
File: 643J 258101 . By:CV . Date:19:08:96 . Time:08:12 LOP8M. V8.0. Page 01:01
Codes: 6642 Signs: 4220 . Length: 60 pic 11 pts, 257 mm

Information and Computation � IC2581

information and computation 128, 57�71 (1996)

A Tradeoff between Safety and Liveness for
Randomized Coordinated Attack*

George Varghese
-

Washington University, St. Louis, Missouri 63130-4899

and

Nancy A. Lynch
�

Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

We study randomized, synchronous protocols for coordinated attack.
Such protocols trade off the number of rounds (N), the worst-case
probability of disagreement (U), and the probability that all generals
attack (L). We prove a nearly tight bound on the tradeoff between L

and U (L�U�N) for a strong adversary that destroys any subset of
messages. Our techniques may be useful for other problems that allow
a non-zero probability of disagreement] 1996 Academic Press, Inc.

1. INTRODUCTION

Suppose two computers are trying to perform a database
transaction over an unreliable telephone line. If the line goes
dead at some crucial point, standard database protocols
mark the transaction status as ``uncertain'' and wait until
communication is restored to update its status. The
protocol will ensure that the two computers eventually agree
if communication is eventually restored.

On the other hand, suppose that the transaction has a
real-time constraint (e.g., a decision to commit or reject the
transaction must be reached in 10 min) and the cost of dis-
agreement is high. Then standard commit protocols do not
work. If communication can fail for up to ten minutes it is
always possible for the two computers to disagree. Is there
a protocol that prevents disagreement in all cases?

The answer is no. The question was first formalized in [8]
as the coordinated attack problem. In this problem, there
are two generals who communicate only using unreliable
messengers. The generals are initially passive; however, at
any instant either general may get an input signal that
instructs him to try to attack a distant fort. The generals

have a common clock. The problem is to synchronize attack
attempts subject to the following conditions:

v Validity : If no input signal arrives, neither general
attacks.1

v Agreement : Either both generals attack or both do not
attack.

v Nontriviality : There is at least one execution of the
protocol in which both generals attack.

Coordinated Attack and Network Protocols. It is
possible to show that there is no deterministic solution to
the coordinated attack problem (see related work section
below). Note that link failures, and especially failure of all
links, are a likely scenario in a real network. Thus the
impossibility of coordinated attack (CA) fundamentally
affects the way real network protocols are designed. For
instance, when a transport (e.g., TCP) connection is discon-
nected, one end of the connection cannot get rid of its state
after ``being sure'' that the other end has also done so.
Instead, TCP has to rely on timers. Similar reasoning shows
that when routes change in a datagram network (e.g., IP),
one router must adopt the change before the others: this in
turn can lead to inconsistent routes and packet looping.
Information on TCP and IP, and other transport and
routing protocols can be found in any network protocol text
(e.g., [17]).

These two examples are instances of CA. CA essentially
shows that it is impossible to ensure that two nodes can
synchronize their state at the same time, in an environ-
ment where state changes can occur and links can fail for
unbounded amounts of time. While our work on CA below
is stated in a synchronous model for simplicity of notation,

article no. 0063

57 0890-5401�96 �18.00

Copyright � 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.

* A preliminary version of this paper appeared in the 11th ACM Sym-
posium on Principles of Distributed Computing, Aug 1992.

- Work done while at Laboratory for Computer Science, MIT.
� Supported by NSF Grant 8915206-CR, DARPA Grant N0014-89-

J1988, and ONR Grant N0014-91-J1046.

1 Another validity condition that is often used is that if no messages are
delivered, then no general attacks. We prefer our definition because it
focuses on input-output behavior. However, our results can be modified to
fit the other validity condition.

File: 643J 258102 . By:CV . Date:19:08:96 . Time:08:12 LOP8M. V8.0. Page 01:01
Codes: 6431 Signs: 5932 . Length: 56 pic 0 pts, 236 mm

both the algorithm and lower bound we develop apply to an
asynchronous (and hence practical) setting.

Related Work. It is shown in [8, 10] that there is no
deterministic algorithm that meets all three conditions. In
this paper, we consider a generalization to an arbitrary
number of generals connected by a graph of unreliable links.
Clearly, the impossibility result applies here as well.

Coordinated attack (CA) looks suspiciously like Byzan-
tine agreement (BA) [13], sometimes referred to as dis-
tributed consensus. In the traditional definition of BA,
generals exhibit arbitrary failures, while in CA only links fail
by destroying messages; also, in BA, there is a bound on the
number of failures, while in CA, all links can be faulty. There
does not appear to be any way to reduce CA to BA or vice
versa.

Later variants of the consensus problem considered
network connectivity (e.g., [5, 9]) link failures and send-
omission failures (e.g., [18]) in which some of the messages
sent by a process can be lost. Clearly consensus with an
arbitrary number of send omission faults would be identical
to CA; as far as we know, the work on send omission faults
also assumes a bound on the number of failures. The ability
to lose all messages, however, is crucial in proving
impossibility results for CA.

A large amount of work on randomized Byzantine Agree-
ment has been reported; [3] contains a survey of this work.
There are, however, only a few known lower bound results
for randomized consensus [3]. All the lower bounds for
randomized consensus (e.g., [11, 7]) apply only to the case
of arbitrary process failures. For example, [11] shows that
in randomized Byzantine Agreement if the number of
malicious processes is more than a third of the number of
processes and if no authentication is available, then there is
an adversary that causes the protocol to fail with probabil-
ity at least 1�3. The results and techniques used for proving
lower bounds for randomized BA look very different from
the results in this paper for randomized CA.

How do standard database commit protocols (e.g., two
and three phase commit protocols [2]) deal with the
problem of agreement over unreliable links? They do so by
introducing another output state ``Undecided''; it is legal for
one process to output ``Undecided'' while another process
decides ``Attack,'' as long as the first process eventually
decides to ``Attack.'' However, if there is a fixed time to
decide (for example, a pair of computers deciding on
whether a rocket should be launched in 5 s), then the
``Undecided'' state is not useful. Thus, as we alluded to
earlier, coordinated attack deals with the problem of reach-
ing agreement in a fixed amount of time using a network of
unreliable links. We model the fixed amount of time
available for a decision by a fixed number of rounds N after
which every process must decide either ``attack'' or ``not
attack.''

Randomized Coordinated Attack . There is a well-known
history of randomization providing a cure for a deterministic
impossibility result (e.g., [16, 1]). Thus, we turn to ran-
domized CA. We hope to trade a small probability of
disagreement when links fail for a high probability of
agreement (on a positive outcome) when links do not fail.

We modify the correctness conditions for deterministic
CA to fit randomized CA. We retain the validity condition.
We modify the agreement condition by requiring that the
worst-case probability of disagreement (denoted by U for
unsafety) be smaller than =, a parameter. We replace the
nontriviality condition by a measure L(R) (for liveness)
that measures the probability all generals attack after an
input signal, given that messages are delivered according
to a given pattern R. We measure the goodness of a CA
protocol by seeing how high L(R) can be for a given R
and =.

It may seem strange that unsafety is measured as the
worstcase across all runs while liveness is measured
separately for each run. However, the situation is analogous
to data link protocols in which safety must always be
preserved (i.e., the sequence of delivered messages must
always be a prefix of the sequence of sent messages) but live-
ness (i.e., every sent message is delivered) is guaranteed only
if the channel is delivering messages.

Coordinated attack captures the fundamental difficulty of
bounded time synchronization over unreliable message
channels. his paper investigates whether randomization can
help coordinated attack. Our answer is basically no for a
strong adversary, and a qualified yes for much weaker
adversaries. Our paper concentrates on a strong adversary
that can deliver messages according to any possible pattern
R but has no access to message bits. Some form of data
encryption could be used to make this assumption reason-
able in an insecure environment.

The only previous work on randomized CA is for a model
in which messages can be lost with a known constant prob-
ability (e.g., [18]). But the solution for this case is simple:
simply send a FIRE message repeatedly if the loss prob-
ability is less than 0.5. One copy will reach the other end
with high probability that improves exponentially with the
number of rounds. But no protocol designer would rely on
such a protocol in practice because real links crash (and can
lose all messages till the time arrives for a decision to be
made). Thus this paper asks, for the first time, the basic
question: can randomization help solve a fundamental
problem in synchronizing state under a realistic model in
which links can crash and restart?

Our adversary is deterministic and non-adaptive and
cannot read message bits. Thus, this adversary is not the
strongest adversary one could use. However, our version of
a strong adversary does model real life settings where links
can crash and restart at an arbitrary frequency. Since our
results are pessimistic, and apply to practical settings,

58 VARGHESE AND LYNCH

File: 643J 258103 . By:XX . Date:10:07:96 . Time:13:43 LOP8M. V8.0. Page 01:01
Codes: 5983 Signs: 4912 . Length: 56 pic 0 pts, 236 mm

there does not seem to be any point in considering stronger
adversaries.

