
RELIABLE BROADCAST IN NETWORKS WITH
NONPROGRAMMABLE SERVERS’

Hector Garcia-Molina, Boris Kogan

Department of Computer Science
Princeton University
Princeton, N J 08544

Nancy Lynch

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract
The problem of implementing reliable broad-

cast in ARPA-like computer networks is studied.
The environment is characterized by the absence
of any multicast facility on the communications
subnetwork level. Thus, broadcast has t o be imple-
mented directly on hosts. A reliable broadcast pro-
tocol is presented and evaluated by several impor-
t a n t performance criteria.

1. Introduction.
Reliable broadcast of messages in point-to-

point computer networks is a n important distri-
buted application t h a t has received considerable
attention. A simple and obvious way to broadcast
a message is t o send a separately addressed copy
of it t o every host in the network and repeat this
process until a n acknowledgment is received. This
solution, however, leaves room for possible
improvement in several directions. First of all, i t is
clearly inefficient since i t can generate much more
network traffic t han necessary.

Efficiency could be improved if the network
servers were programmed t o handle broadcast mes-
sages intelligently. This approach is taken in

t This work has been supported by NFS Grants DMC-
8505194 and DMC-8351616, New Jersey Governor’s Com-
mission on Science and Technology Contract 85-990660-6,
and grants from DEC, IBM, NCR, and Perkin-Elmer Cor-
porations.

CH2541-1/88/0/0428$01.0 0 1988 IEEE

[AwEv84], [DaMe78], [Peac80], [Rose80], and
[SeAw83]. Unfortunately, i t is not always applica-
ble. For instance, Arpanet users cannot program
t h a t network’s servers (IMPS), nor a re the servers
preprogrammed t o implement broadcast efficiently.
However, even when servers a re nonprogrammable,
one can still achieve better efficiency than with the
simple solution. In particular, expensive communi-
cation links can be identified and avoided when-
ever possible.

While the simple solution has reliability pro-
visions in the form of acknowledgments this is not
always adequate. Consider, for example, a situa-
tion when the broadcasting host gets disconnected
form the network af ter delivering the message only
t o a portion of all hosts. The rest of the hosts will
never (or until the source is reconnected) receive
the message. Therefore, we would like t o have a
broadcast algorithm in which all hosts share the
responsibility for reliable message delivery so tha t
in the described scenario the hosts t h a t success-
fully received the message from the source could
then propagate i t t o others.

Finally, improvement can also come from
taking advantage of the fact t h a t broadcast appli-
cations usually operate on streams of many mes-
sages rather t han on a few isolated messages. By
ordering messages a t the source and keeping track
of the messages received so fa r at every host the
algorithm we propose will be able t o dynamically fi
make decisions on how t o propagate newly gen-
erated messages. The benefits gained in terms of

428

reliability and low delay will outweigh the extra
communication cost involved when the broadcast
s t ream is sufficiently long (consists of many mes-
sages).

It is important t o note t h a t reliability is
t reated here a s a relative measure rather t h a n a n
all-or-nothing property. T h a t is, instead of classi-
fying protocols a s reliable or unreliable, we t ry to
estimate t o what degree they are reliable (or
unreliable). No s ta tement can be made about the
reliability of any broadcast protocol without first
making some assumptions concerning the reliabil-
ity of the network itself. For example, if the net-
work s tays in a partitioned s ta te for a n indefinite
period of time, no protocol, no matter how clever,
can guarantee reliable delivery of broadcast mes-
sages t o all destinations. On the other hand, if the
partition is repaired for a brief period of time, only
to reappear and persist, some protocols might be
able to take advantage of this brief opening t o
complete a broadcast while others might not. Thus
i t seems more justified t o speak of relative reliabil-
ity of a protocol, referring to the degree to which
it is capable of utilizing communication opportuni-
ties presented by the dynamically changing net-
work. This issue is discussed in greater detail in
subsequent sections.

Interestingly enough, not all applications
t h a t make use of broadcast require t h a t i t be reli-
able. For example, in adaptive routing i t may be
necessary to distribute the information regarding
queueing delays in different par ts of the network.
Broadcast could be used for this purpose. How-
ever, if a broadcast message is la te in coming, due
to communication failures, it might just as well
not arrive at all because it will soon be outdated
by a more recent one anyway.

So i t seems useful t o keep in mind some
specific applications which require reliable broad-
cast. The main motivating application t h a t has
been driving the present work is management of
highly available replicated databases. There are
several known techniques for solving the problem
of high d a t a availability in replicated databases in
the face of network partitions, all of which require
reliable broadcast of updates. But while the goal
of reliable broadcast is t o eventually deliver all
messages to all destinations, there are some partic-
ulars associated with certain approaches. For
example, in the type of approaches tha t forego
serializability of transaction execution in order t o
achieve maximum d a t a availability (e.g., Data-

Pa tch [Garc83], log transformation [BlKa85],
[Sari85]), it is not absolutely essential t h a t updates
be installed in remote copies of the database
always in the correct order, i.e., in the order they
were generated. Consequently, i t is not essential
t h a t broadcast messages be always delivered in the
order they were dispatched.

