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1. Introduction

The problem of ‘assuring interactive con-
sistency’ is defined in [7]. It is assumed that there
are n isolated processors, of which at most m are
faulty. The processors can communicate by means
of two-party messages, using a medium which is
reliable and of negligible delay. The sender of a
message is always identifiable by the receiver. Each
processor p has a private value o(p). The problem
is to devise an algorithm that will allow each
processor p to compute a value for each processor
r, such that (a) if p and r are nonfauity, then p
computes r’s private value o(r), and (b) all the
nonfaulty processors compute the same value for
each processor r.

It is shown in [7] that if n <3m + 1, then there
is no algorithm which assures interactive con-
sistency. On the other hand, if n = 3m + 1, then an
algorithm does exist. The algorithm presented in
[7] uses m + 1 rounds of communication, and thus
can be said to require ‘time’ m+ 1. An obvious
question is whether fewer rounds of communica-
tion suffice to solve the probiem.

In this paper, we answer this question in the
negative. That is, we show that any algorithm
which assures interactive consistency in the pres-
ence of m faulty processors requires at least m + 1
rounds of communication.

The remainder of the paper is organized as
follows. Section 2 contains motivation for our
formal model and problem statement. Section 3
contains the notation and definitions. Section 4
contains a reduction of our set of allowable alzo-
rithms to a more restrictive set of ‘uniform’ algo-

rithms. Section 5 contains a restatement of the
relevant results of [7]. Section 6 contains our main
lower bound result. Section 7 contains an im-
portant open question.

The reader is urged to read {4] and [S] for
discussion of the practical importance of assuring
intevactive consistency, and (7] for additional re-
sults not immediately relevant to this paper. Other
related papers are [2] and [3).

2. Motivation for the definitions

A general model for solving the interactive con-
sistency problem might consist of n processors
(automaia) communicating by means of n’ one-way
‘communication channels’. Each channel can be
formalized as a shared variable which can be mod-
ified by exactly one processor and read by exactly
one processor. (Such a formalization can be car-
ried out, for example, within the model of [6).) The
variables which each processor can modify are
called its ‘out-channels’, while the variables it can
read are called its ‘in-channels’.

Each processor p starts with an arbitrary private
value o/p). Execution of the system proceeds in
synchronous ‘rounds’; at each round, the following
two steps occur:

Step 1. Each nonfaulty processor writes values
(‘sends messages’) derived from its state into all of
its out-channels, while each faulty processor writes
arbitrary values into all of its out-channels.

Step 2. Each processor reads the values from all
of its in-channels.
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After some specified number, k. of rounds, each
processor p outputs a vector of values, one for
each processor r. These outputs are required to
satisfy conditions (a) and (b) stated in Section 1.

If the only complexity measure of interest is the
number of rounds, then we can assume without
loss of generality that the messages sent by each
nonfaulty processor p on the first round are all
exactly equal to its private value o(p), and that the
messages sent by each nonfaulty procesor on sub-
sequent rounds are all exactly the set of messages
received from all processors on the previous round.
That is, if there is any correct k-round algorithm,
then there is a correct k-round algorithm in which
exactly the messages described above are sent.
This is so because (i) it is clear that the given
information is the maximum nontrivial informa-
tion which could be sent, (ii) it does not hurt to
send nonfaulty processors the maximum informa-
tion, since they can derive any needed information
from the given maximum information, and (iii) it
does not hurt to send faulty processors the maxi-
mum information, since it is assumed that the
faulty processors can send arbitrary messages in
any case, i.e., they could ‘guess’ any missing infor-
mation.

In such a maximum-information algorithm, the

output vector of each processor p is simply a’

function of the set of all values received by p at all
rounds of the computation. (So far, this reduction
is as in [7].) In additicn, if p is nonfaulty, then the
set of messages received by p at all rounds of the
computation is determined by the set of messages
received by p at the last round (since p sends
messages to itself at each round containing the
information p received at earlier rounds). Since the
correctness conditions only involve the outputs of
nonfaulty processors, if suffices to formalize the
output of p as a function of the set of messages

received by p at the last round of communication
only.

