
INFORMATION AND CONTROL 62, 190-204 (1984)

An Upper and Lower Bound
for Clock Synchronization*

JENNIFER LUNDELIUS AND N A N C Y LYNCH

Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139

The problem of synchronizing clocks of processes in a fully connected network is
considered. It is proved that, even if the clocks all run at the same rate as real time

and there are no failures, an uncertainty of e in the message delivery time makes it
impossible to synchronize the clocks of n processes any more closely than
e(1 - 1/n). A simple algorithm is given that achieves this bound. © 1984 Academic
Press, Inc.

1. INTRODUCTION

Keeping the local clocks of processes synchronized in a distributed
system is important in many applications and is an interesting problem in
its own right. In order to be practical, algorithms to synchronize clocks
should be able to tolerate process failures, clock drift, and varying message
delivery times. However, these conditions complicate the design and
analysis of algorithms.

In this paper, we consider a simple special case of the general clock syn-
chronization problem. Namely, we assume that clocks run at a perfect rate
and that there are no failures. However, clocks initially have arbitrary
values, and there is an uncertainty of e in the message delivery time. For
this case, once the clocks are synchronized, they will remain synchronized,
so the only problem is to synchronize them in the first place.

We show that, even under these simplifying assumptions, no algorithm
can synchronize clocks exactly. More precisely, we show that e(1 - 1/n) is a
lower bound on how closely the clocks of n processes can be synchronized
in this case. Since these are strong assumptions, this lower bound also
holds for the more realistic case in which clocks drift and arbitrary faults
occur. We show that the bound of e(1 - l/n) is tight for the simplified case,
by describing a simple algorithm that achieves this bound.

* This work was supported in part by the NSF under Grant MCS83-06854, U.S. Army
Research Office Contracts DAAG29-79-C-0155 and DAAG29-84-K-0058, and Advanced
Research Projects Agency of the Department of Defense Contract N00014-83-K-0125.

190
0019-9958/84 $3.00
Copyright © 1984 by Academic Press, Inc.
All rights of reproduction in any form reserved.

LOWER BOUND FOR CLOCK SYNCHRONIZATION 191

The problem of synchronizing clocks in a distributed system has been a
topic of considerable research interest recently. Several algorithms have
appeared in the literature (Halpern, Simons, and Strong, 1983; Halpern,
Simons, Strong, and Dolev, 1984; Lamport, 1978; Lamport and Melliar-
Smith, 1984; Lundelius and Lynch, 1984; MarzuUo, 1983), each working
under different assumptions. Dolev, Halpern, and Strong (1984) show that
it is impossible to synchronize clocks if one third or more of the processes
are subject to Byzantine failures. They also demonstrate a lower bound
similar to ours (proved independently), but characterizing the closeness of
synchronization obtainable along the real time axis. That is, they prove a
lower bound on how close the real times can be when two processes' clocks
have the same value, whereas our result is a lower bound on how close the
clock values can be at the same real time.

The remainder of the paper is organized as follows. Section 2 contains a
description of the properties we require of our system model, and a
statement of the clock synchronization problem of this paper. Section 3
contains the lower bound result, and Section 4 contains the corresponding
upper bound. We conclude with an open question in Section 5.

2. THE CLOCK SYNCHRONIZATION PROBLEM

2.1. Systems of Processes with Clocks

One way of presenting our results would be by using a specific formal
model for systems of processes with clocks. However, the results of this
paper are not dependent on the precise details of a particular model.
Therefore, we do not give a complete description of a formal model in this
paper; rather, we just state the properties which we require of such a
model. We refer the interested reader to Lundelius and Lynch (1984) for a
detailed development of a particular model for systems of processes with
clocks; also, preliminary versions of the results of the present paper are
given in terms of such a model in Lundelius (1984).

The system is assumed to consist of n processes, located at the vertices of
a complete communication graph. All processes are assumed to know the
size and topology of the network. Each process has a local "physical
clock," whose value it can read. Processes communicate by sending and
receiving messages.