In designing a reliable broadcast we take
into account this consideration. As a result, the
stress is pu t on delivering messages a s promptly as
possible, but not necessarily in the same order as
they are sent. Note t h a t this relaxation of require-
ments on a reliable broadcast gives potentially
more flexibility to the protocol and may improve
i ts average delay characteristic.

2. Basic Assumptions.
In this section, the chosen network environ-

ment is described in more detail, and some motiva-
tions for considering this environment are intro-
duced.

The network consists of a set of hosts, com-
munication servers , and communication links.
Hosts are computers t h a t participate in the broad-
cast application. Servers are nodes interconnected
among themselves by point-to-point bidirectional
links into a communication subnetwork. (This
study can be extended to the case when some of
the links are of the broadcast type, however we
choose not t o consider this extension here.) Each
host is a t tached to a server. Some servers, how-
ever, may have no corresponding hosts, and, there-
fore, ac t only a s switches.

In reality, a server is either a separate dedi-
cated communication processor (e.g., Arpanet) or a
process residing a t the same physical computer
with the corresponding host (e.g., Bitnet). If the
la t ter is true, a clean interface between the host
and the corresponding server is assumed. For our
purposes it is both convenient and sufficient t o
assume t h a t servers are separate nodes.

There is no multicast facility provided by the
network, and servers cannot handle messages with
multiple addresses. The only kind of instruction a
host can give t o a server is request it t o deliver a
message t o a single destination. Thus if the same
message is t o be sent t o several destinations, the
above procedure has t o be repeated several times.
Servers a re assumed to be nonprogrammable as far
as the broadcast application is concerned, i.e., the
code t h a t is run on the servers cannot be changed
to expedite reliable broadcast. T h a t leaves the

429

only remaining alternative: implementing broad-
cast on the hosts.

The kind of scenario described in the previ-
ous paragraph is quite realistic. I t may arise in a
network of the type of Arpanet (which still does
not provide a multicast facility) when (some of)
the hosts connected t o the network wish to enact
efficient and reliable broadcast for a common
application.

The host t h a t issues broadcast messages
(which will also be called data messages) is referred
to as the source. Here, we study only a single-
source broadcast problem. However, a multiple-
source broadcast can be performed reliably by run-
ning several identical single-source protocols sug-
gested in the present paper. From the point of
view of efficiency this option also appears t o be a
reasonable one.

The hosts a r e reliable and never fail. The
servers and links, however, can fail. In view of this
la t te r assumption, the assumption concerning the
reliability of hosts is no longer overly restrictive,
for a host crash can now be "simulated" by a
server or link failure, provided of course t h a t hosts
a re equipped with non-volatile d a t a storage.
Namely, if a host crashes, the effect on the broad-
cast application is the same as if the link connect-
ing the host t o i ts server went down: in either case
there is no message traffic t o or from the host.

W e make no assumptions about communica-
tion failures in the network other t han the impos-
sibility of malicious messages being generated.
Links can fail and recover a t any time. Messages
can arrive out of order, have arbitrary delays, be
lost a t any point (even when the link over which
the lost message was sent is perceived t o be opera-
tional), or be spontaneously duplicated. Moreover,
the fact t h a t a message is lost is not automatically
detected by the communication subsystem and ,
therefore, cannot be reported t o the application.
Similarly, failures of links and their recoveries are
not detected either. Thus, the application can
never be certain whether a given link is opera-
tional a t any given moment.

The reason for making as few assumptions as
possible about tlie way the comniunication net-
work behaves, particularly the way in which i t
may fail, is t o design a protocol t h a t does not
depend for reliability on the d a t a link layer of the
network [Tane81]. There is a growing feeling
among the researchers in the field against such
dependency. Moreover, even though most of the

existing networks have reliability mechanisms -
such as message acknowledgments - implemented
a t the d a t a link layer, i t is likely t h a t future
designs will favor pushing these mechanisms up to
the application layer. A strong efficiency argument
can be made in favor of such arrangement.

The next assumption will be referred t o as
the c o m m u n i c a t i o n transi t iv i ty assumption. It pos-
tulates t h a t if during the (sufficiently long) time
interval (t , t ') host z can communicate with host y ,
and y can communicate with host z, then, during
(t , t ') , z should also be able t o communicate with
z. The significance of communication transitivity
will become apparent when we discuss the particu-
lars of the proposed protocol. The assumption
seems quite reasonable for networks with adaptive
routing since in a situation described there exists
a t least one communication pa th between hosts z
and z - the one t h a t goes through (the server of)
host y. Given sufficient time, the routing algorithm
will discover i t .

