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1. Introduction

Nested transaction systems are being explored in a number of
projects (e.g., see[6,16,13,1]) as a means for organizing
computations in a distributed system. Like ordinary transactions,
nested transactions provide a simple mechanism for coping with
concurrency and failures. In addition, nested transactions extend the
usual notion of transactions {2, 12] to permit concurrency within a
single action and to provide a greater degree of fault-tolerance, by
isolating a transaction from a failure of one of its descendants.

In a distributed system, however, various factors, including node
crashes and network delays, can result in orphaned computations:
computations that are still running but whose results are no longer
needed. As discussed in (7, 10], even if a system is designed to
prevent orphans from permanently affecting shared data, orphans
are still undesirable, for two reasons. First, they waste resources.
Second, they may see inconsistent information. For example, a
transaction might be reading data at two nodes, with some invariant

relating the states of the data. If the transaction reads data at one
of the nodes and then becomes an orphan, another transaction could
change the data at both nodes before the orphan reads- the data at
the second node. This could happen, for example, because the first
node learns that the transaction has aborted and releases its locks.
While the inconsistencies seen by an orphan should not have any
permanent effect on the shared data in the system, they can cause
strange behavior if the orphan is interacting with the external world,
and can also make programs difficult to design and debug.
. Several algorithms have been designed to detect and eliminate
orphans before they can see inconsistent information. In this paper
we give formal descriptions and correctness proofs for the two
orphan elimination algorithms in (7] and [10]. Our analysis covers
only orphans resulting from aborts of actions that leave running
descendants; we are currently working on modelling crashes and
describing the algorithms that handle orphans that result from
crashes. Our proofs are completely rigorous, yet quite simple. We
show formally that the algorithms work in combination with any
concurrency control protocol that ensures serializability of committed
transactions, thus providing formal justification for the informal
claims made by the algorithms’ designers. Separating the orphan
elimination algorithms from the concurrency control algorithms in
this way contributes greatly to the simplicity of our results, and is in
marked contrast to earlier work on similar problems (e.g., {4]).

The remainder of the paper is organized as follows. We begin in
Section 2 with a brief description of [/O automata, which serve as
the formal foundation for our work. Then, in Section 3, we review
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the model for nested transaction systems (including aborts) from [8].
The material in these two sections is largely abstracted from [8];
except for Section 3.5; the reader who is familiar with [8] is
encouraged to skim these sections quickly.

In Section 4, we present some basic definitions and results that
underlie the results to be presented in the rest of the paper. In
Sections 5 — 8, we present a series of different systems. Each
involves the same transactions and generic objects as the generic
system, and each ensures orphan elimination by using a modified
controller. Two are "abstract algorithms® that use global
information and are easy to prove correct directly. The others,
which model the algorithms from [7] and [10], use local information,
and are verified by showing that they simulate the abstract
algorithms. Because of lack of space in the proceedings, some details
are omitted. A complete version of the paper can be obtained from
the authors.

2. Basic Model

We use the I/O automaton model [8, 9], a simple model for
concurrent systems, as the formal foundation for our work. This
model consists of {possibly infinite-state) nondeterministic automata
that have operation names associated with their state transitions.
Communication -among automata is described by identifying their
operations. In this paper, we only prove properties of [finite
behavior, so we only require a simple special case of the general
model. In this section, we give a concise review of the relevant
definitions.

2.1. I/O Automata

An I/O automaton A has components states(4), start(A), out(A),
in(4), and steps(A). Here, states(A) is a set of states, of which a
subset, start(d), is designated as the set of start states. The next
two components are disjoint sets: out{A) is the sct of output
operations, and in(A) is the set of input operations. The union of
these two sets is the set of operations of the automaton. Finally,
steps(A) is the transition relation of A, which is a set of triples of the
form (s’,m,s), where s’ and s are states, and 7 is an operation. Such a
triplé means that in state s’, the automaton can atomically do
operation 7 and change to state s. An element of the transition
relation is called a step of 4. If (s',,s) is a step of A, we say that «
is enabled in s'.