We do not make many explicit assumptions about the form of a process.
We presume that a process can be modelled as some kind of automaton,
having a state set, including initial and final states, and a transition
relation, which defines the algorithm to be executed. However, processes

192 LUNDELIUS AND LYNCH

might be deterministic or nondeterministic. They might be assumed to have
significant or insignificant local processing time. They might buffer incom-
ing messages until they are ready to process them, or they might process
incoming messages immediately. They might take steps only upon receipt
of a message, or also upon discovering that their physical clocks have
reached certain values, or at arbitrary times. Many other variations are
possible, and our results will hold equally well for all of these cases.

We introduce some notation and definitions. Let P be a set of n
processes. A clock is a monotone increasing function from ~ (real time) to

(clock time). In this paper, we assume that clocks do not drift; thus, we
assume that all clock functions have derivative exactly 1 everywhere. A
system of processes with clocks (or simply a system), denoted by (P, c£), is a
set of processes P together with a set of clocks cg = { Cp }, one for each p in
P. Cloc k C~ is called p's physical clock.

Each process' physical clock is assumed to be a fixed function, i.e., it can-
not be modified by the process. We assume that processes do not have
access to the real time; each process obtains its only information about
time from its physical clock. Thus, a process' physical clock value might be
used in its transition relation, but the real time cannot be so used. By
modelling the clocks separately from the processes, we can study the effect
of using different clock functions with the same set of processes.

2.2. Executions

In this subsection, we define the "executions" of a system of processes
with clocks. We begin by defining executions for individual processes. The
events which can occur at a process include the arrival of messages from
other processes, as well as any significant events internal to the process.
These events may cause the process to send messages to other processes.
An action describes the changes made by a particular event to the process'
state. An execution of process p with clock C is a partial mapping from
(real time) to actions; the action for a given time describes the changes to p
which occur at that time. Process executions are assumed to satisfy certain
constraints, as given by the process model and the particular process
definition.

An execution for a system (P, cg) of processes with clocks is a set of
process executions, one for each process p in P, with clock Cp in c£,
together with a one-to-one correspondence between the messages sent by p
to q and the messages received by q from p, for any processes p and q. We
use the message correspondence to define the delay of any message in a
system execution, in the obvious way. For each system execution e, define
last-step (e) to be the earliest time in e at which all processes are in final
states. If there is no such time, then last-step (e) is undefined.

LOVv-ER BOUND FOR CLOCK SYNCHRONIZATION 193

2.3. Views and Equivalence

As we have already stated, we are assuming that the processes do not
have access to the real time, but only to their physical clock time. In the
lower bound proof, we will consider different system executions that are
indistinguishable to the processes because the events occur at the same
physical clock times, although they might occur at different real times.

Thus, we define the view of any process p in any process execution e (for
p with clock C), to be the actions in e, together with their physical clock
times of occurrence. The real times of occurrence are not represented in the
view. The notion of a view allows us to define a natural notion of
equivalence for process executions. Define two process executions, one of
process p with clock C and the other of process p with clock C', to be
equivalent provided that the view of p is the same in both executions. We
extend this definition to a definition of equivalence for system executions.
Define two system executions, execution e of system (P, cg) and execution
e' of (P, cg,), to be equivalent provided that for each process p, the com-
ponent process executions for p in e and e' are equivalent. Thus, the
executions are indistinguishable to the processes. Only an outside observer
who has access to the real time can tell them apart.

2.4. Shifting

We introduce the notion of "shifting," both for a system execution and
for a set of clocks. Shifting a system execution by some amount, relative to
p, means modifying p's process execution so that every action for p occurs
that amount earlier in real time. Shifting a set of clocks by some amount,
relative to a process p, means adding that amount to the function that
defines p's clock. We make assumptions which insure that, if an execution
and a set of physical clocks are both shifted by the same amount relative to
the same process, the resulting execution is equivalent to the original one.
No process can tell the difference, because the change in the time of
occurrence of actions in the execution is compensated for by the change in
the physical clock.

We begin by defining a shift of a process execution and of a single clock.
Given execution e of process p with clock C, and real number ~, a new
execution e' = shift(e, ~) is defined by e'(t) = e(t + ~) for all t. All actions are
shifted earlier in e' by ~ if ~ is positive, and later by - ~ if ~ is negative.
Given a clock C and real number ~, a new clock C ' = shift(C, ~) is defined
by C'(t) = C(t) + ~ for all t. The clock is shifted forward by ~ if ~ is positive,
and backward by - { if { is negative.