Hosts possess no knowledge of the network
topology or any other s ta t ic information concern-
ing the network. They do, however, know the iden-
tities of other participating hosts. (When this
la t te r assumption is not valid, i.e., some hosts do
not know the identities of all other hosts, the prob-
lem becomes very different. See (Deme871 for a pos-
sible solution.)

We assume t h a t there is a division of all
links into two categories, according t o their
bandwidth. High bandwidth links are called cheap;
low bandwidth links a re called expensive. For obvi-
ous reasons, i t is not specified what high and low
mean precisely, bu t we assume t h a t expensive links
a re much more expensive than cheap ones. This
assumption is motivated by the existence of long
haul networks (with low bandwidth links) with
local networks (with high bandwidth links)
integrated into them. In a global network of this
kind some hosts a re connected via cheap links
while others a re connected via expensive links
only.

Since they have no s ta t ic information about
the network, hosts do not know which links are
cheap and which a re expensive. itre assume, how-
ever, t h a t there is a way for a host t o tell whether
the message i t has just received traversed an
expensive link on its way t o the destination. (For
instance, there could be a special bit in the mes-
sage format initialized t o 0 and set t o 1 by a
server whenever the message in question traversed

430

a n expensive link. Even if the network did not pro-
vide this type of service, i t could be implemented
at the host level. One way t o do this would be t o
timestamp each message at the time i t is sent out .
This would allow each host t o estimate the time in
t ransi t . Since the expected times for cheaply
delivered messages and for expensively delivered
ones vary significantly, hosts would be able t o tell
them apart .) The ability to distinguish expensively
delivered messages from cheaply delivered ones is
the only kind of dynamic information available t o
hosts.

Finally, we assume t h a t at any given time all
the hosts in the network can be divided into
groups such t h a t within each group hosts can com-
municate among themselves cheaply, bu t hosts in
different groups can only communicate using
expensive links. Such a group of hosts is called a
cluster. Clustering of hosts can change over time
due to failures and repairs of communication
links.+ Note t h a t a host’s view of the constituency
of its cluster may not always be consistent either
with t h a t of other hosts or with reality.

3. Basic Ideas.
As was mentioned earlier, the goals of our

protocol should be low cost, low average delay,
and high reliability. In this section we focus on
some basic ideas on how t o achieve these goals,
without going into details of the proposed algo-
rithm.

We s t a r t with a fairly obvious observation,
namely t h a t optimal cost cannot be achieved for
broadcast in our environment. This is illustrated
by the example in Figure 3.1.

In this example we have three hosts con-
nected by a network of four servers (hosts a re
denoted by squares, and servers by circles). Host h l
is the source of broadcast. Clearly, the most cost
efficient (as well as the delay minimizing) way for
h l t o broadcast a message would be as follows.
Ilost h l hands the message t o its server (sl). s,,
then, sends i t t o server s 4 . s 4 makes two copies of
the message and sends one copy each t o servers s2
and s3. Finally, s a and s3 pass the message on t o
hosts h 2 and h 3 , respectively. In this way, no link
is traversed more than once (and, obviously, every
liiik has t o be traversed in the given example for
the broadcast to succeed).

t In this contex t , r epa i r can also mean an in t roduc t ion of
a new I inK.

9
h* -5, s

Figure 3.1.

Note, however, t ha t , according t o our
assumptions, servers cannot handle multiply
addressed messages, nor is there any way for host
h , to explicitly instruct server ,s4 t o duplicate the
message and send the copies t o two separate desti-
nations (and even if there were, t h a t would do no
good because h l knows nothing of t he network
topology). Hence, broadcast cannot possibly be
performed as described above. So, no mat te r what
type of protocol one comes up with for our
environment, i t will not , in general, have optimal
performance. Therefore, the goal of our algorithm
should be t o minimize the cost of broadcast given
the restrictions of server nonprogrammability.

Assuming t h a t the network is not partitioned
and disregarding for now the possibility of any
changes in i t , we could arrange clusters in a tree
rooted at the cluster containing the source. Then
broadcast messages could trickle down the cluster
tree from parent cluster to child cluster.

Every cluster has a special (dynamically
selected) host in i t , called a cluster leader. A clus-
ter leader receives broadcast messages from one of
the hosts in the parent cluster, and i t is responsi-
ble for distributing them t o other members of its
own cluster (cluster neighbors). Broadcast is ini-
t iated when the source sends a message t o its clus-
ter neighbors. The source is considered the leader
of i ts own cluster. Figure 3.2 shows a n example of
a cluster tree. Nodes of this tree a re represented
by ellipses. Within each cluster (ellipse), hosts are
represented by boxes, with boxes denoting cluster
leaders shaded.