The output operations model the actions that are triggered by the
automaton itself, while the input operations model the actions that
are triggered by the environment of the automaton. We require the
following input condition, which says that an I/O automaton must
be prepared to receive any icput operation at any time: For each
input operation r and each state s’, there exist a state s and a step
(s,m,3).

An ezecution of A is a finite alternating sequence 80T ys8y % gue. Of
states and operations of A, ending with a state. Furthermore, 8y is
in start{A), and each triple (s’,7,s) that occurs as a consecutive
subsequence is a step of A. From any execution, we can extract the
schedule, which is the subsequence of the execution consisting of
operations only. Because transitions to different states may have the
same operation, different executions may have the same schedule.

If S is any set of schedules {or property of schedules), then A is said
to preserve S provided that the following holds. If @ = «’x is any
schedule of A, where x is an output operation, and o’ is in S, then
is in S. That is, the automaton is not the first to violate the property
described by S.




2.2, Composition of Automata

‘We describe systems as consisting of interacting components, each

of which is an I/O automaton. It is convenient and natural to view

systems as I/O automata, also. Thus, we define a composition
operation for [/O automata, to yield a new I/O automaton.

A set of I/O automata may be composed to create a system S, if
- the sets of output operations for the automata are disjoint. (Thus,

every output operation in S will be triggered by exactly one

component.) The system S is itself an I/O automaton. A state of
the composed automaton is a tuple of states, one for each
_ component, and the start states are tuples consisting of start states
of the components. The set of operations of S, ops(S), is exactly the
union of the sets of operations of the component automata. The set
of output operations of S, out(s), is likewise the union of the sets of
output operations of the component automata. Finally, the set of
input operations of S, in(S), is ops(S) — out(S), the set of operations
of § that are not output operations of S. The output operations of a
_system are intended to be exactly those that are triggered by
components of the system, while the input operations of a system are
those that are triggered by the system’s environment.

The triple (s’,m,s) is in the transition relation of § if and only if for
each component automaton A, one of the following two conditions
bolds.- Either m is an operation of A, and the projection of the step
onto A is a step of A, or else x is not an operation of A, and the
states corresponding to A in the two tuples s’ and s are identical.
During an operation # of §, each of the components that has
operation  carries out the operation, while the remainder stay in the
same state.

If o is a sequence of operations of a system § with component A,
then we denote by a|A the subsequence of a containing all the
operations of A. Clearly, if a is a schedule of S, a]4 is a schedule of
A.

3. Generic Systems

In this section, we define “generic systems*®, which consist of
transactions, generic objects, and a generic controller. They are a
generalization of the “weak concurrent systems® of [8]. Transactions
and generic objects describe user programs and data, respectively.
The generic controller controls communication between the other
components, and thereby defines the allowable orders in which the
transactions may take steps. All three types of system components
are modelled as I/O automata.

We begin by defining a structure that describes the nesting of
transactions. Namely, a system type is a four-tuple (7 parent,0,V),
where T, the set of transaction names, is organized into a tree by the
mapping parent:T — 7, with To as the root. The leaves of this tree
are called accesses. The set O denotes the set of objects; formally, 0
is a partition of the set of accesses, where each element of the
partition contains the accesses to a particular object. The set Vis a
set of values, to be used as return values of transactions.

The classical transactions of concurrency control theory (without
nesting) appear in our model as the children of a "mythical*
transaction, To' the root of the transaction tree. It is convenient to
introduce the root transaction to model the environment in which
the rest of the transaction system runs. Transaction To has
operations that describe the invocation and return of the classical
transactions.

The internal nodes of the tree model transactions whose function is
to create and manage subtransactions, but not to access data
directly. The only transactions that actually access data are the
leaves of the transaction tree, and thus they are distinguished as
*accesses®. The partition O simply identifies those transactions that
access the same object.

