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The problem of synchronizing clocks of processes in a fully connected network is 
considered. It is proved that, even if the clocks all run at the same rate as real time 

and there are no failures, an uncertainty of e in the message delivery time makes it 
impossible to synchronize the clocks of n processes any more closely than 
e(1 - 1/n). A simple algorithm is given that achieves this bound. © 1984 Academic 
Press, Inc. 

1. INTRODUCTION 

Keeping the local clocks of processes synchronized in a distributed 
system is important in many applications and is an interesting problem in 
its own right. In order to be practical, algorithms to synchronize clocks 
should be able to tolerate process failures, clock drift, and varying message 
delivery times. However, these conditions complicate the design and 
analysis of algorithms. 

In this paper, we consider a simple special case of the general clock syn- 
chronization problem. Namely, we assume that clocks run at a perfect rate 
and that there are no failures. However, clocks initially have arbitrary 
values, and there is an uncertainty of e in the message delivery time. For 
this case, once the clocks are synchronized, they will remain synchronized, 
so the only problem is to synchronize them in the first place. 

We show that, even under these simplifying assumptions, no algorithm 
can synchronize clocks exactly. More precisely, we show that e(1 - 1/n) is a 
lower bound on how closely the clocks of n processes can be synchronized 
in this case. Since these are strong assumptions, this lower bound also 
holds for the more realistic case in which clocks drift and arbitrary faults 
occur. We show that the bound of e(1 - l/n) is tight for the simplified case, 
by describing a simple algorithm that achieves this bound. 
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Research Office Contracts DAAG29-79-C-0155 and DAAG29-84-K-0058, and Advanced 
Research Projects Agency of the Department  of Defense Contract  N00014-83-K-0125. 
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The problem of synchronizing clocks in a distributed system has been a 
topic of considerable research interest recently. Several algorithms have 
appeared in the literature (Halpern, Simons, and Strong, 1983; Halpern, 
Simons, Strong, and Dolev, 1984; Lamport, 1978; Lamport and Melliar- 
Smith, 1984; Lundelius and Lynch, 1984; MarzuUo, 1983), each working 
under different assumptions. Dolev, Halpern, and Strong (1984) show that 
it is impossible to synchronize clocks if one third or more of the processes 
are subject to Byzantine failures. They also demonstrate a lower bound 
similar to ours (proved independently), but characterizing the closeness of 
synchronization obtainable along the real time axis. That is, they prove a 
lower bound on how close the real times can be when two processes' clocks 
have the same value, whereas our result is a lower bound on how close the 
clock values can be at the same real time. 

The remainder of the paper is organized as follows. Section 2 contains a 
description of the properties we require of our system model, and a 
statement of the clock synchronization problem of this paper. Section 3 
contains the lower bound result, and Section 4 contains the corresponding 
upper bound. We conclude with an open question in Section 5. 

2. THE CLOCK SYNCHRONIZATION PROBLEM 

2.1. Systems of Processes with Clocks 

One way of presenting our results would be by using a specific formal 
model for systems of processes with clocks. However, the results of this 
paper are not dependent on the precise details of a particular model. 
Therefore, we do not give a complete description of a formal model in this 
paper; rather, we just state the properties which we require of such a 
model. We refer the interested reader to Lundelius and Lynch (1984) for a 
detailed development of a particular model for systems of processes with 
clocks; also, preliminary versions of the results of the present paper are 
given in terms of such a model in Lundelius (1984). 

The system is assumed to consist of n processes, located at the vertices of 
a complete communication graph. All processes are assumed to know the 
size and topology of the network. Each process has a local "physical 
clock," whose value it can read. Processes communicate by sending and 
receiving messages. 