Paper Organization. The rest of this paper is organized
as follows. Section 2 contains our model. Section 3 describes
a simple but inefficient protocol that is used to illustrate the
issues involved. Section 4 describes the main idea behind a
lower bound for the special case of two generals. Moving to
the general case requires some concepts that are described
in Section 5. In Section 6, we use these concepts to prove a
basic lower bound for the general case. Section 7 describes
an ``optimal'' protocol against a strong adversary; the struc-
ture of this protocol is based closely on the proof of the
lower bound. A small gap between the performance of our
optimal protocol and the lower bound leads to a second,
more refined, lower bound that is described in Section 8.
Section 9 contains our conclusions. Finally, the two
appendixes contain proofs of the second lower bound and
the invariants of the optimal protocol. While there are a
number of details for completeness, the main ideas can be
found in Sections 4, 6, and 7.

2. MODEL

The generals are represented by processes i that are at the
vertices of an undirected graph G(V, E) with V=[1, ..., m],
m�2. We consider synchronous protocols that work in
N+1 rounds, numbered 0, ..., N, N�1. Let time r denote
the point in time after round r. Thus, time 0 denotes the end
of round 0. For convenience, we let &1 denote the time at
which round 0 starts.

We model the input as a message sent by a fictitious
``environment'' node v0 , that is sent in round 0. We assume
v0 � V. Informally, if a process i receives a message in round
0 from v0 , the corresponding ``general'' has received a signal
to try to attack. Each process i also has, as part of its state,
a sequence of J random bits called :i . J is an upper bound
on the total number of random bits used by any general.

A protocol F consists of a number of local protocols Fi .
Each Fi , i # V, is a state machine executed by process i. Fi

has two possible start states, s0
i and s1

i , a state transition
function, $i , and a message generation function, _i . Let S r

i

be the set of messages received by i from its neighbors in
round r. Let qr

i be the state of i at time r for all r, 0�r�N.
Then qr

i =$i (qr&1
i , r, S r

i , :i). We assume without loss of
generality that each process sends a message to each
neighbor in rounds 1, ..., N, since we can always simulate
algorithms in which this is not true by sending null messages
that are ignored by the receiver. Let mr

ij be the message sent
by i to neighbor j in round r. Then mr

ij=_i (qr&1
i , j). At time

N, i outputs a bit that is a function, Oi , of qN
i . Oi (qN

i)=1 if
and only if general i decides to attack.

An execution of F is a vector of local executions. A local
execution Ei consists of q0

i , (mr
ij for all neighbors j of i,

FIG. 1. Graphical depiction of the run [(v0 , 1, 0), (1, 2, 1), (1, 2, 2),
(2, 1, 2)].

S r
i , qr

i) for 1�r�N. To generate an execution of F we need
to define a run that represents the inputs as well as which
messages get through in rounds 1, ..., N of the protocol.
Formally, a run R=I(R) _ M(R). I(R), the input for run R,
is an arbitrary subset of [(v0 , i, 0): i # V]. M(R), the
messages delivered in run R, is an arbitrary subset of
[(i, j, r): (i, j) # E, 1�r�N].

For example, with two processes and two rounds, in the
run [(v0 , 1, 0), (1, 2, 1), (1, 2, 2), (2, 1, 2)] only process 1
receives a signal to attack. Also, in round 1, only the
message sent from process 1 to process 2 is delivered; the
message sent from process 2 to process 1 is lost. In round 2,
messages sent by both processes are delivered. Figure 1
shows a graphical depiction of this simple run, where only
delivered messages are sketched. The absence of a directed
edge from i to j in round k implies that the corresponding
message is lost.

We will use the notation (Ai) to denote a vector A consist-
ing of a component Ai for each i # V. An execution for a
fixed F is uniquely determined by random input :=(:i),
and a run R. We define Ex(R, :)=(Ei) as the execution
generated by R and : for a fixed protocol F. Each Ei is a
local execution such that:

v If (v0 , i, 0) � R then q0
i =s0

i . If (v0 , i, 0) # R then
q0

i =s1
i . (The initial state of the local execution encodes the

input.)

v For all r, 1�r�N, and for all neighbors j of i : mr
ij=

_i (qr&1
i , j).

v For all r, 1�r�N, and for all neighbors j of i : mr
ji # S r

i

iff (j, i, r) # R.

v For all r, 1�r�N : qr
i =$i (qr&1

i , r, S r
i , :i).

The output of execution E is the vector (Oi (qN
i)). We say

two executions E and E� are identical to j if Ej=E� j .
We consider sets of executions of a particular protocol. Di

denotes the set of executions in which Oi (qN
i)=1, and Di

the set of executions in which Oi (qN
i)=0. Let (Di , R)

denote the set of executions that have run R and in which
Oi (qN

i)=1.
TA (total attack) denotes the set of executions D1 &

D2... & Dm . NA (no attack) denotes the set of executions

59SAFETY�LIVENESS TRADEOFF

File: 643J 258104 . By:CV . Date:19:08:96 . Time:08:12 LOP8M. V8.0. Page 01:01
Codes: 6154 Signs: 5021 . Length: 56 pic 0 pts, 236 mm

D1 & D2 . . . & Dm. PA (partial attack) denotes the comple-
ment of NA _ TA. Thus, TA is the set of executions in which
all processes agree on an output of 1, NA is the set of execu-
tions in which all processes agree on an output of 0, and PA
is the set of executions in which some pair of processes dis-
agree.

Each :i is drawn from [0, 1]J using the uniform probabil-
ity distribution. This probability distribution on inputs :
induces a probability distribution on executions for each
possible run R, in the natural way. For each set X of execu-
tions and each run R, we use the notation Pr[X, R] to
denote the probability of event X according to this distribu-
tion of executions.

Now consider two runs R=[(i, j, 1)] and R� =<. The
only difference in the runs is that the message from i to j
is delivered in R. Thus, given the same random input,
i will decide the same regardless of whether an execution
follows run R or run R� . This leads to a key notion of
indistinguishable runs. We say that two runs R and R� are
indistinguishable to i if for all :, Ex(R, :) and Ex(R� , :) are
identical to i. We use R #

i R� to denote that R and R� are
indistinguishable to i. A natural consequence is:

Lemma 2.1 (Indistinguishability). If R #
i R� then

Pr[Di , R]=Pr[Di , R�].

Proof. Easy consequence of definitions.

An adversary A is a set of runs. We will only deal in this
paper with the strong adversary, As , where As is the set of all
possible runs. (It is easy to conceive of stronger adversaries
that can read message bits and use randomization.
However, as we have argued in the introduction, the results
obtained using our adversary will be sufficiently
pessimistic.)

We define the unsafety of protocol F against strong adver-
sary As , as: Us(F)=MaxR # As

Pr[PA, R]. (Intuitively, this
is the worst-case probability of partial attack on any run
that can be produced by the adversary.)

Next, we describe the correctness conditions and the live-
ness measure. Validity requires that no general attacks if
there is no input. Agreement requires that the worst-case
probability of partial attack be no more than =, a parameter.
Finally, the liveness measure for a run R is the probability
of total attack on run R.

v Validity : For all vectors :, for all R such that
I(R)=<, and for all i, the output of all executions in
Ex(R, :) is the vector consisting of all zeroes.

v Agreement : F satisfies agreement with parameter = if
Us(F)�=.

v Liveness : The liveness L(F, R) of protocol F on run R
is L(F, R)=Pr[TA, R].

Our goal is to find an ``optimal'' algorithm F (that meets
the validity condition, and the Agreement condition for

a fixed =) such that L(F, R) is as large as possible for any
run R. We end this section with two elementary lemmas on
which our lower bounds are based. The first states that the
unsafety of a protocol in any run is at least as large as
the difference in attack probabilities of any two processes.
The second states that the liveness of a protocol is no more
than the attack probability of any process. The two inequal-
ities given below do not seem very tight, and so it is perhaps
surprising that the lower bounds based on these inequalities
are as tight as they are.

Lemma 2.2 (Difference Bound). For all i, j # V,
Pr[Di , R]&Pr[Dj , R]�Us(F).

Proof. Fix i and j. Using the definition of partial attack
and the fact that the probability of the union of several
events is greater than the individual probabilities,

Pr[PA, R]�Pr[Di & Dj , R].

The lemma follows because using the inclusion�exclusion
formula we can easily show that Pr[Di & Dj , R]�
Pr[Di , R]&Pr[Dj , R]. K

Lemma 2.3 (Liveness Bound). For all i # V, L(F, R)�
Pr[Di , R].

Proof. Obvious from definition of liveness.

3. NEEDLE IN A HAYSTACK PROTOCOL

We informally describe a simple protocol A (which we
call ``the needle in a haystack'' protocol for reasons that will
become clear below) for two processes 1 and 2 against a
strong adversary. The limitations of this protocol will
motivate both the lower bound in Section 6 and the optimal
protocol of Section 7.

Recall that we have assumed that each process must send
some message (at least a null message) in every round. For
convenience, let us call a non-null message (i.e., a message
that carries information) a packet. Thus, we assume
implicitly that on every round a process sends either a
packet or a null message.