A generic system of a given system type is the composition of a set
of 1/O automata. This set contains a transaction automaton for
each internal (i.e. non-leaf, non-access) node of the transaction tree,
a generic object automaton for each element of 0, and a generic

controller. These automata are described below. (If X is a generic
object associated with an element X of the partition O, and T is an
access in X, we write T € accesses(X) and say that *T is an access to
X=)

For the rest of this paper, we fix a particular system type
(Tiparent,0,V).

3.1. Transactions

A non-access transaction T is modelled as an I/O automaton, with
the following operations:

Input operations:
CREATE(T)
COMMIT(T",v), for T’ € children(T) and vV
ABORT(T"), for T’ € children(T)

Output operations:
REQUEST _ CREATE(T’), for T’ € children(T)
REQUEST _COMMIT(T,v),forve V.

The CREATE input operation “wakes up* the transaction. The
REQUEST _ CREATE output operation is a request by T to create a
particular child transaction. The COMMIT input operation reports
to T the successful completion of one of its children, and returns a
value recording the results of that child’s execution. The ABORT
input operation reports to T the unsuccessful completion of one of its
children. We call COMMIT(T",v), for any v, and ABORT(T’) return
operations for transaction T°. The REQUEST _ COMMIT operation
is an announcement by T that it has finished its work.

We leave the executions of particular transaction automata largely
unspecified; the choice of which children to create, and what value to
return, will depend on the particular implementation. However, it is
convenient to assume that schedules of transaction automata obey
certain simple syntactic constraints (described in the full paper).

3.2. Generic Objects

In this section, we define the aspects of generic objects that are
relevant to our analysis of orphan algorithms. It turns out that the
details of how synchronization and recovery are implemented by a
generic object are largely irrelevant. Indeed, this is one of the
important contributions of this paper: we are able to state
correctness conditions for and verify orphan elimination algorithms
in a way that is completely independent of the concurrency control
and recovery method used. .

A generic object X is modelled as an I/O automaton, with the
following operations:

Input Operations:
CREATE(T), T an access to X
INFORM _ COMMIT _ AT(X)OF(T)
INFORM_ ABORT _ AT(X)OF(T)
Output Operations:
REQUEST _ COMMIT(T,v), T an access to X

The CREATE input operation starts an access transaction at the
object. (Thus, it corresponds to the invocation of an instance of one
of the object’s *operations®.) Similarly, the REQUEST _ COMMIT
output indicates that an access transaction has finished its work, and
includes a value recording the results. The INFORM_ COMMIT
and INFORM_ABORT input operations tell X that some
transaction (mot necessarily an access to X) has committed or
aborted, respectively.

As for transaction automata, we leave the executions of particular
generic objects largely unspecified. However, we do assume, as for
transactions, that schedules of generic objects obey certain syntactic
constraints {again, described in the full paper).

3.3. Generic Controller

The third kind of component in a generic system is the generic
controller. The generic controller is also modelled as an automaton.
The transactions and generic objects have been specified to be any




The generic controller has seven operations:
Input Operations:
REQUEST _CREATE(T),
REQUEST _ COMMIT(T,v).
QOutput Operations:
CREATE(T),
COMMIT(T,v),
ABORT(T),
INFORM _ COMMIT __ AT(X)OF(T),
INFORM__ABORT _ AT(X)OF(T).
The REQUEST _CREATE and REQUEST _COMMIT inputs are
intended to be identified with the corresponding outputs of
transaction and object automata, and correspondingly for the output
operations.

Each state s of the generic controller consists of five sets:
create _requested(s), created(s), commit__requested(s), committed(s),
and aborted(s).  The set commit_requested(s) is a set of
(transaction,value) pairs, and the others are sets of transactions.
The initial state of the generic controller is denoted by s, All of the
components of s, are empty except for create_ requested, which is
{Ty}. For a state s, we define returned(s) = committed(s) U
aborted(s).

The transition relation for the generic controller consists of exactly
those triples (s’,m,s) satisfying the preconditions and postconditions
below, where = is the indicated operation. For brevity, we include in
the postconditions only those conditions on the state s that may
change with the operation. If a component of s is not mentioned in
the postcondition the component is taken to be the same in s as in s’.