The tree arrangement helps reduce the
number of transmissions required t o complete
broadcast of a data message. If we also wan t low
average delay, however, i t is not enough t o come
up with just any cluster tree. The main idea for
reducing delays is, for every cluster, t o t ry t o find
a parent cluster t h a t can deliver new broadcast
messages as promptly as possible. Namely suppose
tha t , for a given cluster C, we have a choice of

43 I

4.1. The Host Parent Graph.
T o enact broadcast, hosts a t tempt to

configure themselves into a treet with the source as
i ts root. In a failure-free environment, such a tree
would be stable, and d a t a messages could be sent
from parent t o child to make broadcast complete.
However, because of the possibility of link failures,
the tree can become disconnected, and the nodes
should be able to reconfigure into a different tree if
at all possible. The resulting structure is, there-
fore, dynamic and referred t o as the
host parent graph, t o underscore the fact t h a t con-
nectivity is not always achieved (e.g., during net-
work partitions).

(It is important not t o confuse communica-
tion links of the network with edges of the host
parent graph. For the la t te r correspond t o com-
munication pa ths tha t , in general, can consist of
several links.)

We say t h a t a host parent graph H induces a
cluster tree L if (1) H i s a tree; and (2) children of
every cluster leader include all other hosts t h a t are
in the same cluster. Note t h a t if a child of a clus-
te r leader in H is not from the same cluster, i t
must be a cluster leader itself, otherwise condition
(2) above would be violated.

The relationship between H and L is illus-
t ra ted by the example in Figure 3.2. A node in L
(denoted by a n ellipse) is uniquely determined by
lumping together a cluster leader and all its chil-
dren in H. For example, in Figure 3.2, C, C', and
C" are all nodes in L, with C being a child of C'.

Not every host parent graph, though, induces
a cluster tree. Consider again the host parent
graph of Figure 3.2. Suppose t h a t a high
bandwidth pa th has just been repaired between
clusters C" and C. T h a t means t h a t these two
clusters have been joined into one. According t o
the definition, the host parent graph no longer
induces a cluster tree.

T o reduce the cost of broadcast, i t is desir-
able t o have a host parent graph t h a t induces a
cluster tree. Thus the algorithm must maintain a
host parent graph in such a way t h a t i t dynami-
cally adjusts to changes in the network and tends
t o assume a configuration t h a t induces a cluster
tree. Note tha t , because of such dynamic adjust-
ments, there can be, at any given moment, more
than one leader in a cluster (or no leader a t all), a

Figure 3.2.

parents C' or C" (see Figure 3.2). Further, sup-
pose t h a t somehow i t is known t h a t cluster C'
receives broadcast messages ahead of C". Then C'
is a better candidate for a parent t han C", and
cluster C should become a child of C'. Note t h a t
a t a la ter time, due to changing message traffic,
some other cluster can become a more desirable
parent for C t h a n GI. Thus, we may have t o
dynamically restructure the cluster tree t o minim-
ize delays.

Dynamic changes in the cluster tree may also
be necessary t o allow compensation for component
failures. For example, if a cluster finds out t h a t it
no longer can communicate with i ts parent, i t
should t ry t o find a new parent. In another
instance, a cluster leader (or its server) may fail,
in which case the members of the cluster must
come up with a new cluster leader t o maintain the
connectivity of the tree.

Failures can also cause messages t o get lost,
and the reliable broadcast algorithm must compen-
sa te for this. T o detect lost packets, all broadcast
messages a re sequence numbered so t h a t i t is easy
t o tell when a message has failed t o be delivered t o
any given host. When t h a t happens, certain
actions a re taken t o enact a redelivery of the lost
message.

4. The Algorithm.
In the previous section, some high level s t ra-

tegies for enacting efficient reliable broadcast were
outlined. In this section, the actual broadcast algo-
ri thm is presented, in particular i t is shown how t o
construct and dynamically maintain a cluster tree.
(For a formal specification of the algorithm see
[Garc87] .) This is diRerent from a cluster tree.

432

situation t h a t will be eventually corrected by the
algorithm. In the remainder of this section, any
host whose parent is not in the same cluster will be
regarded as a cluster leader.

Broadcast messages a re propagated in the
host parent graph from the root all the way down.
Thus, upon receipt of a broadcast message, a host,
sends i t on t o all its children. For reasons
explained below, a host can accept a message
sequence-numbered higher t han any i t has received
so far , only from i ts parent. If such a message
arrives from any other host, i t is discarded. A
message is also discarded if the recipient host has
previously accepted i t . (Repeated delivery may be
caused, for example, by dynamic changes in the
host parent graph.)

4.2. The Attachment Procedure.

A t the heart of the algorithm is the attach-
ment procedure, which is periodically activated at
every host. The purpose of this procedure is t o
make sure t h a t the host is a t tached t o a "good"
parent , and if t h a t is not the case, find a better
one.

As was mentioned earlier, broadcast mes-
sages a re sequence numbered. Every host keeps
t rack of all the messages i t has received so far. For
each host i, a set INFOi contains the sequence
numbers of all messages received by i. Let us define
a partial ordering < on sets of message sequence
numbers. We write A < B if the largest element
of A is strictly less t han the largest element of B,
i.e., if max(q) < max(q). Also, we write A N B, if

max(q) = max(q). These sets a re used for detection
q € A q €B
and redelivery of lost packets. They are also used
for dynamically maintaining the host parent graph
with the goal of maximizing reliability and minim-
izing delays.