In rounds 1 through N, the two processes send packets to
each other in alternate rounds (see Fig. 2). Process 2 is
allowed to send packets in odd rounds, while process 1 is
allowed to send packets in even rounds. The protocol begins
with process 2 sending a packet in round 1 (see Fig. 2).
Process 2 includes a bit b in its packet; b is set to 1 if and
only if process 2 received a signal to attack in round 0.
Process 1 sends a packet in round 2 if and only if it receives
a packet in round 1 from process 2 and either b=1 or pro-
cess 1 received a signal to attack in round 0. In other words,
process 1 will send a packet in round 2 if and only if it
``knows'' that one of the two processes has received an input
signal to attack.

60 VARGHESE AND LYNCH

File: 643J 258105 . By:XX . Date:10:07:96 . Time:13:43 LOP8M. V8.0. Page 01:01
Codes: 6218 Signs: 5238 . Length: 56 pic 0 pts, 236 mm

FIG. 2. Needle in a haystack protocol: sample run in which both pro-
cesses attack. The protocol begins with process 2 sending a message in
round 1 with a bit b that encodes process 2's input. Process 1 chooses a ran-
dom number rfire (equal to 4) and sends it to process 2. Process 1 goes into
the ``attack'' state at time rfire&1=3 and process 2 goes into the ``attack''
state at time rfire. Effectively, a random ``attack'' message is hidden in a
haystack of messages.

Before process 1 sends a packet in round 2, process 1
chooses a random integer rfire that is uniformly distributed
in the range [3, ..., N]. Any packets sent by Process 1 con-
tain only the value rfire; any packets sent by process 2 con-
tain only the input bit b corresponding to process 2's input.
If process 2 receives any packet from process 1, process 2
stores the value of rfire. In all rounds r>2, a process i sends
a packet in round r only if it has received a packet in the
previous round, and (r+1) mod 2=i mod 2. Thus, if the
adversary destroys a packet sent in round r, all packet
sending stops in rounds greater than r.

The decision rules are as follows. The default state of both
processes is ``no attack.'' However, if all packets sent in
rounds 1, ..., rfire&1, have been delivered, then the process
that received the packet sent in round rfire&1 (say process
i) will transition to an ``attack'' state at time rfire&1. If the
next packet sent by process i in round rfire is also delivered,
then the other process (say j) will also transition to an
``attack'' state at time rfire. Once a process is in the ``attack''
state, it stays in this state till the end of the execution. At the
end of the execution, process i outputs ``attack'' iff process i
is in the ``attack'' state at the end of the execution. Thus, in
Figure 2 with rfire=4, process 1 goes into the ``attack'' state
at time 3, and process 2 goes into the ``attack'' state at time
4. On the other hand, if any packet sent before round rfire
is destroyed, then both processes stop sending packets and
output ``no attack'' at the end of the execution.

It is easy to see that this protocol satisfies validity. If
neither process receives an input signal in round 1, then pro-
cess 1 does not send a packet in round 2, and the protocol
stops and both processes output ``no attack.''

Now consider unsafety. Since the adversary that controls
message delivery does not know the value of rfire, the adver-
sary has only a chance of approximately 1�N of causing par-
tial attack. This is because the adversary can cause partial

attack only if the first packet destroyed in the run is the
packet sent in round rfire. Thus, Us(A)r1�N. In effect, we
are placing a randomly chosen ``needle'' in a haystack of
messages, and the adversary has only an inverse linear
chance of guessing where the needle will lie.

Finally, let Rg be a ``good'' run in which all messages are
delivered and the input is valid. Then on run Rg , both pro-
cesses will always decide to attack. Hence L(A, Rg), the
liveness of A on run Rg , is 1. However, this simple protocol
raises two questions:

v Us(A)r1�N and L(A, Rg)=1. Can we decrease
Us(A) further while keeping L(A, Rg) unchanged? In other
words, can we find a protocol (a) whose probability of
making a mistake is better than 1�N, and (b) whose prob-
ability of attacking on a good run is 1. It might seem that
this can be done by running A several times. However, the
answer is no, as we show in Section 6.

v Consider a run R in which an input signal to attack
has been received, and all messages are delivered except the
message sent by process 1 in round 2. It is easy to see that
L(A, R)=0. Intuitively, this is not satisfactory because in
run R, all but one message is delivered, and yet the probabil-
ity of attacking on run R is 0. Can we design a protocol
whose liveness grows in some fashion with the number of
messages delivered in a run? We will describe an optimal
protocol S in Section 7.

4. LOWER BOUND FOR TWO PROCESSES

We assume a fixed bound on unsafety, =. We informally
sketch the main idea behind a bound on liveness for the spe-
cial case of only two processes. We will show that the prob-
ability of attack of any process i in run R is bounded by
=Li (R), where Li (R) is a measure that depends on the num-
ber of messages that get delivered in run R. Since we can
show that Li (R)�N,2 we can show that the liveness of any
two process protocol cannot exceed =N. This section is
meant to give the reader the intuition behind the lower
bound. In the next two sections, we will give a formal proof
of the bound for the general case.

In Fig. 3, consider a typical run R (shown in the upper
half of the figure) with two processes, processes 1 and 2. To
bound the attack probabilities in run R, we consider the
sequence of three runs R0 , ..., R2 shown in the figure. Start-
ing with the null run R0 in which no message or input is
received, we gradually increase the number of delivered
messages so that the last run R2 differs from the original run
R only in the delivery of a single message.

Recall that the Indistinguishability Lemma (Lemma 2.1)
states that a process will have the same attack probabilities

61SAFETY�LIVENESS TRADEOFF

2 Recall that N is the number of rounds.

File: 643J 258106 . By:XX . Date:10:07:96 . Time:13:44 LOP8M. V8.0. Page 01:01
Codes: 5648 Signs: 4696 . Length: 56 pic 0 pts, 236 mm

FIG. 3. Bounding the attack probabilities in a run R using a sequence
of runs R0 , ..., R2 and using the difference bound lemma. The bold lines in
the original run form an alternating chain. The numbers at the end of a run
give the length (Li) of the longest alternating chain that ends at each
process i ; the attack probability for process i is bounded by =Li .

on two indistinguishable runs. We will make heavy use of
this lemma (without explicit reference) in what follows.

By the validity condition, in run R0 both processes
must have zero attack probabilities. But runs R1 and R0

are indistinguishable to process 2 and hence (by the
Indistinguishability Lemma), process 2 has zero attack
probability in R1 . But, by the Difference Bound Lemma,
this means that Pr[D1 , R1]�=. Next, runs R2 and R1 are
indistinguishable to process 1 and hence Pr[D1 , R2]�=.
Hence, by the Difference Bound lemma, Pr[D2 , R2]�2=.
The same argument shows that Pr[D2 , R3]�2= and
Pr[D1 , R3]�3=.

Similarly, runs R4 and R1 are indistinguishable to process
1 and hence Pr[D1 , R4]�= and Pr[D2 , R3]�2=. Finally,
returning to the original run R, we see that runs R and R3

are indistinguishable to process 1, and runs R and R4 are
indistinguishable to process 2. Hence, Pr[D1 , R]�3= and
Pr[D2 , R]�2=. Hence, by the Liveness Bound Lemma, the
liveness on run R is no more than 2=.

In Fig. 3, in the sketch of run R we show in bold what we
call an alternating chain that begins at V0 and alternates
between the two processes using delivered messages in the
run. If we define Li (R) to be the length of the longest alter-
nating chain that ends at process i in Run R, then it is not
hard to show (using, say, induction on the round number)
that Pr[Di , R]�=Li (R).

When we consider more than two processes, the concept
of an alternating chain generalizes to that of an information
level. Also, the proof of the general case is handled very
simply using a tool called causal clipping (instead of using
brute-force induction on round numbers). We define these
concepts in the next section, and then prove the general
lower bound formally in the following section.

5. INFORMATION FLOW, CLIPPING, AND
INFORMATION LEVEL

In this section, we describe three concepts that underlie
both the lower bounds of Section 6 and the protocol in Sec-
tion 7. We begin with a definition that captures the idea
of information flow or possible causality [12] between
process-time pairs in a run.

Consider any i, k # V _ [v0] and any r, s # [&1, 0, ..., N].
We say that (i, r) directly flows to (k, s) in run R if and only
if s=r+1 and either i=k or (i, k, s) # R. We define the
flows to relation between process-time pairs as the reflexive
transitive closure of the directly flows-to relation. Thus:

Lemma 5.1 (Transitivity). If (i, r) flows to (j, s) and
(j, s) flows to (k, t) in run R, then (i, r) flows to (k, t) in
run R.

We introduce a measure of the ``knowledge'' [4, 10] a
process has in a run. We first define information ``height''
and then use it to define the more useful idea of information
``level.''

The intuition behind the height definition is as follows.
We say that a process ``hears'' about some event if there is
information flow from the event to the process (see formal
definition below.) Intuitively, a process reaches height 1
when it hears the input; a process reaches height h>1 when
it has heard that all other processes have reached height
h&1.