We do not make many explicit assumptions about the form of a process. 
We presume that a process can be modelled as some kind of automaton, 
having a state set, including initial and final states, and a transition 
relation, which defines the algorithm to be executed. However, processes 
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might be deterministic or nondeterministic. They might be assumed to have 
significant or insignificant local processing time. They might buffer incom- 
ing messages until they are ready to process them, or they might process 
incoming messages immediately. They might take steps only upon receipt 
of a message, or also upon discovering that their physical clocks have 
reached certain values, or at arbitrary times. Many other variations are 
possible, and our results will hold equally well for all of these cases. 

We introduce some notation and definitions. Let P be a set of n 
processes. A clock is a monotone increasing function from ~ (real time) to 

(clock time). In this paper, we assume that clocks do not drift; thus, we 
assume that all clock functions have derivative exactly 1 everywhere. A 
system of processes with clocks (or simply a system), denoted by (P, c£), is a 
set of processes P together with a set of clocks cg = { Cp }, one for each p in 
P. Cloc k C~ is called p's physical clock. 

Each process' physical clock is assumed to be a fixed function, i.e., it can- 
not be modified by the process. We assume that processes do not have 
access to the real time; each process obtains its only information about 
time from its physical clock. Thus, a process' physical clock value might be 
used in its transition relation, but the real time cannot be so used. By 
modelling the clocks separately from the processes, we can study the effect 
of using different clock functions with the same set of processes. 

2.2. Executions 

In this subsection, we define the "executions" of a system of processes 
with clocks. We begin by defining executions for individual processes. The 
events which can occur at a process include the arrival of messages from 
other processes, as well as any significant events internal to the process. 
These events may cause the process to send messages to other processes. 
An action describes the changes made by a particular event to the process' 
state. An execution of process p with clock C is a partial mapping from 
(real time) to actions; the action for a given time describes the changes to p 
which occur at that time. Process executions are assumed to satisfy certain 
constraints, as given by the process model and the particular process 
definition. 

An execution for a system (P, cg) of processes with clocks is a set of 
process executions, one for each process p in P, with clock Cp in c£, 
together with a one-to-one correspondence between the messages sent by p 
to q and the messages received by q from p, for any processes p and q. We 
use the message correspondence to define the delay of any message in a 
system execution, in the obvious way. For  each system execution e, define 
last-step (e) to be the earliest time in e at which all processes are in final 
states. If there is no such time, then last-step (e) is undefined. 
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2.3. Views and Equivalence 

As we have already stated, we are assuming that the processes do not 
have access to the real time, but only to their physical clock time. In the 
lower bound proof, we will consider different system executions that are 
indistinguishable to the processes because the events occur at the same 
physical clock times, although they might occur at different real times. 

Thus, we define the view of any process p in any process execution e (for 
p with clock C), to be the actions in e, together with their physical clock 
times of occurrence. The real times of occurrence are not represented in the 
view. The notion of a view allows us to define a natural notion of 
equivalence for process executions. Define two process executions, one of 
process p with clock C and the other of process p with clock C', to be 
equivalent provided that the view of p is the same in both executions. We 
extend this definition to a definition of equivalence for system executions. 
Define two system executions, execution e of system (P, cg) and execution 
e' of (P, cg,), to be equivalent provided that for each process p, the com- 
ponent process executions for p in e and e' are equivalent. Thus, the 
executions are indistinguishable to the processes. Only an outside observer 
who has access to the real time can tell them apart. 

2.4. Shifting 

We introduce the notion of "shifting," both for a system execution and 
for a set of clocks. Shifting a system execution by some amount, relative to 
p, means modifying p's process execution so that every action for p occurs 
that amount earlier in real time. Shifting a set of clocks by some amount, 
relative to a process p, means adding that amount to the function that 
defines p's clock. We make assumptions which insure that, if an execution 
and a set of physical clocks are both shifted by the same amount relative to 
the same process, the resulting execution is equivalent to the original one. 
No process can tell the difference, because the change in the time of 
occurrence of actions in the execution is compensated for by the change in 
the physical clock. 