Each host i maintains a n a r ray of sets of
message sequence numbers, MAPi. MAP;[j]
represents host a's view of INFO, (thus,
MAP;[i] = INFOi). Hosts periodically update one
another on the current values of their INFO sets.
INFO,, where s is the source, gets updated every
time a new broadcast message is generated a t the
source.

CLUSTERi is a set t h a t contains the identi-
ties of hosts t ha t , according t o host i, are in the
same cluster with i. This set can be updated when
a message (of any kind, not necessarily a broad-
cast message) is received from another host j. If

q € A q € B

the cost bit in the message is 1, and j was a
member of CLUSTERi, then j is taken out of this
set. Similarly, if t he cost bit is 0, and j was not in
the set, i t is added. CLUSTERi is initialized t o { I] ,
i.e., in the beginning each host assumes t h a t i t is
in a cluster by itself. Of course, if there is some
information t o the contrary, then CLUSTER; can
be initialized differently.

CHILDRENi is a set of all the children of
host i in the host parent graph and is maintained
by host i itself. Also, host i has a n a r ray p i [] such
t h a t its j-th element is the supposed parent of host
j . Entry p i [;] , of course, is the t rue parent of i, at
all times. Array p i is updated when cluster neigh-
bors periodically inform i of the identities of their
new parents.

Finally, there is a s ta t ic linear ordering
imposed on all the hosts. The number assigned by
the ordering t o host i is denoted by order(i).

The a t tachment procedure consists of a
number of options t h a t must be tried by the host,
in the order indicated, until either a suitable new
parent is found or all options are exhausted
without success. In the la t te r case, the host waits a
certain period of timet before initiating the same
procedure again. If, however, a parent is found, a
message is sent t o i t requesting inclusion in its
CHILDREN set. If the acknowledgment t o this
message times out , t he procedure is repeated to
find another candidate with which the given host
can communicate. The old parent, if any, is also
notified of the change by a n appropriate message.

The options, for each host i, are as follows
(the new parent of i is denoted by j) .

I. For a host currently without a parent:

(1) At tach t o a host in the same cluster t h a t has
a parent in a different cluster or no parent at
all (a cluster leader), and a greater (accord-
ing t o relation <) INFO set . Thus j must
satisfy the following conditions:

j E CLUSTERi

p i [j] CLUSTER{

MAP;[i] < MAPi[j]

(2) Attach t o a cluster leader in the same cluster
with a n "equal" INFO set and a greater

t This time period is a parameter of the algorithm.

433

stat ic order number. loads.

First of all, we need t o show t h a t the attach-
ment procedure constructs a parent graph t h a t is
dynamically acyclic, i.e., has no persistent cycles,
barring the case of partition. Since hosts accept
broadcast messages only from their parents and no
host ever attaches to a parent with a smaller
INFO set, no host's INFO set can be smaller than
t h a t of any of i ts descendants. Therefore the only
way t o form a cycle is for a host t o a t t ach t o one
of i ts own descendants with a n "equal" INFO set.

Let us first consider cycles t h a t involve hosts
from several clusters. Such a cycle contains at
least one cluster leader, which will look for a new
parent with a greater INFO set soon after the
cycle is formed (case 11, option (3)). If the cluster
leader is successful in i ts search, the cycle will be
broken when the leader a t taches to its new parent.
Otherwise, i t means t h a t the leader cannot com-
municate with any hosts t h a t have greater INFO
sets. By the transitivity assumption, none of the
hosts on the cycle can communicate with such
hosts either. Therefore the cycle will not be bro-
ken until communications are restored. Note,
however, t h a t a cycle in the host parent graph is
undesirable only because no host on i t can get any
new broadcast messages. Bu t in the described
situation this is the case even if there were no
cycle (because of a n apparent network partition-
ing). Thus, the presence of a cycle is unimportant
here (as long as i t gets broken when communica-
tions a re restored).

A cycle contained within a single cluster can
be detected when a host i tries option (1) of case
I11 and discovers t h a t i t is i ts own ancestor
(i E ANCi), by following parent pointers. But ,
unlike a cycle t h a t spans multiple clusters, this
type of cycle cannot be automatically broken by
the a t tachment procedure. Therefore we need a
special rule for breaking single-cluster cycles. The
host with the highest s ta t ic order number on the
cycle shall detach from its parent and go through
the appropriate options for finding a new one.
Once again, success is guaranteed unless there is a
network partition. EIaving considered both types
of cycles, we can conclude now t h a t unless there is
a partition in the network, no cycle in the parent
graph can be stable. On the other hand, if there is
a partition, then the presence of a cycle is not
detrimental t o broadcast.