Formally, we say that j can reach height h by round r in
run R if and only if h is a nonnegative integer subject to the
following conditions:

v If h=0, there are no conditions.

v If h=1, (v0 , &1) flows to (j, r) in R.

If h>1, then for all i{j # V, there is some ri such that
(i, ri) flows to (j, r) in R and i can reach height h&1 by
round ri in R.

Next, we define Lr
j (R), the level j reaches by round r of

run R, to be the maximum height j can reach by round r.
We use Lj (R) to denote LN

j (R) and L(R) to denote
Minj # V (Lj (R)). (Recall that N is the maximum round
number.) Note that for the special case of two processes,
Lj (R) is equal to the length of the longest alternating chain
in run R that ends at process j. Thus, the definition we gave
in Section 4 is a special case of the general definition.

Finally, we introduce a construction to ``clip'' a run with
respect to a process i such that the constructed run preserves
all information flow to i. This construction is the key to
the lower bound proof. We define Clipi (R)=[(j, k, r) #
R: (k, r) flows to (i, N)] in run R. Figure 4 shows a sample
run with three processes and two rounds. Assume the com-
pletely connected graph on the three nodes. After the causal
clipping of this run with respect to process 1, all the
messages shown in bold are removed from the run.

62 VARGHESE AND LYNCH

File: 643J 258107 . By:XX . Date:10:07:96 . Time:13:44 LOP8M. V8.0. Page 01:01
Codes: 5773 Signs: 4444 . Length: 56 pic 0 pts, 236 mm

FIG. 4. Causal clipping with respect to process 1 removes all messages
that do not causally flow to process 1 in the run. Such messages are shown
in bold.

In essence, causal clipping with respect to process i
removes all messages that do not contribute to i 's knowl-
edge in this run. Thus, it is not hard to see that clipping with
respect to i preserves any information that i can gather in
the run. Hence we have:

Lemma 5.2 (Clipping). Let Clipi (R)=R� . Then :

v Li (R)=Li (R�) and
v R #

i R� .

Proof. Straightforward consequence of model.

6. LOWER BOUND FOR STRONG ADVERSARY

The main idea behind the lower bound is to show that the
probability of any process i attacking after any run R is no
greater than the information level of Process i multiplied by
the unsafety of the protocol��i.e., Pr[Di , R]�Us(F) Li (R).
This directly leads to a bound on liveness of the protocol by
the Liveness Bound Lemma, Lemma 2.3, since the liveness
of the protocol on run R is no greater than the attack
probability of any process.

Showing that Pr[Di , R]�Us(F) Li (R) would be easy if
we could show that in run R there is some other process j
with information level Li (R)&1. This follows from induc-
tion and the fact that the difference between the attack
probabilities of any two processes cannot exceed the
unsafety of the protocol (see the Difference Bound Lemma,
Lemma 2.2). Unfortunately, it is easy to find runs in which
all processes have the same information level.

Instead, we show that there is a clipped run R� that is
indistinguishable to process i, and such that in R� there
is indeed a ``laggard'' process j whose information level
is strictly smaller than Li (R). Now we can apply the
arguments described in the previous paragraph to show that
Pr[Di , R]�Us(F) Li (R).

We build up to the final proof by a sequence of lemmas.
The first lemma captures the intuitive idea that a process
can change its level only by receiving a message.

Lemma 6.1. For any run R and any k # V, if Lk (R)=
l>0 then there must be some tuple (j, k, r) # R such that
Lr

k (R)=l.

Proof. From the definition of level, we see that if there
are no j, s such that (j, k, s) # R then Ls&1

k (R)=Ls
k (R).

Thus, if LN
k (R)=l we can work backwards from round

number N until we find the r required for the lemma. If we
fail then there is no (V, k, V) tuple in R, which would imply
that l=0, a contradiction. Thus, we cannot fail. K

The next lemma describes the key property of clipped
runs and information levels that we use to prove our lower
bound. It says that if i reaches information level l at the end
of run R then at the end of Clipi (R) there must be some pro-
cess k (which we can call a laggard) whose information level
lags behind that of process i. In essence, this is why i cannot
go to a higher information level than l by the end of R.

Lemma 6.2 (Laggard). Consider a run R such that
Li (R)=l>0 and Clipi (R)=R� . Then there is some k # V
such that Lk (R�)�l&1.

Proof. By contradiction. Thus, for all k # V, we assume
that Lk(R�)�l.

Consider any k{i. By Lemma 6.1 and the fact that l>0,
there must be some tuple (j, k, r) # R� such that Lr

k (R�)�l.
Since (j, k, r) # R� then (by definition of clipping) (k, r) flows
to (i, N) in R. Hence, we can show that (k, r) flows to (i, N)
in R� . We also know that Lr

k (R�)�l. Since this is true for all
k{i we must have (see the definition of level) Li (R�)�l+1.
But by Lemma 5.2, this implies that Li (R)�l+1, a con-
tradiction. K

We now formalize the result we alluded to in Section 4,
that the attack probabilities can be bounded using the
information level:

Lemma 6.3. For all protocols F, all runs R, and any
process index i # V, Pr[Di , R]�Us(F) Li (R).

Proof. By induction on l in the following inductive
hypothesis.

Inductive Hypothesis. For all i and all runs R with
Li (R)=l, Pr[Di , R]�Us(F) l.

Base case, l=0: Thus, Li (R)=0. Let R� =Clipi (R). We
first claim that I(R�)=[]. Suppose not, for contradiction.
Then there is some j such that (v0 , j, 0) # R� ; hence, since
R� �R, (v0 , j, 0) # R. Also from the definition of clipping,
(j, 0) flows to (i, N) in R. But in that case, Li (R)�1,
a contradiction. Thus, we must have I(R�)=[]. Also by
the Clipping Lemma (Lemma 5.2), R #

i R� . Hence
Pr[Di , R]=Pr[Di , R�]=0, by the Indistinguishability
Lemma (Lemma 2.1) and the validity requirement. Thus,
Pr[Di , R]=Us (F) l.

Inductive step, l>0: Consider any l and R such that
Li (R)=l. Let R� =Clipi (R). By the Laggard Lemma
(Lemma 6.2), there exists some k such that Lk(R�)�
Li (R)&1. Hence, by the inductive hypothesis, Pr[Dk , R�]

63SAFETY�LIVENESS TRADEOFF

File: 643J 258108 . By:CV . Date:19:08:96 . Time:08:12 LOP8M. V8.0. Page 01:01
Codes: 5745 Signs: 4502 . Length: 56 pic 0 pts, 236 mm

�Us(F)(l&1). But by our bound on unsafety, Lemma 2.2,
Pr[Di , R�]&Pr[Dk , R�]�Us(F). Hence Pr[Di , R�]�
Us(F) l. But by the fact that R and R� are indistinguishable to
i and by the Indistinguishability Lemma (Lemma 2.1), it
follows that Pr[Di , R]�Us(F) l. K

The last lemma immediately leads to:

Theorem 6.4 (Basic Lower Bound). For any F,
L(F, R)�Us(F) L(R)�=L(R).

Proof. From Lemma 6.3, for any i # V, Pr[Di , R]�
Us(F) Li (R). Thus, from Lemma 2.3, L(F, R)�Us(F)
Li (R) for any i # V. Thus, from the definition of L(R),
L(F, R)�Us(F) L(R). The theorem now follows from the
Agreement condition. K

7. OPTIMAL PROTOCOL AGAINST A
STRONG ADVERSARY

Our optimal protocol, Protocol S, is based closely on the
lower bound arguments. Its structure is quite different from
the simple protocol in Section 3 which was introduced to
motivate the problem.

In Protocol S we will arbitrarily designate process 1 to
choose a random number rfire. In order to output ``attack,''
we will require that any other process i hear the value of
rfire from process 1 in addition to hearing the input. This
motivates a second measure on a run R that we call the
modified level measure. We first describe this new measure
and then give an overview of how the protocol calculates
and uses this new measure. Finally, we give a formal
description and proof.

7.1. Modified Level Measure

The modified level measure is defined in a parallel fashion
to the original level measure by first defining a modified
height or m-height. Formally, we say that process j can
reach m-height h by round r in run R if and only if h is a non-
negative integer subject to the following conditions:

v If h=0, there are no conditions.

v If h=1, (v0 , &1) and (1, 0) flow to (j, r) in R.

v If h>1, then for all i{j # V, there is some ri such that
(i, ri) flows to (j, r) in R and i can reach m-height h&1 by
round ri in R.

Thus, the only difference between the m-height and height
definitions is in the condition required to reach m-height 1.
In the case of m-height we not only require that j has heard
the input but also that j has heard from process 1. We also
define MLr

i (R), MLi (R), ML(R) analogously to the pre-
vious definitions for 4i .

Because of the small difference in the definitions, it is easy
to show that the modified level measure differs by at most
one from the level measure.

Lemma 7.1. For all R and i # V, Li (R)&1�MLi (R)�
Li (R)�N.