We begin by defining a shift of a process execution and of a single clock. 
Given execution e of process p with clock C, and real number ~, a new 
execution e' = shift(e, ~) is defined by e'(t) = e(t + ~) for all t. All actions are 
shifted earlier in e' by ~ if ~ is positive, and later by - ~  if ~ is negative. 
Given a clock C and real number ~, a new clock C ' =  shift(C, ~) is defined 
by C'(t) = C(t) + ~ for all t. The clock is shifted forward by ~ if ~ is positive, 
and backward by - {  if { is negative. 

We make the following important assumption. 

AXIOM 1. Let e be an execution of process p with clock C, and let ~ be a 



194 LUNDELIUS AND LYNCH 

real number. Let C' =shift(C, ~). Then shift(e, ~) is an execution of  p with 
clock C'. 

That is, if a process execution and physical clock are modified in 
corresponding ways, the result is also an execution. It is easy to see that 
this resulting execution must be equivalent to the original execution. 

Now we define a shift of a system execution and of a set of clocks. Given 
execution e of system (P, c£), and real number ~, a new execution 
e '= shift(e, p, ~) is defined by replacing p's process execution in e, ep, by 
shift(ep, (), and by retaining the same correspondence between sends and 
receives of messages. (Technically, the correspondence is redefined so that a 
pairing in e that involves the event for p at time t, in e' involves the event 
for p at time t - ().) All actions for process p are shifted by (, but no other 
actions are altered. Given a set of clocks ~ = { C a } q ~ p, and real number (, 
a new set of clocks cg,= shift(cg, p, (), is defined by replacing clock Cp by 
clock shift(Cp, (). Process p's clock is shifted forward by (, but no other 
clocks are altered. 

LEMMA 1. Let e be an execution of  system (P, ~), p a process and ~ a 
real number. Let cg, =shift(Cg, p, () and e' =shift(e,p, (). Then e' is an 
execution of  (P, cg,), and e' is equivalent to e. 

Proof The result follows immediately from the definition of a system 
execution, together with Axiom 1 and the immediately following 
remarks. | 

The following lemma quantifies how message delays change when a 
system execution is shifted. 

LEMMA 2. Let e be an execution of  system (P, cg), p a process, ~ real 
number. Let cg, = shift(c~, p, ~) and e' = shift(e, p, ~). Then when the obvious 
correspondence is made between messages in e and in e', all messages have 
the same delay in e' as in e, with the following two exceptions. I f  q is any 
process other than p, then 

(a) the delay of  any message from q to p is ~ less in e' than in e, and 

(b) the delay of  any message from p to q is ( greater in e' than in e. 

Proof Without loss of generality, assume ~ is nonnegative. Since all 
events for p happen ff earlier in e' than in e, and since the correspondence 
between sends and receives is updated appropriately, messages are received 
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( earlier (causing ( less delay), and are sent ( earlier (causing ( greater 
delay). | 

2.5. Admissible Executions 

For the remainder of the paper, fix nonnegative values e, #, and v such 
that v - /~  = e. We say that a system execution e is admissible provided that 
for every p and q, every message in e from p to q has its delay in the range 
[#, v]. Thus,/~ is the smallest message delay, v is the largest delay, and the 
difference between them, e, is the message uncertainty. 

We note that our results would hold with almost identical proofs in the 
case where # and v differ from link to link, as long as e is the same. The 
restriction to uniform # and v is made only for notational simplicity. 

2.6. Problem Statement 

Now we describe the particular clock synchronization problem which is 
considered in this paper. Assume that the system model is as described so 
far in this section. We consider only admissible executions, and we assume 
further that the processes have knowledge of the message delay bounds # 
and v. 