» REQUEST _ CREATE(T)
Postcondition:
create _requested(s) == create _requested(s’) U {T}
» REQUEST _ COMMIT(T,v)
Postcondition:
commit__requested(s) == commit__requested(s’) U {(T,v)}
o CREATE(T)
Precondition:
T € create_requested(s’) — created(s’)
Postcondition:
created(s) = created(s’) U {T}
o COMMIT(T,v)
Precondition:
(T.v) € commit _ requested(s’)
T ¢ returned(s’)
children(T) N create _requested(s’) C returned(s’)
Postcondition:
committed(s) = committed(s’} U {T}
 ABORT(T)
Precondition:
T € create _requested(s’) — returned(s’)
Postcondition:
aborted(s) = aborted(s’) U {T}
« INFORM _COMMIT _ AT(X)OF(T):
Precondition:
T € committed(s’)
« INFORM _ABORT _ AT(X)OF(T):
Precondition:
T & aborted(s’)

The controller simply records its input operations in the
appropriate components of the state. Similarly, the postconditions
for COMMIT and ABORT record that the operation has occurred.
Once the creation of a transaction has been requested, the controller
can create it by producing a CREATE operation.
INFORM_COMMIT and INFORM__ABORT operations can be
generated at any time after the corresponding COMMIT and

ABORT operations have occurred.

The precondition for the COMMIT operation ensures that a
transaction only commits if it has requested to do so, and has not
already returned. In addition, the actual COMMIT operation must
be delayed until all children requested by the committing transaction
have returned. Notice that there are few constraints on when a
transaction can be aborted. For example, a transaction can be
aborted while some of its descendants are still running.

In the material that follows we will rely on some simple invariants
relating schedules of the generic controller to the states that result
from applying them to the initial state. For example, if o results in
state s, then T is in aborted(s) exactly il « contains an ABORT(T)
operation. For brevity in this paper, however, we omit the detailed
statements of these invariants.

3.4. Generic Systems

The composition of transactions with generic objects and the
generic controller is called a generic system (of the given system
type). The non-access transactions and the generic objects are called
the system primitives. The schedules of a generic system are called
generic schedules, and the operations are called generic operations.
For any generic operation «, we define location(x) to be the primitive
at which x occurs. (Each operation occurs both at a primitive and at
the generic controller; no operation, however, occurs at more than
one primitive.)

3.5. Correctness

In much of the database literature on transactions, serializability is
taken as the definition of correctness. To deal with nested
transactions, and to handle aborts, the usual notion of serializability
must be generalized. This is done in [8] as follows.

A generic system is correct if every schedule of the generic system
*looks like® a serial schedule to the transactions. The permissible
serial schedules are defined by another kind of system, called a
*serial system®”. Serial systems are similar to generic systems in that
they are composed of transactions, a serial controller, and objects.
The transactions are identical to those in generic systems. The serial
controller, however, differs from the generic controller in two
respects. First, the serial controller permits only one child of a
transaction to run at a time. Thus, sibling transactions execute
sequentially at every level in the transaction tree, so that
transactions are run in a depth-first traversal of the tree. Second,
the serial controller aborts a transaction only if it has not yet been
created, and creates a transaction only if it has not been aborted. In
other words, aborted transactions never take any steps in a serial
schedule.

Objects in a serial system are simpler than generic objects. Since
the serial controller guarantees that siblings execute sequentially, and
that aborted transactions never take any steps, serial objects do not
have to deal with concurrency or with failures. The serial objects
serve as a specification of how objects should behave in the absence
of concurrency and failures. (The serial objects in [8] serve the same
purpose as the "serial specifications® in [17].)

Many possible notions of correctness can be defined. We consider
two here. The first is quite simple: it requires that every schedule
look like a serial schedule to every transaction. More precisely, if
is a generic schedule and T is a non-access transaction, we say that o
is sertally correct at T if there exists a serial schedule 8 such that
B|T = «a|T. In other words, T sees the same thing in e that it could
see in some serial schedule. We say that « is serially correct if it is
serially correct for all non-access transactions. We also say that a
system is serially correct if every schedule of the system is serially
correct.