Proof. It is clear from the definitions that MLi (R)�
Li (R)�N. We prove that Li (R)&1�MLi (R) by induc-
tion on l in the following inductive hypothesis: for all R and
i # V, if Lr

i(R)=l then MLr
i(R)�l&1. The definition of

Lr
i(R)=l has a different form for the case when l=1 and the

case when l>1. Thus, we use l=2 as our base case. We
note, however, that the case of l=1 is trivial because it is
easy to see from the definition that MLr

i(R)�0.

Base case, l=2: From the definition of Lr
i(R), there

must some s�0 such that (1, s) flows to (i, r) and
Ls

1(R)=1. But if Ls
1(R)=1, then by definition, (v0 , &1)

flows to (1, s); hence by Transitivity (Lemma 5.1), (v0 , &1)
flows to (i, r). Also since (1, 0) flows to (1, s), by Transitivity
(Lemma 5.1), (1, 0) flows to (i, r). Hence, by definition,
MLr

i (R)�1.

Inductive Step, l>2: From the definition of Lr
i(R), for

every j{i there must be some rj such that (j, rj) flows to
(i, r) in R and Lrj

j (R)=l&1. By the inductive hypothesis,
MLrj

j (R)�l&2. Since this is true for all j{i, by using the
definition of MLr

i(R), we have MLr
i(R)�l&1. K

The second useful property is that the the modified level
measured by any two processes can differ by at most one.

Lemma 7.2. For all R and i, j # V, MLj (R)�MLi (R)&1.

Proof. Consider any i, j # V. If MLr
i (R)=1 we are done

trivially. Suppose MLr
i (R)�1. Then we know from the

definition that there must be some s<r such that (j, s) flows
to (i, r) and MLs

j (R)=MLr
i(R)&1. The lemma follows,

because it is clear from the definition that MLr
j(R)�

MLs
j (R). K

7.2. Protocol Overview

We will design a protocol based closely on the lower
bound arguments of the previous section. Recall that we
had shown in our basic lower bound (Theorem 6.4) that for
any F, L(F, R)�=L(R). We have also seen that the
modified level measure differs by at most one from the level
measure. Thus, in order to come close to meeting the lower
bound, we will design a protocol in which:

v Each process i will calculate MLi (R), the value of the
modified level at the end of the current run R.

v Each process will output ``attack'' with a probability
proportional to MLi (R). This causes the liveness of the
protocol to grow with MLi (R).

64 VARGHESE AND LYNCH

File: 643J 258109 . By:XX . Date:10:07:96 . Time:13:45 LOP8M. V8.0. Page 01:01
Codes: 5045 Signs: 4062 . Length: 56 pic 0 pts, 236 mm

To do so each process i in protocol S has a variable counti

that counts the value of MLr
i(R). We say that i has begun

counting if counti>0. We will see how i begins counting
below. However, once i has begun counting, process i
increases counti to s (for s>1) when it has heard that all
other processes have reached a count of s&1. It is easy to
implement this if each message sent by a node i carries
counti and a variable called seeni , the set of nodes that i
knows has reached counti .

Protocol S must satisfy Agreement with parameter =. Pro-
cess 1 chooses a random number rfire uniformly distributed
in the range (0, 1�=] and passes it on all messages. As we will
see, it is important that rfire be a real (as opposed to the
integer valued random number that we used in the Needle
in a Haystack protocol). After N rounds, process i outputs
``attack'' if and only if i has heard the value of rfire from
process 1 and counti�rfire.

Process i starts counting (i.e., sets counti to 1) in round r
as soon it finds out that (v0 , &1) and (1, 0) flow to (i, r).
These conditions, of course, are imposed because we are try-
ing to calculate the modified level. To implement the first
condition, we use a variable validi at each process i that is
set to true in the first round r such that (v0 , &1) flows to
(i, r). To implement the second condition, all processes
other than process 1 initially set the value of rfirei to a
special value undefined which is updated when a message is
received with the value of rfire.

7.3. Protocol Code

Protocol S consists of local state machines, each of which
has a set of states, an initial state, a state transition function,
a message generation function, and an output decision func-
tion. We describe each component in turn:

Each process i has the following state variables:

v counti : integer between 0 and N (counts the value of
MLr

i(R) in the current run R).

v rfirei : either a default value of undefined or a real
number in the range (0, 1�=].

v seeni : a subset of V (represents the processes that i
knows have reached counti).

v validi : a boolean (that is true if i has heard from v0).

We also use three temporary variables at each process:
highcounti (an integer), highseeni (a subset of V), and
highseti (a set of messages, whose format we describe later.)

The initial states are as follows. Process 1 initially sets
rfire1 to a a random number uniformly distributed in the
range (0, 1�=]. All processes i other than 1, set rfirei=
undefined. The validi flag is set to be true if and only if
process i has received an input message from v0 in round 0.
Process 1 initially sets count1=1 and seen1=[1] if process
1 has received an input message from v0 in round 0; if not,

process 1 initially sets count1=0 and seen1=[]. All other
processes i initially set counti=0 and seeni=[].

A message is denoted by m and has fields m(rfire),
m(count), m(seen), and m(valid). The message generation
function for i in every round sends a message m(rfire,
count, seen, valid) to all neighbors with m(rfire)=rfirei ,
m(count)=counti , m(seen)=seeni , m(valid)=validi . Thus,
i sends a message with its current state to all neighbors in
every round.

At the end of a round r, for 1�r�N, process i executes
the procedure Process-message(MRi , i), where MRi is
the set of messages process i has received in round r.
Process-message(MRi , i) is shown in Fig. 5. The first four
lines are used to decide when a process starts counting; the
remainder of the code does the actual counting.

Finally, Oi (qN
i)=1 if and only if rfirei{undefined and

counti�rfirei at the end of N rounds.

7.4. Proof of Properties of Protocol S

Notation. Consider any execution Ex(R, :). Let vr

denote the value of a variable at time r (i.e., at the end of
round r). For example, count r

i denotes the value of counti at
time r. Define rfire to be the value of rfire1 in the initial state.

Our first major step will be to establish that count r
i =

MLr
i (R). To allow a careful inductive proof, we will

FIG. 5 Procedure executed by process i at the end of a round in
Protocol S.

65SAFETY�LIVENESS TRADEOFF

File: 643J 258110 . By:CV . Date:19:08:96 . Time:08:12 LOP8M. V8.0. Page 01:01
Codes: 6001 Signs: 4703 . Length: 56 pic 0 pts, 236 mm

introduce invariants. The invariants should be intuitively
clear from the previous discussion; the proofs are deferred to
the appendix.

Lemma 7.3. For any execution Ex(R, :) of Protocol S,
the following assertions are true for all r, 0�r�N, and for
all i, j # V :

1. rfirer
i is either equal to rfire or undefined.

2. count r
i �1 if and only if rfirer

i {undefined and valid r
i =

true.

3. (1, 0) flows to (i, r) if and only if rfirer
i =rfire.

4. (v0 , &1) flows to (i, r) if and only if valid r
i =true.

5. If (j, s) flows to (i, r) in R, then either (count r
i >

count s
j) or (j # seenr

i and count r
i =count s

j) or (count r
i =

count s
j =0).

6. If (j # seenr
i) then there is some s such that

(count s
j =count r

i) and (j, s) flows to (i, r) in R.

7. seenr
i {V and seenr

i {V&[i]. Also, if count r
i �1 then

i # seenr
i .

8. MLr
i �count r

i .

These invariants can now be used to establish that each
process counts a value equal to its modified level measure.
This should not be hard to believe since the code follows the
definition of modified level.

Lemma 7.4. For all i # V, any r such that 0�r�N, and
any execution Ex(R, :) of Protocol S : count r

i =MLr
i(R).

Proof. From the last invariant in Lemma 7.3, we see
that count r

i �MLr
i (R). So we show that count r

i �MLr
i (R).

We do so by induction on the value of MLr
i (R).

First if MLr
i (R)=0 we are done trivially since count r

i is
always nonnegative. We use MLr

i (R)=1 as the base case.
Then from the definition of MLr

i(R), we know that (v0 , &1)
and (1, 0) flow to (i, r) in run R. Hence by the third and
fourth invariants in Lemma 7.3, rfirer

i =rfire and valid r
i =

true. Hence by the second invariant in Lemma 7.3,
count r

i �1.
Next, suppose MLr

i(R)=l>1. Then from the definition
of MLr

i (R), we know that for all j{i there exists rj<r such
that (j, rj) flows to (i, r) in run R and MLrj

j =l&1. By the
induction hypothesis, count rj

j =MLrj
j >0. Hence by the fifth

invariant in Lemma 7.3 and the inductive hypothesis, either
count r

i >l&1 (in which case we are done) or for all j{i,
j # seenr

i . But the second case contradicts the seventh
invariant in Lemma 7.3. K

Next we prove the validity, unsafety, and liveness proper-
ties of Protocol S.

Theorem 7.5. (Protocol Validity). Protocol S satisfies
Validity.