The processes are supposed to establish synchronization of their "local 
times." These local times are not the values of the physical clocks, since we 
assume that the physical clocks cannot be reset by the processes. Rather, 
each process obtains its notion of the local time by adding the value in a 
particular local variable CORR to the physical clock time. The process is 
able to modify the value in its CORR variable, so that during an 
execution, p ' s  local variable CORR can take on different values. We 
assume that the value of CORR is 0 in any initial state, and cannot be 
changed after a process enters a final state. For a particular execution, we 
define a function CORRp(t), giving the value ofp ' s  variable CORR at time 
t. Then, for a particular execution, we define the local time for p to be the 
function Lp, which is given by Cp + CORRp. 

Since the processes have physical clocks which are progressing at the 
same rate as real time, the only part of the clock synchronization problem 
which is of interest is the problem of bringing the clocks into syn- 
chronizat ion-once this has been done, synchronization is maintained 
automatically. 

Since an algorithm is coded into the transition function for a process, P 
is all that is needed to specify an algorithm. A clock synchronization 
algorithm P is said to synchronize to within 7 if the algorithm terminates 
(i.e., all processes eventually enter final states), and after it terminates, the 
processes' local times differ by no more than 7. More precisely, we require 
that every admissible execution e for (P, oK), for any set of clocks ~, 
satisfies the following conditions: 
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(a) Termination. All processes eventually enter final states. Thus, 
last-step(e) is defined. 

(b) Agreement. I L p ( t ) -  Lq(t)[ <<. ~ for any processes p and q and time 
t >/last-step(e). 

3. LOWER BOUND 

In this section we show that no algorithm can synchronize n processes' 
clocks any more closely than e ( 1 -  l/n). The main idea of the proof is that 
different executions can be constructed that look the same to the processes 
but that result in different local times. We consider an arbitrary algorithm 
P that synchronizes clocks to within 7. We begin with an admissible 
execution of P that has a particular pattern of message delays, and then 
alter this execution by judicious shifting so that the resulting message 
delays are still within the allowable range (i.e., the result is another 
admissible execution), and so that no process can tell the difference (i.e., 
the old and new executions are equivalent). The equivalence implies an 
inequality concerning 7. By constructing n equivalent executions in this 
manner, n inequalities concerning ~, are obtained. Solving the inequalities 
for 7 produces the claimed lower bound. 

THEOREM 3. No clock synchronization algorithm can synchronize a 
system of  n processes to within ?, for  any 7 < ~ ( 1 -  l/n). 

Proof Fix a set of processes P that synchronizes to within y. We will 
show that 7~>~(1- 1/n). 

Let P consist of processes 1 through n. We construct a sequence of 
systems 5~i=(P,  cgi), for 1 <<,i<~n, and a corresponding sequence of 
executions e i for those systems. All of the executions e ~ will be equivalent to 
each other, and all will be admissible. Furthermore, in e;, all messages sent 
by process i will have delay/~ and all messages received by i will have delay 
v. The construction is carried out inductively on i. 

Let 5~1= (P, cgl), where cgl is an arbitrary set of clocks. Let e I be any 
execution of 5el in which all messages from process j to process k have 
delay exactly # i f j < k ,  and have delay exactly v i f j > k .  That is, messages 
from processes to higher-numbered processes take the minimum delivery 
time, while messages from processes to lower-numbered processes take the 
maximum delivery time. Clearly, e 1 is admissible, all messages sent by 
process 1 have delay #, and all messages received by process 1 have delay v. 
(For the special case where n = 4, we represent the execution e I as in Fig. 1. 
There is a vertical l inefor  each of the four processes. All the messages from 
j to k have the delay that labels the arrow from j to k.) 
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M e ssage  delays for execut ion  e I in the case n = 4. 

M e ssage  delays for execut ion  e 2 in the case n = 4. 

M e s s a g e  delays for execut ion  e 3 in the case n = 4. 