We make the following important assumption.

AXIOM 1. Let e be an execution of process p with clock C, and let ~ be a

194 LUNDELIUS AND LYNCH

real number. Let C' =shift(C, ~). Then shift(e, ~) is an execution of p with
clock C'.

That is, if a process execution and physical clock are modified in
corresponding ways, the result is also an execution. It is easy to see that
this resulting execution must be equivalent to the original execution.

Now we define a shift of a system execution and of a set of clocks. Given
execution e of system (P, c£), and real number ~, a new execution
e '= shift(e, p, ~) is defined by replacing p's process execution in e, ep, by
shift(ep, (), and by retaining the same correspondence between sends and
receives of messages. (Technically, the correspondence is redefined so that a
pairing in e that involves the event for p at time t, in e' involves the event
for p at time t - ().) All actions for process p are shifted by (, but no other
actions are altered. Given a set of clocks ~ = { C a } q ~ p, and real number (,
a new set of clocks cg,= shift(cg, p, (), is defined by replacing clock Cp by
clock shift(Cp, (). Process p's clock is shifted forward by (, but no other
clocks are altered.

LEMMA 1. Let e be an execution of system (P, ~), p a process and ~ a
real number. Let cg, =shift(Cg, p, () and e' =shift(e,p, (). Then e' is an
execution of (P, cg,), and e' is equivalent to e.

Proof The result follows immediately from the definition of a system
execution, together with Axiom 1 and the immediately following
remarks. |

The following lemma quantifies how message delays change when a
system execution is shifted.

LEMMA 2. Let e be an execution of system (P, cg), p a process, ~ real
number. Let cg, = shift(c~, p, ~) and e' = shift(e, p, ~). Then when the obvious
correspondence is made between messages in e and in e', all messages have
the same delay in e' as in e, with the following two exceptions. I f q is any
process other than p, then

(a) the delay of any message from q to p is ~ less in e' than in e, and

(b) the delay of any message from p to q is (greater in e' than in e.

Proof Without loss of generality, assume ~ is nonnegative. Since all
events for p happen ff earlier in e' than in e, and since the correspondence
between sends and receives is updated appropriately, messages are received

LOWER BOUND FOR CLOCK SYNCHRONIZATION 195

(earlier (causing (less delay), and are sent (earlier (causing (greater
delay). |

2.5. Admissible Executions

For the remainder of the paper, fix nonnegative values e, #, and v such
that v - /~ = e. We say that a system execution e is admissible provided that
for every p and q, every message in e from p to q has its delay in the range
[#, v]. Thus,/~ is the smallest message delay, v is the largest delay, and the
difference between them, e, is the message uncertainty.

We note that our results would hold with almost identical proofs in the
case where # and v differ from link to link, as long as e is the same. The
restriction to uniform # and v is made only for notational simplicity.

2.6. Problem Statement

Now we describe the particular clock synchronization problem which is
considered in this paper. Assume that the system model is as described so
far in this section. We consider only admissible executions, and we assume
further that the processes have knowledge of the message delay bounds #
and v.

The processes are supposed to establish synchronization of their "local
times." These local times are not the values of the physical clocks, since we
assume that the physical clocks cannot be reset by the processes. Rather,
each process obtains its notion of the local time by adding the value in a
particular local variable CORR to the physical clock time. The process is
able to modify the value in its CORR variable, so that during an
execution, p ' s local variable CORR can take on different values. We
assume that the value of CORR is 0 in any initial state, and cannot be
changed after a process enters a final state. For a particular execution, we
define a function CORRp(t), giving the value ofp ' s variable CORR at time
t. Then, for a particular execution, we define the local time for p to be the
function Lp, which is given by Cp + CORRp.

Since the processes have physical clocks which are progressing at the
same rate as real time, the only part of the clock synchronization problem
which is of interest is the problem of bringing the clocks into syn-
chronizat ion-once this has been done, synchronization is maintained
automatically.