Requiring every transaction to see 2 serial view is a strong
requirement. Without orphan elimination, in fact, systems may not
meet this requirement. Instead, they provide a slightly weaker
notion of correctness, namely that non-orphan transactions see serial
views. More precisely, if @ is a sequence of generic operations and T
is a transaction, we say that T is an orphan in « if ABORT(T’)
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occurs in a for some ancestor T' of T. Systems without orphan
elimination ensure that each schedule is serially correct for all non-
orphan transactions; orphan transactions, however, can see arbitrary
views.

In [8], an example is given for a particular kind of generic system
which guarantees serial correctness for non-orphan transactions. In

the system of that paper, each generic object is the composition of a

"resilient object* and a corresponding *lock manager®. The résilient
object handles recovery processing. The lock manager implements an
exclusive locking protocol based on that of Moss [11].  The
combination can be encapsulated in a generic object, which handles
both concurrency control and recovery. In this paper, we call the
combination of a resilient object and a lock manager a locking object,
and we call a generic system built using locking objects a locking
aystem. We call schedules of a locking system locking schedules.
The following theorem expresses the correctness guarantee proved in
[8] for locking systems.

Theorem 1: Let a be a locking schedule and let T be a non-
access transaction that is not an orphan in a. Then « is serially
correct at T.

The orphan elimination algorithms of this paper ensure that
schedules are serially correct for all non-access transactions, both
orphans and non-orphans. To ensure this, the orphan elimination
algorithms rely on the generic objects to ensure serial correctness for
non-orphans; in fact, the algorithms work with any generic objects
that ensure serial correctness for non-orphans. Thus, the orphan
elimination algorithms and the concurrency control algorithms are
independent. )

Theorem 1 implies that locking objects can be used with the
orphan elimination algorithms to yield serial correctness. There are
also many other examples of suitable generic objects. For example,
it is shown in (3] that objects that use read-write locking instead of
exclusive locking ensure serial correctness for non-orphans. We are
also currently working on generalizing the results in [17] to nested
transaction systems. This will permit us to show that many other
kinds of objects ensure serial correctness for non-orphans, including
objects that use timestamps for concurrency control [14], and objects
that use more general approaches to locking [8, 15, 17]. The results
in this paper indicate that the orphan elimination algorithms
analyzed here can be combined with any of these objects.

4. Information Flow .

The orphan elimination algorithms analyzed in this paper use quite
different techniques to detect and eliminate orphans. However, the
fundamental underlying structure is quite similar. In this section we
define a notion of a “dependency relation® that models the
information flow among operations. These definitions allow us to
analyze both orphan elimination algorithms in a simple and
straightforward manner.

For a sequence a of generic operations, define the relation
directly-affectsfa) to be the relation containing the pairs ($, ) of
operation instances® such that ¢ occurs before 7 in a, and at least
one of the following holds:

e location($) = location(r), and « is an output operation of
the primitive .
* ¢ = REQUEST _ CREATE(T) and r = CREATE(T)

* ¢ = REQUEST _COMMIT(T,v) and 7 =
COMMIT(T,v)

* ¢ is a return operation for a child of T and 7 —

COMMIT(T,v)

Sp ormally, an operation instance is a pair (i,r), where i is a
positive integer and « is an operation. An operation instance (i,7) is

_said to occur in « if the i-th element of a is 7. The distinction is

exactly that of a symbol (operation) and the occurrence of the
symbol in a string (operation instance).

-exactly which dependencies exist.)

* ¢ = REQUEST _ CREATE(T) and = ABORT(T)
¢ ¢ = COMMIT(T,v) and 7 —
INFORM _ COMMIT _ AT(X)OF(T)
¢ = ABORT(T) and r =
INFORM_ ABORT _ AT(X)OF(T)

Define the relation affects(a) to be the transitive closure of
directly-affects(a). If the pair (¢,7) is in the relation
directly-affects(ar), we say that ¢ directly-affects w in a. Similarly,
if (¢,7) is in the relation affects(ar), we say that ¢ affects 7 in .