M e ssage  delays  for execut ion  e 4 in the case n = 4. 
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Now assume that 6 e i -  1 and e ~- 1 have been constructed for 2 ~< i~< n, 
and, furthermore, that e i i is admissible, and that, in e ~- 1, all messages 
sent by process i -  1 have delay/ t  and all messages received by i -  1 have 
delay v. We construct ~9 Oi and e( Let c g ~ = s h i f t ( ~ - l , i - l , e )  and 
5e~= (P, cU). Let e l=  shift(e ~- 1, i -  1, e). Thus, the ith execution is obtained 
from the ( i -  1)th execution by shifting the execution and set of clocks by e 
relative to process i - 1. (For the case of n --- 4, the three executions e 2, e 3, 
and  e 4 are depicted in Figures 2, 3, and 4.) 

By Lemma 1 and the inductive hypothesis, e ~ is an execution of (P, cg~), 
and is equivalent to e ~- 1. We now argue that e e is admissible. By Lemma 2, 
the only changes between e i 1 and e ~ are for messages involving process 
i - l .  Messages received by i - 1  take ~ less time, so they have delay 
v -  e =/~; messages sent by i - 1  take e more time, so they have delay 
/~ + e = v. These delays are in the specified range. 

The last part of the induction is showing that in e ~ all messages received 
by process i have delay v and all messages sent by process i have delay/~. 
Messages to and from a higher-numbered process have delays as in e ~, i.e., 
/~ and v, respectively. All lower-numbered processes have been shifted by e, 
so the delays, which were originally/z (for receiving) and v (for sending) 
have become/~ + e = v and v - e = #, respectively. 

Since e l is an admissible execution, it must terminate; let tF= last- 
step(el). By equivalence, all the e i terminate, and the direction of the shifts 
implies that they all terminate by time tr" 

Let V~ ..... Vn be the values for the respective processes' local times at real 
time tr, in execution e ~. Since the algorithm is assumed to synchronize to 
within ?, all of these values are within 7 of each other. In particular, 

Vn~< V1 +?.  

Now consider e ~, l < i < . n .  Since e i is equivalent to e 1, the correction 
variable for any process p is the same in both executions at real time tf. 
This fact, together with the definition of q¢~, implies that in e i, process 
i -  l's local time at real time t F is V~ 1 + e and process t's local time at real 
time ty is V~. Since these values must be within 7 of each other, we have 

Vi l < ~ V i + ~ / - a  

Adding the n inequalities together and collecting terms, we have 

Vi<~ ~ Vi+ny-(n-1)~, 
i = l " , n  i = l ' " n  

• o r  

( n -  1) ~<nT. 



L O W E R  B O U N D  F O R  C L O C K  S Y N C H R O N I Z A T I O N  199 

In order for this inequality to hold, it must be the case that 
y>>.e(1-1/n). | 

4. UPPER BOUND 

In this section we show that the e ( 1 - 1 / n )  lower bound is tight, by 
exhibiting a simple algorithm which synchronizes the clocks within this 
amount. 

4.1. Algorithm 
There is an extremely simple algorithm that achieves the closest possible 

synchronization. Define 6 to be (# + v)/2, the median message delay. As 
soon as each process p awakens, it sends its local time in a message to the 
remaining processes and waits to receive a similar message from every 
other process. Immediately upon receiving such a message, say from q, p 
estimates q's current local time by adding ~ to the value received. Then p 
computes the difference between its estimate of q's local time and its own 
current local time. After receiving local times from all the other processes, p 
sets its correction variable to the average of the estimated differences 
(including 0 for the difference between p and itself). 

We describe this algorithm below in pseudo-code. The particular 
language used can be translated unambiguously into the formal model of 
Lundelius and Lynch (1984); we refer the reader to that paper for more 
details. For this paper, we do not require the complete generality; thus, we 
just describe the meaning of the single program below. 

The algorithm is interrupt-driven, where an interrupt can be either the 
arrival of a message or the arrival of a special START signal from the out- 
side world. A beginstep(u) statement indicates the beginning of a step of the 
process, triggered by interrupt u. The step of the process continues 
(indivisibly), executing statements of the code just until the next endstep 
statement is reached. Then the process suspends execution until another 
interrupt arrives. 