Since an algorithm is coded into the transition function for a process, P
is all that is needed to specify an algorithm. A clock synchronization
algorithm P is said to synchronize to within 7 if the algorithm terminates
(i.e., all processes eventually enter final states), and after it terminates, the
processes' local times differ by no more than 7. More precisely, we require
that every admissible execution e for (P, oK), for any set of clocks ~,
satisfies the following conditions:

196 LUNDELIUS AND LYNCH

(a) Termination. All processes eventually enter final states. Thus,
last-step(e) is defined.

(b) Agreement. I L p (t) - Lq(t)[<<. ~ for any processes p and q and time
t >/last-step(e).

3. LOWER BOUND

In this section we show that no algorithm can synchronize n processes'
clocks any more closely than e (1 - l/n). The main idea of the proof is that
different executions can be constructed that look the same to the processes
but that result in different local times. We consider an arbitrary algorithm
P that synchronizes clocks to within 7. We begin with an admissible
execution of P that has a particular pattern of message delays, and then
alter this execution by judicious shifting so that the resulting message
delays are still within the allowable range (i.e., the result is another
admissible execution), and so that no process can tell the difference (i.e.,
the old and new executions are equivalent). The equivalence implies an
inequality concerning 7. By constructing n equivalent executions in this
manner, n inequalities concerning ~, are obtained. Solving the inequalities
for 7 produces the claimed lower bound.

THEOREM 3. No clock synchronization algorithm can synchronize a
system of n processes to within ?, for any 7 < ~ (1 - l/n).

Proof Fix a set of processes P that synchronizes to within y. We will
show that 7~>~(1- 1/n).

Let P consist of processes 1 through n. We construct a sequence of
systems 5~i=(P, cgi), for 1 <<,i<~n, and a corresponding sequence of
executions e i for those systems. All of the executions e ~ will be equivalent to
each other, and all will be admissible. Furthermore, in e;, all messages sent
by process i will have delay/~ and all messages received by i will have delay
v. The construction is carried out inductively on i.

Let 5~1= (P, cgl), where cgl is an arbitrary set of clocks. Let e I be any
execution of 5el in which all messages from process j to process k have
delay exactly # i f j < k , and have delay exactly v i f j > k . That is, messages
from processes to higher-numbered processes take the minimum delivery
time, while messages from processes to lower-numbered processes take the
maximum delivery time. Clearly, e 1 is admissible, all messages sent by
process 1 have delay #, and all messages received by process 1 have delay v.
(For the special case where n = 4, we represent the execution e I as in Fig. 1.
There is a vertical l inefor each of the four processes. All the messages from
j to k have the delay that labels the arrow from j to k.)

2 3 4

f

/

t K

-..........~ -..--.........~_

~t-ee f

, J j

Y
J

~ '+ , / I
. / !

/ i

~ f f + e

\ 2

~+e / I
" , ~ b + e

4

1 2

-....

4

/t+,s /

i t

1 2 3

- 4

,~+< / I

FIG. 1.

FIG. 2.

FIG. 3.

FIG. 4.

M e ssage delays for execut ion e I in the case n = 4.

M e ssage delays for execut ion e 2 in the case n = 4.

M e s s a g e delays for execut ion e 3 in the case n = 4.

M e ssage delays for execut ion e 4 in the case n = 4.

198 L U N D E L I U S A N D L Y N C H

Now assume that 6 e i - 1 and e ~- 1 have been constructed for 2 ~< i~< n,
and, furthermore, that e i i is admissible, and that, in e ~- 1, all messages
sent by process i - 1 have delay/ t and all messages received by i - 1 have
delay v. We construct ~9 Oi and e(Let c g ~ = s h i f t (~ - l , i - l , e) and
5e~= (P, cU). Let e l= shift(e ~- 1, i - 1, e). Thus, the ith execution is obtained
from the (i - 1)th execution by shifting the execution and set of clocks by e
relative to process i - 1. (For the case of n --- 4, the three executions e 2, e 3,
and e 4 are depicted in Figures 2, 3, and 4.)

By Lemma 1 and the inductive hypothesis, e ~ is an execution of (P, cg~),
and is equivalent to e ~- 1. We now argue that e e is admissible. By Lemma 2,
the only changes between e i 1 and e ~ are for messages involving process
i - l . Messages received by i - 1 take ~ less time, so they have delay
v - e =/~; messages sent by i - 1 take e more time, so they have delay
/~ + e = v. These delays are in the specified range.