The idea is that ¢ directly-affects = if it is possible for the
precondition for 7 to require ¢ to have occurred earlier. We want to
make as few assumptions about the particular primitives used in a
system. Thus, we make the *safe® choice of assuming a dependency
whenever one could occur. (For operations involving different
primitives, the transition relation of the generic controller tells us

-
Fortunately, the orphan
elimination algorithms deseribed later in this paper are independent
of the particular primitives used in a system, and do not rely on
more information about them. '

If « is a sequence of generic operations and B is a subsequence of a,

- we say that 8 {s closed in ¢ if, whenever 3 contains an operation

instance 7 in a, it also contains any ¢ that affects 7 in o.
The following lemma states that affects(a) contains all
dependencies that are relevant to the execution of a generic system.
Lemma 2: If o is a generic schedule, then any closed
subsequence of « is also a generic schedule.
In other words, if # is not affected by ¢ in some schedule a, then =
cannot “know® that ¢ occurred, since 7 could also have occurred in a
different schedule in which ¢ did not occur.
5. Filtered Systems

One way of ensuring that operations of a transaction T are never
affected by the abort of an ancestor of T is to add preconditions to
the operations of the generic controller to permit operations of T to
occur only if they would not be affected in this way. It turns out,
however, that this approach checks for orphans much more
frequently than necessary. In this section we define another kind of
system, called a “filtered system™, that checks for orphans only when
access transactions commit. We then show that this is sufficient to
ensure that transactions are never affected by the aborts of
ancestors.

Filtered systems consist of transactions, generic objects, and a
“filtered controller*. The filtered controller is obtained by slightly
modifying the generic controller; it *filters® commits of access
transactions so that any non-access transaction, orphan or not. sees a
view it could see 2s a non-orphan in the generic system.

5.1. The Filtered Controller

The filtered controller has the same seven operations as the generic
controller. Each state s of the filtered controller consists of six
components. The first five are the same as for the generic controller.
The sixth, history(s), is a sequence of generic operations. The initial
state of the filtered controller is denoted by Sy- As in the generic
controller, all sets are empty in S, except for create_requested,
which is {T,}. History(so) is the empty sequence. As before, we
define returned(s) = committed(s) U aborted(s).

The transition relations for all operations except COMMIT(T,v),
where T is an access, are defined as for the generic controller, except
that each operation m has an additional postcondition of the form
history(s) = history(s’)r. In other words, the history component of
the state simply records the sequence of operations that have
occurred. The transition relation for the COMMIT(T,v) operation,
where T is an access, is defined as follows.

« COMMIT(T,v), T an access
Precondition:
(T,v) € commit __requested(s’)
T & returned(s’)




if T’ is an ancestor of T,
then ABORT(T") does not affect COMMIT(T,v)
in history{s’)COMMIT(T,v)
Postcondition:
committed(s) = committed(s’) U {T}
history(s) = history(s')COMMIT(T,v)

5.2. Filtered Systems

A filtered system is the composition of transactions, generic
objects and the filtered controller. Schedules of a filtered system are
called filtered schedules. :

Lemma 3: Every filtered schedule is a generic schedule.

As described above, the filtered controller performs an explicit test
to ensure that the commit of an access is not affected by the abort of
any ancestor. The following key lemma shows that this test actually
guarantees more: that a similar property holds for all operations
occurring at non-access transactions.

Lemma 4: Let o be a filtered schedule, and let T be a non-
access transaction. Let p be an operation in a, such that
location(p) == T. Then there is no ABORT(T’) operation that
affects g in a, for any ancestor T® of T.

5.3. Simulation of Generic Systems by Filtered Systems

. The following theorem is the key result of the paper. It shows that
filtered systems ensure that every transaction gets a view it could get
when it is not an orphan. (Formally, a transaction T’s "view® in a
schedule a is its local schedule, «|T.) In other words, an orphan
cannot discover that it is an orphan, since the view it sees is
consistent with it not being an orphan. This is the basic correctness
property for the orphan elimination algorithms.