We assume that the state of a process consists of values for all the local 
variables, DIFF,  SUM, RESPONSES, and CORR, together with a 
location counter which indicates the next beginstep statement (if any) to be 
executed. The initial state of a process consists of the value 0 for all the 
local variables, and the location counter positioned at the first beginstep 
statement of the program. Final states are those in which the location 
counter is at the end of the code. A step of the process involves receiving an 
interrupt, reading the local physical clock, carrying out some local com- 
putation (which can read and modify the variables and location counter in 
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the process state), and perhaps sending some messages. N O W  indicates the 
current local time. 

CODE FOR PROCESS p: 

beginstep(u) 
send (NOW) to all q ~ p  

do forever 
if u = message Vfrom process q then 

D I F F  : = V + 5 - N O W  
SUM := SUM + D I F F  
RESPONSES := RESPONSES + 1 
endif 

if RESPONSES = n - 1 then exit endif 
endstep 
beginstep(u) 
enddo 

CORR := CORR + SUM/n 
endstep 

For the remainder of the paper, fix P to be a set of n processes, each run- 
ning the preceding code. 

4.2. Correctness 

We will show that any admissible execution e of the algorithm syn- 
chronizes to within ~, where ~ is fixed for this section as e ( 1 -  1/n). The 
upper bound is not quite as strange as it might look at first glance. It  can 
be rewritten as (2(e/2)+ ( n - 2 ) e ) / n ,  which is the average of the possible 
discrepancies between the estimates two particular process p and q can 
make, for the values of the physical clocks of all the processes. Processe s p 
and q can agree on a clock value for p (or for q) to within accuracy at most 
e/2 (giving the 2(e/2) term, and can agree on a clock value for any other 
process r to within accuracy at most e (giving the (n - 2) e term). Then the 
possible discrepancies are averaged, so the sum is divided by n. 

We now give a careful analysis. Fix c~ to be an arbitrary set of physical 
clocks; we must show that 5~ = (p, c~) synchronizes to within 7. First, we 
define Apq, the actual difference between the physical clocks of p and q, to 
be C p -  Cq. Since there is no drift in the clock rates, this difference is a 
well-defined constant. Moreover, note the following. 

LEMMA 4. For any processes p, q, and r, 

(a) A~ = 0, 
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( b )  A p q = - A q p ,  

( c )  Apq =- Apt q- Arq. 

P r o o f  Immediate from the definition of A. | 

Next, we define Dpq, the estimated difference between the physical clocks 
of p and q, as estimated by q. For  p ~ q, let Dpq be the value of process q's 
local variable DIFF  immediately after process p's message is handled by 
process q. It is easy to see that Dpq = Cp(t)"k-~-  Cq(t'), where local time 
Lp( t )  = Cp(t)  is sent by p at real time t and received by q at real time t'. Let 
Opp : 0. We relate the estimates D to the actual differences A. 

LEMMA 5. Le t  p and  q be processes. Then IDpq - Apq I ~ e/2. 

P r o o f  Suppose at real time t, p sends the value Cp(t),  which is received 
by q at real time t'. Then 

IDpq -- Apql = I Cp(t)  + 6 - Cq(t ' )  - Apq I 

= I Cq(t) + Apq + (~ -- Cq(t') - Apq[, by definition of Apq, 

= I C q ( t ) + ~ -  Cq(t')J 

= 1(~ -- ( C q ( t ' ) -  Cq(t))l 

= 16 - (t' - t)l, since the rate of clock Cq is 1, 

- -  ~<~ ~< e/2, since ~ e /2  -.~ t - t ~< ~ + s /2 .  | 

The next lemma concerns the relationships between two 
estimated differences and the actual differences. 

processes' 

LEMMA 6. 