The last part of the induction is showing that in e ~ all messages received
by process i have delay v and all messages sent by process i have delay/~.
Messages to and from a higher-numbered process have delays as in e ~, i.e.,
/~ and v, respectively. All lower-numbered processes have been shifted by e,
so the delays, which were originally/z (for receiving) and v (for sending)
have become/~ + e = v and v - e = #, respectively.

Since e l is an admissible execution, it must terminate; let tF= last-
step(el). By equivalence, all the e i terminate, and the direction of the shifts
implies that they all terminate by time tr"

Let V~ Vn be the values for the respective processes' local times at real
time tr, in execution e ~. Since the algorithm is assumed to synchronize to
within ?, all of these values are within 7 of each other. In particular,

Vn~< V1 +?.

Now consider e ~, l < i < . n . Since e i is equivalent to e 1, the correction
variable for any process p is the same in both executions at real time tf.
This fact, together with the definition of q¢~, implies that in e i, process
i - l's local time at real time t F is V~ 1 + e and process t's local time at real
time ty is V~. Since these values must be within 7 of each other, we have

Vi l < ~ V i + ~ / - a

Adding the n inequalities together and collecting terms, we have

Vi<~ ~ Vi+ny-(n-1)~,
i = l " , n i = l ' " n

• o r

(n - 1) ~<nT.

L O W E R B O U N D F O R C L O C K S Y N C H R O N I Z A T I O N 199

In order for this inequality to hold, it must be the case that
y>>.e(1-1/n). |

4. UPPER BOUND

In this section we show that the e (1 - 1 / n) lower bound is tight, by
exhibiting a simple algorithm which synchronizes the clocks within this
amount.

4.1. Algorithm
There is an extremely simple algorithm that achieves the closest possible

synchronization. Define 6 to be (# + v)/2, the median message delay. As
soon as each process p awakens, it sends its local time in a message to the
remaining processes and waits to receive a similar message from every
other process. Immediately upon receiving such a message, say from q, p
estimates q's current local time by adding ~ to the value received. Then p
computes the difference between its estimate of q's local time and its own
current local time. After receiving local times from all the other processes, p
sets its correction variable to the average of the estimated differences
(including 0 for the difference between p and itself).

We describe this algorithm below in pseudo-code. The particular
language used can be translated unambiguously into the formal model of
Lundelius and Lynch (1984); we refer the reader to that paper for more
details. For this paper, we do not require the complete generality; thus, we
just describe the meaning of the single program below.

The algorithm is interrupt-driven, where an interrupt can be either the
arrival of a message or the arrival of a special START signal from the out-
side world. A beginstep(u) statement indicates the beginning of a step of the
process, triggered by interrupt u. The step of the process continues
(indivisibly), executing statements of the code just until the next endstep
statement is reached. Then the process suspends execution until another
interrupt arrives.

We assume that the state of a process consists of values for all the local
variables, DIFF, SUM, RESPONSES, and CORR, together with a
location counter which indicates the next beginstep statement (if any) to be
executed. The initial state of a process consists of the value 0 for all the
local variables, and the location counter positioned at the first beginstep
statement of the program. Final states are those in which the location
counter is at the end of the code. A step of the process involves receiving an
interrupt, reading the local physical clock, carrying out some local com-
putation (which can read and modify the variables and location counter in

200 LUNDELIUS AND LYNCH

the process state), and perhaps sending some messages. N O W indicates the
current local time.

CODE FOR PROCESS p:

beginstep(u)
send (NOW) to all q ~ p

do forever
if u = message Vfrom process q then

D I F F : = V + 5 - N O W
SUM := SUM + D I F F
RESPONSES := RESPONSES + 1
endif

if RESPONSES = n - 1 then exit endif
endstep
beginstep(u)
enddo

CORR := CORR + SUM/n
endstep

For the remainder of the paper, fix P to be a set of n processes, each run-
ning the preceding code.