Options (1) and (2) of cases I and I1 work
towards establishing a single cluster leader for

j E CLUSTERi

pi[j] 6 CLUSTERi

MAPi[i] N lLlAPi[j]

order(i) < o r d e r (j)

(3) Attach t o a host in a different cluster with a
greater INFO set.

j e CLUSTERi

MAPi[i] < MAPi[j]

11. For a host with a parent in a different cluster:

(1)

(2)
(3)

See Case I, Option (1).
See Case I, Option (2).
Attach t o a host in a different cluster with
a n INFO set greater t h a n t h a t of i 's current
parent.

j CLUSTERi

MAPi[pi[i]] < lLi'APi[j]

111. For a host with a parent in the same cluster:

(1) At tach to the ancestor (other t han parent,)
t h a t is a cluster leader in the same cluster,
provided t h a t i ts INFO set is greater or
"equal" to the host's own.

j E CLUSTERi

pi[j] 4 CLUSTER;

j E ANC;, where

ANCi = {k: k = p ; [i] or k=pi[l] s.t. 1 E ANC,}

MAPi[i] < MAPi[j] or MAPi[i] E MAP;[j]

The procedure is run at all hosts bu t the
source. Note t h a t in the very beginning of broad-
cast, the host parent graph is just a collection of
hosts with no parent-child connections among
them. In the process of broadcast those connec-
tions a re established and changed as appropriate.

4.3. Properties of the Attachment Pro-
ce dur e.

In this subsection, we show t h a t the attach-
ment procedure constructs a host parent graph
t h a t induces a cluster tree d y n a m i c a l l y , by adapt -
ing t o constantly changing network topology and

434

each cluster, by making i t a priority t o look for a
new parent within the cluster. Only when this
fails, does the host look for a parent outside i ts
cluster (option (3) of cases I and 11). Option 1 of
case 111 (for a host with a parent within the same
cluster) a t tempts t o establish a connection with a
cluster leader directly, if i t is not the case already.
As a result, all hosts in the same cluster tend t o
organize into a single cluster tree node.

Option (3) of case I is for a host t h a t has
been unable to find a parent within i ts own cluster
and , therefore, has t o look elsewhere. This host,
then, becomes a cluster leader.

Option (3) of case I1 is for a cluster leader
t h a t tries to improve i ts situation in terms of the
delay with which i t receives broadcast messages,
by switching t o a parent t h a t has received more
recent messages (with greater sequence numbers).
This idea for reducing delays is similar t o the one
proposed by Awerbuch and Even [AwEv84]. In
their work, however, i t was applied in a different
network setting (programmable severs, more res-
tricted failure assumptions, disallowed acceptance
of out-of-order messages).

Besides being a n instrument for reducing
delays, option (3) of case I1 can help a host t o
detect when i ts parent has become disconnected
from i t . For, in t h a t case, the old parent’s INFO
set, as perceived by the child, will fall behind those
of other out-of-cluster hosts with which the given
host can communicate. Note, however, t h a t for
hosts other t han cluster leaders the a t tachment
procedure does not provide a n automatic way of
detecting the failure or disconnection of the
parent. Therefore, we need a separate provision t o
help detect this situation. One way t o do this
would be t o time out on a parent t h a t fails t o send
messages such as the ones containing i ts INFO set
and the identity of i ts own parent, which a re being
routinely exchanged by hosts in the same cluster.
When this occurs, the host sets i ts parent pointer
t o NIL and goes through options (1) t o (3) of case
111.

4.4. Gap Filling.

The a t tachment procedure presented above
is a way for the hosts participating in broadcast to
adjust t o component failures as well as t o the
changing loads in different par t s of the network.
The pa r t of the protocol discussed here deals with
compensating for lost broadcast messages (or filling
gaps in INFO sets). Note t h a t loss of messages

can result not only from unreliable behavior of the
communication subnetwork, bu t also from the
workings of the a t tachment procedure. In particu-
lar, af ter a host has a t tached to a new parent, i t
may receive a broadcast message from i ts old
parent (if the old parent never got the message
requesting detachment from i ts former child), but
in compliance with the restriction introduced
above i t is forced t o discard i t .

One type of gap filling action takes place
among host parent graph neighbors. When a host
a t taches to a new parent, the parent examines i ts
new child’s INFO set and forwards t o the child all
those messages t h a t the child is missing and t h a t
the parent has. When a host receives a gap filling
message (a broadcast message with a sequence
number less t han the largest i t has already seen),
i t forwards i t to all those of i ts parent graph
neighbors (its children and i ts parent) t h a t accord-
ing to i ts MAP do not have i t . In addition to the
above, every host periodically tries t o fill its
parent graph neighbors’ gaps by sending them mes-
sages t h a t i t perceives as missing from their INFO
sets. This is done more frequently for the members
of the same cluster and less frequently for the
members of different clusters. The restriction tha t
a host can accept broadcast messages only from its
parent does not have to apply t o gap filling mes-
sages because they do not a l ter the < order among
INFO sets.