(a) 
(b) 
(c) 

P r o o f  

(a) 

Le t  p, q, and r be processes. Then 

I (D~q-  D~r) - 3rql < e, 

I(Dpp - D;r)  - -  Arp  I < e/Z, 

[(Dpq - Dp,) - A ,q[ = I(Dpq - Dp,) - (Apq - A;.)[, 

= IDpq - -  A p q )  - (Dp~ - Z]pr)] 

]Opq- Apq[ --}- [Op t -  Apt[ 

by Lemma 4, 

by two applications of Lemma 5. 
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(b) 

I(Dpp - Dpr) - Arpl <~ [Dpp - App[ + IDpr - Aprl, 

= 0 + [Dpr-Apr[ ,  

<~a/2, 

(c) is similar to (b), and is left to the reader. 

Here is the main result. 

as in part (a), 

by Lemma 5. 

I 

THEOREM 7 (Agreement). Algor i thm P guarantees  clock synchronizat ion 
to within e(1 - 1/n). 

P r o o f  Fix a set of clocks cg, and let 5p = (p, cg). We must show that for 
any admissible execution e of 5¢, any two processes p and q, and any time t 
after last-step(e), 

I L p ( t ) -  Lq(t) l  <~ ~(1 - 1/n). 

Now 

ILp( t ) - Lq( t )l = I ( Cp( t ) + CORRp(t)) - ( Cq( t ) -1- CORRq(t)) I 

: IApq - - ( C O R R q ( t )  - CORRp(t))l 

= I A p q - ( ( 1 / n )  ~ Drq--(i/n ) E Drp)[, 
r~P r~P 

by the way the algorithm works, 

= (l/n) n A p q - - ~ p  (Drq--Drp)  

= ( i / n )  r~  °~ (Apq -- (Vrq -- Drp)) 

=( I /n )  r~P ( ( A r q - A r p ) - ( D r q - D r p ) ) '  byLemma4 ,  

< ( I /n )  ~ [ ( A r q - - A w ) - - ( D r q - - D r p ) l .  
reP 

Now, the summation consists of n terms, each of which can be bounded 
using Lemma 6. The two terms for r = p  and r = q are each bounded by a/2, 
while the other n -  2 terms are each bounded by a. Thus, the entire 
expression is 

ILp(t)  -- Lq(t)[ <~ (1/n)(2e/2 + (n - 2) e) 

= e ( 1 -  1/n). | 
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4.3. Validity 

There is one other property of the algorithm which is worth noting. 
Namely, it produces local times which are not very far from the values of 
the physical clocks of the processes. We make this condition more precise 
by defining a clock synchronization algorithm P to be e-valid provided that 
for every cg and every admissible execution e for (P, cg), the following is 
true. For any process p, there exist processes q and r such that 
C q ( t )  - -  O~ ~ Lp(t) <~ Cr(t ) + ~ for all times t after last-step(e). 

THEOREM 8. Algorithm P is e/2-valid. 

Proof Let e be an admissible execution for (P, cg), where cg is any set 
of physical clocks. Let p be any process, and let t be any time after last- 
step(e). By definition, the value of CORRp at time t is equal to the average, 
(l/n) ~_~q~p Dqp.  Then there exist processes q and r such that 

Dqp <<. CORRp(t) ~< Drp. 

By applying Lemma 5 to each end of this inequality, we get 

A qp - -  e/2 <<. D qp <.% CORRp(t) ~< Drp <~ Arp + e/2. 

Thus, Cp(t) "~ Z~qp - -  el2 <~ Cp(t) + CORRp(t) ~< Cp(t) + Arp + el2, 
together with the definition of L/ implies that 

which 

C q ( t )  - ~/2 <. Lp(t) <. Cr(t) + ~/2. | 

5. OPEN QUESTION 

It would be interesting to know how the results of this paper generalize 
to arbitrary communication graphs rather than just complete graphs. Also, 
it would be interesting to consider what happens when there are different 
uncertainties for the message delys on the different links. 
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