Proof. Informally, in any execution in which no process
receives an input signal, no process hears from v0 , and so
count N

i =0 for all i. Thus, by the output decision function,
Oi (qN

i)=0 for all i in this execution.
More formally, fix a run R such that I(R)=[], a random

vector :, and any process i. Consider the execution
Ex(R, :). Thus (v0 , &1) does not flow to (i, N) for any i # V.
Thus by invariant 4 in Lemma 7.3, valid N

i =false. Hence by
Lemma 7.3, invariant 2, count N

i =0. Next, by invariant 1,
Lemma 7.3, rfireN

i is either equal to rfire (which is strictly
greater than 0) or undefined. In either case, by the output
decision function, Oi (qN

i)=0 in Ex(R, :). K

To prove the unsafety and liveness properties of S we
characterize when the total attack and no attack events
occur. Let Mincount be the minimum across all processes i
of the value of counti at the end of an execution. The next
lemma states that all generals will attack if Mincount is no
less than rfire, and no general will attack if Mincount is
strictly less than rfire&1.

Lemma 7.6. Fix an execution E of Protocol S. If Min-
count�rfire then E # TA. If Mincount<rfire&1, then
E # NA.

Proof. If Mincount�rfire then for all processes i,
count N

i �rfire. But rfire>0. Thus for all i, count N
i �1. It

follows (by Lemma 7.3, invariants 1 and 2) that for all i,
rfireN

i =rfire. Hence for all i, count N
i �rfireN

i and rfireN
i {

undefined. Thus for all i, (using the decision function),
Oi (qN

i)=1. Hence, E # TA.
If Mincount<rfire&1, then using Lemma 7.4 and using

the fact that the modified level measured at any two pro-
cesses differs by at most 1 (Lemma 7.2), for all i, count N

i <
rfire. Now (by Lemma 7.3, invariant 1), either rfireN

i =rfire
or rfireN

i =undefined. Hence, for all i # V, either count N
i <

rfireN
i or rfireN

i =undefined. Thus by the definition of the
output decision function, Oi (qN

i)=0 for all i. Hence
E # NA. K

Theorem (Protocol Unsafety). S satisfies Agreement
with parameter =.

Proof. By definition Us(S) is the maximum across all
runs R of Pr[PA, R]. Consider any execution E=Ex(R, :).
Now partial attack PA is the complement of the no attack
and total attack events, NA and TA. From Lemma 7.6, we
know that either TA or NA will occur unless Mincount<
rfire�Mincount+1. Hence Pr[PA, R]�Pr[Mincount<
rfire�Mincount+1, R]. Now for a given R, Mincount is
fixed while rfire is a uniformly distributed random number
in the range (0, 1�=]. Thus Us(s)�=. K

Theorem (Protocol Liveness). L(S, R)�Min(1,
=ML(R)).

Proof. Recall the definition of L(S, R) as the probabil-
ity of total attack, Pr[TA, R]. We find a lower bound on

66 VARGHESE AND LYNCH

File: 643J 258111 . By:CV . Date:19:08:96 . Time:08:12 LOP8M. V8.0. Page 01:01
Codes: 6084 Signs: 4906 . Length: 56 pic 0 pts, 236 mm

Pr[TA, R]. Consider any execution E. From Lemma 7.6,
E # TA if Mincount�rfire. But by Lemma 7.4 and the
definition of Mincount, Mincount=ML(R). Hence, E # TA
if ML(R)�rfire. Thus for any run R, Pr[TA, R] is no less
than Pr[ML(R)�rfire, R]. Now for a given R, ML(R) is
fixed while rfire is a uniformly distributed random number
in the range (0, 1�=]. Thus Pr[TA, R] is no less than
Min(1, =ML(R)). K

8. CLOSING THE GAP: A SECOND LOWER BOUND

Theorem 6.4 states that for every run R and every
protocol F, the liveness L(F, R) of any protocol F is at most
Min(1, =L(R)). We described a protocol S whose liveness is
Min(1, =ML(R)). From Lemma 7.1, we know that ML(R)
differs from L(R) by at most one. Thus we have a small but
irritating gap of =. Our second lower bound shows, under a
reasonable set of conditions that we call the usual case
assumption, that no protocol F can do better than =ML(R)
on all runs R. More precisely, if any protocol F has a run R
such that L(F, R)>=ML(R) then there is some other run R�
such that L(F, R�)<=ML(R�). Thus together the two
bounds show that Protocol S is indeed ``optimal.''

We note that the proof of the first lower bound is similar
to the chain arguments used often in deterministic
impossibility results [6]. However, in proving the second
lower bound, we show a simple connection between
causality and probabilistic agreement that may be interest-
ing in its own right. This is explored in the definition of
causal independence, and Lemmas 8.2 and 8.3.

The second lower bound needs the following assumption.
We say that the usual case assumption holds if:

v The graph G is connected and the diameter of G is no
more than the number of rounds N.

v =<0.5.

It is easy to see that these two conditions capture the
usual and interesting cases. If the first condition does not
hold then it can be shown that Li (R)�1 for all i, R, F and
so by Lemma 6.4, L(F, R)�=. Similarly if the second con-
dition does not hold, the protocol is allowed to fail more
than half of the time. Thus the conditions preclude
parameter settings that force absurdly small values of live-
ness and allow absurdly large values of unsafety.

Theorem 8.1. (Refined Lower Bound). Under the usual
case assumption, if any protocol F has a run R such that
L(F, R)>=ML(R) then there is some other run R� such that
L(F, R�)<=ML(R�).

The proof exploits a simple connection between
probabilistic independence and what we call causal inde-
pendence. For any i, j # V, we say that i and j are causally
independent in run R if there is no k # V such that (k, 0)

flows to (i, N) and (k, 0) flows to (j, N) in R. The connec-
tion between probabilistic independence and causal inde-
pendence is expressed by the intuitive lemma:

Lemma 8.2. If i and j are causally independent in run R
then the events (Di , R) and (Dj , R) are independent events.

Proof. Let Yk (R)=[l : (l, 0) flows to (k, N) in R].
Thus, if i and j are causally independent in R, then Yi (R) &

Yj (R)=<. Thus, for any execution that follows run R, the
decision events at i and j are based on information (and ran-
dom bits) received from disjoint sets of processes. This
implies the independence of the two events. K

If i and j are causally independent in run R, then there
must be some restrictions on their decision probabilities in
R in order to preserve the Agreement property. There are
several ways in which these restriction can be phrased; we
select one that is sufficient for the later development.

Lemma 8.3. Consider a run R in which i and j are causally
independent and such that Pr[Di , R]==. Then if =<0.5,
Pr[Dj , R]=0.

Proof. Let Pr[Dj , R]=$. We know that Pr[PA, R]�
Pr[DiDj , R]+Pr[DjDi , R]. But since i and j are causally
independent in R we have by Lemma 8.2 that the events
(Di , R) and (Dj , R) are independent. Hence, Pr[PA, R]�
=(1&$)+$(1&=) and so Pr[PA, R]�=+$(1&2=). But
since =<0.5, 1&2=>0. Hence by Agreement, $=0. K

For the next lemma, recall the definition of MLi (R), the
modified level of process i in run R. This lemma serves to set
up the proof of the following lemma, Lemma 8.5.

Lemma 8.4. Suppose that for all runs R and for all i # V,
Pr[Di , R]=0 if MLi (R)=0. Then for all R and i # V,
Pr[Di , R]�MLi (R)=.

Proof. By induction on the value of MLi (R). Let
MLi (R)=l.

Base Case, l=0: This is the assumption of the lemma.

Inductive Step, l>0: Using a lemma similar to
Lemma 6.2 we can show that if R� =Clipi (R), then there is
some k such that MLk(R�)=l&1. Hence by inductive
assumption, Pr[Dk , R�]�=(l&1). Hence by Lemma 2.2,,
Pr[Di , R�]�=l. But by Lemma 5.2 and Lemma 2.1,
Pr[Di , R]=Pr[Di , R�]�=l. K

Now consider a run R1 in which only process 1 receives
an input message and no other message is delivered in the
run. The next lemma states that if the probability of process
1 outputting attack in this run is exactly =, then we can
prove a tighter lower bound on the decision probabilities
than the bound of Lemma 6.3. Recall that the bound in
Lemma 6.3 was stated in terms of Li (R).

67SAFETY�LIVENESS TRADEOFF

File: 643J 258112 . By:CV . Date:19:08:96 . Time:08:12 LOP8M. V8.0. Page 01:01
Codes: 6119 Signs: 4891 . Length: 56 pic 0 pts, 236 mm

Lemma 8.5. Suppose that R1=[(v0 , 1, 0)], Pr[D1 , R1]
== and =<0.5. Then for all runs R and all i # V, Pr[Di , R]
�MLi (R)=.