G a p filling among parent graph neighbors
only is not sufficient in t h a t i t fails, in some cases,
to fill all the gaps or a t least as many gaps as the
current communication s t a tus of the network
would allow. To illustrate consider the following
example. Let there be three hosts in the network: 8

(the source), i, and j (all in different clusters). The
parent graph is shown in Figure 4.1. In i t , s is the
root, and i and j a re i ts children. Suppose t h a t a
network partitioning occurs t h a t leaves s isolated
from the rest of the network. But i and j can still
communicate with each other. Suppose, further,
t h a t three d a t a messages (numbered 1, 2, and 3)
were issued by s before the network partitioned;
message number 2 has not reached node i, and
message number 1 has not reached node j. Since
neither INFO; < INFOj nor INFOj < INFO;, hosts
i and j will not be able to reconfigure themselves
into a new parent graph until the partitioning is
repaired. And thus, as i and j are not parent
graph neighbors, they will not be able to fill each
other’s gap even though they can communicate
with each other.

435

least k - 1 inter-cluster transmissions, and prob-
ably more if there is more t h a n one host per clus-
ter.

As far a s the delay characteristics, our algo-
rithm appears to be comparable with the basic
one. Since messages are addressed individually in
the basic algorithm, the network can ensure tha t
they are delivered to each host along a shortest
pa th (assuming t h a t the network provides a clever
routing mechanism). In our algorithm, some hosts
do not get their d a t a messages directly from the
source so clever routing by the network is not
taken full advantage of. However, due to the delay
minimizing properties of the at tachment procedure
(already discussed in the previous sections), the
tree t h a t is dynamically maintained by i t tends to
provide the shortest paths from the source to all
other hosts. Moreover, our algorithm has the
advantage of not being dependent on the routing
service provided by the network.

In terms of recovery provisions our algorithm
is superior t o the basic one. When a host misses a
message (in a fully connected network), the mes-
sage is redelivered either by one of i ts cluster
neighbors or by a host from the parent cluster,
which tends to be one of the "closest" clusters t o
the host in question. In the basic algorithm, on
the other hand, the source itself would always
have to enact a redelivery, which, in general, is
costlier because the host t h a t needs this message
may be in a very "remote" cluster.

In a partitioned network, the source, using
the basic algorithm, does not stop trying to send
d a t a messages to all the hosts t h a t are cut off from
it , which is wasteful. In our algorithm, the hosts in
the same partition will tend t p organize into a
tree, and only the root will periodically probe the
network to detect when reconnection occurs.

I t is important t o point out t h a t the basic
algorithm can cause congestion of the source host's
server since d a t a messages go out separately to
every host. Our algorithm does not present such a
problem because responsibilities for disseminating
d a t a messages are distributed among all hosts.

Finally, i t should be noted tha t , compared to
the basic algorithm, ours may incur more addi-
tional cost in control messages, i.e., messages other
than those containing broadcast da t a . (An exam-
ple of control messages is exchange of INFO sets
among hosts as prescribed by the proposed algo-
rithm. The basic algorithm also requires control
messages in the form of acknowledgements.) How-

Figure 4.1.

To deal with this kind of situations we have
to extend the periodic gap filling process described
above so t h a t i t takes place even among hosts t h a t
are not host parent graph neighbors (e.g., between
hosts a' and i in the example of Figure 4.1). As in
neighbor gap filling, a host tries t o fill the gaps of
other hosts when i t can. However, the frequency of
this type of gap filling should be relatively low
since it operates across cluster boundaries, and
therefore the communication cost is high.

5. Performance.

In this section, we present arguments t h a t
explain why the performance of our algorithm
should be expected to be better than t h a t of the
basic algorithm mentioned in Section 1, which is
the only known alternative for networks with
nonprogrammable servers.

First, we compare the behavior of the two
algorithms when there a re no failures in the net-
work. The cost of a broadcast algorithm is usually
determined by the amount of traffic it generates,
or more precisely, the number of transmissions
over a single link necessary to complete the broad-
cast of a single d a t a message (or n messages, aver-
aged over n). In our discussion, we will approxi-
mate the cost by counting only the number of
inter-cluster host-to-host transmissions (as opposed
to single link transmissions) since these are the
most expensive ones. For example, with this
metric, the cost of broadcasting a single d a t a mes-
sage in the network of Figure 4.1 would be 2 (pro-
vided there are no lost messages). This is so
because a has t o send the message to both a' and j ,
and both of these paths are expensive. Note t h a t
in the original metric the cost would depend on the
number of links in each pa th .

With the cluster tree arrangement we need
only k - 1 inter-cluster transmissions, where k is
the number of clusters, t o broadcast one d a t a mes-
sage. Clearly, this is optimal. In the basic algo-
rithm, a d a t a message from the source is sent
separately to each host. T h a t would require a t

436

ever, the traffic generated by control messages in
our algorithm is totally independent of the number
of d a t a messages and can be adjusted a s desired
(see Section 6) .