4.2. Correctness

We will show that any admissible execution e of the algorithm syn-
chronizes to within ~, where ~ is fixed for this section as e (1 - 1/n). The
upper bound is not quite as strange as it might look at first glance. It can
be rewritten as (2(e/2)+ (n - 2) e) / n , which is the average of the possible
discrepancies between the estimates two particular process p and q can
make, for the values of the physical clocks of all the processes. Processe s p
and q can agree on a clock value for p (or for q) to within accuracy at most
e/2 (giving the 2(e/2) term, and can agree on a clock value for any other
process r to within accuracy at most e (giving the (n - 2) e term). Then the
possible discrepancies are averaged, so the sum is divided by n.

We now give a careful analysis. Fix c~ to be an arbitrary set of physical
clocks; we must show that 5~ = (p, c~) synchronizes to within 7. First, we
define Apq, the actual difference between the physical clocks of p and q, to
be C p - Cq. Since there is no drift in the clock rates, this difference is a
well-defined constant. Moreover, note the following.

LEMMA 4. For any processes p, q, and r,

(a) A~ = 0,

LOWER BOUND FOR CLOCK SYNCHRONIZATION 201

(b) A p q = - A q p ,

(c) Apq =- Apt q- Arq.

P r o o f Immediate from the definition of A. |

Next, we define Dpq, the estimated difference between the physical clocks
of p and q, as estimated by q. For p ~ q, let Dpq be the value of process q's
local variable DIFF immediately after process p's message is handled by
process q. It is easy to see that Dpq = Cp(t)"k-~- Cq(t'), where local time
Lp(t) = Cp(t) is sent by p at real time t and received by q at real time t'. Let
Opp : 0. We relate the estimates D to the actual differences A.

LEMMA 5. Le t p and q be processes. Then IDpq - Apq I ~ e/2.

P r o o f Suppose at real time t, p sends the value Cp(t), which is received
by q at real time t'. Then

IDpq -- Apql = I Cp(t) + 6 - Cq(t ') - Apq I

= I Cq(t) + Apq + (~ -- Cq(t') - Apq[, by definition of Apq,

= I C q (t) + ~ - Cq(t')J

= 1(~ -- (C q (t ') - Cq(t))l

= 16 - (t' - t)l, since the rate of clock Cq is 1,

- - ~<~ ~< e/2, since ~ e /2 -.~ t - t ~< ~ + s /2 . |

The next lemma concerns the relationships between two
estimated differences and the actual differences.

processes'

LEMMA 6.

(a)
(b)
(c)

P r o o f

(a)

Le t p, q, and r be processes. Then

I (D~q- D~r) - 3rql < e,

I(Dpp - D;r) - - Arp I < e/Z,

[(Dpq - Dp,) - A ,q[= I(Dpq - Dp,) - (Apq - A;.)[,

= IDpq - - A p q) - (Dp~ - Z]pr)]

]Opq- Apq[--}- [Op t - Apt[

by Lemma 4,

by two applications of Lemma 5.

202 L U N D E L I U S A N D L Y N C H

(b)

I(Dpp - Dpr) - Arpl <~ [Dpp - App[+ IDpr - Aprl,

= 0 + [Dpr-Apr[,

<~a/2,

(c) is similar to (b), and is left to the reader.

Here is the main result.

as in part (a),

by Lemma 5.

I

THEOREM 7 (Agreement). Algor i thm P guarantees clock synchronizat ion
to within e(1 - 1/n).

P r o o f Fix a set of clocks cg, and let 5p = (p, cg). We must show that for
any admissible execution e of 5¢, any two processes p and q, and any time t
after last-step(e),

I L p (t) - Lq(t) l <~ ~(1 - 1/n).