3. Notation and definitions

If A is any alphatet, i, j EN U {0}, i >}, we use
A% to denote the set of strings of symbols in A, of
length at least i ar.d at most j.
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Let P be the set of processors, |P| = n, and let m
be an upper bound on the number of faulty
processors. FFix V to be the domain of values on
which the processors wish to reach agreement.
Assume {0,1} CV,

For any k €N U {0}, let * denote the set of
mappings from P* into V. (An element of AU* is
intended to represent a set of messages which a
processor could receive at the last round of a
computation.)

A k-round algorithm A (for P) is a set {F
p €P} of functions, where F,: U*XP-V. A is
uniform if F, =F, for all p, q E P.

A k-round scenario (for P with m faults) is a
mapping o:P'**'>V, such that |T,|=n—m,
where T, (the set of truthtellers) = {q € P: o(wqgp)
=o(wq) for all p €P and all w&P**~'}, Intui-
tively, o(p,p,...p;) is intended to represent the
value in V which p;_, told p; that p,_, told p,_,
that ... that p, told p, was p,’s private value; as a
special case, o(p) represents p’s private value. (Note
that this definition reverses the direction of the
string arguments in the [7) definition.) Let L, (the
set of liars) denote P—T,. If 6:P'**!' -V and
p € P, then p’s view of ¢ is the map o, € U* given

0,(W) =o(wp). Let V¥={o,: o is a k-round
sce.nano (for P with m faults) and p €T,}. That is,
‘V" is the set of possible views for p when p is a
truthteller in a k-round scenario.

Let A={F,: p€P} be a k-round algorithm.
Then A assures interactive consistency (for P with
m faults) provided that for each k-round scenario
o (for P with m faults) the following two condi-
tions hold:

(a) Validity. Fy(a,

() Agreement
€T,and allr€P.

,r)=o(r) forallp, reT,,
(o r) =Fy(o,, 1) for all p, q

4. Reduction to uniform algorithms

In this section, we show that it suffices to
restrict attention to uniform algorithms.

Lemma L. Assumen=2m+ 1. Let A= (F,: p €P}
be a k-round algomhm which assures interactive
consistency. Then F(a, r)=F(a, 1) for all p, q,
rEPandallaE‘Vgﬂ‘V
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Proof. Let p, q, rEP, a €V¥N VX Then there
are k-round scenarios ¢ and 7 such that p€T,,
qu anda=o,=7.Lets€T,NT,.(Suchans

P
........... P ..-.:... Lomceion = S Vm 1 1)
is gualuutccu 10 €XiSt oCCausc n~= 4im T 1.)

Modify only the last round of ¢ and 7 to obtain
new k-round scenarios o’ and 7', as follows. Let
o'(ws) = a(wp) for all w € P¥, and let ¢'(x) = o(x)
otherwise. Similarly, let 7'(w:) = r(wq) for all w €
PX, and let 7(x) =17(x) otherwise. It is easy to
aleaal bt =l nead ol Awn cnnemamians folsmnan T =T
VIIGLUA Uldl U alld 7 ale Mxcelialiuon \5]"\;‘ l . _) lo
sICT,. {qg5s) CT. and
= Jj = i1~ ) = 7

that a = o, =0/ = 'rg' = 1/, Thus, FP(a, r)
=F(a, r)= F(a, r), by the agreement property.

Thonwam VY Accismman >V L 1 Ifthoswn io b _mneied
AnCOMCIN &, ASSumien = a7+ 1. ij inere is a x-rouna

algorithm which assures interactive consistency, then
there is a k-round uniform algorithm which assures
interactive consistency.

pe P} be a k-round aigoriihm
ﬂ"ﬂf‘ 1

cictancu Defi
SiS el

na
i ~

i o
0 otherwise.

Lemma 1 shows that this definition is consistent.
Then the algorithm which uses F for all processors
is a k-round alrorithm which assures interactive
consistency. O

S. Earlier results

In this section, we state the two reievant resuits
_-__. r- l
11011
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Theorem 3. Assume n<3m+ 1. Then there is no
algorithm which assures interactive consistency.

Proof. The proof can be found in {7]. O
Theorem 4. Assume n=3m+ 1. Then there is an
(m + 1)-round uniform algorithm which assures in-

teractive consistency.

Prooi. The proof can be found in [7]. U
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In this section, we present our main result.

