri+t. Then 

o(wq) = 
0 if SCri+t, 

1 otherwise, 

=U(Ti . ..riSXp) =U(WC@). 

Next, we show that ur,+, = a,. Let w E Pk. Then 

u,(w) = 
0 if f(w) <a, 
1 otherwise, 

Finally, we show that urt+Z = a,+,. Let w E Pk. 
Then 

0 if f(w)Sa, 
1 otherwise, 

= dwrk+2 
. 

Since %+2(rk+1, 

=U ( ) rlL+t 
W. cl 

Note that Theorem 4 provides an upper bound 
on both the number of processors and the number 
of rounds. Thus, it demonstrates that both the 
!ower bounds of Theorems 3 and 5 are tight. 

7. Open question 

The most important question rx:maining in- 
volves the amount of communication and storage 
needed to assure interactive consistency. The algo- 
rithm in [7], which uses the minimum possible 
number of rounds, involves sendjng enormous 
amounts of information - approximately nm+2 
values in v. We would like to know if this amount 
can be reduced, say to an amount polynomial in n 
and m (using either the minimum number, m + 1, 
of rounds, or perhaps a larger number of rounds). 
An algorithm using such a reduced amount of 
communication might be of considerably more 
practical value than the current algorithm. 
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