Theorem 5: Let a be a filtered schedule and let T be a non-
access transaction. Then there exists a generic schedule 8 such

that T is not an orphan in # and BT = «|T.

Proof: Let 8 be the subsequence of o containing all operations

7 such that location(r) = T, and all other operations ¢ that

affect, in o, some operation whose location is T. Since affects(a)

is a transitive relation, 8 is closed in a. By Lemma 2, 8 is a

generic schedule. It suffices to show that there is no ancestor T’

of T for which ABORT(T") occurs in B. Suppose not; i.e., there

exists an ancestor T° of T for which ABORT(T") occurs in g.

Then by the construction of B, a contains an operation 7 of T

such that ABORT(T’) affects = in o. By Lemma 4, this is

impossible. D

As discussed earlier, we can combine Theorem 5 with Theorem 1 to
obtain an important corollary. Define a Jiltered locking system to
be a filtered system whose generic objects are locking objects; its
schedules are called filtered locking schedules.

Corollary 8: Any filtered locking system is serially correct.

Proof: Let a be a filtered locking schedule and let T be a non-
access transaction. Theorem 5 yields a locking schedule ~ such
that T is not an orphan in 7 and T = a|T. Theorem 1 then
yields a serial schedule 8 with B|T = 4|T; this is equal to a|T, as

needed. [J

A similar corollary can be obtained for any generic system whose
transactions and objects ensure serial correctness for non-orphans.

It is not necessary to filter operations other than commits of
accesses because the communication patterns among the primitives in
a system are restricted. The execution of a transaction primitive T
can be affected by an ancestor only through the CREATE(T)
operation, or through communication via shared objects. As long as
T does not receive replies (commits) from any objects that *know™
that its ancestor has aborted, T cannot observe a state that depends
on the abort.

8. Argus Systems

In this section we analyze the orphan elimination algorithm used in
the Argus system [6, 7). We describe the algorithm by defining an
Argus controller that describes in formal terms the algorithm
discussed in [7]. We then define Argus systems, which are composed
of transactions, generic objects, and an Argus controller, and show

that Argus systems “simulate® filtered systems. In other words, a
schedule of an Argus system looks like a schedule of a filtered system
to each non-access transaction; if the filtered system is serially
correct, then so is-the corresponding Argus system.
6.1. The Argus Controller

The filtered controller uses global knowledge of the entire history
of operations to filter the commits of access transactions. This kind
of global knowledge is not practical in a distributed system. Thus,
the Argus algorithm makes use of local knowledge about the aborts
that have occurred. To ensure that the commit of an access is not
aifected by the abort of an ancestor, the Argus algorithm keeps track
of the aborts “known* by each operation that occurs, and
propagates this knowledge from an operation to any later operations
that it affects.

The Argus controller has the same seven operations as the generic
controller. Each state s of the Argus controller consists of six
components. The first five are the same as for the generic controller
(ie.,  create_requested(s), created(s),  commit__requested(s),
committed(s), and aborted(s)). The sixth, done(s), is a mapping from
operations to sets of transactions. This mapping records the
transactions whose aborts affect each operation, as the execution
proceeds. {The set done(s)(r) may actually include more transactions
than those whose aborts affect 7 in the execution. By adding more
aborted transactions to this set, an implementation would effectively
restrict the behavior of orphans further than is strictly necessary to
ensure the correctness conditions. Thus, we might say that
done(s)(r) contains those transactions that = "knows" are aborted.)

As before, the initial state is denoted by g, and all sets are initially
empty in s, except for create_ requested, which is {T,}. The
function done(so) maps each operation to the empty set.