Theorem 8§, "' k=m, then

thova is mo L_g round
il 14 LA A~ L] nw ner weer "

algorithm wh:ch assures interactive consistency.

Proof. The theorem is easily seen to be true if
m=0, so assume that m>1. Assume that the
Lt <

sham e 2o folon. shhna Lo e b ekl o o b o2
wnCOITIN IS 14aISC. tnat K = [N andog uere l a K-rouna
algorithm A = (F: p € P} which assures interac

tive consnstency By Theorem 3 we know that
n=3m+ 1. By Theorem 2 we can assume that A
is uniform, i.e., that F,=F for all pPEP.

Define a relation ~ on AU* as follows: Let

D o~ R nravidad thara avicte o Loenund cranamina =
w“w N PIVYIUNLVU UIVIV VA @ ATIUVUIIG Svwiialiv v

and p, q €T, for whicha =0, and B=0,. Let =
be the smallest equivalence relatior containing ~.
By the agreement property, we have the following.

ot 1 T N TN N £ 4 . D~k .1
ract 1. r\a, 1)—ro\p, 1} jor au a, pc<-a4 win
a=R andallrcP

For each vEV, w€P¥, let y(w)=v. By the
validity property, we have the following.

Fac

-

2. F(y,r)=vforalltEPandallveV.

Define an arbitrary total order on P, let N = n*,
and let ¢:P* - {l N} be a buecuon corre-

BW). _
For 1<+ N+ 1, define a,: P* -~ {0, 1} by
[0 ife(w)<a,
da(W) - .
1 otherwise.
Note that o, =y, and ay . ;= ¥,.

We claim that a, ~a,,, for a“ a, l<asNIf
so, then vy, =a;~a,~ +* ~ay,; =Y so that
¥, =Y, Fix any r€P. By Fact 1, F(y,, nN=

F(v,, r). However, by Fact 2, F(y,, r)=1 and

=\ Thie neavidag tkn noasdad cantradic.
I Ygs 1) 7 V. LHIHD PIUVIULS IV HILLULU LRIV Ay
tion,

It remains to prove the claim. Fix a, 1 <a<N,
and choose r1,,....r, so that {(r,...r,) = a. By as-
sumption, n—k=n-m=3m+1-m=2m+1
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>2, so that there exist two distinct participants,
fy 4, and 1, ,, in P—{r,,...,1,}. Assume without
loss of generaiity that r,, ,>r,,, in the lOIal

e e D Wa snnctennt o L_eannd coan o~
Oraer On 1. we Construct a X-roungd soenaric ¢

with L_C {r,,...,r.}, in which o..
=0, Let

19
~ i

|
o(w) = {l

We show that o is a k-round scenatio, with L, C
{r,...n,}. Letq€EP—{ry,....1,},pEPand we

K ¢ must show that o(wg) = 6(wqgp). Now,
lwg| <k, so that wq is of the form r;...r;sx, where
i<k—1,s€P,and s#r,,,. Then

[0 ifs<r,,,,
o(wq) = { 1 aelacion

11 OuiCIwisc,

Next, we show that o, | =a,. Let w € P¥. Then

2 1 1 otherwise,
=o(wr,,,) =0, (w).

Tg+1% 7

L
LS

nally, we show that o, =a,,, Let w&PX

iff{w)<a,
e l otherwise,
=o(wr,,,) sincer,, ,<r.,,,

=0, (W). O

Note that Theorem 4 provides an upper bound
on both the number of processors and the number
of rounds. Thus, it demonstrates that both the
iower bounds of Theorems 3 and 5 are tight.
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The most important questnon remaining in-

ha neenismé Af Ammmrerrireniand e

. |
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rithm in [7], whlch uses the mxmmum possxble
number of rounds, involves sending enormous
amounts of information - appxoxxmately n™*2

values in v. We would like to know if this amount

can ha radunad cav ta an amannt nalunamial in
VRl UV IVULARAL, Say W all alliVuiiy puryiViiiial il n

and m (using either the minimum number, m + 1,
of rounds, or perhaps a larger number of rounds).
An algorithm using such a reduced amount of
communication mlght be of consnderably more

practical value than the current algorithm.
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