Proof. Consider any i and any R such that MLi (R)=0.
Then we will claim that Pr[Di , R]=0. To do this we con-
sider two cases, one of which must be true if MLi (R)=0.

v (v0 , &1) does not flow to (i, N) in R. Then Li (R)=0
and hence by Lemma 6.3, Pr[Di , R]=0.

v (1, 0) does not flow to (i, N) in R. Thus, i{1 as (1, 0)
flows to (1, N). Consider the run Clipi (R). From the defini-
tion of clipping, there is no tuple (V, 1, V) in Clipi (R),
because if there was, (1, 0) would flow to (i, N) in R. Con-
sider the run R� =Clipi (R) _ [(v0 , 1, 0)]. By construction,
the only tuple of the form (V, 1, V) in R� is (v0 , 1, 0). Hence
1 and i are causally independent in R� .

Also, R1=Clip1(R�) and hence R1 #
1 R� . Thus,

Pr[D1 , R�]==. Hence by Lemma 8.3, Pr[Di , R�]=0. But
Clipi (R�)=Clipi (R) and so by Lemma 5.2 and Lemma 2.1,
Pr[Di , R]=Pr[Di , R�]=0.

Thus, in either case, we have shown that for any i and R,
Pr[Di , R]=0 if MLi (R)=0. The lemma now follows from
Lemma 8.4. K

Lemma 8.6. Suppose the graph G is connected and has
diameter no more than N. Then there is a run R such that
ML1(R)=ML(R)=1, and the only tuple of the form
(V, 1, V) is (v0 , 1, 0).

Proof. Let T be a spanning tree of G with 1 as the root.
Such a tree exists because G is connected. Next we define R
as follows.

v I(R)=[(v0 , 1, 0)] (i.e., only process 1 receives input).

v For all i, j # V and 1�r�N, (i, j, r) # R if and only if
i is the parent of j in the tree. (i.e., information only flows
down the tree.)

It is not hard to see that since the height of the tree is no
more than N, ML1(R)=1 and MLi (R)�1 for all i # V.
Thus, ML(R)=1. K

We now return to the proof of Theorem 8.1.

Proof. Suppose there is some protocol F such that for all
R, L(F, R)�=ML(R).

By Lemma 8.6, there is a run R1 such that ML1(R1)=
ML(R1)=1 and the only tuple of the form (V, 1, V) in R1 is
(v0 , 1, 0). It is easy to verify that L1(R1)=1.

Thus, by assumption, L(S, R1)�=ML(R1)==. Thus, by
Lemma 2.3, Pr[D1 , R1]�=. Also, by Lemma 6.3, since
L1(R1)=1, Pr[D1 , R1]�=. Hence, Pr[D1 , R1]==.

Now consider the run R2=Clip1(R1)=[(v0 , 1, 0)].
Then by Lemma 5.2, R2 #

1 R1 . Thus, by Lemma 2.1,
Pr[D1 , R2]==. Hence by Lemma 8.5, for all i, R,

Pr[Di , R]�=MLi (R). Thus, for all R, Mini Pr[Di , R]�
Mini =MLi (R). Thus, from Lemma 2.3 and the definition of
ML(R), L(F, R)�=ML(R).

Thus, we have shown that for any protocol F, if for all R,
L(F, R)�=ML(R), then for all R, L(F, R)==ML(R).
This implies the theorem. K

9. CONCLUSIONS

A solution to coordinated attack is important in situa-
tions where consensus must be reached across unreliable
links and within a specified time constraint. This can arise in
real-time applications. The lack of a good solution to coor-
dinated attack has also lead network protocol designers to
accept as inevitable the possibility of inconsistent inter-
mediate states during transition periods. This in turn can
lead to other effects, such as packet looping, when routes
change [17].

Thus an effective solution to the coordinated attack
problem could be quite useful for many real problems. Since
it is well known that no deterministic solution exists, this
paper investigates whether randomized solutions can do
better, for a practical model in which link crashes can result
in arbitrary message loss. Our results, however, are
pessimistic.

For coordinated attack against a strong adversary, we
have shown that no protocol can achieve a tradeoff between
liveness and safety (L�U) that is better than linear in the
number of rounds. This is bad news. For example if we want
to achieve liveness with probability 1 on some run, and yet
limit the probability of error to be less than 0.001, then the
protocol must run for at least 1000 rounds. Protocol S
demonstrates that the lower bounds are tight, but its perfor-
mance is far from adequate.

In practice, there are two approaches that may help us to
overcome these limitations. One approach is to add redun-
dant links and assume that failures can only affect some
fraction of the links in the network; then simple majority
voting techniques can be used. However, this approach is
expensive. The other approach is to assume a weaker failure
model than a strong adversary. One such adversary, which
we call a weak adversary, is a probabilistic adversary which
can destroy messages with a probability p that is not known
in advance. We have preliminary proof sketches of results
that show vastly improved performance against such an
adversary. However, it is not at all clear that such a weak
adversary is realistic.

While our results are stated in a synchronous model, it
seems clear that they can be extended to an asynchronous
model. The concepts of causal clipping and information
level carry over to an asynchronous setting. Our ``optimal''
protocol can be modified to work in an asynchronous set-
ting. Most real networks, however, are best modeled by

68 VARGHESE AND LYNCH

File: 643J 258113 . By:CV . Date:19:08:96 . Time:08:12 LOP8M. V8.0. Page 01:01
Codes: 5751 Signs: 4468 . Length: 56 pic 0 pts, 236 mm

a semi-synchronous model such as [14]; in this model the
delay on network links is variable but has an upper bound.
In such a setting, the lower bound would translate into a
limitation on the achievable liveness given that the protocol
is given a fixed amount of time to execute. However, careful
proofs of these results are needed to confirm this intuition.

Since an adversary is a set of runs, we have limited
ourselves to a deterministic, oblivious adversary whose
behavior is not adaptive. For example, our ``strong''
adversary cannot use knowledge of message contents to
control message delivery. However, our lower bounds are
pessimistic. Thus, there does not seem to be any point in
considering stronger adversaries.

Finally, in terms of methodology, we were pleased that
the lower bound led us almost immediately to the optimal
protocol. The optimal protocol calculates (and exploits) a
small modification of the level measure that arises in the
statement of the first lower bound.

APPENDIX A. PROOF OF INVARIANTS

We begin with a simple definition and some useful facts.

Definition A.1. A property P is monotonic in any
execution E of Protocol S if whenever P is true at some
round r of E then P is true at all rounds greater than r.

Lemma A.1. (Monotonicity). The following properties
are monotonic in any execution E of Protocol S:

v count r
i �l for any l.

v valid r
i =true.

v rfirer
i =rfire.

v rfirer
i {undefined.

Proof. Immediate from examination of code. K

We now return to the proof of the invariants. For con-
venience we repeat the lemma and then provide the proof.

Lemma 7.3. For any execution Ex(R, :) of Protocol S,
the following assertions are true for 0�r�N and for all
i, j # V:

1. rfirer
i is either equal to rfire or undefined.

2. count r
i �1 if and only if rfirer

i {undefined and
valid r

i =true.

3. (1, 0) flows to (i, r) if and only if rfirer
i =rfire.

4. (v0 , &1) flows to (i, r) if and only if valid r
i =true.

5. v If (j, s) flows to (i, r) in R then either (count r
i >

count s
j) or (j # seenr

i and count r
i =count s

j) or (count r
i =

count s
j =0).

v If (j # seenr
i) then there is some s such that

(count s
j =count r

i) and (j, s) flows to (i, r) in R.

6. seenr
i {V and seenr

i {V&[i]. If count r
i >0 then

i # seenr
i .

7. MLr
i �count r

i .

Proof. The proof is by induction on r. The base case
r=0 is easily seen to be satisfied by the initial states s0

i and
s1

i . For the inductive step, we assume that all the invariants
are true for rounds less than r for r>0. We prove each
invariant in turn:

1. We know from the code that rfirer
i is different from

rfirer&1
i if and only if i receives a message m in round r from

some process j and rfirer&1
i =undefined. But in that case

rfirer
i =m(rfire)=rfirer&1

j . Then we are done because
rfirer&1

j is either rfire or undefined by the inductive
hypothesis.

2. Let G r
i denote valid r

i =true and rfirer
i {undefined.

From the code, if count r&1
i =0 and count r

i �1, then
G r

i =true. Similarly, from the code it is easy to see that if
G r&1

i =false and G r
i =true, then count r

i �1. Also by
monotonicity (Lemma A.1), if G r&1

i =true then G r
i =true.

Similarly by monotonicity (Lemma A.1), if count r&1
i �1

then count r
i �1.

3. First we prove that if (1, 0) flows to (i, r) then rfirer
i =

rfire. If (1, 0) flows to (i, r&1) then by inductive hypothesis,
rfirer&1

i =rfire. But (i, r&1) flows to (i, r) and hence (1, 0)
flows to (i, r) by transitivity (Lemma 5.1). Also by
monotonicity (Lemma A.1), rfirer

i =rfire. On the other
hand, if (1, 0) does not flow to (i, r&1) and (1, 0) flows to
(i, r) then there must be some j such that (j, i, r) # R and
(1, 0) flows to (j, r&1). Hence by the inductive hypothesis,
rfirer&1

j =rfire. Thus, if m is the message sent by j to i in
round r, then m(rfire)=rfire. Hence by the code rfirer

i =
rfire.