8. Conclusions.
We have presented a broadcast protocol for

networks with nonprogrammable servers t h a t
appears t o have good cost, delay, and reliability
characteristics. We wish t o emphasize, however,
t h a t our protocol is based on heuristics and , there-
fore, cannot be expected to perform optimally. The
problem of efficient reliable broadcast in networks
with nonprogrammable servers is a hard one, and
solving i t in a truly optimal way appears t o be
difficult.

There is one performance aspect t h a t has not
yet been discussed. I t is the trade-off between relia-
bility and cost-delay characteristics. T h a t such
should exist is no surprise. Reliability is understood
to mean the ability of the algorithm to utilize a s
much as possible the communication opportunities
presented by the network. Thus, if there is even a
brief interval during which hosts h , and h2 can
communicate, and h l has a broadcast message
t h a t h2 does not, a reliable protocol will detect
this fact and have h l send this message (repeat-
edly if necessary) to h 2 . But to achieve this,
including the detection of the existence of the com-
munication p a t h between the two hosts, hosts have
to exchange messages. The more frequently this is
done, the more chance we will have t o use the
brief interval t o deliver the message, and, at the
same time, the more costly the algorithm will be.

In the algorithm presented here, these trade-
offs a re embodied in the frequency with which
hosts enact INFO exchange, parent pointer
exchange, and gap filling. These can be tuned
according to specific cost-reliability requirements.

Throughout this paper we have assumed t h a t
hosts have access t o dynamic information concern-
ing clustering. Note t h a t even if such information
is unavailable, bu t instead there is a static
knowledge of clusters, the la t ter can be used in the
algorithm, albeit with less satisfying performance
results. Furthermore, if no cluster information at
all is available, the algorithm still can be used,
with the assumption tha t every host is in a
separate cluster by itself, at any given moment.

A number of fairly obvious optimizations can
be incorporated in the actual implementation of
the algorithm. For instance, some control messages

t h a t a re dispatched by the same host a t about the
same time can be piggybacked in one packet. As
another example, INFO sets can be pruned of mes-
sages with sequence numbers 1 through n when it
becomes known t h a t all hosts have safely received
them.

7. Acknowledgments.
We would like t o thank Barbara Blaustein,

Charles Kaufman, Sunil Sarin, and Oded Shmueli
for their helpful comments. Some of the ideas
developed here were originally introduced in
[Garc85].

8. Bibliography.
[AwEv84] Awerbuch, B., and S. Even, "Efficient and Reliable

Broadcast is Achievable in a n Eventually Connected Net-
work," Proc. 3rd Symp. Principle8 of Diatributed Computing,

[BIKa85] Blaustein, B.T., and C.W. Kaufman, "Updating
Replicated Data During Communications Failures," Proc.

IDaMe781 Dalal, Y.K., and R.M. Metcalfe, "Reverse Path For-
warding of Broadcast Packets," Communicatione of the ACM,
1978, Vol. 21, Num. 12, pp. 1040-1048.

[Deme87] Demers, A., et.al., "Epidemic Algorithms for Repli-
cated Database Management," Proc. 6th ACM Symp. on
Principles of Dislributed Computing, 1987, pp. 1-12.

[Garc83] Garcia-Molina, H., et. al., "Data-Patch: Integrating
Inconsistent Copies of a Database after a Partition," Proc.
3rd Symp. Reliability in Distributed Software and Database

1984, pp. 278-281.

f f t h VLDB, 1985, pp . 1-10.

Sysfem8, 1983.

[Garc85] Garcia-Molina, H., et. al., "Notes on a Reliable
Broadcast Protocol," Computer Corporation of America,
July 1985.

Garcia-Molina, H., B. Kogan, and N. Lynch, "Reli-
able Broadcast in Networks with Nonprogrammable
Servers," Department of Computer Science, Princeton
University, Technical Report CS-TR-123-87, November 1987.

McQuillan, J.M., et. al., "The New Routing Algo-
rithm for the ARPANET," lEEE Trona. on Communicatione,
1980, Vol. COM-28, Num. 5, pp . 711-719.

[PeacSO] Peacock, J.K., et. al., "Synchronization of Distributed
Simulation Using Broadcast Algorithms," Computer N e f -
works, 1980, Vol. 4, Num. 1, p p . 3-10,

Rosen, E.C., "The Updating Protocol of Arpanet's
New Routing Algorithm," Computer Networks, 1980, Vol. 4,
Num. 1, pp. 11-19.

Sarin, S.K., "Robust Application Design in Highly
Available Distributed Databases," Computer Corporation of
America, Technical Report, May 1985.

[S eAw831 Segall, A., and B. Awerbuch, "A Reliable Broadcast
Protocol," IEEE Trans. on Communications, 1983, Vol.
COM-31, Num. 7, pp . 895-901.

[TaneBl] Tanenbaum, A.S., Computer Networks, Prentice Hall,
Englewood Cliffs, N.J., 1981.

IGarc87I

[McQuSO]

[Rose801

[S ari851

437