Now

ILp(t) - Lq(t)l = I (Cp(t) + CORRp(t)) - (Cq(t) -1- CORRq(t)) I

: IApq - - (C O R R q (t) - CORRp(t))l

= I A p q - ((1 / n) ~ Drq--(i/n) E Drp)[,
r~P r~P

by the way the algorithm works,

= (l/n) n A p q - - ~ p (Drq--Drp)

= (i / n) r~ °~ (Apq -- (Vrq -- Drp))

=(I /n) r~P ((A r q - A r p) - (D r q - D r p)) ' byLemma4 ,

< (I /n) ~ [(A r q - - A w) - - (D r q - - D r p) l .
reP

Now, the summation consists of n terms, each of which can be bounded
using Lemma 6. The two terms for r = p and r = q are each bounded by a/2,
while the other n - 2 terms are each bounded by a. Thus, the entire
expression is

ILp(t) -- Lq(t)[<~ (1/n)(2e/2 + (n - 2) e)

= e (1 - 1/n). |

LOWER BOUND FOR CLOCK SYNCHRONIZATION 203

4.3. Validity

There is one other property of the algorithm which is worth noting.
Namely, it produces local times which are not very far from the values of
the physical clocks of the processes. We make this condition more precise
by defining a clock synchronization algorithm P to be e-valid provided that
for every cg and every admissible execution e for (P, cg), the following is
true. For any process p, there exist processes q and r such that
C q (t) - - O~ ~ Lp(t) <~ Cr(t) + ~ for all times t after last-step(e).

THEOREM 8. Algorithm P is e/2-valid.

Proof Let e be an admissible execution for (P, cg), where cg is any set
of physical clocks. Let p be any process, and let t be any time after last-
step(e). By definition, the value of CORRp at time t is equal to the average,
(l/n) ~_~q~p Dqp. Then there exist processes q and r such that

Dqp <<. CORRp(t) ~< Drp.

By applying Lemma 5 to each end of this inequality, we get

A qp - - e/2 <<. D qp <.% CORRp(t) ~< Drp <~ Arp + e/2.

Thus, Cp(t) "~ Z~qp - - el2 <~ Cp(t) + CORRp(t) ~< Cp(t) + Arp + el2,
together with the definition of L/ implies that

which

C q (t) - ~/2 <. Lp(t) <. Cr(t) + ~/2. |

5. OPEN QUESTION

It would be interesting to know how the results of this paper generalize
to arbitrary communication graphs rather than just complete graphs. Also,
it would be interesting to consider what happens when there are different
uncertainties for the message delys on the different links.

ACKNOWLEDGMENTS

We thank Brian Coan, Cynthia Dwork, Joe Halpern, and Michael Merritt for their
suggestions concerning earlier versions of this paper. Michael, in particular, gave us many
excellent suggestions for improving the presentation.

R~CEIVEO May 14, 1984; accepted December 1984

643/62/2/3-8

204 LUNDELIUS AND LYNCH

REFERENCES

DOLEV, D., HALPERN, J., AND STRONG, R. (1984), On the possibility and impossibility of
achieving clock synchronization, in "Proc. 16th Annu. ACM Symposium on Theory of
Computation," ACM SIGACT, Washington, D.C., pp. 504-511.

HALPERN, J., SIMONS, B., AND STRONG, R. (1983), "An Efficient Fault-tolerant Algorithm for
Clock Synchronization," IBM Computer Science Research Report RJ 4094 (45492).

HALPERN, J., S1MONS, B., STRONG, R., AND DOLEV, D. (1984), Fault-tolerant clock syn-
chronization, in "Proc. 3rd Annu. ACM Symposium on Principles of Distributed Com-
puting," ACM SIGACT and SIGOPS, Vancouver, pp. 89-102.

LAMPORT, L. (1978) Time, clocks, and the ordering of events in a distributed system, Comm.
A C M 21, No. 7, 558-565.

LAMPORT, L., AND MELLIAR-SMITH, P. M. (1984), Byzantine clock synchronization, in
"Proc. 3rd Anna. ACM Symposium on Principles of Distributed Computing," ACM
SIGACT and SIGOPS, Vancouver, pp. 68-74.

LUNDELIUS, J. (1984), "Synchronizing Clocks in a Distributed System," S.M. thesis,
Massachusetts Institute of Technology,

LUNDELIUS, J. AND LYNCH, N. (1984), A new fault-tolerant algorithm for clock syn-
chronization, in "Proc. 3rd Annu. ACM Symposium on Principles of Distributed Com-
puting," ACM SIGACT and SIGOPS, Vancouver, pp. 75-88.

MARZtJLLO, K. (1983), "Loosely-coupled Distributed Services: A Distributed Time Service,"
Ph.D. dissertation, Stanford University.