Next, we prove that if rfirer
i =rfire then (1, 0) flows to

(i, r). If rfirer&1
i =rfire then (1, 0) flows to (i, r&1) by

inductive hypothesis and by transitivity (Lemma 5.1), (1, 0)
flows to (i, r). Also by Monotonicity (Lemma A.1),
rfirer&1

i =rfirer
i , and so we are done. On the other hand if

rfirer&1
i {rfire but rfirer

i =rfire then there must be some
m # MRr

i , sent by say k, such that m(rfire)=rfire. Thus,
(k, i, r) # R and rfirer&1

k =rfire. Hence we are done by
inductive hypothesis and transitivity (Lemma 5.1).

4. The proof of this invariant is identical to the previous
invariant except that we replace (1, 0) by (v0 , &1) and
(rfirer

i =rfire) by (valid r
i =true).

5. We prove each part in turn:

v If (j, s) flows to (i, r&1) then by inductive
hypothesis, either (count r&1

i >count s
j) or (j # seenr&1

i and

69SAFETY�LIVENESS TRADEOFF

File: 643J 258114 . By:CV . Date:19:08:96 . Time:08:12 LOP8M. V8.0. Page 01:01
Codes: 6808 Signs: 5339 . Length: 56 pic 0 pts, 236 mm

count r&1
i =count s

j) or (count r&1
i =count s

j =0). But (i, r&1)
flows to (i, r) and hence (j, s) flows to (i, r) by transitivity
(Lemma 5.1). Also by monotonicity (Lemma A.1), if
count r&1

i >count s
j , then count r

i >count s
j . Also if j # seenr&1

i

but j � seenr
i , then we see from the code that count r

i >
count r&1

i .
If (j, s) does not flow to (i, r&1) and j{i and (j, s) flows

to (i, r) then there must be some k such that (k, i, r) # R and
(j, s) flows to (k, r&1). Hence by the inductive hypothesis,
either (count r&1

k >count s
j) or (j # seenr&1

k and count r&1
k =

count s
j) or (count r&1

k =count s
j =0). But in round r, i receives

a message m from k with m(count)=count r&1
k and

m(seen)=seenr&1
k . It is not hard to see from the code that

in either of the three cases above, at time r the invariant is
preserved.

v If j # seenr
i then we have two possibilities. If

j # seenr&1
i and count r

i =count r&1
i then we are done by

inductive hypothesis and transitivity (Lemma 5.1). If
j � seenr&1

i or count r
i >count r&1

i then there must be some
m # MRr

i , sent by say k, such that m(count)=count r
i and

j # m(seen). Hence j # seenr&1
k and we are done by inductive

hypothesis and transitivity (Lemma 5.1).

6. Consider first proving that seenr
i {V and

seenr
i {V&[i]. If seenr

i =seenr&1
i we are done by the induc-

tive hypothesis. So suppose seenr
i {seenr&1

i . Then there
must be some message m received by i in round r from say
j such that seeni changes after processing m. But by examin-
ing the code, we see that the desired property is preserved
after processing m. In particular, after processing m, if seeni

changes, then i is added to seeni . Also if seeni=V during the
processing of m, then seeni is reset to [i]. Recall that
|V |>1.

Now consider proving that if count r
i >0, then

i # seenr
i . Observe that whenever the code changes counti , it

adds i to seeni .

7. If count r
i =0 we are done trivially. If count r

i =1, by
invariants 1 and 2, rfirer

i =rfire and valid r
i =true. Thus, by

invariants 3 and 4, (1, 0) and (v0 , &1) flow to (i, r) in R.
Hence MLr

i �1.

If count r
i >1 and count r

i =count r&1
i we are done by

inductive hypothesis since count r
i �MLr&1

i �MLr
i . If

count r
i >1 and count r

i {count r&1
i then we have two more

possibilities.

v If highcount r
i =count r

i then there must be some
message m, sent by say j, with m(count)=count r

i and
count r

i =count r&1
j . Thus, by the inductive hypothesis,

count r
i �MLr&1

j . Thus, MLr&1
j >1 and so for all k{j there

must be some rk such that (k, rk) flows to (j, r&1) and
MLrk

k =MLr&1
j &1. By transitivity (Lemma 5.1), (k, rk)

flows to (i, r). Also, (j, r&1) flows to (i, r). Thus, for all

k{i there must be some rk such that (k, rk) flows to (i, r)
and MLrk

j �MLr&1
j &1. Hence since MLr&1

j >1, MLr
i �

MLr&1
j . Thus, count r

i �MLr
i .

v If highcount r
i +1=count r

i then for all k{i either:

�� There must be some message m, sent by say j to
i in round r, with m(count)=highcount r

i and k # m(seen) OR

�� highcount r
i =count r&1

i and k # seenr&1
i .

In either case there is some l such that k # seenr&1
l and

count r&1
l =count r

i &1 and such that (l, r&1) flows to (i, r).
Thus, by invariant 5, and Transitivity (Lemma 5.1), there is
some s such that (k, s) flows to (i, r) and count s

k=count r
i &1.

Also, by the inductive hypothesis, MLs
k�count s

k. Since this
is true for all k{i, it is clear from the definition that i can
reach m-height count r

i . Thus, MLr
i �count r

i . K

ACKNOWLEDGMENTS

We are grateful to Hagit Attiya, Baruch Awerbuch, Mihir Bellare,
Cynthia Dwork, Ken Goldman, Gil Neiger, Steve Ponzio, and Larry
Stockmeyer for their help and suggestions.

Received March 31, 1995; final manuscript received April 1, 1996

REFERENCES

1. M. Ben-Or, Another advantage of free choice, in ``Proceedings, 2nd
ACM Symposium on Principles of Distributed Computing, 1983,''
pp. 27�30.

2. P. Bernstein, V. Hadzalicos, and N. Goodman, ``Concurrency Control
and Recovery in Database Systems,'' Addison�Wesley, Reading, MA,
1986.

3. B. Chor and C. Dwork, Randomization in Byzantine agreement, Adv.
Comput. Res. 5, 443�497, (1989).

4. K. M. Chandy and J. Misra, How processes learn, Distrib. Comput.
1(1), 40�52 (1986).

5. D. Dolev, The Byzantine generals strike again. J. Algor. 3, 14�30
(1982).

6. M. Fischer and N. Lynch, A lower bound for the time to assure inter-
active consistency, Inform. Process. Lett. 14(4), 183-186, (1982).

7. R. Graham and A. Yao, On the improbability of reaching Byzantine
agreements. in ``Proceedings of the Twenty-First Annual ACM Sym-
posium on Theory of Computing, Seattle, WA, 1989,'' pp. 467�478.

8. J. Gray, ``Notes on Data Base Operating Systems,'' Technical Report,
IBM Report RJ2183(30001), IBM, February 1978, 1989, pp. 291�302;
also in Operating Systems: An Advanced Course,'' Lecture Notes in
Computer Science, No. 60, Springer-Verlag, Berlin�New York.

9. V. Hadzilacos, Connectivity requirements for Byzantine agreement
under restricted Types of failures, Distrib. Comput. 2(2), 95�103
(1987).

10. J. Halpern and Y. Moses, Knowledge and common knowledge in a dis-
tributed environment, in ``Proceedings of the 3rd Annual Symposium
on Principles of Distributed Computing, 1984,'' pp. 50�61.

11. A. Karlin and A. Yao, Probabilistic lower bounds for Byzantine agree-
ment, unpublished manuscript.

12. L. Lamport, Time clocks and the ordering of events in a distributed
system, Comm. ACM 21(7), 558�565 (1977).

13. L. Lamport, R. Shostak, and M. Pease, The Byzantine generals
problem, ACM Trans. Programming Languages Systems 4(3), 382�401
(1981).

70 VARGHESE AND LYNCH

File: 643J 258115 . By:CV . Date:19:08:96 . Time:08:14 LOP8M. V8.0. Page 01:01
Codes: 1214 Signs: 698 . Length: 56 pic 0 pts, 236 mm

14. M. Merritt, F. Modugno, and M. Tuttle, Time constrained automata,
in ``CONCUR 91,'' pp. 408-423.

15. Y. Moses and M. Tuttle, Programming simultaneous actions using
common knowledge, Algorithmica 3(1), 121�169 (1988).

16. M. Rabin and D. Lehmann, On the advantages of free choice: A sym-
metric and fully distributed solution to the dining philosophers

problem, in ``Proceedings of 8th ACM Symposium on Principles of
Programming Languages, 1981,'' pp. 133�138.

17. A. Tanenbaum, ``Computer networks,'' 2nd ed., Prentice�Hall, New
York, 1989.

18. Y. Moses and M. Tuttle, Programming simultaneous actions using
common knowledge, Algorithmica 3(1), 121�169 (1988).

Printed in Belgium

71SAFETY�LIVENESS TRADEOFF