For brevity, we describe only how the transition relation for the
Argus controller differs from that of the generic controller. First,
each operation r contains the following additional postcondition: for
every operation ¢ (including #), done(s')(¢) C done(s)(¢). In other
words, information "known* by an operation is not lost over time.
Second, each operation = has an additional postcondition of the
following form: for every ¢ such that ¢ directly-affects n, done(s’)(#)
€ done(s)(r). In other words, if ¢ is known by x to have occurred,

- then all aborts known by ¢ are known by m. Thus, for example, the

CREATE(T) operation has an additional postcondition that
done(s’(REQUEST _ CREATE(T)) - done(s)(CREATE(T)).
Finally, we modify the COMMIT operation for accesses and the
ABORT operation as follows:

o COMMIT(T,v}, T an access
Precondition:’
(T,v) € commit _requested(s’)
T & returned(s’)
there is no ancestor of T in
done(s’)(REQUEST_COMNHT(T,v))
Postcondition:
committed(s) = committed(s’) U {T}
done(s’)(REQUEST_COMMIT(T,v)) -
done(s)( COMMIT(T,v))
* ABORT(T)
Precondition:
T € create__requested(s’) — returned(s’)
Postcondition:
aborted(s) = aborted(s’) U {T}
done(s')(REQUEST __CREATE(T)) U {T} C
done(s}(ABORT(T))

8.2. Argus Systems

An Argus system is the composition of transactions, generic
objects, and the Argus controller. Schedules of the Argus system are
called Argus schedules. -
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Lemma 7: Every Argus schedule is a generic schedule.

The next lemma shows that the postconditions on the operations
are enough to ensure that done(s)($) contains T whenever
ABORT(T) affects an instance of $.

Lemma 8: Let o be an Argus schedule such that an instance

of ABORT(T) affects an instance of operation ¢ in o, and let s

be a state of the Argus controller after «. Then T € done(s)(4).
68.3. Simulation of Generic Systems by Argus Systems )

The following lemma shows that the information in donefs),
combined with the precondition on commits of accesses, is enough to
ensure that Argus systems simulate filtered systems.

Lemma 9: Every Argus schedule is a filtered schedule.

Given this lemma, it is a simple exercise to show the analogs for
the Argus controller of Theorem 5 and Corollary 6.

7. Strictly Filtered Systems .

Because of lack of space in the proceedings, we present only a
sketch of the results of this section. The idea is to define a “strictly
filtered controller”, which allows an access to commit only if no
ancester has aborted. It is simple to show that this controller
simulates the filtered controller. However, it uses global information
about the aborts that have occurred. In the next section, we show
that the algorithm from (10}, which uses local information, simulates
the strictly filtered controller.

8. Clock Systems

Because of lack of space, we can only sketch the results here. We
model the algorithm -from [10] by a *clock controller®. The clock
controller maintains a quiesce time for each access transaction and a
release time for every tr: tion. An transaction is allowed
to commit only if its quiesce time has not passed. Release times are
chosen so that once a transaction’s release time is reached, all its
descendant accesses have quiesced. A transaction is allowed to abort
only if its release time has passed. This ensures that, after a
transaction aborts, none of its descendant accesses will commit.
Operations are provided to model the passage of time, and to permit
quiesce and release times to be adjusted. We then show that the
clock controller simulates the strictly filtered controller.

9. Conclusions

We have defined correctness properties for orphan elimination
algorithms, and have presented precise descriptions and proofs for
two algorithms from (7] and [10]. Our proofs are quite simple, and
show that the systems exhibit a substantial degree of modularity:
the orphan elimination algorithms can be used in combination with
any concurrency control protocol that ensures correctness for non-
orphans. The simplicity of our proofs is a direct result of this
modularity, and is in sharp contrast to earlier work [4], in which the
orphan elimination algorithm and the concurrency control protocol
were not cleanly separated.

In this paper we have analyzed only orphans that result from
aborts of transactions- We are currently studying orphans that

@l

(4]

(5]

(6]

[

(9]

(10]

(11]

(12]

(13]

result from crashes, The algorithms for detecting and eliminating®m.

such orphans described in [7, 10] are quite interesting, but also more

complicated than the algorithms for handling aborts. We would like
to find a similar separation of concerns for the crash-orphan
algorithms, showing, for example, that the crash-orphan algorithms

_are independent of the concurrency control protocol and the abort-

orphan algorithm used in the system. Whether this will be possible

is still unknown.
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